
EÆient Implementation of Narrowing and

Rewriting

Mihael Hanus

�

Tehnishe Fakult�at, Universit�at Bielefeld

W-4800 Bielefeld 1, Germany

e-mail: hanus�tehfak.uni-bielefeld.de

in Pro. International Workshop on Proessing Delarative Knowledge,

pp. 344-365, Springer LNAI 567, 1991

Abstrat

We present an eÆient implementation method for a language that amalgamates fun-

tional and logi programming styles. The operational semantis of the language onsists

of resolution to solve prediates and narrowing and rewriting to evaluate funtional ex-

pressions. The implementation is based on an extension of the Warren Abstrat Mahine

(WAM). This extension auses no overhead for pure logi programs and allows the ex-

eution of funtional programs by narrowing and rewriting with the same eÆieny as

their relational equivalents. Moreover, there are many ases where funtional programs

are more eÆiently exeuted than their relational equivalents.

1 Introdution

During the last years a lot of approahes have been proposed in order to amalgamate

funtional and logi programming languages [7℄ [1℄. Suh integrations have several advan-

tages:

1. Funtional and logi programming styles an be used in one language.

2. It extends logi programming by allowing nested expressions, i.e., it is not neessary

to atten omplex expressions as in Prolog.

3. It extends funtional programming by solving equations between funtional expres-

sions.

4. It allows the programmer to speify funtional dependenies between data. This

information an be used for a more eÆient implementation.

5. Large parts of logi programs are funtional omputations. In an integrated lan-

guage these parts are de�ned as funtions whih an be more eÆiently exeuted

than their relational equivalents.

Point 1 is a matter of taste, and point 2 is no real argument sine nested expressions an be

attened by a preproessor [4℄. But the last three arguments show that an integration of

funtional and logi languages yields a proper extension of eah of these language types.

�

on leave from Fahbereih Informatik, Universit�at Dortmund, W-4600 Dortmund 50

For instane, onsider the following logi program for the addition of natural numbers

where numbers are represented as terms onstruted by 0 and s:

add(0, N, N)

add(N, 0, N)

add(s(M), N, s(L)) add(M, N, L)

add(N, s(M), s(L)) add(N, M, L)

If the literal add(0,0,Z) should be proved, then a baktrak point (also alled \hoie

point" in [33℄) must be generated sine there are two alternative proofs yielding the result

fZ/0g in both ases. The equivalent funtional program is

0 + N = N

N + 0 = N

s(M) + N = s(M + N)

N + s(M) = s(N + M)

The equation 0 + 0 = Z an be solved in a determinsti way by applying one of the �rst

two equations to the left-hand side. A reation of a baktrak point is unneessary sine

\+" is a funtion whih has a unique result. One ould argue that a Prolog ompiler

an also optimize the ode for the prediate add but this requires some sort of mode

information whih is not available if the equation X + Y = s(0) should also be solved

(where X and Y are free variables). A genuine integration of funtional and logi languages

permits suh goals and has no �xed modes for the appliation of funtions. In this paper

we present suh a language together with an implementation whih avoids the reation of

baktrak points if it is not neessary.

Another advantage of an integrated funtional and logi language is the redution

of the searh spae by funtional omputations: Fribourg [8℄ has given examples for

terminating funtional-logi programs where equivalent Prolog programs do not terminate

or need more omputation steps. This aspet is also overed by our language and we will

disuss this point in more detail in subsequent setions.

A lot of the proposed integrations of funtional and logi languages are based on Horn

lause logi with equality [31℄ whih o�ers prediates de�ned by Horn lauses for logi pro-

gramming and funtions de�ned by (onditional) equations for funtional programming.

The delarative semantis is the well-known Horn lause logi [25℄ with the restrition

that the equality prediate is always interpreted as identity. The operational semantis is

based on resolution for prediates (like in logi languages) and rewriting for funtions (like

in funtional languages). Sine it is also required to solve equations between funtional

expressions, a new inferene rules is added: narrowing is a ombination of uni�ation

and rewriting, i.e., a subterm of the goal is uni�ed with the left-hand side of an equation

suh that the instantiated subterm an be rewritten with that equation and the uni�er

is applied to the whole goal. This general strategy has been re�ned by H�olldobler [19℄

to the innermost basi narrowing strategy where exatly one possible subterm must be

narrowed in a omputation step. This strategy has the same eÆieny as SLD-resolution,

but H�olldobler has shown that goals an also be simpli�ed by rewriting before a narrowing

step is performed. This loses no solutions and is more eÆient than Prolog's omputation

strategy.

2

However, the disussion about the better eÆieny of funtional omputations is only

relevant if there is a good implementation tehnique for narrowing and rewriting. Up

to now most of the proposed systems are implemented by an interpreter whih an not

ompete with present Prolog implementations based on a ompilational approah [33℄.

Merely [3℄, [24℄, [27℄ and [26℄ ontain approahes to ompile (lazy) narrowing rules into

ode of an abstrat mahine, but the integration of rewriting is not addressed in these

papers. This paper presents an implementation tehnique for a funtional and logi

programming language with the following properties:

� The operational semantis of the language is based on resolution, narrowing and

rewriting.

� Pure logi programs without funtions are ompiled in the same way as in Pro-

log systems based on the Warren Abstrat Mahine (WAM) [33℄, i.e., there is no

overhead beause of the funtional part.

� There is a partiular tehnique to deal with ourrenes (referenes to subterms)

where the next narrowing or rewrite rule an be applied. Thus funtional programs

are exeuted by narrowing and rewriting at least with almost the same eÆieny

as their relational equivalents by resolution. Moreover, there are large lasses of

programs where the funtional versions are more eÆiently exeuted by narrowing

and rewriting than the relational versions by resolution.

� There are no modes for the exeution of funtions. Similarly to logi programming,

funtions an be evaluated with ground or non-ground terms at eah argument po-

sition. However, funtions are evaluated by determinsti rewriting if the arguments

are ground, and in other ases (non-deterministi) narrowing is applied. This is au-

tomatially deided at run time, i.e., user annotations are not neessary to speify

where rewriting or narrowing should be applied.

Our implementation is based on an extension of the WAM [33℄ and therefore we assume

familiarity with the basi onepts of this mahine. The tehniques presented in this paper

are based on a previous proposal [12℄ but have the following basi di�erenes: The urrent

implementation simpli�es the goal by rewriting before eah narrowing step (normalized

narrowing) whereas in [12℄ rewriting is only applied before an entire narrowing derivation

is omputed. Furthermore, we present new tehniques for the management of ourrenes

whih speeds up the exeution time up to 30% and saves up to 40% of the heap spae

beause of a delayed opying of funtion symbols onto the heap.

This paper is organized as follows. In the next setion we de�ne the operational

semantis implemented by our system. The tehniques for the eÆient management of

ourrenes are shown in setion 3 and details about our abstrat mahine are presented in

setion 4. For the sake of simpliity we introdue the basi implementation tehniques only

for unonditional equations. The neessary extensions to deal with onditional equations

are shown in setion 5. Setion 6 shows some results of our implementation.

2 The implemented operational semantis

We have mentioned in the introdution that our approah to integrate funtional and logi

programming languages is based on Horn lause logi with equality (see [31℄ for details)

3

whih extends pure Horn logi by allowing user de�nitions for the binary prediate \=".

Sine Horn lause logi with equality interprets this prediate as identity, we an de�ne

funtions by this feature. For instane, the following lauses de�ne a funtion isort

on lists whih produes a sorted permutation of the argument list by the insertion sort

method (we use the Prolog notation for lists [6℄ and we assume that the ordering prediates

=< and > are de�ned elsewhere):

isort([℄) = [℄

isort([E|L℄) = insert(E,isort(L))

insert(E,[℄) = [E℄

insert(E,[F|L℄) = [E,F|L℄ E =< F

insert(E,[F|L℄) = [F|insert(E,L)℄ E > F

Clauses for the prediate \=" are also alled onditional equations. If the ondition

is empty, we all it also unonditional equation. Note that this program is neither

a valid K-LEAF program [3℄ (sine the left-hand side of the two onditional equations

are idential) nor a valid BABEL program (sine the onditions of the two onditional

equations are \propositional satis�able" [28℄). But it is allowed in our language sine

we only require the onuene of the term rewriting relation generated by the (ondi-

tional) equations (the insert equation system is onuent sine \E =< F and E > F" is

unsatis�able).

Our soure language ALF (\Algebrai Logi Funtional language") onsists of Horn

lauses for user-de�ned prediates and equations for user-de�ned funtions (the left-hand

sides an also be non-linear in ontrast to K-LEAF and BABEL). Furthermore, ALF has

a (parametrized) module system and a many-sorted type struture. Sine these features

have no inuene on the exeution of ALF-programs, we omit the details here and refer

the interested reader to [12℄ and [15℄. An important aspet of the language is the distin-

tion between onstrutors and funtions. A onstrutor must not be the outermost

symbol of the left-hand side of a onditional equation, i.e., onstrutor terms are always

irreduible. This distintion is spei�ed by the user [12℄ and neessary for the notion of

innermost ourrenes [8℄.

The delarative semantis of ALF is the well-known Horn lause logi with equality

as to be found in [31℄. As mentioned in the introdution, the operational semantis of

ALF is based on resolution for prediates and rewriting and innermost basi narrowing for

funtions. In order to give a preise de�nition of the operational semantis, we represent

a goal by a skeleton and an environment part [19℄: the skeleton is a goal omposed of

terms and literals ourring in the original program, and the environment is a substitution

whih has to be applied to the goal in order to obtain the atual goal. The initial goal

G is represented by the pair < G; id > where id is the identity substitution. We de�ne

the following inferene rules to derive a new goal from a given one (if � is a position in

a term t, then t=� denotes the subterm of t at position � and t[� s℄ denotes the term

obtained by replaing the subterm t=� by s in t): Let < L

1

; : : : ; L

n

; � > be a given goal

(L

1

; : : : ; L

n

are the skeleton literals and � is the environment).

1. If L

1

is an equation s = t and there is a mgu �

0

for �(s) and �(t), then the goal

< L

2

; : : : ; L

n

; �

0

Æ � >

4

is derived by reetion.

2. If L

1

is not an equation and there is a new variant L C of a program lause and

�

0

is a mgu for �(L

1

) and L, then the goal

< C;L

2

; : : : ; L

n

; �

0

Æ � >

is derived by resolution.

3. Let � be a leftmost-innermost position in the �rst skeleton literal L

1

, i.e., the sub-

term L

1

=� has a de�ned funtion symbol at the top and all argument terms onsist

of variables and onstrutors (f. [8℄).

(a) If there is a new variant l = r C of a program lause and �(L

1

=�) and l are

uni�able with mgu �

0

, then the goal

< C;L

1

[� r℄; L

2

; : : : ; L

n

; �

0

Æ � >

is derived by innermost basi narrowing.

(b) If x is a new variable and �

0

is the substitution fx �(L

1

=�)g, then the goal

< L

1

[� x℄; L

2

; : : : ; L

n

; �

0

Æ � >

is derived by innermost reetion (this orresponds to the elimination of an

innermost redex [19℄).

4. If � is a non-variable position in L

1

, l = r C is a new variant of a program

lause and �

0

is a substitution with �(L

1

=�) = �

0

(l) and the goal < C ; �

0

> an

be derived to the empty goal without instantiating any variables from �(L

1

), then

the goal

< L

1

[� �

0

(r)℄; L

2

; : : : ; L

n

; � >

is derived by rewriting (thus rewriting is only applied to the �rst literal, but this is

no restrition sine a onjuntion like L

1

; L

2

; L

3

an also be written as an equation

and(L

1

; and(L

2

; L

3

)) = true).

5. If L

1

is an equation and the two sides have di�erent onstrutors at the same outer-

most position (a position not belonging to arguments of funtions), then the whole

goal is rejeted, i.e., the proof fails.

The omplete operational semantis of ALF is shown in �gure 1. The innermost reetion

rule must only be applied to partial funtions, i.e., funtions whih are not reduible for all

ground terms of appropriate sorts [19℄. The attribute basi of a narrowing step emphasizes

that a narrowing step is only applied at an ourrene of the original program and not

at ourrenes introdued by substitutions [21℄. The restrition to basi ourrenes is

important for an eÆient implementation of narrowing and rewriting (see below). The

rewriting rule has the disadvantage that terms from the environment part an be moved

to the skeleton part, but it has been shown that suh terms an be safely moved bak to

the environment part [30℄. Therefore environment terms are never moved to the skeleton

part in our implementation.

5

Start: Apply rewriting as long as possible (from innermost to outermost positions).

If the goal is not rejeted then:

Narrow: If possible, apply the innermost basi narrowing rule and go to Start.

If possible, apply the innermost reetion rule and goto Narrow.

If the �rst literal of the goal is an equation

then: If possible, apply the reetion rule and go to Start.

else: If possible, apply the resolution rule and go to Start.

Otherwise: fail (and try an alternative proof)

Figure 1: Operational semantis of ALF

This operational semantis is sound and omplete if the term rewriting relation gener-

ated by the onditional equations is anonial and the ondition and the right-hand side

of eah onditional equation do not ontain extra-variables [19℄. If these restritions are

not satis�ed, it may be possible to transform the program into an equivalent program

for whih this operational semantis is omplete. For instane, Bertling and Ganzinger

[2℄ have proposed a method to transform onditional equations with extra-variables suh

that narrowing and reetion will be omplete. Therefore we allow extra-variables in on-

ditional equations. For instane, our operational semantis is omplete for the following

set of equations de�ning quiksort, whih an be proved by the CEC ompletion system

[2℄ (we omit the de�nition of =< and >):

on([℄,L) = L

on([E|R℄,L) = [E|on(R,L)℄

split(E,[℄) = ([℄,[℄)

split(E,[F|L℄) = ([F|L1℄,L2) E > F, split(E,L) = (L1,L2)

split(E,[F|L℄) = (L1,[F|L2℄) E =< F, split(E,L) = (L1,L2)

qsort([℄) = [℄

qsort([E|L℄) = on(qsort(L1),[E|qsort(L2)℄) split(E,L) = (L1,L2)

(`,' is de�ned as an in�x operator for building pairs of lists). Note that this is not a valid

K-LEAF or BABEL program sine the extra-variables L1 and L2 our in the right-hand

side of the de�ning equations. In order to avoid the extra-variables one has to replae the

last equation by

qsort([E|L℄) = on(qsort(split1(E,L)),[E|qsort(split2(E,L))℄)

and rede�ne the split funtion. This solution is less eÆient (beause the list L must be

proessed twie) and simpli�ation orderings fail to prove the termination of the rewrite

relation [2℄. These drawbaks may be aepted, but there are other examples where the

use of extra-variables annot be avoided with simple transformations. The funtion last

omputes the last element of a given list. It an be expliitly de�ned or, if on is de�ned

as above, by the simple onditional equation

last(L) = E on(L1,[E℄) = L

6

In this ase last(L) is evaluated by searhing the right instantiations of L1 and E (note

that there is at most one solution if L is given). The use of extra-variables gives us the

full power of logi programming inside funtional programming. Hene ALF allows extra-

variables in onditional equations. If suh a onditional equation is applied in a rewrite

step, only the �rst solution to the extra-variables is onsidered. This is suÆient beause

all equations are required to be onuent.

It is also possible to speify additional equational lauses whih are only used for

rewriting. For instane, Fribourg [8℄ has shown that the addition of indutive axioms for

rewriting is useful to redue the searh spae. In this ase the proved goals are valid with

respet to the least Herbrand model but may be invalid in the lass of all models. Therefore

an ALF-program onsists of three groups of lauses: relational lauses whih de�ne all

prediates exept \=", onditional equations used for narrowing and onditional equations

used for rewriting (Fribourg's SLOG language allows only unonditional equations for

rewriting). Usually, all onditional equations in an ALF-program are used for narrowing

and rewriting, but the programmer an speify that some equations should only be applied

for narrowing or rewriting, respetively. For instane, the indutive axiom rev(rev(L))

= L an be used for rewriting to redue the searh spae (the funtion rev reverses all

elements in a list). To use it as a narrowing rule makes no sense sine this would expand

the searh spae.

Similarly to Prolog, the program lauses in ALF are ordered and the di�erent hoies

for lauses in a omputation step are implemented by a baktraking strategy. Note that

baktraking is only neessary in the resolution and narrowing rule but not in rewrit-

ing sine simpli�ation by rewriting produes unique terms independently of the hosen

lauses (beause of the onuene of the term rewriting relation). Therefore rewriting is

a deterministi proess and the simpli�ation of a goal by rewriting before a narrowing

step means that in ALF deterministi omputations are performed whenever possible and

nondeterministi omputations (narrowing/resolution) are only used when it is not avoid-

able. The Andorra omputation model [17℄ is related to ALF's operational semantis.

But in ontrast to the Andorra model the rewriting mehanism of ALF yields determinis-

ti omputations also when more than one lause mathes (see add example in setion 1)

and may delete goals with in�nite or nondeterministi omputations. E.g., if X*0 = 0 is

a de�ning equation for the funtion *, then a term like t * 0 will be simpli�ed to 0, i.e.,

the entire subterm t will be deleted. This is important if t ontains unevaluated funtions

with variable arguments.

In order to demonstrate the improved eÆieny of this operational semantis in om-

parison to Prolog's omputation strategy, onsider the following equations for the on-

atenation funtion on lists:

on([℄,L) = L

on([E|R℄,L) = [E|on(R,L)℄

If a and b are onstrutors, then the goal

on(on([a|V℄,W),Y) = [b|Z℄

is simpli�ed by rewriting to the goal

[a|on(on(V,W),Y)℄ = [b|Z℄

7

whih is immediately rejeted sine a and b are di�erent onstrutors. The equivalent

Prolog goal

append([a|V℄,W,L), append(L,Y,[b|Z℄)

auses an in�nite loop for any order of literals and lauses [29℄. More details about the

advantages of rewriting and rejetion in ombination with narrowing an be found in [8℄

and [19℄.

3 The management of ourrenes

In this setion we want to show the basi ideas to implement the operational semantis of

ALF in an eÆient way. Sine Prolog's operational semantis is inluded in our language,

we have deided to extend the WAM in order to implement the new aspets of ALF. The

resolution and reetion rule an be diretly implemented in the WAM sine there is no

di�erene to Prolog. The implementation of rejetion is also obvious (note the similarity

between uni�ation and rejetion). Therefore we disuss the implementation of narrowing

and rewriting in more detail. For the sake of simpliity we onsider only unonditional

equations in this setion. The neessary extensions to deal with onditional equations are

shown in setion 5.

The WAM stores terms on the heap. In order to obtain an eÆient implementation of

narrowing and rewriting, we need a fast aess to the subterm where the next narrowing

or rewrite rule should be applied. A dynami searh through the argument term of the

urrent literal is too expensive for this purpose. But sine we use an innermost basi

strategy, all relevant ourrenes of subterms an be determined at ompile time. For

instane, onsider the lause

fa(s(N)) = fa(N) * s(N)

If this equation is applied to redue a term of the form fa(A), then we know by the

innermost basi strategy that the argument term A does not ontain any ourrenes

of funtions belonging to the skeleton part. Therefore we replae the term fa(A) by

the right-hand side fa(N) * s(N) (after unifying A and s(N)) and then we redue the

subterm fa(N). If this subterm is ompletely redued to a term T, then the term T *

s(N) is the next term where an equation must be applied.

Hene we introdue a new data struture alled ourrene stak. An ourrene

is a referene to a term on the heap. The ourrene stak ontains all referenes to

subterms of an argument of the urrent literal where narrowing and rewrite rules ould

be applied (in innermost order, i.e., the referene to the innermost term is always the

top element). For instane, if p(f((g(X)))) is the urrent skeleton literal, f and g

are funtions and a onstrutor, then the ourrene stak ontains a referene to the

subterm f((g(X))) and a referene to the subterm g(X) at the top. Now it is easy to

see that the ompiler an generate all neessary instrutions for the manipulation of the

ourrene stak. For instane, the right-hand side of the above equation for fa an be

translated into

<replae the term at the urrent ourrene by fa(N) * s(N)>

<push a referene to the subterm fa(N) onto the ourrene stak>

8

The right-hand side ontains two funtions, therefore an additional ourrene must be

pushed onto the ourrene stak. If the right-hand side does not ontain a funtion

symbol (i.e., only onstrutors and variables), then an element must be popped from the

ourrene stak. For instane, the right-hand side of the lause fa(0) = s(0) is

translated into

<replae the term at the urrent ourrene by s(0)>

<pop a referene from the ourrene stak>

This has the e�et that the omputation proeeds at the next innermost ourrene stored

on the ourrene stak.

Before a literal is proved by resolution, all arguments must be evaluated by rewrit-

ing and narrowing. Therefore the arguments must be stored on the heap and the o-

urrene stak is initialized with the appropriate referenes. For instane, the literal

p(f((g(X)))) is translated into

<write the term f((g(X))) onto the heap>

<push referene to the term f((g(X))) onto the ourrene stak>

<push referene to the term g(X) onto the ourrene stak>

<start rewriting and narrowing>

Now a new problem ours. Rewriting tries to simplify the urrent argument term by

applying rewrite rules from innermost to outermost positions in the term. If a subterm

annot be rewritten, then the next innermost position is tried, i.e., an element is popped

from the ourrene stak. This is neessary as the following example shows: If the only

equations for f and g are

f(Z) = 0

g(0) = 0

then the term g(X) annot be rewritten (only narrowing ould be applied), but the term

f((g(X))) an be simpli�ed to 0.

Hene the rewriting proess pops all elements from the ourrene stak and therefore

the stak is empty when rewriting is �nished and a narrowing rule should be applied. In

order to avoid a dynami searh for the appropriate innermost ourrene, we introdue

a seond stak for storing the deleted ourrenes (in [12℄ all ourrenes are stored on

one stak and therefore more time is needed to reompute the ourrenes in ase of

suessful rewriting). This stak (alled opy ourrene stak) ontains all ourrenes

if rewriting is �nished and the original ourrene stak is empty. Thus the ourrene

stak an be reinstalled by a simple blok-opy operation. There is only one ase where

this method annot be applied (but fortunately this ase rarely ours): If a rewrite rule

deletes a subterm beause there are variables on the left-hand side whih do not our on

the right-hand side (as in the lause f(Z) = 0) and the opy ourrene stak is not empty,

then some ourrenes must be deleted from the opy ourrene stak. Sine this is

expensive or requires additional information in the data strutures, we have implemented

a simple solution: In this ase the opy ourrene stak is marked as \invalid" whih has

the onsequene that a new ourrene stak for the urrent argument term is omputed

before a narrowing rule is applied.

The presented tehnique for the management of ourrenes has the advantage that

9

the next relevant subterm for rewriting or narrowing an be found in onstant time and a

dynami searh for reduible subterms is not neessary. As a onsequene we will see in

setion 6 that funtional programs are exeuted by rewriting and narrowing with almost

the same eÆieny as their relational equivalents by resolution.

4 Details of the abstrat mahine

After disussing the basi ideas of the implementation in the previous setion, we an

present more details about our abstrat mahine. The abstrat mahine for the eÆient

exeution of ALF-programs, alled A-WAM, is an extension of the WAM. Hene the

main data areas of the A-WAM are the ode area ontaining the ompiled ode of the

ALF-program, the loal stak ontaining environments and baktrak points, the heap

ontaining terms onstruted at run time, the trail ontaining variables bound during

uni�ation, and the ourrene stak and the opy ourrene stak as desribed in the

last setion. In ontrast to the WAM, the trail ontains also the ontents of heap ells

whih were replaed by an appliation of a rewrite or narrowing rule, and the terms in the

heap have an additional tag indiating whether they belong to the skeleton or environment

part of the goal. This is neessary beause the basi ourrenes must be reomputed in

some ases (f. previous setion).

The A-WAM has several additional registers and instrutions for the implementation

of rewriting and narrowing. A desription of these an be found in the appendix. In this

setion we desribe the A-WAM by seleted examples.

An equational lause l = r is always translated into the following sheme:

<unify or math the left-hand side l with the urrent subterm>

<replae the urrent subterm by the right-hand side r>

<update the ourrene stak (delete or add ourrenes)>

<proeed with rewriting/narrowing at new innermost ourrene>

The urrent subterm is referened by the top element of the ourrene stak. Therefore

this top element is always stored in the partiular A-WAM-register AO, i.e., the ourrene

stak is empty i� AO is unde�ned. Similarly to the WAM, the arguments of a n-ary

prediate or funtion are passed through the argument registers A1,: : :,An. Hene the

get-instrutions of the WAM an be used to unify the left-hand side of an equation. If

this equation is used as a rewrite rule, then the left-hand side must be mathed with the

urrent subterm, i.e., variables in the urrent subterm must not be bound. One possible

implementation of this behaviour is the introdution of additional registers R and HR whih

point to the loal stak and heap, respetively. Before rewriting is alled, R and HR are

set to the top of the loal stak and the top of the heap, respetively. If a variable is

bound to a term in the uni�ation proedure, the WAM-instrution trail is alled. Now

we modify the instrution trail suh that this instrution auses a fail if the variable

to be bound is stored in the loal stak before address R or in the heap before address HR.

With this small modi�ation we need no additional instrutions for mathing but an use

the given get-instrutions.

In order to replae the urrent subterm (pointed by register AO) by a new term (the

10

right-hand side of an equation), the A-WAM ontains a dupliated set of put-instrutions

with the suÆx o whih replae the urrent subterm in the heap by another term. For

instane, the instrution put onst o C writes the onstant C on the heap at address AO

and stores the old value at ourrene AO on the trail, and the instrution put strut o

f/n puts a new struture on the top of the heap, replaes the heap ell at address AO by

a referene to this new struture and trails the old value at AO.

The A-WAM has three instrutions for the manipulation of the ourrene stak:

load o R sets register AO to the value in register R, push o R pushes the value in R

onto the ourrene stak, and pop o pops an element from the ourrene stak and

stores its value in register AO.

Now we an show the translation of rewrite rules (remember that eah equation

an be used as a rewrite rule as well as a narrowing rule). Consider the two rewrite rules

for the funtion rev:

rev([℄) = [℄

rev([E|R℄) = on(rev(R),[E℄)

The �rst rewrite rule is translated into

get nil A1

put nil o

pop o

exeute rewriting AO

The �rst instrution mathes the urrent argument stored in A1 with the onstant [℄

representing the empty list. If this is suessful, the seond instrution replaes the urrent

subterm by the empty list. Now rewriting must proeed at the next innermost ourrene.

Therefore an element is popped from the ourrene stak by the third instrution and

the last instrution loads the argument registers with the omponents of the new urrent

subterm and jumps to the ode of the appropriate rewrite rules. The seond rewrite rule

for rev is translated into

get list A1 % math A1 with [E|R℄

unify variable X4

unify variable A1

put list X3 % write [E℄ on the heap

unify value X4

unify nil

put strut o on/2 % replae urrent subterm by on(,[E℄)

unify variable X2

unify value X3

push o AO % update ourrene stak

load o X2

exeute rewriting rev/1 % jump to the rewrite rules for rev/1

Note that the subterm rev(R) is not written on the heap beause this is the next innermost

subterm where a rewrite rule should be applied. Therefore a new unbound variable is

stored instead of this subterm and the argument register A1 is set to the value of R

(this is di�erent from the implementation presented in [12℄). If a rewrite rule an be

11

applied to rev(R), then the variable is overwritten by the right-hand side of the applied

rule. Otherwise rewriting must be applied at the next innermost position. Thus the last

alternative of the sequene of rewrite rules for rev is always the ode sequene

put_funtion_o rev/1

opy_pop_o

exeute_rewriting AO

The �rst instrution puts the struture rev/1 with the value of argument register A1 onto

the heap at address AO if this heap ell ontains an unbound variable. The seond instru-

tion pops an element from the ourrene stak and pushes it onto the opy ourrene

stak (as desribed in setion 3). The last instrution proeeds with rewriting at the new

ourrene.

We have also mentioned in setion 3 that the opy ourrene stak may beome

invalid if the rewrite rule deletes a subterm in an argument. Therefore the instrution

invalid_os must be generated if a rewrite rule is applied where the right-hand side does

not ontain all variables of the left-hand side. For instane, the rewrite rule f(Z) = 0 is

translated into

put_onst_o 0

pop_o

invalid_os

exeute_rewriting AO

The instrution invalid_os marks the opy ourrene stak as invalid if it is not empty.

In this ase the ourrene stak must be reomputed before a narrowing rule is applied.

The translation of narrowing rules is similarly to rewrite rules. The only dif-

ferene is that after an appliation of a narrowing rule we do not proeed with another

narrowing rule but must perform rewriting and rejetion �rst. Hene the narrowing rule

on([℄,L) = L is translated into

get_nil A1

put_value_o A2

pop_o

all_rewriting AO

rebuild_o_stak

rejet

exeute_narrowing AO

The instrution all_rewriting AO sets the registers R and HR and jumps to the rewrite

ode of the funtion at ourrene AO. When the whole term is simpli�ed by rewrit-

ing, exeution ontinues with the instrution rebuild_o_stak whih moves the opy

ourrene stak to the ourrene stak (if it is valid) or reomputes the ourrene

stak. rejet performs the rejetion rule if the urrent literal is an equation, and

exeute_narrowing AO tries to apply a narrowing rule at the ourrene AO.

The indexing sheme for narrowing rules is similar to the WAM-translation sheme

for prediates, i.e., all narrowing rules for a funtion are onneted with a hain of

try_me_else-, retry_me_else- and trust_me_else_fail-instrutions. Moreover, in-

strutions for indexing on the �rst argument are generated. For rewrite rules the same

12

on/2: r_try_me_else b2

swith_on_term 1a,1,2,fail

1a: r_try_me_else 2a % Clause: on([℄,L) = L

1: get_nil A1

put_value_o A2

pop_o

exeute_rewriting AO

2a: r_trust_me_else_fail % Clause: on([E|R℄,L) = [E|on(R,L)℄

2: get_list A1

unify_variable X4

unify_variable A1

put_list_o

unify_value X4

unify_variable X3

load_o X3

exeute_rewriting on/2

b2: put_funtion_o on/2 % go to next innermost position

opy_pop_o

exeute_rewriting AO

Figure 2: A-WAM-ode of the rewrite rules for on

sheme is generated, but all indexing instrutions are replaed by \rewrite indexing in-

strutions" whih are pre�xed by r_. This is due to the fat that rewriting is a determinis-

ti proess and rewrite rules do not hange the urrent literal before the right-hand side is

inserted. Therefore the A-WAM ontains two registers RFP1 and RFP2 whih ontains the

address of an alternative rewrite rule (two registers are neessary beause there may exist

two baktrak points for one lause due to the indexing sheme [33℄). These registers are

set by the r_try: : :{instrutions instead of reating a baktrak point. The instrution

fail, whih is exeuted on failure, onsiders the values of RFP1 and RFP2: If one of these

registers is de�ned (not equal to \fail"), P is set to the last one, otherwise the omputation

state is reset to the last baktrak point. The instrution exeute_rewriting, whih is

always exeuted at the end of a rewrite rule, sets RFP1 and RFP2 to \fail" whih imple-

ments the determinsti behaviour of rewriting. The omplete translation of the rewrite

rules for the funtion on is shown in �gure 2.

If an argument term of a literal in a goal ontains funtion symbols, then this argument

term must be evaluated by rewriting and narrowing before the resolution rule is applied

to the literal. Therefore instrutions for initializing the ourrene stak and rewriting

and narrowing instrutions must be inserted in suh literals. For instane, the literal

p(fa(s(0))) in a goal is translated into

put_struture s/1, X2 % store argument term fa(s(0))

unify_onstant 0

put_struture fa/1, Y2

13

unify_value X2

set_begin_of_term Y2 % store root of argument term

load_o Y2 % initialize ourrene stak

all_rewriting AO, 2

rebuild_o_stak

all_narrowing AO, 2

put_value Y2, A1 % restore argument term

all p/1, 1

The �rst 4 instrutions are idential to the WAM-ode with the only di�erene that the

root of the argument term is not stored in register A1 but in the permanent variable Y2.

This is neessary sine argument registers are altered during rewriting and narrowing.

The A-WAM has a register TS whih ontains the root of the argument urrently evalu-

ated by rewriting and narrowing. This register is used when the ourrene stak must

be reomputed after rewriting if the opy ourrene stak has been marked as invalid.

Therefore TS is initialized by the instrution set_begin_of_term with the appropriate

value. The seond arguments of all_rewriting and all_narrowing are the number

of permanent variables whih are still in use in the urrent environment (similar to the

WAM-instrution all).

Now we have shown how ALF-programs (with unonditional equations) an be trans-

lated into A-WAM-ode. Note that the A-WAM-ode for funtions is very similar to the

WAM-ode for the equivalent prediate (e.g., ompare the ode for the funtions on

and rev with the WAM-ode for the naive reverse program). Thus funtional programs

are exeuted with the same eÆieny as their relational equivalents. Moreover, baktrak

points are not generated for rewriting and therefore many funtional programs are more

eÆiently exeuted. Before we present onrete results of our implementation, we will

show how onditional equations are implemented in our framework.

5 Conditional equations

Conditional equations auses a new problem sine the ondition must be proved before

the equation ould be applied. To prove the ondition rewriting and narrowing may be

reursively used. Hene the urrent ourrene stak must be saved before the ondition is

proved and restored after the proof of the ondition. To implement this reursive struture

of the narrowing proess, the A-WAM ontains not only one ourrene stak but a list (or

stak) of ourrene staks. The last element of this list is always the urrent ourrene

stak belonging to the argument term urrently evaluated by narrowing or rewriting.

Sine rewriting may have a reursive struture too, the opy ourrene stak is also a

list of staks where the last element is the urrent opy ourrene stak.

The A-WAM has two instrutions to manipulate the list of ourrene staks. The

instrution alloate_o adds a new (empty) ourrene stak to the list of ourrene

staks. It is used before a ondition in a narrowing or rewrite rule will be proved. At the

end of the ondition the instrution dealloate_o is exeuted whih deletes the last

element from the list of ourrene staks. If a baktrak point has been reated during

the proof of the ondition, then the last ourrene stak is not deleted sine it is needed

14

on baktraking. Hene a baktrak point freezes the urrent ourrene stak (note the

similarity to environments and the alloate/dealloate-instrutions in the WAM).

Consider the onditional equation f(N) = 0 odd(g(N)). It is translated as a nar-

rowing rule into the following ode:

alloate

get_variable X2, A1

alloate_o % reate a new o. stak for the ondition

put_struture g/1, Y1 % reate argument term g(N)

unify_value X2

set_begin_of_term Y1

load_o Y1

all_rewriting AO, 1 % rewrite argument term g(N)

rebuild_o_stak

all_narrowing AO, 1 % narrow argument term g(N)

put_value Y1, A1

all odd/1, 1

dealloate_o % delete ourrene stak for the ondition

put_onst_o 0

dealloate

pop_o

all_rewriting AO % proeed with rewriting at next ourrene

rebuild_o_stak

rejet

exeute_narrowing AO % proeed with narrowing

The ompilation sheme for onditional rewrite rules is a little bit more ompliated be-

ause it is suÆient to ompute one solution for the ondition (rewriting is a deterministi

proess). Thus baktrak points generated during the proof of the ondition an be safely

deleted. The seond problem is that the indexing sheme for rewrite rules (r_try: : :-

instrutions) does not generate baktrak points. Therefore a baktrak point must be

reated at the beginning of the ondition. Hene a onditional rewrite rule of the form l

= r is translated into

alloate

<get-instrutions for l>

l_try_me_else L,A,N % reate new baktrak point for ondition

alloate_o % reate new ourrene stak

<instrutions for ondition >

dealloate_o % delete ourrene stak for ondition

l_trust_me_else fail % delete baktrak points for ondition

<put..._o-instrutions for r>

<ourrene-stak-instrutions for r>

dealloate

invalid_os % if neessary

exeute_rewriting AO

L: l_trust_me_else fail % delete baktrak points for ondition

15

dealloate

fail % try next rewrite rule

The instrution l_try_me_else L,A,N reates a baktrak point similarly to

try_me_else L,A (A is the number of argument registers to be saved) and stores the

address of the last baktrak point in the environment (usually in the permanent variable

Y1). The additional argument N ontains the size of the urrent environment (the WAM

aesses the size of the urrent environment via the ontinuation pointer CP whih is not

possible in this ontext). The instrution l_trust_me_else fail deletes all baktrak

points generated during the proof of the ondition, i.e., the pointer to the last baktrak

point (WAM-register B) is set to Y1 (the baktrak point before the ondition).

6 Results

The urrent implementation onsists of two parts: a ompiler written in Prolog whih

translates ALF-programs into a ompat byteode representing A-WAM-programs, and

a byteode emulator for the A-WAM written in C. The details of the implementation

together with a omplete formal spei�ation of the A-WAM in the style of [10℄ an be

found in [16℄. In this setion we present some results of our implementation.

First of all, let us remark that pure logi programs without equations are ompiled

idential to the WAM, i.e., there is no overhead beause of the funtional part of our

language (only baktrak points are a little bit bigger beause of the additional registers

of the A-WAM). Although the urrent implementation is a �rst prototype and not very

fast

1

, it is interesting to see the relation between exeution times for funtional programs

and their relational equivalents, beause this shows the relationship between our imple-

mentation of narrowing and rewriting and the urrent tehniques for logi programming.

The �rst example is the lassial (but ontroversial) naive reverse benhmark. The

relational version is exeuted by resolution, the funtional version by narrowing and rewrit-

ing. The following table shows the time for reversing a list of 30 elements in both diretions

(all benhmarks were exeuted on a Sun4):

Naive reverse

Initial goal: rev([� � �℄) = L rev(L) = [� � �℄

Relational \naive reverse": 18 mse 190 mse

Funtional \naive reverse": 19 mse 210 mse

The next example demonstrates one advantage of integrating funtions into logi pro-

gramming languages. In the �rst setion we have shown lauses for de�ning the prediate

add and the funtion +. We have stated that the funtional omputation is more eÆient

than the relational beause no baktrak points must be generated for evaluating the

funtion by rewriting. The following table shows that this is true in our implementation

1

The performane of our urrent implementation is approximately 38 KLips on a Sun4 for the naive

reverse benhmark; for typial logi programming examples with baktraking, like the permutation sort

program (see below), our implementation is approximately 6-7 times slower than a ommerial Prolog

system (Quintus-Prolog 3.0).

16

(in the implementation natural numbers are represented as terms onstruted by s and

0):

Funtional vs. relational omputations

Initial goal: add(100,100,S) 100 + 100 = S

Time used (mse): 16 8

Heap used (bytes): 2412 2420

Loal stak used (bytes): 13352 124

Trail used (bytes): 808 0

Ourrene stak used (bytes): 0 0

This table ontains the time and spae used for omputing the �rst solution to the initial

goal. The time and the loal stak spae shows the advantage of funtional omputations.

However, our implementation is not restrited to evaluate funtions by rewriting, but

also narrowing steps are applied if rewriting fails and some variables of the goal must

be instantiated in order to proeed with rewriting. Fribourg [8℄ has shown that the

ombination of narrowing and rewriting an redue the searh spae in omparison to

resolution. At the end of setion 2 we have presented an example where rewriting uts

down an in�nite searh spae to a �nite one. It is also possible that a �nite searh spae an

be dramatially redued by rewriting. For instane, in the \permutation sort" program

a list is sorted by enumerating all permutations and heking whether they are sorted.

The relational version of the program ([32℄, p. 55) enumerates all permutations whereas

in the funtional version not all permutations are enumerated sine the generation of a

permutation is stopped (by rewriting the goal to \fail") if two onseutive elements X

and Y have the wrong ordering Y < X (f. [8℄, p. 182). Therefore we yield the following

exeution times in seonds for di�erent lengths of the input list in our system:

Funtional vs. relational omputations: permutation sort

Program: Initial goal: n = 6 n = 8 n = 10

Relational ([32℄, p. 55) psort([n,: : : ,1℄,L) 0.65 37.92 3569.50

Funtional ([8℄, p. 182) psort([n,: : : ,1℄) = L 0.27 1.43 7.43

This is a typial example for the lass of \generate-and-test" programs. The rewriting

proess performs the \test part" of the program: if a portion of the potential solution is

generated by narrowing, rewriting immediately tests whether or not this an be a part

of the solution. Therefore narrowing and rewriting yield a more eÆient ontrol strategy

than SLD-resolution for equivalent relational programs. This is ahieved in a purely

lean and delarative way without any user annotations to ontrol the proof strategy or

transformations applied to the soure program [5℄. A more detailed disussion on this

advantage of a funtional language based on rewriting and narrowing an be found in

[14℄.

We have also ompared our implementation with other implementations of funtional

languages with pattern mathing. The following table ontains the results of the naive

reverse benhmark for di�erent implementations whih we had available.

17

Naive reverse for a list of 30 elements

System: Mahine: Time:

ALF Sun4 19 mse

Standard-ML (Edinburgh) Sun3 54 mse

CAML V 2-6.1 Sun4 28 mse

OBJ3 Sun3 5070 mse

RAP 2.0 Sun4 4800 mse

OBJ3 [23℄ and RAP [9℄ are systems for exeuting equational spei�ations by rewriting

(and narrowing in ase of RAP). Sine these are based on an interpreter, we an observe

the impressive speeding up ahieved by our ompilational approah. Thus we onjeture

that our approah is also more eÆient than the implementation tehnique proposed

by Josephson and Dershowitz [22℄ beause they handle uni�ation and ontrol at the

interpretive level.

7 Conlusions

We have presented a method to ompile a language that amalgamates funtional and logi

programming styles into ode of an abstrat mahine whih an be easily implemented

on onventional arhitetures. The operational semantis of our language is based on

resolution for prediates and rewriting and narrowing to evaluate funtional expressions.

We have shown that narrowing in ombination with rewriting is more eÆient than res-

olution for equivalent (attened) relational programs. This was lear from a theoretial

point of view, but our implementation has shown that these advantages an also be used

in pratial appliations.

The integration of funtions into logi programming leads to programs whih are

more readable and easier to understand beause funtions need not be simulated by

prediates and nested funtional expressions need not be attened. Sine the programmer

an express funtional dependenies between data, this information ould be used for a

better implementation. In our system a funtional expression is simpli�ed by rewriting

before a narrowing rule is applied. This redues the searh spae (without \uts"!) and

avoids the generation of superuous baktrak points sine rewriting is a deterministi

proess. Thus the non-deterministi narrowing operation is rarely applied.

In some ases the positive e�et of rewriting (searh spae redution) an also be

ahieved by analysing a logi program in order to �nd deterministi omputations and

inserting \uts" at appropriate program points. But this analysis may be expensive and do

not yield satisfatory results if a prediate is alled in di�erent modes: a all with ground

terms ould have a deterministi omputation while a all with non-ground terms may

have a non-deterministi omputation. Suh problems are solved by our implementation in

a lean and delarative way: Sine rewriting is applied before eah narrowing step, a goal

is simpli�ed by deterministi rewriting as long as possible depending on the instantiation

state of the arguments. A similar behaviour an also be obtained in logi programs by

using other ontrol strategies instead of Prolog's �xed left-to-right strategy [29℄. But

this requires the insertion of ontrol annotations into the program (whih may e�et

18

ompleteness beause of oundering problems) and the extension of the WAM to deal

with suh a exible ontrol strategy. In our delarative solution ontrol annotations are

not neessary (see also [8℄).

Currently we are working on better methods for ode generation whih an speed up

the rewriting part of the system. At the moment we are using the WAM-instrutions for

rewriting as shown in this paper, but it is possible to generate partiular ode for fast

pattern mathing (see, e.g., [18℄). We are also working on the integration of types into

the omputation proess [11℄ [13℄ [20℄ sine this allows a further redution of the searh

spae.

Aknowledgements: The author is grateful to Renate Sh�afers for many disussions on

the design of the A-WAM and to Andreas Shwab and the members of the projet group

\PILS" for the implementation of the A-WAM.

Referenes

[1℄ M. Bellia and G. Levi. The Relation between Logi and Funtional Languages: A

Survey. Journal of Logi Programming (3), pp. 217{236, 1986.

[2℄ H. Bertling and H. Ganzinger. Completion-Time Optimization of Rewrite-Time Goal

Solving. In Pro. of the Conferene on Rewriting Tehniques and Appliations, pp.

45{58. Springer LNCS 355, 1989.

[3℄ P.G. Boso, C. Cehi, and C. Moiso. An extension of WAM for K-LEAF: a WAM-

based ompilation of onditional narrowing. In Pro. Sixth International Conferene

on Logi Programming (Lisboa), pp. 318{333. MIT Press, 1989.

[4℄ P.G. Boso, E. Giovannetti, and C. Moiso. Re�ned strategies for semanti uni�ation.

In Pro. of the TAPSOFT '87, pp. 276{290. Springer LNCS 250, 1987.

[5℄ M. Bruynooghe, D. De Shreye, and B. Krekels. Compiling Control. Journal of Logi

Programming (6), pp. 135{162, 1989.

[6℄ W.F. Cloksin and C.S. Mellish. Programming in Prolog. Springer, third rev. and

ext. edition, 1987.

[7℄ D. DeGroot and G. Lindstrom, editors. Logi Programming, Funtions, Relations,

and Equations. Prentie Hall, 1986.

[8℄ L. Fribourg. SLOG: A Logi Programming Language Interpreter Based on Clausal

Superposition and Rewriting. In Pro. IEEE Internat. Symposium on Logi Pro-

gramming, pp. 172{184, Boston, 1985.

[9℄ A. Geser and H. Hussmann. Experienes with the RAP system { a spei�ation

interpreter ombining term rewriting and resolution. In Pro. of ESOP 86, pp. 339{

350. Springer LNCS 213, 1986.

[10℄ M. Hanus. Formal Spei�ation of a Prolog Compiler. In Pro. of the Workshop

on Programming Language Implementation and Logi Programming, pp. 273{282,

Orl�eans, 1988. Springer LNCS 348.

[11℄ M. Hanus. Polymorphi Higher-Order Programming in Prolog. In Pro. Sixth Inter-

national Conferene on Logi Programming (Lisboa), pp. 382{397. MIT Press, 1989.

[12℄ M. Hanus. Compiling Logi Programs with Equality. In Pro. of the 2nd Int. Work-

shop on Programming Language Implementation and Logi Programming, pp. 387{

401. Springer LNCS 456, 1990.

19

[13℄ M. Hanus. A Funtional and Logi Language with Polymorphi Types. In Pro. Int.

Symposium on Design and Implementation of Symboli Computation Systems, pp.

215{224. Springer LNCS 429, 1990.

[14℄ M. Hanus. A Delarative Approah to Improve Control in Logi Programming. Univ.

Dortmund, 1991.

[15℄ M. Hanus and A. Shwab. ALF User's Manual. FB Informatik, Univ. Dortmund,

1991.

[16℄ M. Hanus and A. Shwab. The Implementation of the Funtional-Logi Language

ALF. FB Informatik, Univ. Dortmund, 1991.

[17℄ S. Haridi and P. Brand. Andorra Prolog: An Integration of Prolog and Committed

Choie Languages. In Pro. Int. Conf. on Fifth Generation Computer Systems, pp.

745{754, 1988.

[18℄ T. Heuillard. Compiling onditional rewriting systems. In Pro. 1st Int. Workshop

on Conditional Term Rewriting Systems, pp. 111{128. Springer LNCS 308, 1987.

[19℄ S. H�olldobler. From Paramodulation to Narrowing. In Pro. 5th Conferene on Logi

Programming & 5th Symposium on Logi Programming (Seattle), pp. 327{342, 1988.

[20℄ M. Huber and I. Varsek. Extended Prolog with Order-Sorted Resolution. In Pro.

4th IEEE Internat. Symposium on Logi Programming, pp. 34{43, San Franiso,

1987.

[21℄ J.-M. Hullot. Canonial Forms and Uni�ation. In Pro. 5th Conferene on Auto-

mated Dedution, pp. 318{334. Springer LNCS 87, 1980.

[22℄ A. Josephson and N. Dershowitz. An Implementation of Narrowing. Journal of Logi

Programming (6), pp. 57{77, 1989.

[23℄ C. Kirhner, H. Kirhner, and J. Meseguer. Operational Semantis of OBJ3 (Ex-

tended Abstrat). In Pro. of the 15th ICALP, pp. 287{301. Springer LNCS 317,

1988.

[24℄ H. Kuhen, R. Loogen, J.J. Moreno-Navarro, and M. Rodr��guez-Artalejo. Graph-

based Implementation of a Funtional Logi Language. In Pro. ESOP 90, pp. 271{

290. Springer LNCS 432, 1990.

[25℄ J.W. Lloyd. Foundations of Logi Programming. Springer, seond, extended edition,

1987.

[26℄ R. Loogen. From Redution Mahines to Narrowing Mahines. In Pro. of the

TAPSOFT '91, pp. 438{457. Springer LNCS 494, 1991.

[27℄ J.J. Moreno-Navarro, H. Kuhen, R. Loogen, and M. Rodr��guez-Artalejo. Lazy Nar-

rowing in a Graph Mahine. In Pro. Seond International Conferene on Algebrai

and Logi Programming, pp. 298{317. Springer LNCS 463, 1990.

[28℄ J.J. Moreno-Navarro and M. Rodr��guez-Artalejo. Logi Programming with Funtions

and Prediates: The Language BABEL. Tehnial Report DIA/89/3, Universidad

Complutense, Madrid, 1989.

[29℄ L. Naish. Negation and Control in Prolog. Springer LNCS 238, 1987.

[30℄ W. Nutt, P. Rety, and G. Smolka. Basi Narrowing Revisited. SEKI Report SR-87-

07, FB Informatik, Univ. Kaiserslautern, 1987.

[31℄ P. Padawitz. Computing in Horn Clause Theories, volume 16 of EATCS Monographs

on Theoretial Computer Siene. Springer, 1988.

[32℄ L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1986.

[33℄ D.H.D. Warren. An Abstrat Prolog Instrution Set. Tehnial Note 309, SRI Inter-

national, Stanford, 1983.

20

A Registers of the A-WAM

Name Funtion

P program pointer

CP ontinuation program pointer

E last environment

B last baktrak point

H top of heap

TR top of trail

S struture pointer

RW read/write mode for unify instrutions

A1, A2, : : : argument registers

X1, X2, : : : temporary variables

R rewrite pointer (to the loal stak)

HR heap rewrite pointer (to the heap)

OM top of urrent ourrene stak

OR top of urrent opy ourrene stak

AO atual ourrene (referene to the urrent subterm to be evaluated)

TS term start (root of the urrent argument term)

OV Is the urrent opy o. stak valid? May be set to false during rewriting.

RFP1, RFP2 rewrite fail pointers (addresses of alternative rewrite rules)

The argument registers and temporary variables are idential to the WAM registers [33℄.

B New instrutions of the A-WAM

In the following we list the new instrutions of the A-WAM together with a short expla-

nation in alphabetial order.

alloate_o: This instrution is used before a ondition in a narrowing or rewrite rule

will be proved. It saves the ourrenes in AO and TS onto the ourrene stak and adds

a new (empty) urrent ourrene stak to the list of all ourrene staks.

all_narrowing AO,N: Load the omponents of the struture at position AO into the

argument registers and all the narrowing rules for the funtion at ourrene AO. N is the

number of permanent variables in the urrent environment.

all_rewriting R: This instrution is used to rewrite the urrent argument term after

a narrowing rule has been applied. It starts rewriting at the innermost ourrene R (f/n

or AO) and ontinues with the next instrution (rebuild_o_stak) if the rewriting

proess is �nished.

all_rewriting R,N: This instrution is used to rewrite the urrent argument term in

a literal where N is the number of permanent variables in the urrent environment. It

starts rewriting at the innermost ourrene R (f/n or AO) and ontinues with the next

instrution (rebuild_o_stak) if the rewriting proess is �nished.

opy_pop_o: Push AO onto the urrent opy ourrene stak and exeute pop_o.

dealloate_o: Delete the last element from the list of ourrene staks and load

registers AO and TS from the previous ourrene stak. If a baktrak point has been

21

reated after the orresponding alloate_o-instrution, it is not allowed to alter pre-

vious elements of the ourrene stak list sine only the urrent ourrene stak has

been saved into the baktrak point. In this ase dealloate_o reates a opy of the

previous ourrene stak and adds this opy to the list of ourrene staks.

exeute_narrowing AO: This instrution terminates a narrowing rule. The narrowing

rules for the funtion at ourrene AO are exeuted if AO is de�ned, otherwise program

pointer P is set to CP.

exeute_rewriting R: This instrution terminates a rewrite rule. Registers RFP1 and

RFP2 are set to \fail" and the rewrite rules for the funtion f/n are exeuted if R=f/n,

otherwise (R=AO) the rewrite rules for the funtion at ourrene AO are exeuted.

inner_refletion: This is the last alternative in a sequene of narrowing rules for a

partial funtion. It implements the innermost reetion rule: The term at the atual o-

urrene AO is marked as \environment" and the A-WAM-instrution sequene \pop_o

; exeute_narrowing AO" is exeuted.

invalid_os: Set register OV to false if the urrent opy ourrene stak is not empty.

load_o R: Set the atual ourrene register AO to the ontents of R.

l_trust_me_else fail: Delete all baktrak points generated after the orresponding

l_try_me_else, i.e., the pointer to the last baktrak point (register B) is set to Y1.

l_try_me_else L,A,N: Create a baktrak point and store the address of the last bak-

trak point in the permanent variable Y1. A is the number of argument registers to be

saved and N ontains the number of permanent variables in the urrent environment.

pop_o: Pop an element from the urrent ourrene stak and store the value in register

AO. If the urrent ourrene stak is empty, set AO to \unde�ned".

push_o R: Push the ontents of R onto the urrent ourrene stak.

put_..._o R: Substitute the urrent subterm at address AO by R and store the old

value at AO on the trail. Furthermore, put_strut_o f/n puts a new struture f/n on

the top of the heap and replaes the heap ell at address AO by a referene to this new

struture.

put_funtion_o f/n: Put the struture f/n with the values of the argument registers

A1,: : :,An onto the heap at address AO if this heap ell ontains an unbound variable. It is

used in the last alternative of the rewrite rules for f/n.

rebuild_o_stak: Replae the urrent (empty) ourrene stak by the urrent opy

ourrene stak if OV is true, otherwise by a new ourrene stak for the term at position

TS (if the opy ourrene stak is invalid).

refletion: This instrution implements the reetion rule. It uni�es the two sides of

an equation (the urrent literal) whih must be a struture referened by register TS.

rejet: If the urrent literal is an equation (referened by register TS), then this in-

strution auses a failure if both sides have di�erent onstrutors at the same outermost

position (a position not belonging to arguments of funtions). Otherwise, no ation is

taken.

r_try...: The indexing instrutions for rewrite rules are pre�xed by r_. In ontrast to

the indexing instrutions of the WAM no baktrak point is generated but the address of

the alternative lause is stored in RFP1 or RFP2.

set_begin_of_term R: Set the term start register TS to the ontents of R.

22

