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Abstrat. This paper shows the advantages of amalgamating funtional

and logi programming languages. In omparison with pure funtional lan-

guages, an amalgamated funtional logi language has more expressive power.

In omparison with pure logi languages, funtional logi languages have a

better ontrol behaviour. The latter will be shown by presenting methods

to translate logi programs into a funtional logi language with a narrow-

ing/rewriting semantis. The translated programs produe the same set of

answers and have at least the same eÆieny as the original programs. But

in many ases the ontrol behaviour of the translated programs is improved.

This requires the addition of further knowledge to the programs. We disuss

methods for this and show the gain in eÆieny by means of several examples.

1 Introdution

Many proposals have been made to integrate funtional and logi programming lan-

guages during the last years (see [3, 11℄ for surveys). Reently, these proposals be-

ame relevant for pratial appliations beause eÆient implementations have been

developed [5, 8, 19, 33, 35, 48℄. This raises the natural question for the advantages of

suh amalgamated languages. In omparison with pure funtional languages, fun-

tional logi languages have more expressive power due to the availability of features

like funtion inversion, partial data strutures and logi variables [42℄. In ompari-

son with pure logi languages, funtional logi languages allow to speify funtional

dependenies and to use nested funtional expressions. Although this improves the

readability of logi programs, it is not lear whether this is only a minor syntati

improvement (whih an be added to logi languages by a simple preproessor [37℄)

or there is a genuine advantage of funtional logi languages ompared to pure logi

languages. In this paper we show that the latter is true: funtional logi languages

have a better operational behaviour than logi languages. We show this by presenting

methods to translate logi programs into a funtional logi language. These methods

ensure that the translated programs produe the same set of answers and have at

least the same eÆieny as the original programs. But in many ases the translation

improves the ontrol behaviour of logi programs whih will be demonstrated by

several examples.



sort(L,M) :- perm(L,M), ord(M).

perm([℄,[℄).

perm([E|L℄,[F|M℄) :- del(F,[E|L℄,N), perm(N,M).

del(E,[E|L℄,L).

del(E,[F|L℄,[F|M℄) :- del(E,L,M).

ord([℄).

ord([E℄).

ord([E,F|L℄) :- le(E,F), ord([F|L℄).

le(0,E).

le(s(E),s(F)) :- le(E,F).

Figure 1. Permutation sort (natural numbers are represented by s-terms)

Logi programming allows the spei�ation of problems at an abstrat level and

permits the exeution of the spei�ations. However, these spei�ations are often

very slowly exeuted beause a lot of searh is performed under the standard Prolog

omputation rule. For instane, Figure 1 spei�es the notion of a sorted list (f.

[44℄, p. 55): a list M is a sorted version of a list L if M is a permutation of L and

all elements of M are in asending order. We an use this Prolog program to sort

the list [4,3,2,1℄ by solving the query ?- sort([4,3,2,1℄,S). But this runs very

ineÆiently under the standard omputation rule beause all permutations must be

enumerated and tested in order to solve this goal.

Therefore several proposals have been made in order to improve the ontrol

of Prolog programs. Naish [36℄ has extended the standard omputation model of

Prolog by a oroutining mehanism. He allows the addition of \wait" delarations to

prediates. Suh delarations have the e�et that the resolution of a literal is delayed

until the arguments are suÆiently instantiated. If a variable of a delayed literal is

bound to a non-variable term, this literal is woken and exeuted in the next step if

it is now suÆiently instantiated. In the permutation sort example, the programmer

an add a wait delaration to the prediate ord and hange the ordering in the �rst

lause into

sort(L,M) :- ord(M), perm(L,M).

Now the goal ?- sort([3,2,1℄,S) is exeuted in the following way: After the ap-

pliation of the �rst lause to this goal the literal ord(S) is delayed and the literal

perm([3,2,1℄,S) will be exeuted. If S is bound to the �rst part of a permutation

of [3,2,1℄ (i.e., a list with two elements and a variable at the tail), then ord(S) is

ativated. If the �rst two elements of S are in the wrong order, then the omputation

fails and another permutation is tried, otherwise ord is delayed again until the next

part of the permutation is generated. Thus with this modi�ation not all permu-

tations are ompletely omputed and therefore the exeution time is better than

in the naive approah. Naish has also presented an algorithm whih generates the

wait delarations from a given program and transforms the program by reordering

the goals in a lause. Although this approah seems to be attrative, it has some
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problems. For instane, the generation of wait delarations is based on heuristis

and therefore it is unlear whether these heuristis are generally suessful. More-

over, it is possible that the annotated program ounders, i.e., all goals are delayed

whih is onsidered as a run-time error. Hene ompleteness of SLD-resolution an

be lost when transforming a logi program into a program with wait delarations

(see example at the end of Setion 3.3 or the goodpath example in [46℄).

Another approah to improve ontrol has been developed by Bruynooghe's group

[7℄. They try to avoid the overhead of oroutining exeution by transforming a logi

program with oroutining into a logi program with an equivalent behaviour exe-

uted under the standard omputation rule. The transformation is done in several

steps. In the �rst step a symboli trae tree of a goal is reated where the user has

to deide whih literal is seleted and whether a literal is ompletely exeuted or

only a single resolution step is made, i.e., the user must supply the system with

a good omputation rule. If a goal in the trae tree is a renaming of a goal in an

anestor node, an ar from this goal to the anestor node is inserted. This results in

a symboli trae graph whih is then redued and in the last step translated into a

logi program simulating the symboli trae under the standard omputation rule.

The ruial point in this approah is to �nd a good omputation rule for the program

with respet to the initial goal. In a reent paper [46℄ a method for the automated

generation of an eÆient omputation rule is presented. The method is based on

a global analysis of the program by abstrat interpretation tehniques in order to

derive the neessary information. Sine the arguments for hoosing a \good" om-

putation rule are heuristis, it is unlear whether the transformed programs are in

any ase more eÆient than the original ones. Another problem is due to the fat

that their method uses a given all pattern for the initial goal. Therefore di�erent

versions of the program are generated for di�erent all modes of the goal.

In this paper we propose a muh simpler method to improve ontrol of logi

programs. This method ensures that the new programs have at least the same eÆ-

ieny as the original ones. But for a large lass of programs (\generate-and-test"

programs like permutation sort) we obtain a better eÆieny similar to other ap-

proahes to improve ontrol. The basi idea is to use a funtional logi language

and to translate logi programs into funtional programs (without onsidering the

initial goal). The motivation for the integration of funtional and logi program-

ming languages is to ombine the advantages of both programming paradigms in

one language: the possibility of solving prediates and equations between terms to-

gether with the eÆient redution paradigm of funtional languages. A lot of the

proposed amalgamations of funtional and logi languages are based on Horn lause

logi with equality [40℄ where the user an de�ne prediates by Horn lauses and

funtions by (onditional) equations. Prediates are often omitted beause they an

be represented as Boolean funtions. A omplete operational semantis is based on

the narrowing rule [14, 29, 30℄: narrowing ombines uni�ation of logi languages

with rewriting of funtional languages, i.e., a narrowing step onsists of the uni�a-

tion of a subterm of the goal with the left-hand side of an equation, replaing this

subterm by the right-hand side of the equation and applying the uni�er to the whole
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goal. Sine we have to take into aount all subterms of a goal in the next narrowing

step, this naive strategy produes a large searh spae and is less eÆient than SLD-

resolution (SLD stands for seleting one literal in the next resolution step). Also the

advantage of funtional languages, namely the deterministi redution priniple, is

lost by this naive approah.

Therefore a lot of researh has been done to improve the narrowing strategy

without loosing ompleteness. Hullot [29℄ has shown that the restrition to basi

subterms, i.e., subterms whih are not reated during uni�ation, is omplete. Fri-

bourg [15℄ has proved that the restrition to subterms at innermost positions is also

omplete provided that all funtions are reduible on all ground terms. Finally, H�oll-

dobler [28℄ has proved ompleteness of the ombination of basi and innermost nar-

rowing where a so-alled innermost reetion rule must be added for partially de�ned

funtions. But innermost basi narrowing is not better than SLD-resolution sine it

has been shown that innermost basi narrowing orresponds to SLD-resolution if a

funtional program is translated into a logi program by attening [6℄. On the other

hand, we an also translate a logi program into a funtional one without loosing

eÆieny if we use the innermost basi narrowing strategy. But now we are able to

improve the exeution by simplifying the goal by deterministi rewriting before a

narrowing step is applied (rewriting is similar to redution in funtional languages

with the di�erene that rewriting is also applied to terms ontaining variables).

The simpli�ation phase uts down the searh spae without loosing ompleteness

[28, 39℄.

We will see in the next setions that the operational behaviour of innermost basi

narrowing ombined with simpli�ation is similar to SLD-resolution with a partiular

dynami ontrol rule. Hene we get an improvement in the exeution omparable to

previous approahes [7, 36℄ but with the following advantages:

{ The translation tehnique from logi programs into funtional logi programs is

simple.

{ It is ensured that the translated programs have at least the same eÆieny as

the original ones. For many programs the eÆieny is muh better.

{ It is ensured that we do not loose ompleteness: there exists an answer w.r.t. the

translated program i� there exists an answer w.r.t. the original program.

The last remark is only true if we use a fair omputation strategy. If we use a

baktraking implementation of SLD-resolution as in Prolog, the ompleteness may

be lost beause of in�nite omputations. However, in�nite paths in the searh tree

an be ut by the simpli�ation proess [15℄, i.e., it is also possible that we obtain

an answer from the funtional logi program where the original logi program does

not terminate.

These theoretial onsiderations are only relevant if there is an implementation

of the funtional logi language whih has the same eÆieny as urrent Prolog

implementations. Fortunately, this is the ase. In [19, 21, 24℄ it has been shown

that it is possible to implement a funtional logi language very eÆiently by ex-

tending the urrently known Prolog implementation tehniques [47℄. The language
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ALF (\Algebrai Logi Funtional language") is based on the operational seman-

tis skethed above. Innermost basi narrowing and simpli�ation is implemented

without overhead in omparison to Prolog's omputation strategy, i.e., funtional

programs are exeuted with the same eÆieny as their relational equivalents by

SLD-resolution (see [21℄ for benhmarks). Therefore it is justi�ed to improve the

ontrol of logi programs by translation into a funtional logi language.

In the next setion we give a preise desription of ALF's operational semantis

and in Setion 3 we present our approah to improve ontrol of logi programs in

more detail.

2 Operational semantis of ALF

As mentioned in the previous setion, we want to improve the ontrol behaviour of

logi programs by translating them into a funtional logi language. We have also

mentioned that in order to ompete with SLD-resolution we have to use a funtional

logi language with a re�ned operational semantis, namely innermost basi nar-

rowing and simpli�ation. Hene the target language of the translation proess is

the language ALF [19, 21℄ whih is based on this semantis. ALF has more features

than atually used in this paper, e.g., a module system with parameterization, a

type system based on many-sorted logi, prediates whih are resolved by resolution

et. (see [25℄ for details). In the following we outline the operational semantis of

ALF in order to understand the translation sheme presented in the next setions.

ALF is a onstrutor-based language, i.e., the user must speify for eah symbol

whether it is a onstrutor or a de�ned funtion. Construtors must not be the

outermost symbol of the left-hand side of a de�ning equation, i.e., onstrutor terms

are always irreduible. Hene onstrutors are used to build data types, and de�ned

funtions are operations on these data types (similarly to funtional languages like

ML [27℄ or Miranda [45℄). The distintion between onstrutors and de�ned funtion

symbols is neessary to de�ne the notion of an innermost position [15℄.

An ALF program onsists of a set of (onditional) equations whih are used

in two ways. In a narrowing step an equation is applied to ompute a solution of

a goal (i.e., variables in the goal may be bound to terms), whereas in a rewrite

step an equation is applied to simplify a goal (i.e., without binding goal variables).

Therefore we distinguish between narrowing rules (equations applied in narrowing

steps) and rewrite rules (equations applied in rewrite steps). Usually, all onditional

equations of an ALF program are used as narrowing and rewrite rules, but it is

also possible to speify rules whih are only used for rewriting. Typially, these

rules are indutive axioms or CWA-valid axioms (see below). The appliation of

suh rules for simpli�ation an redue the searh spae and is justi�ed if we are

interested in ground-valid answers [15, 39℄ (i.e., answers whih are valid for eah

ground substitution applied to it).

Figure 2 shows an ALF module to sort a list of naturals. Naturals are represented

by the onstrutors 0 and s, true and false are the onstrutors of the data type
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module isort.

datatype bool = f true ; false g.

datatype nat = f 0 ; s(nat) g.

datatype list = f '.'(nat,list) ; [℄ g.

fun isort : list -> list;

insert: nat, list -> list;

le : nat, nat -> bool.

rules.

isort([℄) = [℄.

isort([E|L℄) = insert(E,isort(L)).

insert(E,[℄) = [E℄.

insert(E,[F|L℄) = [E,F|L℄ :- le(E,F) = true.

insert(E,[F|L℄) = [F|insert(E,L)℄ :- le(E,F) = false.

le(0,N) = true.

le(s(N),0) = false.

le(s(M),s(N)) = le(M,N).

end isort.

Figure 2. ALF program for insertion sort

bool and lists are de�ned as in Prolog. The de�ned funtions of this module are

isort to sort a list of naturals, insert to insert an element in an ordered list, and

le to ompare two naturals.

The delarative semantis of ALF is the well-known Horn lause logi with equal-

ity as to be found in [40℄. The operational semantis of ALF is based on innermost

basi narrowing and rewriting.

1

Before a narrowing step is applied, the goal is sim-

pli�ed to normal form by applying rewrite rules. We will distinguish two kinds of

nondeterminism by the keywords \don't know" and \don't are": don't know indi-

ates a branhing point in the omputation where all alternatives must be explored

(in parallel or by a baktraking strategy in a onrete implementation); don't are

indiates a branhing point where it is suÆient to selet (nondeterministially) one

alternative and disregard all other possibilities.

In order to give a preise de�nition of the operational semantis, we represent

a goal (a list of equations to be solved) by a skeleton and an environment part

[28, 39℄: the skeleton is a list of equations omposed of terms ourring in the original

program, and the environment is a substitution whih has to be applied to the

equations in order to obtain the atual goal. The initial goal G is represented by the

pair hG; idi where id is the identity substitution. The following sheme desribes the

operational semantis (if � is a position in a term t, then tj

�

denotes the subterm of t

at position � and t[s℄

�

denotes the term obtained by replaing the subterm tj

�

by s in

t [12℄; � is alled an innermost position of t if the subterm tj

�

has a de�ned funtion

1

Similarly to EQLOG [18℄, ALF allows also the de�nition of prediates whih are solved

by resolution, but we omit this aspet in the urrent paper.
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symbol at the top and all argument terms onsist of variables and onstrutors). Let

hE

1

; : : : ; E

n

; �i be a given goal (E

1

; : : : ; E

n

are the skeleton equations and � is the

environment):

1. Selet don't are a non-variable position � in E

1

and a new variant l = r  C

of a rewrite rule suh that �

0

is a substitution with �(E

1

j

�

) = �

0

(l) and the goal

hC ; �

0

i an be derived to the empty goal without instantiating any variables

from �(E

1

). Then

hE

1

[�

0

(r)℄

�

; E

2

; : : : ; E

n

; �i

is the next goal derived by rewriting; go to 1.

2

Otherwise go to 2.

2. If the two sides of equation E

1

have di�erent onstrutors at the same outer

position (a position not belonging to arguments of funtions), then the whole

goal is rejeted, i.e., the proof fails. Otherwise go to 3.

3. Let � be the leftmost-innermost position in E

1

(if there exists no suh position

in E

1

, go to 4). Selet don't know (a) or (b):

(a) Selet don't know a new variant l = r  C of a narrowing rule suh that

�(E

1

j

�

) and l are uni�able with mgu �

0

. Then

hC;E

1

[r℄

�

; E

2

; : : : ; E

n

; �

0

Æ �i

is the next goal derived by innermost basi narrowing; go to 1. Otherwise:

fail.

(b) Let x be a new variable and �

0

be the substitution fx 7! �(E

1

j

�

)g. Then

hE

1

[x℄

�

; E

2

; : : : ; E

n

; �

0

Æ �i

is the next goal derived by innermost reetion; go to 3 (this orresponds

to the elimination of an innermost redex [28℄ and is alled \null narrowing

step" in [6℄).

4. If E

1

is the equation s = t and there is a mgu �

0

for �(s) and �(t), then

hE

2

; : : : ; E

n

; �

0

Æ �i

is the next goal derived by reetion; go to 1. Otherwise: fail.

The attribute basi of a narrowing step emphasizes that a narrowing step is only

applied at a position of the original program and not at positions introdued by

substitutions [29℄. The innermost reetion rule need not be applied to ompletely

de�ned funtions, i.e., funtions whih are reduible on all ground terms of appro-

priate sorts [15, 28℄. Therefore the innermost reetion rule an be avoided by using

types and heking whether eah funtion is suÆiently de�ned for all onstrutors

of their argument types. Sine ALF is a typed language and allows suh tests, we

impliitly assume in this paper that the suÆiently de�nedness tests are performed

2

Rewriting is only applied to the �rst literal, but this is no restrition sine a onjuntion

like E

1

; E

2

; E

3

an also be written as an equation and(E

1

; and(E

2

; E

3

)) = true. This

tehnique will be used in the following setions.
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at ompile time in order to avoid unneessary appliations of the innermost reetion

rule at run time.

This operational semantis is sound and omplete if the term rewriting relation

generated by the onditional equations is anonial (i.e., onuent and terminat-

ing [12℄) and the ondition and the right-hand sides of the onditional equations

do not ontain extra-variables [28℄. Moreover, the onditional equations must be

redutive, i.e., the onditions must be smaller than the left-hand side w.r.t. some

termination ordering (otherwise basi onditional narrowing may be inomplete as

Middeldorp and Hamoen [34℄ have pointed out).

3

If a program has onditional equa-

tions with extra-variables, there may be other riteria to ensure ompleteness (e.g.,

level-onuene [17℄ or dereasing rules [13℄) or it may be possible to transform the

program into an equivalent program for whih this operational semantis is omplete

(e.g., Bertling and Ganzinger [4℄ have proposed suh a method). Therefore we al-

low extra-variables in onditional equations whih is the reason for the instantiation

ondition in the rewrite step.

Rewriting in ALF is applied from innermost to outermost positions, i.e., rewrit-

ing orresponds to eager evaluation in funtional languages. Similarly to Prolog,

ALF uses a baktraking strategy to implement the hoies of di�erent lauses in a

narrowing step. Hene the theoretial ompleteness will be lost due to in�nite om-

putations, but for �nite searh trees the operational semantis is omplete. Due to

the requirement for a anonial and redutive set of equations, the normal form of a

term uniquely exists and an be omputed by rewriting with an arbitrary mathing

equation in a rewrite step. Therefore the reation of hoie points is only neessary

in narrowing steps.

We have mentioned in the introdution that it is also possible to translate fun-

tional programs into logi programs by attening and to exeute these programs

by SLD-resolution [6℄. ALF's operational semantis has the following advantages in

omparison to that and other tehniques:

� Sine rewriting is a deterministi proess (or it an be also seen as \don't are"

nondeterminism) and rewriting is done before narrowing, deterministi ompu-

tations are performed whenever it is possible. This avoids superuous reation

of hoie points. Nondeterministi omputations are only performed if it is ne-

essary, i.e., if a solution (binding of a goal variable) must be guessed by an

appliation of a narrowing rule.

� A similar behaviour an be ahieved in Prolog by inserting delays [36, 37℄. But

this has the disadvantage that the program with delays may ounder whih

orresponds to inompleteness. This annot be the ase in ALF beause of ALF's

omplete operational semantis.

� The residuation priniple of Le Fun [1℄ is also related to ALF's operational

semantis: If a Le Fun funtion is applied to a variable argument, the appliation

is delayed until the variable beomes bound to a non-variable term. But this

3

The requirement for redutive onditional equations is not a real restrition sine tools

for heking anoniity of onditional equations usually have this requirement [16℄.
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semantis is also inomplete in some ases. For instane, if append is a funtion

that onatenates two lists, we an extrat the last element E of a given list L

by solving the equation

append(_,[E℄) = L

Residuation will delay this omputation (sine the �rst argument is always un-

bound) and we obtain no result for E. But ALF will solve this goal by narrowing

and rewriting and delivers the unique solution for E. Moreover, the residuation

priniple of Le Fun may produe an in�nite searh spae for examples where

ALF's or Prolog's operational semantis has a �nite searh spae [23℄.

� Similarly to ALF, the Andorra omputation model [26℄ prefers deterministi

omputations before nondeterministi ones. However, the rewriting mehanism

of ALF yields deterministi omputations also when more than one lause

mathes (see max example in setion 3.3) and may delete goals with in�nite or

nondeterministi omputations. E.g., if X*0=0 is a de�ning equation for the fun-

tion *, then a term like t*0 will be simpli�ed to 0, i.e., the entire subterm t will

be deleted. This is important if t ontains unevaluated funtions with variable

arguments. The same is true for the relation of ALF and Prolog with Simpli�a-

tion [9℄: ALF's rewriting mehanism is more general than simpli�ation beause

uni�able (but onuent) equations, equations with deleting left-hand side vari-

ables and onditional equations are admissible rewrite rules in ALF.

� It is also important to note that ALF's operational semantis an be implemented

with the same eÆieny as urrent Prolog implementations [21℄. The overhead

of searhing the next innermost subterm an be avoided by using a stak of

referenes to subterms in the goal (see [19℄ and [21℄ for details).

These arguments gives us the feeling that the omputation priniple of ALF is more

eÆient than Prolog's SLD-resolution. In the next setion we will show how logi

programs an be translated into ALF programs and what we gain from suh a

translation.

3 Translating logi programs into funtional programs

There are two priniple ways to translate a logi program into a funtional one:

1. We onsider eah prediate as a Boolean funtion and translate the Horn lauses

of eah prediate into a funtional expression over the Booleans.

2. We try to �nd out funtional dependenies between the arguments of a prediate.

If there is suh a dependeny, we transform the prediate into funtion from

input to output arguments, otherwise we transform the prediate into a Boolean

funtion.

The seond method is learly an extension of the �rst one. The �rst method is

very simple and always appliable, but we will also show tehniques for the seond

translation method.
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Example: The prediates member and append are de�ned by the following logi

program:

member(E,[E|L℄).

member(E,[F|L℄) :- member(E,L).

append([℄,L,L).

append([E|R℄,L,[E|RL℄) :- append(R,L,RL).

We an translate this program into a funtional program by the �rst method:

fun member: term, term ! bool

member(E,[E|L℄) = true.

member(E,[F|L℄) = true :- member(E,L) = true.

fun append: term, term, term ! bool

append([℄,L,L) = true.

append([E|R℄,L,[E|RL℄) = true :- append(R,L,RL) = true.

But we an also pereive that the �rst and the seond argument of append determine

the value of the third argument, i.e., there is a funtional dependeny between the

arguments of append. Therefore it is possible to translate append into the following

funtion de�nition:

fun append: term, term ! term

append([℄,L) = L.

append([E|R℄,L) = [E|append(R,L)℄.

In the following we will disuss both methods in more detail.

3.1 Translating all prediates into Boolean funtions

In this setion we disuss the simple approah where eah n-ary prediate is trans-

lated into an n-ary Boolean funtion. We de�ne the translation of logi programs

into funtional programs by the following rules:

Fats: L. ) L = true.

Clauses: L :- L

1

,: : :,L

n

. ) L = true :- (L

1

and � � � and L

n

) = true.

Goals: ?- L

1

,: : :,L

n

. ) ?- (L

1

and � � � and L

n

) = true.

The Boolean values together with the funtion and are de�ned in Figure 3.

4

Sine

the right-hand side of eah equation in the translated program is the onstant true,

we get immediately the following property of the translated programs:

5

4

The delaration \infixright 650" de�nes the symbol \and" as a right-assoiative in�x

operator with priority 650. This has the similar e�et as the delaration op(650,xfy,and)

in Prolog.

5

In this paper we do not deal with the problem of proving termination of the narrow-

ing/rewrite rules sine ALF's operational semantis does also work for nonterminating

programs. Moreover, the orrespondene of narrowing and resolution derivations [6℄ is

also valid for nonterminating programs. But note that the operational semantis may be

inomplete for some nonterminating programs and therefore we impliitly assume that

the rewrite relation is terminating and all onditional rules are redutive.
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module bool.

datatype bool = f true ; false g.

fun and : bool, bool -> bool infixright 650.

rules.

false and B = false.

true and B = B.

B and false = false.

B and true = B.

end bool.

Figure 3. Module for Boolean values

Proposition 1. If R is the set of onditional equations obtained by translating a

logi program with the above translation sheme, then R is onuent.

Hene we an use the translated equations as narrowing rules and solve the translated

goals by innermost basi narrowing. But what is the relation between narrowing

derivations of the funtional program and resolution derivations of the original logi

programs? Boso et al. [6℄ have shown that there is a strong relationship between

these derivations, i.e., every innermost basi narrowing derivation of a funtional

program orresponds to an SLD-resolution derivation with the leftmost seletion rule

if the funtional program is appropriately attened into a logi program. Applying

their result to our framework we obtain the following proposition (atually, they

have proved the orrespondene for unonditional equations but it is not diÆult to

extend it to the onditional ase):

Proposition 2. Let P be a logi program and R be the set of onditional equations

obtained by translating P . For eah goal G and eah SLD-resolution with the leftmost

seletion rule there is a orresponding innermost basi narrowing sequene for the

translated goal G

0

where eah resolution step orresponds to an innermost basi nar-

rowing step together with at most one appliation of the equation \true and B = B".

Hene the logi program and its funtional version have the same eÆieny (if we

neglet the simple appliation of the equation \true and B = B") and produe the

same set of answers. But the eÆieny of the funtional version an be improved by

adding rewrite rules. We know from Setion 2 that we an add the narrowing rules

also as rewrite rules and perform rewriting between narrowing steps without loosing

ompleteness. Rewriting an be done in a deterministi way, i.e., it is not neessary

to generate hoie points during rewriting and therefore rewriting may redue the

searh spae. For instane, if the funtional program ontains the equations

member(E,[E|L℄) = true.

member(E,[F|L℄) = true :- member(E,L) = true.

both as narrowing rules and rewrite rules, the goal

?- member(2,[1,2,3℄) = true.

11



is proved by rewriting without generating any hoie point. Note that two hoie

points are generated during the orresponding SLD-resolution (using standard im-

plementation tehniques [47℄).

Sine rewriting annot bind any goal variable (a rewrite rule is appliable if the

left-hand side of the equation mathes the urrent subterm), it an only be applied

as a test and then it avoids the searh for alternative proofs of this test. This is a

slight improvement and does not justify the translation from the well-known Prolog

framework into the new funtional logi framework. For instane, if we translate the

permutation sort program in Figure 1, the funtional version is exeuted in the same

slow way as the relational version. The improvement of the ontrol behaviour in the

framework of Naish [36℄ or Bruynooghe [7℄ is due to the fat that the failure of a goal

is deteted early in the omputation. Therefore we must add negative information

to our funtional program. This will be outlined in the next setion.

3.2 Adding negative information

For the ase that we are interested in valid answers w.r.t. the least Herbrand model,

whih is a natural assumption in logi programming [32℄, Fribourg [15℄ has shown

that we an add equations whih are valid w.r.t. the so-alled \Closed World As-

sumption" (CWA-valid) as rewrite rules to our program. The operational semantis

is still sound w.r.t. ground-valid answers, i.e., answers whih are valid for eah ground

substitution applied to it. A onditional equation

L = false :- L

1

and � � � and L

n

= true.

is alled CWA-valid w.r.t. a set of onditional equations R if for any ground on-

strutor substitution �

R j= �(L) = true :- �(L

1

) and � � � and �(L

n

) = true

does not hold (later we will also allow equations of the form L=false in the ondition

part; CWA-validity of suh lauses is similarly de�ned). If we rewrite a literal L=true

to the equation false=true by CWA-valid rewrite rules, we an immediately rejet

the whole goal (ompare the \rejetion" rule in Setion 2). This tehnique does not

a�et the ompleteness of the operational semantis but an be an essential improve-

ment. For instane, onsider the following lauses [15℄ (a, b and  are onstrutors):

on(a,b) = true.

on(b,) = true.

above(X,Y) = true :- on(X,Y) = true.

above(X,Y) = true :- above(X,Z) and on(Z,Y) = true.

The exeution of the goal ?- above(a,a) = true leads to an in�nite loop. If the

CWA-valid equation above(X,X) = false is inserted into the set of rewrite rules,

the goal ?- above(a,a) = true is �rst rewritten into ?- false = true and then

it fails by the rejetion rule.

12



As a further example, onsider the following set of rules de�ning the prediates

even and le (less-or-equal):

even(0) = true.

even(s(s(N))) = true :- even(N) = true.

le(0,N) = true.

le(s(M),s(N)) = true :- le(M,N) = true.

The exeution of the goal ?- even(N) and le(N,s(s(0))) = true leads to an

in�nite loop after produing the answers N=0 and N=s(s(0)), beause the prediate

even generates an in�nite number of even naturals. In order to avoid this loop, we

may add the CWA-valid equation le(s(N),0) = false. But this does not solve the

problem beause there is the following in�nite derivation (the narrowed subterms

are underlined):

?- even(N) and le(N,s(s(0))) = true.

?- even(N1) = true, true and le(s(s(N1)),s(s(0))) = true.

?- even(N2) = true, true = true,

true and le(s(s(s(s(N2)))),s(s(0))) = true.

: : :

The reason for this in�nite derivation is that only the �rst literal of a goal is simpli�ed

by rewriting (f. Setion 2).

6

But this is no real problem sine we an also translate

the original logi program for even and le in the following way:

even(0) = true.

even(s(s(N))) = even(N).

le(0,N) = true.

le(s(M),s(N)) = le(M,N).

Now we obtain the following derivation with the additional CWA-valid rewrite rule

le(s(N),0) = false:

?- even(N) and le(N,s(s(0))) = true.

narrowing with the seond equation for even

?- even(N1) and le(s(s(N1)),s(s(0))) = true.

simplifying the goal

?- even(N1) and le(N1,0) = true.

narrowing with the seond equation for even

?- even(N2) and le(s(s(N2)),0) = true.

simplifying the goal:

?- false = true.

failure by rejetion

Hene the searh spae of this goal is �nite in ontrast to the original Prolog program.

In order to implement the improved proof strategy, we simply modify our translation

sheme for lauses:

6

This is for the sake of an eÆient implementation [21℄ beause rewriting the whole goal

allows less optimizations during the ompilation phase.
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sort(L,M) = perm(L,M) and ord(M).

perm([℄,[℄) = true.

perm([E|L℄,[F|M℄) = del(F,[E|L℄,N) and perm(N,M).

del(E,[E|L℄,L) = true.

del(E,[F|L℄,[F|M℄) = del(E,L,M).

ord([℄) = true.

ord([E℄) = true.

ord([E,F|L℄) = le(E,F) and ord([F|L℄).

le(0,E) = true.

le(s(E),s(F)) = le(E,F).

Figure 4. Funtional version of permutation sort

Translation of lauses: Let L :- L

1

,: : :,L

n

be a lause for whih one of the

following onditions holds:

1. L is not uni�able with the head of any variant of another lause of the logi

program.

2. If there are a variant of another lause L

0

:- L

0

1

,: : : ,L

0

m

and a uni�er

� for L and L

0

, then the goals ?- �(L

1

and � � � and L

n

) = true and

?- �(L

0

1

and � � � and L

0

m

) = true an be rewritten to the same goal using

the rewrite rules orresponding to the logi program w.r.t. the old translation

sheme (onuene of lauses).

Then the lause is translated into the equation

L = (L

1

and � � � and L

n

).

otherwise it is translated into the onditional equation

L = true :- (L

1

and � � � and L

n

) = true.

Note that this modi�ed translation is only neessary beause of the restrited rewrit-

ing in ALF. If we use another funtional logi language whih performs rewriting

on the whole goal (like SLOG [15℄), this modi�ation is superuous. The onditions

guarantee that the translated program is onuent, i.e., Proposition 1 holds also for

the modi�ed translation sheme. Figure 4 shows the translation of the logi permu-

tation sort program of Figure 1. Note that this is nearly the same program whih

Fribourg [15℄ has presented in a rather ad-ho manner.

The �nal problem is the generation of CWA-valid rules for rewriting. For instane,

from the given rules

le(0,E) = true.

le(s(E),s(F)) = le(E,F).

we have to generate the CWA-valid rule

le(s(E),0) = false.

In this ase it an be done by inspeting the onstrutors of the argument terms of the

left-hand side, and then generating false rules for all onstrutor terms on whih

14



le is not reduible. Fortunately, there is also a systemati method for doing this

in general. Intensional negation [2℄ is a transformation tehnique whih synthesizes

lauses for new prediates p

0

i

from a given logi program for the prediates p

i

. The

new prediates p

0

i

desribe the �nite failure set of the original prediates p

i

and hene

they are a omputable approximation of the CWA-valid literals [32℄. E.g., given the

lauses

even(0).

even(s(s(X))) :- even(X).

intensional negation generates the new lauses

even'(s(0)).

even'(s(s(X))) :- even'(X).

whih de�ne the odd numbers. If we translate the prediate even'(� � �) into

even(� � �) = false, we obtain the CWA-valid rewrite rule used in our even ex-

ample above.

We do not propose to ompute the intensional negation of all de�ned prediates

sine this leads to a large number of additional rewrite rules. Moreover, intensional

negation does not generate Horn lauses for the negated prediates if the original

lauses ontain loal variables in their bodies (see [2℄ for details). But in most ases

it is possible and suÆient to ompute the negation of some base prediates. For

instane, from the given de�nition of the less-or-equal prediate le in Figure 1 we

obtain by intensional negation the CWA-valid rule

le(s(X),0) = false.

If we add this single rule as a rewrite rule to the narrowing/rewrite rules of Figure 4,

the omputation is automatially optimized without ontrol instrutions: as soon as

the variable M in the goal perm([� � �℄,M) and ord(M) = true is bound to a partial

list [a,b|L℄ with a greater than b, the goal is simpli�ed by rewriting as follows:

perm([� � �℄,[a,b|L℄) and ord([a,b|L℄) = true

=) perm([� � �℄,[a,b|L℄) and le(a,b) and ord([b|L℄) = true

=) perm([� � �℄,[a,b|L℄) and false and ord([b|L℄) = true

=) perm([� � �℄,[a,b|L℄) and false = true

=) false = true

Hene not all permutations are enumerated but the omputation of a permutation

immediately stops if two onseutive elements are in the wrong order. Thus we have

obtained the same improved operational behaviour as in related approahes [7, 36℄

in a simple and delarative way. The following table shows the exeution times in

seonds to sort the list [n,: : :,2,1℄ for di�erent values of n:

Length of the list: 5 6 7 8 9 10

Original logi program (Figure 1) 0.10 0.65 4.63 37.92 348.70 3569.50

Translated funtional program (Figure 4) 0.10 0.27 0.61 1.43 3.28 7.43

Both the original logi version and the funtional version were exeuted by the ALF

system sine ALF also allows the de�nition of prediates whih are exeuted as in
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Prolog (pure logi ALF programs are translated into ode of an abstrat mahine as

desribed in [47℄).

Using our method we an translate arbitrary logi programs into funtional pro-

grams. An essential speeding up will be obtained for the lass of \generate-and-test"

programs like the permutation sort above, the lassial 8-queens problem or the

goodpath program of [46℄.

3.3 A more sophistiated translation sheme

Until now we have simply translated prediates into Boolean funtions. But it is

often the ase that a programmer has a funtion in mind but must write it down

as a prediate in a logi program. Any n-ary funtion an be expressed as a (n +

1)-ary relation by adding the result as an additional argument. For instane, the

onatenation of two lists is a funtion from two list arguments into another list. It

an be de�ned in a funtional language with pattern-mathing by the equations

on([℄,L) = L.

on([E|R℄,L) = [E|on(R,L)℄.

Sine Prolog does not allow the de�nition of funtions and nested expressions, a Pro-

log programmer must express the onatenation as a prediate with three arguments

and writes down the following lauses:

append([℄,L,L).

append([E|R℄,L,[E|RL℄) :- append(R,L,RL).

Innermost basi narrowing exeution of the �rst program is equivalent to the Prolog

exeution of the append lauses. But the additional simpli�ation mehanism of

the funtional evaluation an avoid in�nite loops whih may our in the relational

evaluation. For instane, Naish [36℄ has noted that the following goal auses an

in�nite loop under the standard Prolog evaluation rule for any order of literals and

lauses:

?- append([1|V℄,W,X), append(X,Y,[2|Z℄).

But the evaluation of the equivalent on equation auses a fail and does not loop:

?- on(on([1|V℄,W),Y) = [2|Z℄.

simplifying the goal by two appliations of the seond on rule:

?- [1|on(on(V,W),Y)℄ = [2|Z℄.

failure by rejetion sine 1 and 2 are di�erent onstrutor terms

Note that the failure situation is deteted without any additional CWA-valid rule.

The only knowledge used here is the fat that onstrutor terms are irreduible and

therefore di�erent onstrutor terms annot denote the same objet. This knowledge

is expressed by the rejetion rule (Setion 2).

We see from this example that it is desirable to delare prediates with funtional

dependenies between arguments as funtions from input to output arguments and
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not as Boolean funtions. Sine we use a funtional logi language with a omplete

operational semantis, this does not restrit the lass of evaluable goals.

If a programmer writes down a program, he has the funtional dependenies

between data in mind. Thus he an diretly de�ne the funtions if he uses a fun-

tional logi language like ALF. But it is also possible to �nd funtional dependenies

in a given Prolog program. In general, a funtional dependeny is an undeidable

property of a logi program [38℄. However, in partiular ases one an �nd suÆient

riteria for that. For instane, Reddy [41℄ has proposed a tehnique for transforming

logi programs into funtional ones. However, his tehnique is based on modes for

the prediates in the logi program whih obviously restrits the appliation of his

method (e.g., if a prediate is alled in two di�erent modes, two di�erent funtions

are generated for that prediate). Debray and Warren [10℄ have proposed a tehnique

to detet funtional omputations in logi programs. It is also based on modes and

tries to �nd out mutual exlusions between di�erent lauses of a prediate. We do

not want to disuss the detetion of funtional dependenies in more detail but give

another suÆient riterion for this property.

Let p be an n-ary prediate. If we suppose that the �rst n�1 arguments determine

the value of the last argument (the generalization to other argument ombinations

is straightforward), we modify our translation sheme of Setion 3.1 in the following

way. Instead of de�ning p as an n-ary Boolean funtion, we de�ne p as an (n�1)-ary

funtion and perform the following transformation steps:

1. Every literal p(t

1

; : : : ; t

n

) in a lause or in the goal is replaed by the equation

p(t

1

; : : : ; t

n�1

) = t

n

.

2. If we have generated an equation p(t

1

; : : : ; t

n�1

) = X in the body of a lause

and X is a variable whih does not our in the left-hand side of the lause head,

all ourrenes of X in the lause are replaed by the term p(t

1

; : : : ; t

n�1

) and

the equation is deleted

3. If we have generated an equation p(t

1

; : : : ; t

n�1

) = X in the goal and X is a vari-

able, then all ourrenes ofX in the goal are replaed by the term p(t

1

; : : : ; t

n�1

)

and the equation is deleted.

It is easy to see that this transformation is the inverse of attening the lauses (om-

pare [6℄). Sine Boso et al. [6℄ have shown the orrespondene of innermost basi

narrowing derivations and SLD-resolution derivations w.r.t. the attened lauses, we

immediately obtain the following proposition:

7

Proposition 3. If the set of rules after the transformation steps is anonial and

redutive, then the funtional program has the same set of answers as the original

logi program.

8

7

The requirement for anonial and redutive rules is not essential for the orrespondene

of narrowing and resolution derivations, but it is important for the unique termination

of the rewriting proess between the narrowing steps.

8

Atually, the funtional program may ompute more answers than the original logi

program sine it an \skip" alls to partially de�ned funtions by the innermost reetion
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Hene, if we have a supposition about the funtional dependenies of the arguments

of the prediates, we apply the above transformation and then hek the resulting

program for anoniity whih an often be done by simple syntati riteria (e.g.,

the arguments of the left-hand side are onstrutor terms and two di�erent left-hand

sides are not uni�able) or by speial ompletion proedures for onditional equations

[16℄. For instane, the logi program of append is transformed into the funtional

on program above whih is obviously anonial. As a further example take the

following logi program:

max(X,Y,Y) :- le(X,Y).

max(X,Y,X) :- ge(X,Y).

le(0,X).

le(s(X),s(Y)) :- le(X,Y).

ge(X,0).

ge(s(X),s(Y)) :- ge(X,Y).

The lauses for max are not mutually exlusive and therefore the algorithm in [10℄

does not detet a funtionality in these lauses. However, if we suppose that the

third argument of prediate max is funtional dependent on the �rst and the seond

argument, we apply our transformation above and obtain the following rules:

max(X,Y) = Y :- le(X,Y) = true.

max(X,Y) = X :- ge(X,Y) = true.

le(0,X) = true.

le(s(X),s(Y)) = le(X,Y).

ge(X,0) = true.

ge(s(X),s(Y)) = ge(X,Y).

Now we an onstrut a suessful proof of the anoniity of these rules using the

ompletion proedure in [16℄ (this an be easily done sine there is an interfae

between the ALF system and the ompletion system). Hene the anoniity riterion

is more general than other more syntatially oriented riteria [10, 41℄.

The transformation of prediates into funtions has at least two advantages.

Firstly, the searh spae an be redued beause more terms an be evalu-

ated by rewriting (e.g., the term on([1℄,[2℄) is evaluable by rewriting where

append([1℄,[2℄,L) must be evaluated by narrowing/resolution) and thus the re-

jetion rule is appliable in more ases (see the above example for on and append).

Seondly, the exeution is more eÆient beause less nondeterminism must be imple-

mented. For instane, the exeution of the goal add(s(s(s(0))),s(s(s(0)))) = L

w.r.t. the funtional program

add(0,N) = N. add(s(M),N) = s(add(M,N))

add(N,0) = N. add(N,s(M)) = s(add(N,M))

rule. An innermost reetion step for the subterm p(t

1

; : : : ; t

k

) orresponds to resolution

with the unit lause p(X

1

; : : : ; X

k

; p(X

1

; : : : ; X

k

)) in the logi program. To state the

exat equivalene of the funtional and the logi program, these fats must be added to

the logi program for funtions whih are not ompletely de�ned.
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does not reate any hoie point sine the goal is fully evaluated by rewrit-

ing and not by nondeterministi narrowing, whereas the exeution of the goal

add(s(s(s(0))),s(s(s(0))),L) w.r.t. the Prolog program

add(0,N,N). add(s(M),N,s(L)) :- add(M,N,L).

add(N,0,N). add(N,s(M),s(L)) :- add(N,M,L).

reates at least three hoie points. The onrete e�et of this behaviour on the

exeution time and memory usage an be found in [21℄.

Our �nal example demonstrates the advantage of our approah in omparison

to other proposals to improve ontrol. In this example we ombine the advaned

translation sheme with the addition of negative information. Consider the following

Prolog program for the de�nition of mobiles (a mobile is a �sh with a �xed positive

weight, or a bridge of weight 1 (=s(0)) where two mobiles of the same weight hang

at the left and right end):

mobile(fish(_)).

mobile(bridge(M1,M2)) :-

mobile(M1), mobile(M2),

weight(M1,W1), weight(M2,W2), equal(W1,W2).

weight(fish(s(W)),s(W)). % a fish has a positive weight

weight(bridge(M1,M2),s(W)) :-

weight(M1,W1), weight(M2,W2), add(W1,W2,W).

add(N,0,N).

add(0,N,N).

add(N,s(M),s(Z)) :- add(N,M,Z).

add(s(M),N,s(Z)) :- add(M,N,Z).

equal(0,0).

equal(s(M),s(N)) :- equal(M,N).

If we want to know whether a given fish/bridge-struture is a mobile, we prove

the goal

?- mobile(bridge(fish(s(s(s(0)))),bridge(fish(s(0)),fish(s(0))))).

whih yields the answer yes. If we want to get all mobiles of weight 3, we prove

?- mobile(M), weight(M,s(s(s(0)))).

This query goes into an in�nite loop after enumerating all solutions beause it gen-

erates bigger and bigger mobiles whih are not of weight 3. If we want to avoid this

under the standard omputation rule, we have to restruture the whole program.

9

Hene we need another program for another mode of prediate mobile whih is

9

Note that Naish's algorithm for generating wait delarations [36℄ does not help beause it

generates waits for the �rst arguments of mobile and weight; hene the goal immediately

ounders. The method of [46℄ depends on a given all pattern of the initial goal, i.e., it

would generate two programs for the two modes of mobile. Generally, if the modes of

the initial goal are not known in advane, it is neessary to generate a program for eah

possible mode of the goal.
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learly unsatisfatory from a logial point of view. This problem an be avoided us-

ing our translation sheme. It is easy to see that weight and add are funtions where

the last argument depends on the other arguments. Hene we obtain the following

funtional program using our translation method:

mobile(fish(_)) = true.

mobile(bridge(M1,M2)) =

mobile(M1) and mobile(M2) and equal(weight(M1),weight(M2)).

weight(fish(s(W))) = s(W).

weight(bridge(M1,M2)) = s(add(weight(M1),weight(M2))).

add(N,0) = N.

add(0,N) = N.

add(N,s(M)) = s(add(N,M)).

add(s(M),N) = s(add(M,N)).

equal(0,0) = true.

equal(s(M),s(N)) = equal(M,N).

This program is anonial whih an be easily heked by standard ompletion pro-

edures for equational spei�ations. In order to avoid the in�nite loop, we simply

add negative information about unequal numbers. Intensional negation generates

the following rules (among others):

equal(0,s(M)) = false.

equal(s(M),0) = false.

After adding these equations as rewrite rules, mobile has a �nite searh tree for all

modes, i.e., the following queries terminate after enumerating all solutions:

?- mobile(bridge(fish(s(s(s(0)))),bridge(fish(s(0)),fish(s(0)))))=B.

?- mobile(M) and equal(weight(M),s(s(s(0)))) = true.

The termination of the last goal is due to the fat that the generation of mobiles M

with weight greater than 3 is prevented by rewriting

equal(weight(M),s(s(s(0))))

to false.

4 Conlusions

We have presented a tehnique to translate logi programs into programs of the

funtional logi language ALF. This translation ensures that the set of answers to a

goal remains the same and the translated programs have at least the same eÆieny

(searh spae) as the original programs. This is due to the orrespondene between

SLD-derivations and innermost basi narrowing derivations. However, in many ases

the searh spae is redued by simplifying goals (rewriting) and omparing both sides

of an equation (rejetion) whih is e�etive for the lass of generate-and-test pro-

grams. This improved ontrol behaviour requires the addition of negative knowledge

or the transformation of prediates into funtions between arguments. Fortunately,
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there are well-known tools for both tasks. The neessary negative knowledge an

be derived by intensional negation of the program, and the validity of a funtional

transformation an be heked by ompletion proedures for equational spei�a-

tions.

Of ourse, similar e�ets or, in some ases, better e�ets an be obtained by

other methods to inuene the ontrol of logi programs, e.g., delay delarations

for prediates or inserting uts. But the advantage of our transformation method is

the delarative nature of the approah. Sine ALF's proof strategy is omplete, any

solution to the original logi program is also omputed w.r.t. the new strategy. This

may be not the ase in other methods where goals an ounder (beause of delay

delarations) or solutions are lost (beause of inserting \red" uts).

We do not propose to use our method for the automati translation of logi

programs into funtional logi programs. The motivation for our method was to show

that funtional logi languages are superior to pure logi languages sine it is possible

to translate any logi program into a funtional equivalent whih has the same set

of answers but is often more eÆient. Hene we should diretly use funtional logi

languages instead of pure logi languages. Nevertheless, the presented transformation

tehniques point to important aspets for improving the eÆieny of funtional logi

programs: funtional dependenies redue the number of possible searh paths, and

negative knowledge supports the early detetion of failures.

In order to inrease the power of logi programming, it is neessary to improve

the operational behaviour in a delarative way suh that logi programs beome

more deterministi without loosing logially important answers. The integration of

funtions is one possibility as shown in this paper. Further improvements an be

ahieved by inluding onstraints over spei� domains [31℄ or type information

whih inuenes the searh spae [20, 22, 43℄.
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