
Lightweight Declarative Server-Side Web
Programming

Michael Hanus

Institut für Informatik, CAU Kiel, 24098 Kiel, Germany
mh@informatik.uni-kiel.de

Abstract. Web interfaces are an important part of many applications
but their implementation is full of pitfalls due to the client/server nature
of web programming. This paper presents a lightweight approach to web
programming based on a standard infrastructure, in particular, the com-
mon CGI protocol between client and server. No specific additions are
necessary on the server side. Our approach exploits declarative program-
ming features to provide a high-level API for server-side web scripting.
This API allows to check many programming errors at compile time by
using functional (static typing, higher-order functions) as well as logic
(free variables) programming features. Together with further abstrac-
tions, like session handling, persistence, and typeful database access, it
is used for non-trivial web applications.

1 Introduction

A web interface provides an easy access to software systems, since it does not re-
quire local software installations (one can assume that desktop computers as well
as mobile devices are equipped with some web browser). Implementing a web in-
terface for some application program can be challenging due to the client/server
nature of web programming. The application program, running on a web server,
has to generate an HTML page containing form elements. The client, using a
web browser, fills the form with data and submits a request back to the server
which creates and sends an answer to the client. Since the standard protocols,
HTTP and the Common Gateway Interface (CGI), are stateless without a per-
manent connection between the server and the client, additional programming
infrastructure is required for the application program.

There are various proposals to abstract from these raw protocols. Some ap-
proaches use specialized languages, like MAWL [16], DynDoc [20], or Links [4].
If the application is implemented in another language, the use of such languages
causes a gap during software development. Therefore, many specific libraries
have been developed for existing programming languages (e.g., [3,17,19,23,26]).
Such libraries often support a convenient construction of web pages but provide
only limited static checks for programming errors. For instance, web forms use
string constants to identify input fields. If these string constants are used in the
application program, typos in the strings are not detected at compile time and
might lead to dynamic execution errors. Furthermore, a web form has two parts:

a program generating the form (or a static web page containing form elements)
and a program executed when the form is submitted (specified by some URL in
the form). Obviously, this is more complex and error-prone than implementing
a graphical user interface (GUI) with event handlers for a desktop application.

To hide this complexity, one can try to support a continuation-based pro-
gramming model for web forms, i.e., one can try to associate handlers to submit
buttons (and similar interaction elements) which are responsible to process the
event, e.g., to return a new web page with the computed result. These handlers
can be implemented by processes running on the web server (servlets) and by
encoding some required data as hidden fields in the web form [6,22]. This seems
necessary due to the stateless nature of CGI. Since a CGI program running on a
server is terminated after delivering a web page containing form elements, some
resources must be kept on the server to answer form submissions. This program-
ming model requires specific extensions on the web server (e.g., servlets) and/or
permanent processes created by invoking a CGI script.1

In this paper we present a new approach to server-side web programming with
a continuation-based programming model. It is lightweight from a programming
point of view: the programmer implements the web form together with the event
handlers in a single program rather than separating the application into different
programs or scripts. The program runs on a standard web server without spe-
cific extensions. We show an implementation of our approach in the functional
logic programming language Curry [13]. The combined features of Curry enable
the implementation as a library and supports the checking of inconsistencies in
web forms, like missing identifiers, at compile time. Thus, any application im-
plemented in Curry (i.e., also functional or logic programming applications) can
easily be equipped with a web interface by using our library.

Some characteristic features of our approach are:

– We use standard CGI without additional requirements on the web browser
or web server extensions.

– The web server is not loaded with permanent processes for CGI interactions.
– Our model for web programming is continuation-based, i.e., a web form can

contain any number of interaction elements with associated event handlers
that are invoked when a client starts an activity.

– The API for our programming model is implemented as a Curry library
without any language extension. The API supports compositionality (com-
bine several forms in one web page) and ensures the consistency of web forms
and their handlers at compile time.

– Our event handler model abstracts from the raw CGI protocol and interac-
tion (which is implemented by environment variables and value decoding on
the server side).

Note that our approach is oriented towards server-side web programming where
the application data is stored on the server and accessed and manipulated via
1 Actually, this was the approach taken in a very early continuation-based library for
web programming in Curry [6]. The practical problems caused by the web-server
processes motivated the current approach.

web browsers. Client-side web programming, where computations take place in
the web browser, is an independent aspect not covered by our approach.

This paper is structured as follows. The next section provides a short overview
of the main features of Curry as relevant for this paper. Sections 3 and 4 dis-
cuss our approach to model basic HTML documents and interactive web forms.
Section 5 introduces a type model for web forms that allows to detect some
inconsistencies at compile time. Section 6 shows the implementation of state-
ful web interactions via a session concept. The implementation of our library
is sketched in Sect. 7. Useful extensions of our approach and related work are
discussed in the the final sections before we conclude.

2 Functional Logic Programming with Curry

As mentioned above, the combined features of the declarative multi-paradigm
language Curry [13] are important to provide the high-level approach to web
programming described below. Since Curry is basically an extension of Haskell,
we assume familiarity with functional programming and Haskell and review only
those additional aspects of Curry which are necessary to understand our concept.
More details about functional logic programming can be found in the surveys
[2,9].

Curry amalgamates features from functional programming (demand-driven
evaluation, strong typing, higher-order functions) and logic programming (com-
puting with partial information, unification, constraints). The syntax of Curry
is close to Haskell2 [18]. In addition, Curry allows free (logic) variables in condi-
tions and right-hand sides of defining rules. The operational semantics is based
on an optimal evaluation strategy [1]—a conservative extension of lazy functional
programming and logic programming.

A Curry program consists of data type definitions (introducing constructors
for the data types) and functions or operations on these types. As an example, we
show the definition of two operations on lists: the well-known list concatenation
and an operation last which exploits logic programming features to compute
the last element of a list:
(++) :: [a] → [a] → [a] last :: [a] → a
[] ++ ys = ys last xs | _ ++ [e] == xs
(x:xs) ++ ys = x : (xs ++ ys) = e where e free

Note that, in contrast to Prolog, variables not occurring in the left-hand side
of a rule must be declared as free (apart from anonymous variables, like “_”).
Since “++” can be called with free variables in arguments, the condition in the
rule of last is solved by instantiating e and the anonymous free variable “_”
to appropriate values before reducing the call to “++”. Free variables are also
essential for our approach to web programming.

2 Variables and function names usually start with lowercase letters and the names of
type and data constructors start with an uppercase letter. The application of f to e
is denoted by juxtaposition (“f e”).

Curry has more features than described so far.3 In this work, we exploit two of
them. Type classes allow to express ad-hoc polymorphism in a structured manner
[25]. We will use them to enforce structural constraints when using web forms.
Monadic I/O [24] is a declarative concept to structure interactive programs by
enforcing sequential evaluation by monadic operations. We will use it to access
a possible state used in web forms. Since we assume familiarity with Haskell, we
skip a detailed discussion of these concepts.

3 Modeling Basic HTML

Before describing our approach to implement dynamic web pages, we start by
modeling basic HTML documents in Curry.

Since HTML documents have a tree-like structure, they can be represented in
logic or functional languages in a straightforward manner [3,17]. Here, we define
the type of basic HTML expressions in Curry as follows:
data BaseHtml = BaseText String

| BaseStruct String Attrs [BaseHtml]

type Attrs = [(String,String)]

Thus, a basic HTML expression is either a plain string (BaseText) or a structure
consisting of a tag, a list of attributes (name/value pairs), and a list of HTML
expressions contained in this structure.

Since writing HTML documents in a program could be tedious with this def-
inition, one can define operations as useful abbreviations (htmlQuote transforms
characters with a special meaning in HTML, like <, >, &, ", into their HTML
quoted form):
htxt s = BaseText (htmlQuote s) -- plain text
h1 = BaseStruct "h1" [] -- level 1 header
strong = BaseStruct "strong" [] -- important content
hrule = BaseStruct "hr" [] [] -- line break
. . .

A complete web page contains a title, optional parameters (e.g., cookies, style
sheets), and a content (the actual library supports more alteratives, e.g., plain
text documents):
data HtmlPage = HtmlPage String [PageParam] [BaseHtml]

As before, we add some useful abbreviations:
page title hexps = HtmlPage title [] hexps

headerPage title hexps = page title (h1 [htxt title] : hexps)

As an example, we define a web page with a simple multiplication table. The
function
mult2html :: (Int,Int,Int) → [BaseHtml]
mult2html (x,y,z) = [htxt $ show x ++ " * " ++ show y ++ " = ",

strong [htxt $ show z], hrule]

3 Actually, Curry is intended as an extension of Haskell although not all of the nu-
merous features of Haskell are actually supported.

maps a triple of integers into a line showing their multiplication in HTML format.
Then the operation
multPage :: HtmlPage
multPage = headerPage "Multiplication of Digits" $

concatMap mult2html [(x,y,x*y) | x <- [1..10], y <- [1..x]]

exploits standard operations and list comprehensions to define our main web
page. One can easily define a pretty-printing operation
showHtmlPage :: HtmlPage → String

which transforms an HtmlPage term into the corresponding HTML string. If we
install a Curry program with the main operation
main = putStrLn $ showHtmlPage multPage

as a CGI executable on a web server, we get a simple dynamically generated
web page. Since web server programs written with our library are always pages
that are dynamically generated, we assume in the following that a dynamic web
page is of type “IO HtmlPage”.4

A CGI program generates a web page when a client accesses it. Hence, we
can make it more dynamic by accessing data from its execution environment.
For instance, the following page shows the current server time:
timePage :: IO HtmlPage
timePage = do time <- getLocalTime

return $ headerPage "Current Server Time"
[htxt $ calendarTimeToString time]

4 HTML Forms

HTML forms are basic elements to interact with applications running on some
server via a client’s web browser. HTML forms are embedded in HTML pages and
contain input elements to be filled out by the user and interaction elements (e.g.,
buttons) to submit the form data to a web server. When a form is submitted,
the data contained in the input elements is encoded and sent to the server which
starts a program, also called form handler, to react to the submission. The
activated program decodes the input data, runs the application with the data,
and returns an HTML page which is then sent back to the client.

The following HTML page contains a form with an input field to enter string:
<html>

<head><title>String input form</title></head>
<body>

<form method="post" action="http://. . ./handler.cgi">
Enter a string: <input type="text" name="FIELD1"/>
<input type="submit" value="Submit"/>

</form>
</body>

</html>

4 Actually, there is a simple script to wrap such web page definitions with
showHtmlPage before compiling and installing it.

In a typical scenario, such a document is generated by some program. When the
client presses the Submit button, the identifier FIELD1 together with the contents
of this text field is transmitted to the web browser which executes the program
identified by the URL in the action attribute of the form.

In contrast to GUI programming for desktop applications, web interfaces are
split into two independent parts accessible via different URLs: the first part
generates the document containing the form, and the second part processes it
and returns an answer document. Although there are many libraries and web
frameworks to integrate these parts in one program from which these two parts
are generated, there is the problem to ensure the consistency of both parts.
Since input fields are part of the HTML structure and not program entities,
their values are identified by strings, like FIELD1, so that the form handler has
to access the actual input values via these strings. Thus, undefined input fields
or typos in names of input fields are not detected at compile time but lead to
execution errors or unintended behaviors.

The objective of our approach is to simplify the programming of web in-
terfaces and make them more reliable by providing static consistency checks.
As we will see, the functional and logic features of Curry are useful to support
such a programming interface. In the following, we present our approach from a
programmer’s perspective before we discuss its implementation in Sect. 7.

Our programming model is based on two ideas:

1. Input elements are referenced by program variables rather than strings.
Thus, typos in element names lead to accesses to undefined variables which
will be reported at compile time.

2. Interaction elements, like submit buttons, are equipped with event handlers
which process user inputs and return HTML documents. In order to access
the actual form input, an event handler is invoked with an environment to
look up the input data.

To refer to input elements, there is a type
data HtmlRef = HtmlRef String

This type is abstract, i.e., the constructor is not exported so that it cannot be
used in an application program. Thus, the only way to use references in forms
is via free variables. This is intended, as we will see later.

Input elements are constructed with references. For instance, a text input
field is constructed by “textField ref cont” where ref is a reference of type
HtmlRef and cont an initial contents. Since an interaction element, like a submit
button, has an event handler, we have the following type synonyms:
type HtmlEnv = HtmlRef → String

type HtmlHandler = HtmlEnv → IO HtmlPage

An environment is just a mapping from references to strings and a handler maps
an environment into an action which manipulates the server environment (e.g.,
database updates) and returns a new page. Then “button s hdlr” constructs a
button with label s and associated handler hdlr (of type HtmlHandler). With
these elements, we can define a form, as shown in Fig. 1, with a text input field

Fig. 1. An HTML page with a form to compute the length or reverse a string

and two submit buttons: one to compute the length of the string and another
one to reverse the string.
lengthRevForm =

[htxt "Enter a string: ", textField tref "",
button "Length" lengthHandler, button "Reverse" revHandler]

where
tref free

lengthHandler env = return $ page "Answer"
[h1 [htxt $ "String length: " ++ show (length (env tref))]]

revHandler env = return $ page "Answer"
[h1 [htxt $ "Reversed input: " ++ reverse (env tref)]]

Since references to input elements are of type HtmlRef and there are no visible
constructors of this type, only free variables can be used for this purpose. If these
variables are in the scope of the event handler, one can easily access the actual
input available when the handler is invoked by applying the environment to the
reference (as with (env tref) above).

How can we invoke an event handler when a form is submitted? Note that the
event handler is introduced with the form but the form submission takes place
at some later point of time. One possibility is to start, together with the created
form, a process which contains the code of the event handlers in this form.
When a form is submitted, the input data is passed to this process. This has
some similarity with servlets and was the basis of an early approach to HTML
programming in Curry [6]. A disadvantage of that approach is the creation of
many processes whose lifetime is not easy to determine, since form submissions
might never take place. This could be improved by sharing processes, introducing
timeouts etc, but it turned out to be a source of practical run-time problems in
larger applications.

Another possibility is to submit the same program again but in a different
mode: instead of producing the form elements, the event handler of the corre-
sponding submit button is executed. In order to execute this handler, its code
must be accessible from a top-level operation in the program. Therefore, we re-
quire that forms must be declared as top-level entities. In order to use forms
in arbitrary HTML documents, we distinguish between a form definition and

its actual use. To define a form as a top-level entity, there is a constructor
simpleFormDef (later, we will see its concrete type and more complex form defi-
nitions) which wraps a form layout together with its event handlers into a form
definition. For instance, we turn our form above into a form definition by
lengthRevFormDef = simpleFormDef lengthRevForm

We can use a form in an HTML document by wrapping the form definition with
operation formElem. For instance, the following code defines an HTML page
containing our form:
stringInputPage = return $

headerPage "String input" [formElem lengthRevFormDef]

The advantage of distinguishing a form definition from its actual use is that we
can use a form in any HTML document, in particular, recursively in the answer
computed by an event handler. For instance, a form to compute the length of
an input string and showing the form again in the answer can be defined as:
lengthForm = simpleFormDef

[htxt "Enter a string: ", textField tref "",
button "Length"
(\env → return $ page "Answer"

[h1 [htxt $ "Length: " ++ show (length (env tref))],
hrule, formElem lengthForm])]

where tref free

Note that this compact definition is enabled by the combined logic and functional
features of Curry: free variables, like tref, as “unknown” references instead of
concrete strings, and event handlers, i.e., functions, in data structures. Next we
show how to exploit advanced typing features from functional programming to
make form programming more reliable.

5 Stronger Form Typing

Our modeling of forms assumes that input elements and submit buttons are used
inside a form definition so that the corresponding event handlers can be invoked
when the form is used. However, it seems that elements like textField or button
can be mixed with basic HTML elements, like htxt or strong, so that they can
also occur in basic HTML documents without an associated form. In order to
avoid such problems, we exploit type classes to enforce more structure.

Basic HTML elements, like htxt or h1, can be used inside and outside forms,
but input elements and submit buttons should be used only inside forms. This
demands for some kind of overloading which is supported via type classes in a
structured way [25]. Hence, we introduce a type class HTML which supports oper-
ations to construct HTML documents with textual and structured elements:5

class HTML a where
htmlText :: String → a
htmlStruct :: String → Attrs → [a] → a

5 The actual definition in our library contains more operations which are not relevant
here.

The type of basic HTML expressions is an instance of this class:
instance HTML BaseHtml where

htmlText = BaseText
htmlStruct = BaseStruct

To model form elements, we introduce an extended data type for general HTML
expressions which also contains alternatives for elements with references (input
elements) and elements with event handlers (e.g., buttons).
data HtmlExp = HtmlText String

| HtmlStruct String Attrs [HtmlExp]
| HtmlInput HtmlRef HtmlExp
| HtmlEvent HtmlRef HtmlHandler HtmlExp

The actual use of the additional constructors to model input and interaction
elements is not relevant here. For the moment it is only important that input
and interaction elements are of type HtmlExp rather than BaseHtml, e.g., the types
of text input fields and buttons are
textField :: HtmlRef → String → HtmlExp
button :: String → HtmlHandler → HtmlExp

Now we can show the actual types of the operations to define simple forms and
to use them (the type constructor HtmlFormDef will be discussed later):
simpleFormDef :: [HtmlExp] → HtmlFormDef ()
formElem :: HtmlFormDef a → BaseHtml

Thanks to these type signatures, input and interaction elements (of type HtmlExp)
can be used inside a form definition but not in basic HTML documents outside
form elements. Moreover, forms cannot be nested, as required by the HTML
standard,6 since the result type of formElem is BaseHtml rather than HtmlExp.

In order to use other basic HTML elements inside and outside forms, we
define the type of general HTML expressions also as an instance of class HTML:
instance HTML HtmlExp where

htmlText = HtmlText
htmlStruct = HtmlStruct

Finally, we redefine the abbreviations for basic HTML elements introduced in
Sect. 3 by overloading them with type class HTML:
htxt :: HTML h => String → h
htxt s = htmlText (htmlQuote s)

h1 :: HTML h => [h] → h
h1 = htmlStruct "h1" []
. . .

Hence, we can use these elements inside and outside HTML forms, but the
definition of an HTML page with buttons outside forms, like
page "Illegal" [. . ., button "Submit" . . .]

leads to a static type error.

6 https://html.spec.whatwg.org/multipage/forms.html#the-form-element

https://html.spec.whatwg.org/multipage/forms.html#the-form-element

6 Stateful Forms

The HTML forms presented so far are quite limited. Form definitions are top-
level entities. Therefore, data from the context of the form (e.g., database enti-
ties, authentication data) cannot be used in the form. Hence, we need to extend
forms with the possibility to access some state. To show such stateful forms,
it is only necessary to read data, whereas the manipulation of data is usually
performed by the event handlers (therefore, event handlers are of type IO). For
this purpose, there is a monad FormReader with operations to read data (see
below), i.e., the FormReader monad is a restriction of the IO monad where only
read operations are supported.

To define a stateful form, one has to provide a FormReader action to read data
of some type a and an operation which maps values of this type into an HTML
form. Hence, a stateful form can be defined by the operation
formDef :: FormReader a → (a → [HtmlExp]) → HtmlFormDef a

Since the data might be read several times (to construct the form layout, to
start an event handler, or if the form has multiple occurrences in a web page),
it is important to use the restricted FormReader monad for data access instead of
general IO actions. Therefore, an operation of type HtmlFormDef a defines a form
which reads some data of type a and use this data to generate the actual HTML
form.

Although HTTP is a stateless protocol, typical web applications require a
session concept to pass information between different web pages, like the login
name of a user or the contents of a virtual shopping basket. A session concept
can be implemented via cookies to identify a client in a session. The session
information itself should be stored in the server for security reasons [14]. In
order to hide the details of session handling, there is a library (more details can
be found in [11]) which provides the following operations (the type variable a
denotes the type of session data):
getSessionData :: Global (SessionStore a) → a → FormReader a
putSessionData :: Global (SessionStore a) → a → IO ()
removeSessionData :: Global (SessionStore a) → IO ()

Here, “Global (SessionStore a)” is the type of a top-level entity referring to some
cell with session information of type a. getSessionData retrieves information of
the current session (and returns the second argument if there is no information,
e.g., in case of a new session), putSessionData stores information in the current
session, and removeSessionData removes such information.

In order to see an application of this concept, we implement a number guess-
ing game: the client has to guess a number known by the server, and the server
responds whether the client’s number is smaller, larger, or correct. In the lat-
ter case, the number of trials is shown.7 Hence, the session state contains the
number of trials and has the following type:
trials :: Global (SessionStore Int)

7 Of course, this game can be implemented on the client side, but a realistic example
with database access needs too much space.

The form definition consists of an action that reads the current session data and
the HTML form for this data:
guessForm = formDef (getSessionData trials 1) guessFormHtml

guessFormHtml t = [htxt "Guess a number: ", textField nref "",
button "Check" guessHandler]

where
nref free

guessHandler env = do
let g = read (env nref)
if g == 42

then do removeSessionData trials
return $ headerPage

("Correct! " ++ show t ++ " guesses!") []
else do putSessionData trials (t+1)

return $ headerPage
("Too " ++ if g<42 then "small" else "large")
[formElem guessForm]

The form handler reads the user input from the environment (one could add an
additional check whether the input is a number string) and compares it with the
“secret” number. If it is equal, the session data is removed before returning the
answer, otherwise the session data is updated so that the next form invocation
gets the updated data.

7 Implementation

The main objective of this work is to provide an approach to server-side web
programming that is easy to use. We have already seen that event handlers
for interaction elements, free variables to identify input elements, and advanced
typing leads to a compact and reliable programming model. Now we discuss the
implementation of our approach. In order to keep it also lightweight and easy to
use, we base it on existing interfaces provided by any common web server. For
this purpose, we show how to compile a Curry program containing the definition
of a web page and various forms into a single executable to be installed as a CGI
program on a web server.

As an example, consider the compilation of stringInputPage of Sect. 4. When
the generated CGI program is invoked, it has to write the HTML text of the page
described by this operation on the standard output. In order to avoid installing
various CGI programs or forking processes on the server, the same executable is
invoked when the form is submitted by one of the two submit buttons. Thus, the
executable has to check the context of its invocation in order to choose the right
behavior. For this purpose, form elements are translated at run time as follows:
1. Each form contains a hidden field FORMID with the unique name of the form

(the qualified name of the defining operation).
2. All input and interaction elements have unique identifiers. These identifiers

are generated at run time (when the form is computed) by instantiating free
HtmlRef variables with unique strings.

3. When the CGI program is invoked, it checks whether the field FORMID is
set. If not, the main page is generated, otherwise the corresponding form is
executed.

For instance, the HTML element “formElem lengthRevFormDef” is translated into
<form method="post" action="?">

<input type="hidden" name="FORMID" value="LR.lengthRevFormDef"/>
Enter a string: <input type="text" name="FIELD_0" value=""/>
<input type="submit" name="FIELD_1" value="Length"/>
<input type="submit" name="FIELD_2" value="Reverse"/>

</form>

The actual implementation combines a standard Curry compiler with a simple
preprocessor8 (curry2cgi) that wraps the operation defining the main page and
all form definitions with a dispatcher of type
printMainPage :: [(String, [(String,String)] → IO ())]

→ IO HtmlPage → IO ()

The first argument is a list of pairs consisting of a form identifier and a form
implementation. The latter is an operation which takes a list of name/value
pairs (the actual form inputs passed by CGI). For instance, if the operation
stringInputPage is defined in program LR, this operation is compiled into
main = printMainPage

[("LR.lengthRevFormDef", execFormDef lengthRevFormDef)]
stringInputPage

which is finally compiled by the Curry compiler into a CGI executable.
The operation execFormDef translates a form definition into an operation

which takes the CGI name/value pairs and write the HTML text produced
by the corresponding event handler on the standard output. For this purpose,
execFormDef executes the FormReader action of the form definition to read the
required data, constructs the HTML form of the form definition to find the
corresponding event handler and executes this handler by transforming the CGI
name/value pairs into a HtmlEnv mapping.

The actual implementation of our library and the curry2cgi preprocessor is
available as a Curry package (html2) which also contains the examples shown
in this paper. The library and the preprocessor exploit only standard features
of Curry. The preprocessor uses libraries for meta-programming to read and
represent source programs as abstract syntax trees in order to collect the forms
defined in a program, and also performs some checks to ensure the correct use
of the library at compile time, e.g., whether the operation formElem is applied to
top-level entities.

8 Extensions

The programming interface for HTML forms is a basis on which further abstrac-
tions can be added. Some abstractions have been proposed for an earlier (less
8 The preprocessor is used since contemporary Curry implementations do not provide
access to entities of the program at run time.

reliable) approach to HTML programming [6]. Since they have been adapted to
this new approach, we sketch them in the following.

As apparent from the definition of HtmlEnv, the input elements have always
string values so that other kinds of values, like numbers, emails, URLs, or struc-
tured data, must be extracted from strings. Since this requires some (tedious)
code for checking the validity of values in input fields, providing appropriate er-
ror messages, etc, a more abstract layer to construct web user interfaces (WUI s)
in a type-oriented manner is proposed in [7]. Using WUIs, one can construct for
each type of an application program a WUI which implements a web-based in-
terface to manipulate values of this type. For instance, the corresponding library
contains predefined WUIs to manipulate strings (wString) or to select a value
(wSelect) from a given list of values (where the first argument shows a value as
a string), where “WuiSpec a” denotes the type of a WUI to modify values of type
a:
wString :: WuiSpec String
wSelect :: (a → String) → [a] → WuiSpec a

To construct WUIs for complex data types, there are WUI combinators that
map simpler WUIs to WUIs for structured types. For instance, there is a family
of WUI combinators for tuple types:
wPair :: WuiSpec a → WuiSpec b → WuiSpec (a,b)
wTriple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec (a,b,c)
. . .

Thus, “wPair wString (wSelect show [1..31])” defines a WUI to manipulate a
pair of a string and a number between 1 and 31. WUIs can easily be adapted
to specific requirements. For instance, one can attach a predicate so that the
resulting WUI accepts only values satisfying this predicate. Thus,
wString ‘withCondition‘ (not . null)

specifies a WUI that accepts only non-empty strings. There are further combina-
tors to change the default rendering or error messages and to transform a WUI
into an HTML form to be embedded in web pages.

Based on WUIs and abstractions for typeful database programming [12],
there is a web framework to generate a complete web-based system to manipu-
late data stored in relational databases from an entity-relationship (ER) model
of the data [11]. The generated system supports authentication, authorization,
session handling, and ensures the consistency of the database w.r.t. the data de-
pendencies specified in the ER model. Since the framework generates high-level
Curry code, it can easily be adapted to individual customer requirements.

To support domain-specific syntax in Curry programs, there is a preproces-
sor for Curry programs which replaces domain-specific syntax by standard Curry
syntax. For instance, one can embed HTML fragments in Curry programs (in-
stead of expressions constructed by htxt, h1, strong, etc) and one can also write
database queries in SQL syntax which is checked for type consistency against a
given ER model [12].

Our model for web programming and the extensions described above have
been used for non-trivial web applications, like the curricula and module in-

formation system of our department9 or Smap,10 a web-based system to write,
store, and execute programs in various programming languages.

9 Related Work

Due to the importance of web programming, there exist for almost any pro-
gramming language various approaches to implement dynamic web pages. In
the following, we discuss approaches related to declarative languages.

There are many approaches to hide low-level details of HTML and CGI pro-
gramming in purely functional languages. For instance, Meijer [17] presents a
Haskell library to free the programmer fom parsing and printing CGI-based
interactions. Thiemann [22,21] proposes typed representations of HTML (and
XML) documents by exploiting the type class system of Haskell. This can be
considered as a further refinement of our representation of basic HTML docu-
ments and could also be added to our library. WASH [23] adds a session concept
as a further abstraction in order to support server-side web applications. It is
based on CGI and uses hidden input fields in HTML documents in order to add
session-based stateful computations to CGI, similarly (but technically a bit dif-
ferent) from the early HTML library of Curry [6]. Since storing information in
hidden input fields could be a source to attack web systems [14], we avoid them
in our approach by taking the price into account that all data must be stored as
session data kept on the server side.

The iData toolkit [19] supports the construction of web forms in a type-safe
and declarative programming style based on purely functional programming.
This toolkit follows the model-view-controller pattern and provides specific ab-
stractions to manipulate data in web forms, similarly to the type-oriented web
user interfaces library for Curry [7].

The Haskell library Haste.App [5] supports an approach to write web appli-
cations as a single program where type annotations are used to determine which
parts are executed on the client (web browser) or on the server. Thus, separate
server executables and JavaScript code is generated from a single program using
this library and two compilers. This library exploits Haskell’s type system to
implement server and client code in a single program and ensures a type-safe
communication between the client and server side. Since this approach concen-
trates on an elegant model for the communication aspects of web applications,
the integration into web documents is done in the traditional way, i.e., by using
raw strings to identify input elements.

There are also proposals for specific programming languages for web applica-
tions. For instance, Links [4] supports the implementation of a web application in
a single program from which server and client side code (O’Caml and JavaScript
programs) as well as database code (SQL) is generated. Being a specialized lan-
guage, Links has some support to attach program variables to input fields so
that their correct use is checked by the Links compiler. However, this input field
9 https://mdb.ps.informatik.uni-kiel.de/

10 https://smap.informatik.uni-kiel.de/

https://mdb.ps.informatik.uni-kiel.de/
https://smap.informatik.uni-kiel.de/

checking is done by the compiler so that general form abstraction and composi-
tion is not supported.

The PLT Scheme Web Server [15] is an approach to write web applications
in PLT Scheme. Since the complete web server is implemented in PLT Scheme
and supports servlets running on the web server, one can implement web pages
and form interactions in a single program. Due to the dynamic nature of PLT
Scheme, the consistency of input fields and their use in form handlers is not
checked at compile time.

Related to logic programming, there are less advanced approaches. There
are libraries for converting HTML documents to data terms so that convenient
Prolog notation can be used to describe HTML documents [26]. The PiLLoW
library [3] also supports dynamic web pages by providing abstractions for HTML
forms and CGI communication. Due to the dynamically typed nature of Prolog,
static checks on the form of HTML documents are not supported so that this
library provides rather basic abstractions for web programming.

10 Conclusions

We presented a new approach to server-side web programming in the declar-
ative language Curry. The approach is lightweight since its implementation is
based on a library together with a wrapper for the main operation, and the
execution of applications using this library does not require specific extensions
for a web server rather than the ability to execute CGI programs. Our interface
for web programming exploits the combined functional and logic features pro-
vided by Curry: free variables as references to input elements, functions in data
structures as event handlers for interaction elements, and strong typing to check
the consistent use of these elements at compile time. As a result, we obtain a
more reliable and declarative approach to web programming compared to other
alternatives.

Our approach is focused on the server side, i.e., it is intended to implement
web interfaces to an application keeping their data on a server. Our model re-
turns for each user request a new web page containing the answer information.
Nevertheless, it could also be combined with client-side programming by gener-
ating JavaScript. Conceptually, this was tried for Curry with web user interfaces
that perform immediate checks by compiling parts of the Curry program to
JavaScript [8] or by a generic concept for declarative user interfaces that can be
compiled as a desktop or as a web application [10]. For future work, we want
to extend our implementation so that event handlers do not return complete
HTML pages but only updates to be performed on the current page via DOM
and Ajax.

Another line for future work is the integration of our programming model in
a web browser so that the program is not started for every interaction in order to
reduce the startup time. Nevertheless, our current implementation is sufficient for
systems with a limited load, as demonstrated by existing applications mentioned
in this paper.

References

1. S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. Journal of
the ACM, 47(4):776–822, 2000.

2. S. Antoy and M. Hanus. Functional logic programming. Communications of the
ACM, 53(4):74–85, 2010.

3. D. Cabeza and M. Hermenegildo. Distributed WWW programming using (CIAO-
)Prolog and the PiLLoW library. Theory and Practice of Logic Programming,
1(3):251–282, 2001.

4. E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: Web programming without
tiers. In 5th International Symposium on Formal Methods for Components and
Objects (FMCO 2006), pages 266–296. Springer LNCS 4709, 2006.

5. A. Ekblad and K. Claessen. A seamless, client-centric programming model for type
safe web applications. In Proceedings of the 2014 ACM SIGPLAN symposium on
Haskell, pages 79–89. ACM Press, 2014.

6. M. Hanus. High-level server side web scripting in Curry. In Proc. of the Third In-
ternational Symposium on Practical Aspects of Declarative Languages (PADL’01),
pages 76–92. Springer LNCS 1990, 2001.

7. M. Hanus. Type-oriented construction of web user interfaces. In Proceedings of
the 8th ACM SIGPLAN International Conference on Principles and Practice of
Declarative Programming (PPDP’06), pages 27–38. ACM Press, 2006.

8. M. Hanus. Putting declarative programming into the web: Translating Curry to
JavaScript. In Proceedings of the 9th ACM SIGPLAN International Conference on
Principles and Practice of Declarative Programming (PPDP’07), pages 155–166.
ACM Press, 2007.

9. M. Hanus. Functional logic programming: From theory to Curry. In Programming
Logics - Essays in Memory of Harald Ganzinger, pages 123–168. Springer LNCS
7797, 2013.

10. M. Hanus and C. Kluß. Declarative programming of user interfaces. In Proc. of
the 11th International Symposium on Practical Aspects of Declarative Languages
(PADL’09), pages 16–30. Springer LNCS 5418, 2009.

11. M. Hanus and S. Koschnicke. An ER-based framework for declarative web pro-
gramming. Theory and Practice of Logic Programming, 14(3):269–291, 2014.

12. M. Hanus and J. Krone. A typeful integration of SQL into Curry. In Proceedings of
the 24th International Workshop on Functional and (Constraint) Logic Program-
ming, volume 234 of Electronic Proceedings in Theoretical Computer Science, pages
104–119. Open Publishing Association, 2017.

13. M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.9.0). Avail-
able at http://www.curry-lang.org, 2016.

14. S.H. Huseby. Innocent Code: A Security Wake-Up Call for Web Programmers.
Wiley, 2003.

15. S. Krishnamurthi, J.A. McCarthy, P.T. Graunke, G. Pettyjohn, and M. Felleisen.
Implementation and use of the PLT scheme web server. Higher Order and Symbolic
Computation, 20(4):431–460, 2007.

16. D.A. Ladd and J.C. Ramming. Programming the web: An application-oriented
language for hypermedia service programming. World Wide Web Journal, 1(1),
1996.

17. E. Meijer. Server side web scripting in Haskell. Journal of Functional Programming,
10(1):1–18, 2000.

http://www.curry-lang.org

18. S. Peyton Jones, editor. Haskell 98 Language and Libraries—The Revised Report.
Cambridge University Press, 2003.

19. R. Plasmeijer and P. Achten. iData for the world wide web - programming inter-
connected web forms. In Proc. of the 8th International Symposium on Functional
and Logic Programming (FLOPS 2006), pages 242–258. Springer LNCS 3945, 2006.

20. A. Sandholm and M.I. Schwartzbach. A type system for dynamic web documents.
In Proc. of the 27th ACM Symposium on Principles of Programming Languages,
pages 290–301, 2000.

21. P. Thiemann. A typed representation for HTML and XML documents in Haskell.
Journal of Functional Programming, 12(4-5):435–468, 2002.

22. P. Thiemann. WASH/CGI: Server-side web scripting with sessions and typed, com-
positional forms. In 4th International Symposium on Practical Aspects of Declar-
ative Languages (PADL 2002), pages 192–208. Springer LNCS 2257, 2002.

23. P. Thiemann. WASH server pages. In Proc. of the 8th International Symposium on
Functional and Logic Programming (FLOPS 2006), pages 277–293. Springer LNCS
3945, 2006.

24. P. Wadler. How to declare an imperative. ACM Computing Surveys, 29(3):240–263,
1997.

25. P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc. In Proc.
POPL’89, pages 60–76, 1989.

26. J. Wielemaker, Z. Huang, and L. van der Meij. SWI-Prolog and the web. Theory
and Practice of Logic Programming, 8(3):363–392, 2008.

	Lightweight Declarative Server-Side Web Programming

