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Abstrat. This paper presents a box-oriented debugging model for the fun-

tional logi language ALF. Due to the sophistiated operational semantis of

ALF whih is based on innermost basi narrowing with simpli�ation, the de-

bugger must reet the appliation of the di�erent omputation rules during

program exeution. Hene our debugging model inludes not only one box

type as in Byrd's debugging model for logi programs but several di�erent

kinds of boxes orresponding to the various omputation rules of the fun-

tional logi language (narrowing, simpli�ation et.). Moreover, additional

box types are introdued in order to allow skips over (sometimes) uninter-

esting program parts like proofs of the ondition in a onditional equation.

Sine ALF is a genuine amalgamation of funtional and logi languages, our

debugging model subsumes operational aspets of both kinds of languages.

As a onsequene, it an be also used for pure logi languages, pure fun-

tional languages with eager evaluation, or funtional logi languages with a

less sophistiated operational semantis like SLOG or eager BABEL.

1 Introdution

The interest in the amalgamation of funtional and logi programming languages

has been inreased during the last years (see [5℄ for a survey). Suh integrated lan-

guages have at least two advantages. In omparison with pure funtional languages,

funtional logi languages have more expressive power due to the availability of fea-

tures like funtion inversion, partial data strutures and logi variables [25℄. In om-

parison with pure logi languages, funtional logi languages have a more eÆient

operational behavior sine funtions allow deterministi evaluations if arguments

are suÆiently instantiated [13℄. Reently, funtional logi languages beame rele-

vant for pratial appliations beause eÆient implementations have been developed

[1, 4, 12, 19, 20, 21, 28℄. Therefore there is a need for debugging tools for suh kind

of languages. Sine the operational semantis of these languages is di�erent from

pure logi languages, we annot easily adopt an existing debugging framework from

?
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logi programming. Hene we develop a new debugging model for ALF, a funtional

logi language whih ombines the nondeterministi omputation priniple of logi

programming (resolution) with the deterministi omputation priniple of funtional

programming (redution). Our debugging model is based on Byrd's box model for

logi programs [3℄ but re�ned in two diretions. Firstly, the four ports of Byrd's

model are enrihed by new ports in order to allow the observation of the head uni�-

ation [8, 24, 26℄ whih is very important in a language whih distinguishes between

mathing and uni�ation. Seondly, new box types are introdued in order to reet

the di�erent omputation rules of the funtional logi language.

In the next setion we give a desription of ALF's operational semantis. After a

short outline of the standard debugging model for pure logi programs in Setion 3

we present in Setion 4 the new debugging model orresponding to ALF's exeu-

tion priniples. Comments to the urrent implementation are given in Setion 5 and

Setion 6 disusses appliations of the debugging model.

2 The exeution priniples of ALF

Di�erent exeution priniples have been proposed for funtional logi languages. A

sound and omplete operational semantis is usually based on narrowing [9, 17℄. Sine

pure narrowing is extremely nondeterministi and reates a huge searh spae, re�ned

narrowing strategies are used in funtional logi languages. For instane, SLOG [10℄

is based on innermost narrowing, K-LEAF [1℄ and BABEL [20℄ use a lazy strategy,

and ALF [11, 12℄ ombines innermost basi narrowing with simpli�ation between

narrowing steps. Sine the latter strategy prefers deterministi omputations, it an

be shown that ALF programs are more eÆiently exeuted than equivalent logi

programs [13℄. Therefore we are interested in this strategy and we will develop a

debugger for suh kind of programs. However, we remark that this debugging model

is general enough to be appliable to other funtional logi languages with an eager

evaluation priniple (f. Setion 6.2). Before presenting the debugging model we

desribe ALF's operational semantis in more detail.

ALF is a onstrutor-based language, i.e., the user must speify for eah symbol

whether it is a onstrutor or a de�ned funtion. Construtors must not be the

outermost symbol of the left-hand side of a de�ning equation, i.e., onstrutor terms

are always irreduible. Hene onstrutors are used to build data types, and de�ned

funtions are operations on these data types.

An ALF program is a set of onditional equations.

3

Equations de�ne funtions

and are used in two ways. In a narrowing step an equation is applied to ompute

3

ALF has more features than presented in this paper, e.g., a module system with param-

eterization, a type system based on many-sorted logi, prediates whih are resolved by

resolution et. [11℄. We omit these features in this paper beause they have no interesting

inuene on the debugging model (note that prediates an also be onsidered as Boolean

funtions).
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module lists.

datatype elem = f a ; b ;  g.

datatype list = f '.'(elem,list) ; [℄ g.

fun append: list, list -> list.

rules.

append([℄,L) = L.

append([E|R℄,L) = [E|append(R,L)℄.

end lists.

Figure 1. ALF program for onatenating lists

a solution of a goal (i.e., variables in the goal may be bound to terms), whereas in

a rewrite step an equation is applied to simplify a goal (i.e., without binding goal

variables). Therefore we distinguish between narrowing rules (equations applied in

narrowing steps) and rewrite rules (equations applied in rewrite steps). Usually, all

onditional equations of an ALF program are used as narrowing and rewrite rules,

but it is also possible to speify additional rules whih are only used for rewriting.

Figure 1 shows an ALF module whih de�nes lists and a onatenation funtion

on lists. a, b and  are the onstrutors of the data type elem and lists are de�ned

as in Prolog. The two equations (with empty onditions) in this module de�ne the

funtion append for onatenating two lists.

The delarative semantis of ALF is the well-known Horn lause logi with equal-

ity as to be found in [23℄. The operational semantis of ALF is based on innermost

basi narrowing with normalization. In the following desription of this operational

semantis we distinguish two kinds of nondeterminism by the keywords \don't know"

and \don't are": don't know indiates a branhing point in the omputation where

all alternatives must be explored (by a baktraking strategy in our implementation);

don't are indiates a branhing point where it is suÆient to selet one alternative

and disregard all other possibilities. We represent a goal (a list of equations to be

solved) by a skeleton and an environment part [16, 22℄: the skeleton is a list of equa-

tions omposed of terms ourring in the original program, and the environment

is a substitution whih has to be applied to the equations in order to obtain the

atual goal. The initial goal G is represented by the pair hG; idi where id is the

identity substitution. The following sheme desribes the operational semantis (if

� is a position in a term t, then tj

�

denotes the subterm of t at position � and t[s℄

�

denotes the term obtained by replaing the subterm tj

�

by s in t [6℄; � is alled an

innermost position of t if the subterm tj

�

has a de�ned funtion symbol at the top

and all argument terms onsist of variables and onstrutors). Let hE

1

; : : : ; E

n

; �i

be a given goal (E

1

; : : : ; E

n

are the skeleton equations and � is the environment):

1. Selet don't are a non-variable position � in E

1

and a new variant l = r  C

of a rewrite rule suh that �

0

is a substitution with �(E

1

j

�

) = �

0

(l) and the goal

hC ; �

0

i an be derived to the empty goal without instantiating any variables
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from �(E

1

). Then

hE

1

[�

0

(r)℄

�

; E

2

; : : : ; E

n

; �i

is the next goal derived by rewriting; go to 1. Otherwise go to 2.

2. If the two sides of equation E

1

have di�erent onstrutors at the same outer

position (a position not belonging to arguments of funtions), then the whole

goal is rejeted, i.e., the proof fails. Otherwise go to 3.

3. Let � be the leftmost-innermost position in E

1

(if there exists no suh position

in E

1

, go to 4). Selet don't know (a) or (b):

(a) Selet don't know a new variant l = r  C of a narrowing rule suh that

�(E

1

j

�

) and l are uni�able with most general uni�er (mgu) �

0

. Then

hC;E

1

[r℄

�

; E

2

; : : : ; E

n

; �

0

Æ �i

is the next goal derived by innermost basi narrowing; go to 1. Otherwise:

fail.

(b) Let x be a new variable and �

0

be the substitution fx 7! �(E

1

j

�

)g. Then

hE

1

[x℄

�

; E

2

; : : : ; E

n

; �

0

Æ �i

is the next goal derived by innermost reetion; go to 3 (this orresponds

to the elimination of an innermost redex and it is only neessary in the

presene of partially de�ned funtions [16℄).

4. If E

1

is the equation s = t and there is a mgu �

0

for �(s) and �(t), then

hE

2

; : : : ; E

n

; �

0

Æ �i

is the next goal derived by reetion; go to 1. Otherwise: fail.

In the atual ALF implementation the don't are nondeterminism during rewriting

(step 1) is implemented by an innermost strategy, i.e., rewriting is performed from

innermost to outermost positions, and the don't know nondeterminism in narrowing

steps (step 3) is implemented by a baktraking strategy as in Prolog.

This operational semantis may look ompliated at �rst sight, but it is a on-

sistent realization of the exeution priniple \prefer deterministi omputations as

long as possible" (i.e., apply deterministi rewrite steps before nondeterministi nar-

rowing steps). This yields an eÆient operational behavior ompared to Prolog's

nondeterministi resolution priniple but without loosing ompleteness as in other

eÆient approahes to exeute funtional logi programs (f. [15℄). A more detailed

disussion of the ompleteness of this operational semantis and the advantages of

it in omparison to other exeution priniples an be found in [12, 13℄. We want

to point out that ALF's operational semantis an be implemented with the same

eÆieny as urrent Prolog implementations by extending Warren's Abstrat Ma-

hine to deal with funtional omputations [12, 14℄. Moreover, the searh spae of

ALF programs may be smaller than equivalent Prolog programs due to rewriting

and rejetion. For instane, the exeution of the following goal fails w.r.t. the list

module (f. Figure 1):
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append(append([a|L1℄,L2),L3) = [b|L4℄

` rewriting the innermost all to append:

append([a|append(L1,L2)℄,L3) = [b|L4℄

` rewriting the outermost all to append:

[a|append(append(L1,L2),L3)℄ = [b|L4℄

` rejetion (a and b are di�erent onstrutors):

fail

On the other hand the equivalent (attened) Prolog goal

append([a|L1℄,L2,L), append(L,L3,[b|L4℄)

auses an in�nite loop for any order of literals and lauses of the Prolog program for

append. This example shows that the simpli�ation proess followed by the rejetion

rule is essential for the improved eÆieny of ALF programs (see [13℄ for more

details).

4

Therefore a debugger must show the (suessful) appliation of rewriting

and rejetion to the programmer. This requires an extension of the standard box-

oriented debugging model for Prolog [3, 8℄ to these new omputation rules. Before

we show suh an extended debugging model in Setion 4, we will shortly review the

standard debugging model for logi programs in the next setion.

3 The standard box-oriented debugger for logi programs

Byrd's debugging model [3℄ has been used as the standard soure-level debugger in

many Prolog systems. It is based on the idea that during the omputation proess

a box of the following kind is assoiated to eah literal:

�

-

�

-

literal

REDO

EXITCALL

FAIL

This box is reated when the literal should be proved for the �rst time. The box

is entered through the CALL port. If the literal is suessfully proved, the box is

left through the EXIT port, otherwise (if the proof fails) through the FAIL port.

If it is neessary to �nd an alternative proof for this literal (due to the failure of a

subsequent literal), then the box is entered again through the REDO port. Depending

on suess or failure of �nding an alternative proof, the box is left through the EXIT

or FAIL port. Note that the boxes have a reursive struture: if a lause is used for

the proof of the literal, then new boxes are reated inside this box for eah literal in

the body of the lause.

The basi priniple of this debugging model is the observability of these four

ports: the ports are the only visible points in the omputation proess, i.e., the

4

For instane, \generate-and-test" programs are exeuted in ALF with a lower omplexity

than in Prolog.
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debugger or traer

5

outputs the ports together with the literal. During the debugging

proess, the user an turn o� the observability of some ports or he an skip from

one port to the next port of the same box in order to omit unneessary details of a

subomputation.

It has been ritiized that this four-port debugging model is too weak to explain

the ontrol ow of logi programs to the user. For instane, the user annot see the

reason of a failure, i.e., it is not visible whether there are no lauses for a literal

or the lause heads do not unify with the literal. Therefore several re�nements of

this standard debugging model have been proposed in order to visualize the head

uni�ation proess [8, 24, 26℄. Sine the di�erene between mathing and uni�ation

is important in the operational semantis of funtional logi languages (ompare

de�nition of rewriting and narrowing in Setion 2), we will also propose suh a

re�ned debugging model in the next setion.

4 A debugging model for funtional logi programs

The standard box model for Prolog is used as an interfae between the program

exeution and the programmer. Eah box represents the proof of a literal and the

programmer an stop and observe the proof at the ports of a box. Moreover, he an

set spy points on some ports and skip from one port to another in order to skip over

uninteresting details of the exeution. In order to provide a similar debugging model

for ALF, it is neessary to introdue new box types for the di�erent omputation

rules (simpli�ation, rejetion et.) and for the new logial units in a proof (e.g.,

simpli�ation of an entire literal, proving the ondition in a onditional equation).

Therefore the box-oriented debugger for ALF is based on the following box types:

Literal box: In order to allow the programmer to skip over the proof of a literal

(equation), there is a box for eah literal as in Byrd's box model [3℄. Sine a literal is

proved by applying simpli�ation, rejetion, narrowing, and reetion, a literal box

ontains four other boxes whih orrespond to the ongoing omputation w.r.t. these

rules. Hene the literal box has the following struture (if the literal does not ontain

any de�ned funtion symbol, the simpli�ation and narrow boxes are omitted):

-

�

-

-

-

� �

- -

�

-

�

6

LITERAL

FAIL-

LITERAL

ENTER-

simpli�ation

t

1

= t

2

rejetion

t

0

1

= t

0

2

REDO-

LITERAL

EXIT-

LITERAL

literal: t

1

= t

2

narrow

t

0

1

= t

0

2

reetion

t

00

1

= t

00

2

5

Standard Prolog debuggers show a trae of the program exeution to the user. Therefore

this part of the debugger is also alled traer. Although we will desribe only the trae

omponent of our debugger, we will use the more general term \debugger" in this paper.
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Rejetion box: This box orresponds to an appliation of the rejetion rule to

an equation. If the equation has di�erent onstrutors at the same outer posi-

tion, the equation is rejeted, otherwise not rejeted. For instane, the equation

[a|append(L,[℄)℄=[b|M℄ is rejeted while the equation append(L,[℄)=[a|M℄ is

not rejeted. The rejetion box has no REDO port beause rejetion is a determinis-

ti test:

�

-

-

NOT-REJECTED

REJECTED

ENTER-REJECTION

rejetion: t

1

= t

2

Reetion box: This box orresponds to an appliation of the reetion rule to an

equation. If the two sides of the equation are uni�able, the box is left with suess,

otherwise with failure. Similarly to the rejetion box, this box has no REDO port:

�

-

-

ENTER-REFLECTION

EXIT-REFLECTION

FAIL-REFLECTION

reetion: t

1

= t

2

Simpli�ation box: This box orresponds to the simpli�ation of an entire term (or

equation). It ontains a rewrite box for eah funtion symbol in the term in leftmost-

innermost order (e.g., a simpli�ation box for append(append([a|V℄,W),Y) ontains

a �rst rewrite box for append([a|V℄,W) and a seond rewrite box for the outermost

all to append). This box has no REDO port beause simpli�ation is a deterministi

proess. Moreover, it has no FAIL port beause simpli�ation omputes the normal

form of a term and hene it is always suessful.

-- - ---

...........

t

1

rewrite

SIMPL.

ENTER- rewrite

t

2

rewrite

t

n

EXIT-

SIMPL.

simpli�ation: t

Note that this box is not essentially neessary sine it represents no partiular om-

putation rule of the operational semantis. However, this box is useful to struture

the entire proof proess: if the programmer is not interested in the details of the

simpli�ation proess between two narrowing steps, he an simply skip from the

ENTER-SIMPLIFICATION port to the EXIT-SIMPLIFICATION port (see also Setion 5).
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Rewrite box: This box orresponds to the appliation of a rewrite rule at a sub-

term. It ontains a box for eah rule de�ning the funtion at the subterm's head

(these inner boxes are similar to the OR-boxes of the re�ned box model in [26℄).

Suh a rule an be applied if the left-hand side mathes the subterm and the on-

dition is provable. In this ase the subterm is replaed by the right-hand side and

the right-hand side is simpli�ed by reating a rewrite box for eah funtion sym-

bol ourring in the right-hand side (in the following �gure it is assumed that the

right-hand side ontains only one de�ned funtion symbol). The ondition box in a

rule box is omitted if the rule does not ontain a ondition. The FAIL-MATCH port

of a rule box is onneted to the TRY-MATCH port of the subsequent rule box. But

note that the FAIL-MATCH port of the last equation is onneted to the exit port

of the whole rewrite box beause the subterm is in normal form if no equation is

appliable.

?

-

-

-

-

-

-

-

?

-

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

MATCH

FAIL-

MATCH

TRY-

REWRITE

ENTER-

left-

hand

side

ondition rewrite

REWRITE

EXIT-

EXIT-

BODY

rewrite: f(� � �)

Condition box: This box overs the proof of the entire ondition of a onditional

rewrite or narrowing rule. It is introdued in order to skip over the proof of the

ondition of a rule. This box simply ontains the literals (equations) in the ondition

(the REDO-COND port is not used in ase of rewrite rules):

�

-

-

�

-

�

-

�

-

�

-

�

. . . . . . .

. . . . . . .

COND

FAIL-

COND

TEST-



1

literal literal



n

ondition: 

1

; : : : ; 

n

EXIT-

COND

REDO-

COND

Narrow box: The struture of this box is very similar to the rewrite box but it has

in addition to the boxes for eah de�ning rule an innermost reetion box as the

�nal rule whih is neessary for partially de�ned funtions. In ontrast to the rewrite
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box, the right-hand side of a narrowing rule annot be represented by a sequene

of boxes orresponding to the de�ned funtion symbols ourring in the right-hand

side. This is due to the fat that after replaing the subterm by the right-hand side in

a narrowing step the whole term is simpli�ed and then heked for rejetion before

the next narrowing step takes plae. Sine the simpli�ation proess may hange

the whole struture of the term, the subterm where the next narrowing rule will be

applied is not �xed after the appliation of the narrowing rule. Hene the narrow

box as well as the simplify narrow box (see below) have the whole term or literal as

a parameter and the narrowing rule is applied at the leftmost-innermost position of

this term. Note that due to the innermost reetion rule (whih is always appliable)

narrowing annot fail. However, an ALF programmer an expliitly prevent the

appliation of the innermost reetion rule by delaring a funtion as \total". It is

a programming error if no narrowing rule is appliable to total funtions. In order

to show suh errors to the programmer, the debugging model ontains also a FAIL

port in the narrow box.

?

- -

- -

� �

--

�

-

?

-

-

� �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

UNIFY

FAIL-

UNIFY

TRY-

NARROW

ENTER-

left-

hand

side

ondition

simplify-

narrow

EXIT-

BODY

REDO-

BODY

EXIT-

NARROW

narrow: t

innermost reetion

FAIL-

NARROW

REDO

NARROW

Simplify narrow box: As mentioned above this box overs the simpli�ation, reje-

tion and narrowing performed after eah narrowing rule. Hene it has the following

struture:

-

-

�

-

�

-

�

-

�

-

�

SI.-NA.

FAIL-

SI.-NA.

ENTER-

simpli�ation rejetion narrow

REDO-

SI.-NA.

EXIT-

SI.-NA.

simplify-narrow: t
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Now we have desribed all box types of ALF's debugging model. At �rst sight the

inreased number of boxes seems to be onfusing. But we think that these boxes

are neessary to give the user the right impression of the program exeution and to

allow him to skip over unneessary details. Sine this debugging model an be on-

sidered as a preise desription of ALF's operational semantis, there is no learning

overhead when this debugger is used. Moreover, we believe that the use of this de-

bugging model simpli�es the learning of the exeution priniples of funtional-logi

languages. These priniples are neessarily more omplex than the exeution of pure

funtional or pure logi languages. However, the advantages of these priniples are

onvining: more expressive power than funtional languages due to the presene of

logi variables [25℄ and more eÆieny than logi languages due to the integration of

a deterministi simpli�ation proess [13℄. In Setion 6 we will see how the debugging

model an be simpli�ed if a less sophistiated operational semantis is used.

5 Implementation

The debugging model presented in the previous setion is implemented as an ex-

tended interpreter for ALF programs. The implementation language is also ALF in

order to test the ALF system and to demonstrate that ALF an be used for larger

appliations. The funtionality of the urrent ALF debugger is similar to standard

Prolog debuggers. For instane, it allows

{ to turn o�/on the observability of some ports,

{ to set spy points on de�ned funtions,

{ to skip over subomputations inside a box (i.e., to skip from one box port to the

next port in this box),

et. (see [18℄ for details). In the urrent implementation the debugger shows the

literal or the subterm orresponding to the omputation step. Additionally, at the

TRY-MATCH port the left-hand side of the applied rule is printed before it is mathed

against the urrent subterm in a rewrite step (similarly for the TRY-UNIFY port).

Although this information is suÆient in many ases, sometimes the programmer

wants to see the entire rule whih is urrently used. This an be supported by

showing the entire rule in rewrite/narrow boxes as in the Coda debugger [24℄.

Finally, we want to present the urrent debugging model from a user's

point of view by showing some example traes. The �rst example is a om-

plete trae of the append program introdued in Setion 2. The initial goal is

append(append([a|V℄,W),Y)=[b|Z℄. This goal will be disproved due to the rewrit-

ing and rejetion rule as shown at the end of Setion 2. The full trae is lengthy

sine all rewrite rules for append must be applied to the subterms of this goal:

?- append(append([a|V℄,W),Y)=[b|Z℄.

ENTER-LITERAL: append(append([a|V℄,W),Y)=[b|Z℄ ?

ENTER-SIMPLIFICATION: append(append([a|V℄,W),Y)=[b|Z℄ ?

10



ENTER-REWRITE: append([a|V℄,W) ?

TRY-MATCH: append([℄,L) WITH: append([a|V℄,W) ?

FAIL-MATCH: append([a|V℄,W) ?

TRY-MATCH: append([E|R℄,L) WITH: append([a|V℄,W) ?

ENTER-REWRITE: append(V,W) ?

TRY-MATCH: append([℄,L) WITH: append(V,W) ?

FAIL-MATCH: append(V,W) ?

TRY-MATCH: append([E|R℄,L) WITH: append(V,W) ?

FAIL-MATCH: append(V,W) ?

EXIT-REWRITE: append(V,W) ?

EXIT-REWRITE-BODY: append([a|V℄,W) ?

EXIT-REWRITE: [a|append(V,W)℄ ?

ENTER-REWRITE: append([a|append(V,W)℄,Y) ?

TRY-MATCH: append([℄,L) WITH: append([a|append(V,W)℄,Y) ?

FAIL-MATCH: append([a|append(V,W)℄,Y) ?

TRY-MATCH: append([E|R℄,L) WITH: append([a|append(V,W)℄,Y) ?

ENTER-REWRITE: append(append(V,W),Y) ?

TRY-MATCH: append([℄,L) WITH: append(append(V,W),Y) ?

FAIL-MATCH: append(append(V,W),Y) ?

TRY-MATCH: append([E|R℄,L) WITH: append(append(V,W),Y) ?

FAIL-MATCH: append(append(V,W),Y) ?

EXIT-REWRITE: append(append(V,W),Y) ?

EXIT-REWRITE-BODY: append([a|append(V,W)℄,Y) ?

EXIT-REWRITE: [a|append(append(V,W),Y)℄ ?

EXIT-SIMPLIFICATION: [a|append(append(V,W),Y)℄=[b|Z℄ ?

ENTER-REJECTION: [a|append(append(V,W),Y)℄=[b|Z℄ ?

REJECTED: [a|append(append(V,W),Y)℄=[b|Z℄ ?

FAIL-LITERAL: [a|append(append(V,W),Y)℄=[b|Z℄ ?

goal failed: append(append([a|V℄,W),Y)=[b|Z℄

However, this is the extreme ase for our debugging model. Usually, the observability

of several ports (like TRY-MATCH) is swithed o� and the user skips over entire

subomputations whih is possible due to the re�ned box struture of our debugging

model. For instane, it is often the ase that the user wants to skip the entire

simpli�ation proess. Then the above trae is redued as follows (the user ommand

skip does not show a subomputation inside a box and fores the debugger to stop

at the next port of the urrent box):

?- append(append([a|V℄,W),Y)=[b|Z℄.

ENTER-LITERAL: append(append([a|V℄,W),Y)=[b|Z℄ ?

ENTER-SIMPLIFICATION: append(append([a|V℄,W),Y)=[b|Z℄ ? skip

EXIT-SIMPLIFICATION: [a|append(append(V,W),Y)℄=[b|Z℄ ?

ENTER-REJECTION: [a|append(append(V,W),Y)℄=[b|Z℄ ?

REJECTED: [a|append(append(V,W),Y)℄=[b|Z℄ ?

FAIL-LITERAL: [a|append(append(V,W),Y)℄=[b|Z℄ ?

goal failed: append(append([a|V℄,W),Y)=[b|Z℄

11



Another example trae will be shown in the next setion.

6 Appliation of the debugging model

In this setion we point out some aspets related to the appliation of our debugging

model.

6.1 Filtering

Due to the inreased number of ports in our debugging model, too many details

of the omputation proess are usually presented to the user. Therefore it is nees-

sary to �lter the standard output in order to onentrate on the relevant part of the

omputation proess. One possible implementation of �ltering is a programmable de-

bugger where the user an on�gure the debugger to his requests [7℄. This ould also

be implemented on the basis of our debugging model. Another muh simpler solution

is to turn o� the observability of ports in whih the user is not interested. There-

fore, in a typial on�guration of our debugger the observability of the TRY-MATCH,

TRY-UNIFY and EXIT-BODY ports in rewrite and narrow boxes is swithed o� (the

user an turn on and o� the observability of partiular ports during the debugging

session). The ports ENTER-REJECTION, NOT-REJECTED, ENTER-REFLECTION and

EXIT-REFLECTION are also turned o� sine these belongs to elementary operations

and the user is usually interested in failure situations, i.e., in the ports REJECTED

and FAIL-REFLECTION. The following trae shows the omputation of the initial goal

append(_,[T℄)=[a,b℄ for suh a on�guration. The goal is provable if the variable T

is the last element of the given list at the right-hand side. During this trae the user

skips the simpli�ation proess of the initial goal and the simpli�ation/narrowing

proess after the appliation of the seond narrowing rule for append:

?- append(_,[T℄)=[a,b℄.

ENTER-LITERAL: append(_,[T℄)=[a,b℄ ?

ENTER-SIMPLIFICATION: append(_,[T℄)=[a,b℄ ? skip

EXIT-SIMPLIFICATION: append(_,[T℄)=[a,b℄ ?

ENTER-NARROW: append(_,[T℄)=[a,b℄ ?

EXIT-NARROW: [T℄=[a,b℄ ?

FAIL-REFLECTION: [T℄=[a,b℄ ?

REDO-NARROW: append(_,[T℄)=[a,b℄ ?

ENTER-SIMP.-NARR.: [E1|append(R1,[T℄)℄=[a,b℄ ? skip

EXIT-SIMP.-NARR.: [E1,T℄=[a,b℄ ?

EXIT-NARROW: [E1,T℄=[a,b℄ ?

EXIT-LITERAL: [a,b℄=[a,b℄ ?

goal proved: append([a℄,[b℄)=[a,b℄

The standard trae without �ltering onsists of 40 steps for the same example. This

�ltered trae shows that our debugging model an be adjusted to a good reetion
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of the operational priniples of funtional logi languages. The experienes with the

urrent implementation of the debugger give us the persuasion that this model is

suitable for debugging larger programs and also for understanding the ontrol ow

of funtional logi programs.

6.2 Debugging other delarative languages

The presented debugging model is adjusted to the operational semantis of ALF

whih onsists of the inferene rules rewriting, rejetion, innermost basi narrow-

ing, innermost reetion and reetion. These inferene rules model a omplete and

eÆient exeution mehanism for funtional logi programs. If one is interested in

similar languages with a more restrited operational semantis, our debugging model

an also be applied. But in this ase the struture of our model an be simpli�ed as

shown in the following.

ALF is a genuine amalgamation of funtional and logi languages, i.e., pure logi

programming and (�rst-order) funtional programming are ontained in ALF. This

is also reeted by our debugging model. For instane, a pure logi ALF program

ontains only Boolean funtions, has no nested funtional expressions, and has only

narrowing rules of the form

p

0

(� � �)=true :- p

1

(� � �)=true,: : :,p

k

(� � �)=true.

Therefore all boxes exept the narrow and reetion box an be omitted for suh pro-

grams (the innermost reetion boxes inside narrow boxes are also superuous). The

result is a restrited debugging model whih is very lose to the extended debuggers

for Prolog [8, 24, 26℄.

The other extreme is a pure funtional ALF program whih onsists of a set of

rewrite rules and has no narrowing rules. Moreover, the initial goal is ground, i.e., no

logial variables our during program exeution. Consequently, the literal, ree-

tion, narrow, and simplify narrow boxes an be omitted. In this restrited debugging

model the user an observe the evaluation of eah funtion all and the mathing

of a funtion all with the left-hand sides of the orresponding rules. Therefore it is

very similar to symboli debuggers proposed for funtional languages with pattern

mathing and eager evaluation like Standard-ML [27℄.

Our debugging model an also be used for other funtional logi languages whih

use some variant of innermost narrowing as their operational semantis. For instane,

SLOG [10℄ exeutes funtional logi programs by innermost narrowing and rewriting.

SLOG di�ers from ALF in the innermost reetion rule whih is not inluded in

SLOG sine it is assumed that all funtions in SLOG are totally de�ned. Therefore

our debugging model an be applied to SLOG with the di�erene that the innermost

reetion boxes inside narrow boxes are deleted. Further simpli�ations are possible

for funtional logi languages based on innermost narrowing without simpli�ation

like eager BABEL [19, 20℄. In this ase the simpli�ation, rewrite, rejetion, and

simplify narrow boxes an also be omitted.
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7 Conlusions

We have presented a debugging model for the funtional logi language ALF, a lan-

guage that ombines nondeterministi searh as in logi languages with deterministi

redution as in funtional languages. This debugging model reets the di�erent om-

putations rules of the operational semantis and allows the user to skip over logially

related parts of the exeution proess. Beyond the possibility of debugging a faulty

ALF program, the debugging model an also be used to explain the operational prin-

iples of funtional logi languages. Note that for pure funtional programs where a

ground term is redued to normal form the operational semantis of ALF is identi-

al to the redution priniple of funtional languages with pattern mathing sine

narrowing is not applied. Hene our debugging model an also used for funtional

languages. Moreover, we have shown that our debugging model is general enough to

be applied to other funtional logi languages with an eager evaluation strategy like

SLOG or eager BABEL.

There are several diretions for further work. On the one hand the implemen-

tation of the debugger must be improved in order to use it for large appliations.

For this purpose the debugger must be integrated into the A-WAM [12℄, the ab-

strat mahine into whih ALF programs are ompiled. This an be done similarly

to the integration of debuggers in WAM-based Prolog implementations [2℄. Another

important topi is the extension of the debugging features. For instane, for larger

appliations it is useful to integrate user-de�ned pre- and postonditions for fun-

tions into the debugging proess instead of the simple spy points. Suh appliations

require a more exible and programmable debugger [7℄. Suh debuggers are based

on the idea to show the user only distint events of the program exeution. Sine

we have de�ned the priniple events whih are observable by the programmer, our

debugging model an be seen as a �rst step to develop advaned symboli debuggers

for funtional logi languages.
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