
Improving Residuation in Declarative Programs?

Michael Hanus

Institut für Informatik, CAU Kiel, D-24098 Kiel, Germany
mh@informatik.uni-kiel.de

November 2, 2018

Abstract. Residuation is an operational principle to evaluate functions
in logic-oriented languages. Residuation delays function calls until the
arguments are sufficiently instantiated in order to evaluate the function
deterministically. It has been proposed as an alternative to the non-
deterministic narrowing principle and is useful to connect externally de-
fined operations. Residuation can be implemented in Prolog systems sup-
porting coroutining, but this comes with a price: the coroutining mech-
anism causes a considerable overhead even if it is not used. To overcome
this dilemma, we propose a compile-time analysis which approximates
the run-time residuation behavior. Based on the results of this analysis,
we improve an existing implementation of residuation and evaluate the
potential efficiency gains by a number of benchmarks.

1 Introduction

Declarative programming is an attempt to build reliable software systems in
a high-level manner on sound theoretical principles. Functional languages sup-
port functions as programming entities and use reduction for evaluation. Logic
languages support relations as main entities and use unification-based resolu-
tion for evaluation. When combining both kinds of languages in order to pro-
vide a single declarative language, there are two principle choices for evalua-
tion. Narrowing extends reduction by unification so that functions can also be
invoked with partially known arguments. Thus, functions might be evaluated
non-deterministically like relations in logic programming. Residuation restricts
non-deterministic evaluation to predicates only so that functions are suspended
if their arguments are not sufficiently instantiated for deterministic reduction.
Both operational mechanisms are applied in functional logic languages that com-
bine the most important features of functional and logic programming in a single
language (see [8,18] for recent surveys).

Both narrowing and residuation have their justifications. Optimal evaluation
strategies are known for narrowing [4] whereas residuation supports concurrent
computations and allows to connect externally defined operations in a declarative
manner [10]. This motivated the development of the functional logic language

? The research described in this paper has been partially supported by the German
Federal Ministry of Education and Research (BMBF) under Grant No. 01IH15006B.



Curry [22] as a unified language for functional logic programming which combines
narrowing and residuation in a single evaluation principle [17]. A functional logic
language can be implemented with limited efforts by compiling it into Prolog
(e.g., [5,13,24]). To implement residuation, one can exploit coroutining facilities
supported by many Prolog systems: if some argument of a residuating operation
is not sufficiently instantiated, the evaluation of the corresponding Prolog pred-
icate is suspended so that another predicate can be activated [5]. Although this
implementation is quite simple, it causes additional costs if residuation is not
used, i.e., all function calls are sufficiently instantiated, since one has to check
each function call before activating them. To avoid these costs, we develop in this
paper a compile-time analysis which approximates operations w.r.t. their run-
time residuation behavior. Based on this analysis, we improve a Curry compiler
and evaluate the efficiency gains for some benchmarks.

This paper is structured as follows. After a short introduction to functional
logic programming and Curry, we sketch in Sect. 3 an existing implementation
of residuation in Prolog. Our compile-time analysis of residuation is described in
Sect. 4. The improved implementation of residuation w.r.t. analysis information
is sketched in Sect. 5 and evaluated in Sect. 6. Section 7 discusses related work
before we conclude in Sect. 8.

2 Declarative Programming with Curry

The declarative programming language Curry [22] amalgamates the most impor-
tant features of functional and logic programming as well as operational princi-
ples of combined functional logic languages [8,18], such as narrowing and resid-
uation, in a single language. Conceptually, Curry extends Haskell [28] with non-
determinism, free variables, and constraint solving. Thus, the syntax of Curry
is close to Haskell but Curry applies rules with overlapping left-hand sides in a
(don’t know) non-deterministic manner and allows free (logic) variables in con-
ditions and right-hand sides of rules. These variables must be explicitly declared
unless they are anonymous. Similarly to Haskell, functions are evaluated lazily
to support modular programming, infinite data structures, and optimal evalua-
tion [4]. Unlike Haskell, function calls might contain free (unbound) variables,
i.e., without a value at call time. If the value of such an argument is demanded,
the function call is either suspended (which corresponds to residuation) or the
variable is non-deterministically instantiated (which corresponds to narrowing
[4]).

Example 1. Consider the following definition of natural numbers in Peano rep-
resentation, the addition on natural numbers, and a predicate which is true on
natural numbers:

data Nat = Z | S Nat

add :: Nat → Nat → Nat nat :: Nat → Bool

add Z y = y nat Z = True

add (S x) y = S (add x y) nat (S x) = nat x

2



If add is evaluated by narrowing (such functions are also called flexible), the
equation

let x free in add x (S Z) == S (S Z)

is solved by instantiating the free variable x to (S Z). However, if add is evaluated
by residuation (in this case add is called rigid), the equation solving suspends.
To proceed with suspended computations, Curry has a concurrent conjunction
operator “&” which evaluates both arguments concurrently, i.e., if the evaluation
of one argument suspends, the other is evaluated. Thus, if the function add is
rigid and the predicate nat is flexible (as in languages like Le Fun [2] or Oz [30]),
the conjunction

let x free in add x (S Z) == S (S Z) & nat x

is successfully evaluated by interleaving the evaluation of add and nat (which in-
stantiates x to (S Z)). This kind of concurrent computation is also called declar-
ative concurrency [31].

In the first version of Curry, functions were rigid and predicates flexible by
default, similarly to residuation-based languages [1,2,26,30]. Later, narrowing
became the default for all defined operations so that only externally defined
operations and conditionals, like “if-then-else” or “case-of”, are evaluated by
residuation. There is also an explicit “suspension” combinator for concurrent
programming: ensureNotFree returns its argument evaluated to head normal
form but suspends as long as the result is a free variable.

Curry has many additional features not described here, like monadic I/O [32]
for declarative input/output, set functions [7] to encapsulate non-deterministic
search, functional patterns [6] and default rules [9] to specify complex transfor-
mations in a high-level manner, and a hierarchical module system together with
a package manager1 that provides access to currently more than 80 packages
with several hundred modules.

3 Implementing Residuation in Prolog

A scheme to compile functional logic languages with residuation, such as Curry,
into Prolog is proposed in [5] and used in the Curry implementation PAKCS
[20] which is part of recent Debian und Ubuntu Linux distributions. Corou-
tining features of contemporary Prolog systems can be exploited to implement
residuating operations. SICStus-Prolog2 offers block declarations to enforce the
suspension of predicate calls under particular conditions. For instance, the dec-
laration “:- block p(?,-,?).” specifies that a call to p is delayed if the second
argument is a free variable. Thus, the following code defines the multiplication
function on integers as a predicate which suspends if one of the arguments is a
free variable:

:- block mult(-,?,?), mult(?,-,?).

1 http://curry-language.org/tools/cpm
2 http://sicstus.sics.se/

3

http://curry-language.org/tools/cpm
http://sicstus.sics.se/


mult(X,Y,R) :- R is X*Y.

An alternative to block declarations is the predicate freeze(X,G) which suspends
the evaluation of the goal G if the first argument X is a free variable. Since freeze

is less efficient than block [5], PAKCS uses block declarations when it compiles to
SICStus-Prolog and freeze declarations when it compiles to SWI-Prolog (since
SWI-Prolog does not offer block declarations).

Unfortunately, such simple block declarations are not sufficient when com-
piling functional logic programs into Prolog due to nested function calls. Since
functions are compiled into Prolog predicates by adding a result argument and
evaluating demanded inner arguments before outer function calls [5,13], it must
be ensured that all predicates involved in a function call are suspended when
some argument suspends. For instance, consider the Curry program

g x = ensureNotFree x

h [] = []

h (y:ys) = h ys

main x = h (g x)

If we evaluate main x where x is a free variable, the evaluation of (g x) suspends
due to the call of ensureNotFree. Hence, the calls to h and, thus, main also
suspend. The Prolog code obtained by translating functions into predicates is3

:- block g(-,?).

g(X,R) :- R=X.

h(A,R) :- hnf(A,B), h_1(B,R).

h_1([],R) :- R=[].

h_1([Y|Ys],R) :- h(Ys,R).

main(A,R) :- h(g(A),R).

The evaluation of main(A,R) leads to the evaluation of hnf(g(A),B) and g(A,B),
which suspends. However, the subsequent literal h-1(B,R) can still be evaluated
which results in an infinite search space by applying the second rule of h-1

forever.

In order to avoid such problems, more control is needed so that the call to
h-1 is activated only if the evaluation of the call to g is not suspended. For
this purpose, [5] proposes to add specific input and output arguments to each
predicate. These arguments are either uninstantiated or bound to the constant
eval (the actual value is irrelevant). A computation of a predicate (implementing
some Curry function) is activated only if the input control argument is instanti-
ated. If this computation is complete, i.e., without suspension, the output control
argument is bound to eval. Thus, one can implement the required control by
chaining these control arguments through the program. As a concrete example,
our program above is implemented as follows:

3 The predicate hnf computes the head normal form of its first argument. It can
be defined by a case distinction on all function and constructor symbols in the
program. The use of hnf instead of simply flattening nested function calls is essential
to implement lazy evaluation.

4



:- block g(-,?,?,?), g(?,?,-,?).

g(X,R,E0,E1) :- R=X, E1=E0.

:- block h(?,?,-,?).

h(A,R,E0,E2) :- hnf(A,B,E0,E1), h_1(B,R,E1,E2).

:- block h_1(?,?,-,?).

h_1([],R,E0,E1) :- R=[], E1=E0.

h_1([Y|Ys],R,E0,E1) :- h(Ys,R,E0,E1).

:- block main(?,?,-,?).

main(A,R,E0,E1) :- h(g(A),R,E0,E1).

Now, the evaluation of the goal main(A,R,eval,E) suspends where the call to h-1

is also suspended.
This scheme together with a sophisticated implementation of sharing (see [5]

for details) is the basis of the Curry implementation PAKCS [20]. However, this
implementation has some cost since every predicate is annotated with a block

declaration. The costs are even higher when block declarations are replaced by
freeze declarations (as shown later by our benchmarks). On the other hand,
residuation is not a dominating principle in actual programs. Originally, resid-
uation has been proposed as an alternative to narrowing in order to avoid eval-
uating functions in a non-deterministic manner, see, for instance, the languages
Escher [23], Le Fun [2], Life [1], NUE-Prolog [26], or Oz [30]. Since the language
Curry is an attempt to unify the different approaches to combine functional and
logic programming, it supports residuation and narrowing in a unified way [17].
As time has passed, residuation became less important so that functions are now
non-residuating by default [18]. Nevertheless, residuation is still interesting to
support concurrent computations and to connect externally defined operations
in a declarative way [10]. This demands for an implementation where the over-
head of residuation is accepted only if it is actually used in the program. For
this purpose, we develop in the next section a program analysis to approximate
the actual usage of residuation during run time in a Curry program.

4 Approximating Residuation Behavior

In order to improve the implementation of potentially residuating programs
sketched above, it is important to characterize programs or part of programs
where residuation is not used. This is the case if residuating functions are not
invoked at run time or they are invoked with sufficiently instantiated arguments.
Since such properties are obviously undecidable, we develop a compile-time tech-
nique to approximate them.

4.1 CASS: An Analysis Framework for Curry

CASS [21] is an incremental and modular analysis system for Curry programs.
Since CASS provides a good infrastructure to implement new program analyses,
we will use it for our purpose. A new program analysis can be added to CASS
if it is defined in a bottom-up manner, i.e., the analysis computes some abstract

5



P ::= D1 . . . Dm (program)
D ::= f(x1, . . . , xn) = e (function definition)
e ::= x (variable)

| c(e1, . . . , en) (constructor call)
| f(e1, . . . , en) (function call)
| case e of {p1 → e1; . . . ; pn → en} (rigid case)
| fcase e of {p1 → e1; . . . ; pn → en} (flexible case)
| e1 or e2 (disjunction)
| let x free in e (free variable)
| let x = e in e′ (let binding)

p ::= c(x1, . . . , xn) (pattern)

Fig. 1. Syntax of the intermediate language FlatCurry [18]

information about a given operation from the definition of this operation together
with abstract information about the operations used in this definition. Then
CASS performs the necessary fixpoint computations, incremental analysis of
imported modules, etc, to analyze a given module.

To be more precise, an analysis added to CASS must be defined on an in-
termediate language, called FlatCurry, which is used in compilers, optimization,
and verification tools, and to specify the operational semantics of Curry pro-
grams [3]. In FlatCurry, the syntactic sugar of the source language is eliminated
and the pattern matching strategy is explicit. The abstract syntax of FlatCurry
is summarized in Fig. 1. A FlatCurry program consists of a sequence of func-
tion definitions, where each function is defined by a single rule. We assume that
all variables introduced in the left-hand side, patterns, and let expressions are
disjoint. Patterns in source programs are compiled into flexible case expressions
and overlapping rules are joined by explicit disjunctions. The difference between
case and fcase corresponds to residuation and narrowing: when the argument
e evaluates to a free variable, case suspends whereas fcase nondeterministically
binds this variable to a pattern in a branch of the case expression.

Any Curry program can be translated into a FlatCurry program by making
the pattern matching strategy explicit. For instance, the operation h defined in
Section 3 has the following FlatCurry representation:

h(xs) = fcase xs of { [] → []; y:ys → h(ys) }

In principle, let bindings as shown in Fig. 1 are not required to translate standard
Curry programs. However, they can be used to translate circular data structures
and are convenient to express sharing without the use of complex graph struc-
tures [14,15]. Operationally, let bindings introduce new structures in memory
that are updated after evaluation, which is essential for lazy computations [3].

4.2 A Domain for Residuation Analysis

We use FlatCurry to specify our analysis of the residuation behavior of Curry
programs. Since residuation, i.e., the suspension of function calls, might occur if

6



variables are unbound during run time, we have to approximate which arguments
are ground at run time and under which conditions functions do not residuate.
For instance, the addition operation (+) does not residuate if both arguments
are ground. However, the constant function

const :: a → _ → a

const x y = x

does not residuate if the first argument is ground and the second argument is
arbitrary, since the latter is not evaluated by const due to lazy evaluation. There-
fore, our analysis associates to each n-ary operation f a set fα ⊆ {1, . . . , n} with
the following interpretation: if e = f t1 . . . tn and ti is a ground constructor term
for each i ∈ fα, then the evaluation of e does not suspend and each value of e is
ground. For instance, +α = {1, 2} and constα = {1}. Since there are also opera-
tions without such a strong property or where our analysis is not precise enough,
we also add a top element >. fα = > means that a call to f might residuate
or does not yield a ground term.4 Finally, there is also an abstract bottom ele-
ment ⊥, representing no information, which is used to start the fixpoint analysis.
Thus, our analysis associates to an n-ary operation f an element of the abstract
domain

{⊥,>} ∪ {s | s ⊆ {1, . . . , n}}

Note that ⊥ has a different meaning than ∅. ⊥means “unknown” or “no analysis
result” (e.g., loopα = ⊥ for the definition loop = loop), whereas ∅ means “no
suspension.” For instance, if mainα = ∅, then the evaluation of main will never
residuate. Similarly, if f is n-ary, the abstract value {1, . . . , n} is different from
>. If fα = {1, . . . , n}, then f t1 . . . tn does not suspend and has a ground result
value if each t1, . . . , tn are ground constructor terms, whereas fα = > means
that any call to f might residuate or does not yield a ground term.

Abstract elements are ordered as usual, i.e., ⊥ v x, x v >, and, for ⊥ 6= si 6=
> (i = 1, 2), s1 v s2 iff s1 ⊆ s2. Consequently, the least upper bound s1 t s2 of
two abstract elements s1, s2 is defined as follows:

s1 t s2 =


s1 if s2 = ⊥
s2 if s1 = ⊥
> if s1 = > or s2 = >

s1 ∪ s2 otherwise

4.3 Residuation Analysis

The analysis of a single operation f uses an assumption A which maps operations
and variables into abstract elements. A[x 7→ α] denotes the extended assumption
A′ which is defined by

A′(y) =

{
α if y = x
A(y) if y 6= x

4 One could also refine the abstract domain in order to distinguish between residuation
and non-ground results, but this does not seem to provide better results in practice.

7



FDecl
A[x1 7→ {1}, . . . , xn 7→ {n}] ` e : α

A ` f(x1, . . . , xn) = e : α

Var A ` x : A(x)

Cons
A ` e1 : α1 . . . A ` en : αn

A ` c(e1, . . . , en) : α1 t . . . t αn

Fun
A ` e1 : α1 . . . A ` en : αn

A ` f(e1, . . . , en) : α

where α = αi1 t . . . t αik if A(f) = {i1, . . . , ik}, otherwise α = A(f)

Case
A ` e : α A1 ` e1 : α1 . . . An ` en : αn

A ` case e of {p1 → e1; . . . ; pn → en} : α t α1 t . . . t αn

where Ai = A[xi1 7→ α, . . . , xiki
7→ α] if pi = ci(xi1 , . . . , xiki

)

FCase
A ` e : α A1 ` e1 : α1 . . . An ` en : αn

A ` fcase e of {p1 → e1; . . . ; pn → en} : α t α1 t . . . t αn

where Ai = A[xi1 7→ α, . . . , xiki
7→ α] if pi = ci(xi1 , . . . , xiki

)

Or
A ` e1 : α1 . . . A ` e2 : α2

A ` e1 or e2 : α1 t α2

Free
A[x 7→ >] ` e : α

A ` let x free in e : α

Let
A[x 7→ ⊥] ` e : α A[x 7→ α] ` e′ : α′

A ` let x = e in e′ : α′

Fig. 2. Abstract semantics for residuation analysis

To analyze a function f w.r.t. an assumption A about operations defined in
the program, we apply the inference rules shown in Fig. 2. Rule FDecl is the
main rule to analyze a function defined by f(x1, . . . , xn) = e. For this purpose,
the right-hand side e is analyzed with the assumption extended by information
about the position of the argument variables. Rule Var simply returns the ab-
stract element associated to the variable so that we obtain the information of
arguments passed as results. For instance, rules FDecl and Var are sufficient to
derive the judgement A ` const(x, y) = x : {1}. Rule Cons combines the infor-
mation of all arguments by returning their least upper bound. Hence, one can
derive the judgement A ` pair(x, y) = (x, y) : {1, 2} showing that pair does not
residuate and returns a ground value if both arguments are ground. In case of
function applications (rule Fun), the computation of the least upper bound can
be restricted to the arguments required by the assumption about the function.
Rules Case and FCase simply combine the information of the discriminating
expression and all branches since all of these expressions might contribute to

8



the overall result. Note that the operational difference between case and fcase
is not considered here since our abstract domain does not distinguish between
non-ground and possibly residuating expressions. Such a distinction could be
introduced in principle, but practical evaluations showed that such a refined do-
main does not yield more useful results for our intended application. Rule Or
combines both branches since both will be executed at run time. Rule Free as-
signs the top element to the introduced variable so that the overall result will
be “possibly non-ground/suspending” if this variable is used. Finally, rule Let
analyzes the bound expression with no information about the bound variable
and, then, analyzes the main expression with the information computed for the
bound variable.

External operations, like “+”, are not explicitly mentioned in the analysis
rules. They can be simply covered by definingA(f) = {1, . . . , n} for each external
operation f of arity n. This is a correct approximation for all currently supported
external operations, since they do not residuate and yield a ground value if all
arguments are ground values.

One might wonder why higher-order functions are not explicitly mentioned in
the analysis rules. This is because they can be transformed into first-order ones
by providing an “apply” operation between two expressions (this technique is
known as “defunctionalization” [29] and also used to extend logic programs with
higher-order features [33]). In this implementation, partially applied function
calls are considered as constructor applications where the operation apply adds
an argument and, if all arguments are provided, calls the actual function. Thus,
partial applications are analyzed by Cons and apply is considered as a predefined
operation with A(apply) = {1, 2}. The only disadvantage of this simple approach
is a possible over-approximation since all arguments of a partial application are
assumed to be evaluated. For instance, consider the definitions

f x y = y+1

main = map (f x) [1,2,3] where x free

Then the analysis yields the result that main might residuate although main

evaluates to a ground value. This over-approximation can be avoided by the
following specialized rule for partial applications which takes into account the
abstract information about functions even for partial applications:

PFun
A ` e1 : α1 . . . A ` em : αm
A ` f(e1, . . . , em) : α

f n-ary function and m < n

where α =
⊔
{αi | i ∈ A(f) and i ≤ m}, otherwise α = A(f)

An assumption A is correct if, for all operations f defined by f(x1, . . . , xn) =
e, A(f) = α and A ` f(x1, . . . , xn) = e : α is derivable. Since all abstract
operations used in Fig. 2 are monotone and the abstract domain is finite, we
can compute a correct assumption as a least fixpoint by starting with the initial
assumption A0(f) = ⊥ for all operations f . Since such fixpoint computations are
supported by CASS, the residuation analysis can be implemented by encoding
the rules of Fig. 2 in a straightforward way and adding this code to CASS. The

9



analysis is available in the current implementation of CASS (install package cass

with the Curry package manager [19]) or via the online version of CASS.5

The soundness of the residuation analysis can be proved by induction on the
evaluation steps of the concrete semantics. For this purpose, one has to extend
the operational semantics of Curry programs presented in [3] to cover suspended
computations by returning a specific Suspend result when the discriminating
expression of a case expression is a free variable. Then one can show that an
expression e will not be evaluated to Suspend if all variables required to be
ground by the analysis of e are actually bound to ground expressions, where
the latter means that these expressions evaluate to ground values (and not to
Suspend). Thus, if A ` main : ∅ is a correct judgement, then the evaluation
of main never suspends. The detailed definitions and proofs can be found in the
appendix.

In order to evaluate the precision of the presented analysis, we analyzed
the system libraries distributed with PAKCS. For instance, the library Prelude,
which is the largest one and contains the predefined standard operations of Curry,
contains 867 operations (including auxiliary operations that are not exported)
but only one operation has the analysis result >: the operation unknown which
yields a fresh variable:

unknown = let x free in x

For all other operations, our analysis yields an argument index set, i.e., these
operations do not residuate if they are called with ground values. When ana-
lyzing all system libraries, only 25 of 2616 operations might residuate or yield
non-ground values. These are mainly operations in logic-oriented libraries for
combinatorial programming or encapsulated search.

5 Implementing Residuation with Analysis Information

In this section we sketch how one can use the results of the residuation analysis
to improve the implementation of residuation shown in Sect. 3.

As discussed in Sect. 3, suspension declarations, like block or freeze, are
necessary to suspend the evaluation of an expression if some of its demanded
subexpressions are suspended. However, if it is ensured that these subexpressions
do not suspend, the run-time checking of suspension declarations become super-
fluous since the conditions under which they fire (i.e., suspend a goal) are never
satisfied. Unfortunately, these conditions might not be the same in all calls to an
operation. For instance, the factorial function can be evaluated without residu-
ation if its argument is a number, but it is suspended when it is called with an
unbound variable until this variable is instantiated by some other thread. Thus,
if we want to keep the overall functionality of a program but improve it on calls
with sufficiently instantiated arguments, we have to duplicate the code: in ad-
dition to the original Prolog code, we add code without suspension declarations
which is activated only on sufficiently instantiated arguments. If the compiler

5 https://www-ps.informatik.uni-kiel.de/∼mh/webcass/

10

https://www-ps.informatik.uni-kiel.de/~mh/webcass/


uses the information of the residuation analysis, calls to the appropriate version
of the code can be generated.

For instance, consider the translation of a function f(x) = g(x,h(0)). We
add the suffix -NR to Prolog predicates implementing non-residuating code. If
fα 6= >, there are sufficient conditions to evaluate f without residuation so that
we generate the non-residuating version of the code:6

f_NR(X,R,E0,E1) :- g_NR(X,h_NR(0),R,E0,E1).

Thus, non-residuating code always calls other non-residuating code. If fα = {1},
the predicate f-NR is invoked when f is called with an expression that evaluates
to a ground value and does not suspend.

However, f might also be called with non-ground arguments or expressions
which residuate. For this purpose, we also need the standard code for f but we
can improve the translation of some subexpressions if they are non-residuating.
For instance, if hα = {1}, the following code is generated:

:- block f(?,?,-,?).

f(X,R,E0,E1) :- g(X,h_NR(0),R,E0,E1).

If gα = {2}, i.e., g does not use its first argument, the code can be improved
even more:

:- block f(?,?,-,?).

f(X,R,E0,E1) :- g_NR(X,h_NR(0),R,E0,E1).

Thus, standard code can call non-residuating code but not vice versa.
Although the code duplication is a slight a drawback of our approach, it is

acceptable in practice since Prolog compilers often generate compact executables,
e.g., by using virtual machine (WAM) instructions. This is shown in the next
section where we evaluate our approach in a concrete compiler.

6 Benchmarks

In order to evaluate our approach, we added to PAKCS [20], which compiles
Curry programs into Prolog programs based on the scheme sketched in Sect. 3
and described in detail in [5], a compilation flag to select one of the following
three residuation compilation modes:

Full residuation: This is the existing compilation scheme sketched in Sect. 3
where block declarations (if SICStus-Prolog is used as the back end) or
freeze goals (if SWI-Prolog is used as the back end) are used in the trans-
lation of all Curry operations.

No residuation: In this compilation mode, block and freeze are completely
omitted. Instead, run-time errors are emitted in cases where residuation
should occur according to the definition of Curry. Although this mode

6 Although the control arguments E0 and E1 are superfluous in non-residuating compu-
tations, we leave them in the code in order to simplify the interaction of residuating
and non-residuating code. Improving this scheme is a topic for future work.

11



Full Res. No Residuation Optimized Resid.
Program Time Time Speedup Time Speedup

ReverseUser 14.72 9.07 1.62 9.10 1.62
Reverse 13.06 7.75 1.69 7.77 1.68

TakPeano 6.09 2.89 2.11 4.00 1.52
Tak 4.68 3.34 1.40 4.00 1.17

ReverseHO 3.55 3.03 1.17 3.32 1.07
Primes 11.42 7.90 1.45 9.82 1.16

PrimesPeano 7.89 3.82 2.07 4.14 1.91
Queens 9.74 6.36 1.53 7.84 1.24

QueensUser 10.61 6.63 1.60 8.13 1.31
PermSort 9.57 6.50 1.47 7.81 1.23

PermSortPeano 6.20 3.18 1.95 4.84 1.28
RegExp 5.18 4.06 1.28 4.39 1.18

Fig. 3. Run times (in seconds) and speedups with SICStus-Prolog

changes the semantics of Curry, it shows the best efficiency gain which can
be obtained by removing coroutining annotations.

Optimized residuation: This is the compilation mode described in the pre-
vious section, i.e., the code generated for each operation is duplicated and
the non-residuating code is invoked depending on the results of the program
analysis described in Sect. 4.

All benchmarks were executed on a Linux machine (Debian 9.4) with an Intel
Core i7-7700K (4.20Ghz) processor and 32GiB of memory. The Curry implemen-
tation PAKCS (Version 2.0.2) uses SICStus-Prolog (Version 4.3.5) or SWI-Prolog
(Version 7.6.4) as back ends. Timings were performed with the Unix time com-
mand measuring the execution time to compute all solutions (in seconds) of a
compiled executable for each benchmark as a mean of three runs.

The concrete benchmarks are Curry programs that were already used to com-
pare different Curry implementations [12]. “ReverseUser” is the naive list reverse
program applied to a list of 16384 elements, where all data (lists, numbers) are
user-defined. “Reverse” is the same but with built-in lists. “Tak” is a highly re-
cursive function on naturals [27] applied to arguments (24,16,8) and “TakPeano”
is the same but with user-defined natural numbers in Peano representation (see
Example 1) so that no built-in arithmetic operations are used. “ReverseHO” re-
verses a list with one million elements in linear time using higher-order functions
like foldl and flip. “Primes” computes the 2000th prime number via the sieve
of Eratosthenes using higher-order functions, and “PrimesPeano” computes the
256th prime number but with Peano numbers and user-defined lists. “Queens”
(and “QueensUser” with user-defined lists) computes the number of safe po-
sitions of 10 queens on a 10 × 10 chess board. Finally, “PermSort” sorts a list
containing 15 elements by enumerating all permutations and selecting the sorted
ones (“PermSortPeano” does the same for Peano numbers and 14 elements), and
“RegExp” matches a regular expression in a string of length 400,000 following

12



Full Res. No Residuation Optimized Resid.
Program Time Time Speedup Time Speedup

ReverseUser 136.47 29.65 4.60 29.85 4.57
Reverse 133.62 29.01 4.61 28.29 4.72

TakPeano 53.76 16.91 3.18 23.00 2.34
Tak 42.97 24.90 1.73 32.52 1.32

ReverseHO 17.97 8.16 2.20 9.83 1.83
Primes 140.56 75.46 1.86 97.70 1.44

PrimesPeano 91.34 22.38 4.08 22.50 4.06
Queens 124.75 63.78 1.96 87.15 1.43

QueensUser 190.68 90.94 2.10 122.73 1.55
PermSort 82.61 52.74 1.57 64.20 1.29

PermSortPeano 49.09 20.80 2.36 30.52 1.61
RegExp 34.36 15.93 2.16 21.82 1.57

Fig. 4. Run times (in seconds) and speedups with SWI-Prolog

the non-deterministic specification of grep shown in [8]. In all these examples,
residuation is not used so that, in principle, our optimization is applicable.

Figures 3 and 4 show the execution times and speedups for these programs
with the SICStus-Prolog and SWI-Prolog back end, respectively. The speedups
are computed relative to the “full residuation” compilation mode. The timings
and speedups show that our proposed improvement is effective, in particular, if
freeze is used for coroutining, as in SWI-Prolog. This is of practical relevance,
since the SWI-Prolog implementation of PAKCS is used in the Debian package
“pakcs” which is part of recent distributions of the Ubuntu Linux system. Our
analysis can detect, for all benchmark programs, that the main expression is
non-residuating. The difference in the timings between “no residuation” and
“optimized residuation” can be explained by the fact that the run-time system
of PAKCS (i.e., the implementation of predefined operations) is not optimized
in the optimized residuation mode, since it might also be used by operations
requiring residuation.

Another interesting question is the increase of the program size due to the
code duplication in the optimized residuation mode. Figures 5 and 6 show the
sizes (in bytes) of the executables (“saved state”) of all benchmark programs
with the SICStus-Prolog and SWI-Prolog back end, respectively. Note that also
all standard operations defined in the prelude are duplicated in the optimized
residuation mode. Since the run-time system is the largest part of the executable,
the difference in program size is not really relevant for such small programs. In
order to get some idea of the different sizes for realistic applications, we compiled
the Curry package manager [19], a non-trivial Curry application consisting of 116
modules, with different residuation modes. The following table contains the sizes
of the executables (in bytes):

Back end Full Residuation No Residuation Optimized Res.
SICStus-Prolog 3,230,549 3,153,585 5,644,240

SWI-Prolog 7,720,682 5,490,839 11,641,481

13



Program Full Residuation No Residuation Optimized Res.

ReverseUser 612,257 612,126 857,588
Reverse 612,227 612,085 856,735

TakPeano 611,661 611,030 855,907
Tak 608,459 608,586 851,502

ReverseHO 612,979 611,896 859,200
Primes 610,701 610,482 855,398

PrimesPeano 614,630 614,056 864,129
Queens 610,413 609,681 852,238

QueensUser 612,797 612,715 858,428
PermSort 610,339 609,244 853,135

PermSortPeano 613,505 613,778 862,806
RegExp 614,466 613,096 859,765

Fig. 5. Program sizes (in bytes) with SICStus-Prolog

Program Full Residuation No Residuation Optimized Res.

ReverseUser 1,433,607 1,179,270 1,800,747
Reverse 1,432,692 1,178,537 1,799,469

TakPeano 1,431,921 1,178,003 1,798,219
Tak 1,427,842 1,175,038 1,791,529

ReverseHO 1,434,424 1,179,887 1,802,239
Primes 1,431,504 1,177,585 1,797,703

PrimesPeano 1,438,153 1,182,305 1,808,340
Queens 1,429,760 1,176,368 1,794,638

QueensUser 1,434,593 1,179,992 1,802,729
PermSort 1,429,425 1,176,095 1,794,054

PermSortPeano 1,436,714 1,181,373 1,805,870
RegExp 1,437,173 1,181,854 1,806,103

Fig. 6. Program sizes (in bytes) with SWI-Prolog

Although the increase in the program size is considerable, it is not relevant for
the practical execution if we take into account the memory sizes of contemporary
computer hardware.

7 Related Work

The integration of functions into logic-oriented languages by suspending function
calls with free variables has been proposed for various languages, e.g., Escher [23],
Le Fun [2], Life [1], NUE-Prolog [26], or Oz [30]. The main motivation for this
alternative to narrowing is to evaluate functions in a deterministic manner and
to delegate all non-determinism to relations, as in logic programming. Although
this principle sounds reasonable at a first glance, there are no strong results about
completeness and optimality, as for narrowing [4]. Actually, there are examples
where residuation has an infinite derivation space whereas the search space of
narrowing is finite [16]. Abandoning residuation completely is also not desirable,

14



since it is a good principle to connect external operations [10] and to support
concurrent computations [31].

The potential incompleteness of residuation is investigated in [16] where a
program analysis to approximate the groundness of variables for residuating logic
program is proposed. Although this has some similarities with our approach, the
analysis is different due to the different underlying languages (e.g., functions in
[16] are always strict).

Coroutining is also used in logic programming to delay insufficiently instan-
tiated negated subgoals to avoid logically incorrect answers. This delay might
cause “floundering” if only delayed negated subgoals remain. A program analysis
to analyze such situations is presented in [25]. Although the overall objective of
this work is similar to our work, the underlying operational semantics is quite
different to the work presented in this paper.

There are many approaches to implement functional features in logic lan-
guages (see [13] and the survey in [18]). Some of them support residuation and
use block/freeze [5] or when [26] declarations. As shown by our benchmarks, such
declarations have considerable costs which can be reduced by the techniques de-
veloped in this paper.

8 Conclusions

We have presented a method to improve the implementation of declarative pro-
grams with residuation. Since residuation is implemented in Prolog by coroutin-
ing annotations and these annotations have run-time costs even if they are not
activated, we developed a compile-time analysis to approximate classes of pro-
grams or parts of programs where residuation is not used. For these parts, specific
code without residuation annotations is generated. Our benchmarks show that
the code optimized in this way can be more than four times faster than the
original code if freeze is used to implement residuation. This also shows that
freeze is a costly operation for coroutining (in SWI-Prolog). The use of block

declarations (in SICStus-Prolog) is less expensive but, even in this case, we could
measure a significant speedup by our optimization.

References

1. H. Aı̈t-Kaci. An overview of life. In J.W. Schmidt and A.A. Stogny, editors,
Proc. Workshop on Next Generation Information System Technology, pages 42–58.
Springer LNCS 504, 1990.

2. H. Aı̈t-Kaci, P. Lincoln, and R. Nasr. Le Fun: Logic, equations, and functions.
In Proc. 4th IEEE Internat. Symposium on Logic Programming, pages 17–23, San
Francisco, 1987.

3. E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Operational seman-
tics for declarative multi-paradigm languages. Journal of Symbolic Computation,
40(1):795–829, 2005.

4. S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. Journal of
the ACM, 47(4):776–822, 2000.

15



5. S. Antoy and M. Hanus. Compiling multi-paradigm declarative programs into
Prolog. In Proc. International Workshop on Frontiers of Combining Systems (Fro-
CoS’2000), pages 171–185. Springer LNCS 1794, 2000.

6. S. Antoy and M. Hanus. Declarative programming with function patterns. In
Proceedings of the International Symposium on Logic-based Program Synthesis and
Transformation (LOPSTR’05), pages 6–22. Springer LNCS 3901, 2005.

7. S. Antoy and M. Hanus. Set functions for functional logic programming. In Pro-
ceedings of the 11th ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming (PPDP’09), pages 73–82. ACM Press, 2009.

8. S. Antoy and M. Hanus. Functional logic programming. Communications of the
ACM, 53(4):74–85, 2010.

9. S. Antoy and M. Hanus. Default rules for Curry. Theory and Practice of Logic
Programming, 17(2):121–147, 2017.

10. S. Bonnier and J. Maluszynski. Towards a clean amalgamation of logic programs
with external procedures. In Proc. 5th Conference on Logic Programming & 5th
Symposium on Logic Programming (Seattle), pages 311–326. MIT Press, 1988.

11. B. Braßel. Implementing Functional Logic Programs by Translation into Purely
Functional Programs. PhD thesis, Christian-Albrechts-Universität zu Kiel, 2011.

12. B. Braßel, M. Hanus, B. Peemöller, and F. Reck. KiCS2: A new compiler from
Curry to Haskell. In Proc. of the 20th International Workshop on Functional and
(Constraint) Logic Programming (WFLP 2011), pages 1–18. Springer LNCS 6816,
2011.

13. A. Casas, D. Cabeza, and M.V. Hermenegildo. A syntactic approach to combining
functional notation, lazy evaluation, and higher-order in LP systems. In Proc. of
the 8th International Symposium on Functional and Logic Programming (FLOPS
2006), pages 146–162. Springer LNCS 3945, 2006.

14. R. Echahed and J.-C. Janodet. Admissible graph rewriting and narrowing. In
Proc. Joint International Conference and Symposium on Logic Programming (JIC-
SLP’98), pages 325–340, 1998.

15. A. Habel and D. Plump. Term graph narrowing. Mathematical Structures in
Computer Science, 6(6):649–676, 1996.

16. M. Hanus. On the completeness of residuation. In Proc. of the 1992 Joint Inter-
national Conference and Symposium on Logic Programming, pages 192–206. MIT
Press, 1992.

17. M. Hanus. A unified computation model for functional and logic programming.
In Proc. of the 24th ACM Symposium on Principles of Programming Languages
(Paris), pages 80–93, 1997.

18. M. Hanus. Functional logic programming: From theory to Curry. In Programming
Logics - Essays in Memory of Harald Ganzinger, pages 123–168. Springer LNCS
7797, 2013.

19. M. Hanus. Semantic versioning checking in a declarative package manager. In Tech-
nical Communications of the 33rd International Conference on Logic Programming
(ICLP 2017), OpenAccess Series in Informatics (OASIcs), pages 6:1–6:16. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

20. M. Hanus, S. Antoy, B. Braßel, M. Engelke, K. Höppner, J. Koj, P. Niederau,
R. Sadre, and F. Steiner. PAKCS: The Portland Aachen Kiel Curry System.
Available at http://www.informatik.uni-kiel.de/∼pakcs/, 2017.

21. M. Hanus and F. Skrlac. A modular and generic analysis server system for func-
tional logic programs. In Proc. of the ACM SIGPLAN 2014 Workshop on Partial
Evaluation and Program Manipulation (PEPM’14), pages 181–188. ACM Press,
2014.

16

http://www.informatik.uni-kiel.de/~pakcs/


22. M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.9.0). Avail-
able at http://www.curry-language.org, 2016.

23. J.W. Lloyd. Combining functional and logic programming languages. In Proc. of
the International Logic Programming Symposium, pages 43–57, 1994.

24. R. Loogen, F. López Fraguas, and M. Rodŕıguez Artalejo. A demand driven compu-
tation strategy for lazy narrowing. In Proc. of the 5th International Symposium on
Programming Language Implementation and Logic Programming, pages 184–200.
Springer LNCS 714, 1993.

25. K. Marriott, H. Søndergaard, and P. Dart. A characterization of non-floundering
logic programs. In Proc. of the 1990 North American Conference on Logic Pro-
gramming, pages 661–680. MIT Press, 1990.

26. L. Naish. Adding equations to NU-Prolog. In Proc. of the 3rd Int. Symposium
on Programming Language Implementation and Logic Programming, pages 15–26.
Springer LNCS 528, 1991.

27. W. Partain. The nofib benchmark suite of Haskell programs. In Proceedings of
the 1992 Glasgow Workshop on Functional Programming, pages 195–202. Springer,
1993.

28. S. Peyton Jones, editor. Haskell 98 Language and Libraries—The Revised Report.
Cambridge University Press, 2003.

29. J.C. Reynolds. Definitional interpreters for higher-order programming languages.
In Proceedings of the ACM Annual Conference, pages 717–740. ACM Press, 1972.

30. G. Smolka. The Oz programming model. In J. van Leeuwen, editor, Computer
Science Today: Recent Trends and Developments, pages 324–343. Springer LNCS
1000, 1995.

31. P. Van Roy and S. Haridi. Concepts, Techniques, and Models of Computer Pro-
gramming. MIT Press, 2004.

32. P. Wadler. How to declare an imperative. ACM Computing Surveys, 29(3):240–263,
1997.

33. D.H.D. Warren. Higher-order extensions to Prolog: are they needed? In Machine
Intelligence 10, pages 441–454, 1982.

17

http://www.curry-language.org


A Soundness of the Residuation Analysis

In this section we show the soundness of the residuation analysis. For this pur-
pose, we have to define an operational semantics of FlatCurry programs which
includes suspended computations. For this purpose, we use the operational se-
mantics presented in [3]. According to this semantics, we consider only normal-
ized FlatCurry programs, i.e., programs where the arguments of constructor and
function calls are always variables. Any FlatCurry program can be normalized
by introducing new variables by let expressions [3]. For instance, the expression
“h(g(x)” is normalized into “let z = g(x) in h(z).” In the following, we assume
that all FlatCurry programs are normalized.

In order to model sharing, which is important for lazy evaluation, variables
are interpreted as references into a heap where new let bindings are stored and
function calls are updated with their evaluated results. To be more precise, a
heap, denoted by Γ,∆, or Θ, is a partial mapping from variables to (normalized
FlatCurry) expressions. The empty heap is denoted by []. Γ [x 7→ e] denotes a
heap Γ ′ with Γ ′(x) = e and Γ ′(y) = Γ (y) for all x 6= y. We represent a free
variable x in a heap Γ as a circular binding Γ (x) = x.

Using heap structures, one can provide a high-level description of the opera-
tional behavior of FlatCurry programs in natural semantics style. The semantics
uses judgements of the form “Γ : e ⇓ ∆ : v” with the meaning that in the con-
text of heap Γ the expression e evaluates to a modified heap ∆ and a value
(head normal form) v. In addition to [3], we also allow that v is the specific
constant Suspend which indicates a suspended evaluation. Figure 7 shows the
rules defining this semantics w.r.t. a given normalized FlatCurry program P (ok
denotes a sequence of objects o1, . . . , ok).

Constructor-rooted expressions (i.e., head normal forms), free variables, or
suspended computations are just returned by rule Val. Rule VarExp retrieves a
binding for a variable from the heap and evaluates it. In order to avoid the re-
evaluation of the same expression, VarExp updates the heap with the computed
value, which models sharing. In contrast to the original rules [3], VarExp removes
the binding from the heap. On the one hand, this allows the detection of simple
loops (“black holes”) as in functional programming. On the other hand, it is
crucial in combination with non-determinism to avoid the binding of a variable
to different values in the same derivation (see [11] for a detailed discussion on
this issue). Rule Fun unfolds function calls by evaluating the right-hand side
after binding the formal parameters to the actual ones. Let introduces a new
binding in the heap and renames the new variable in the expressions with the
fresh name introduced in the heap. Similarly, Free introduces a new logic variable
in the heap represented by a circular binding. Or non-deterministically evaluates
one of its arguments. Rule Select deals with case and fcase expressions where
the discriminating argument evaluates to a constructor-rooted term. In this case
Select evaluates the corresponding branch of the (f )case expression. If the dis-
criminating argument of an fcase expression evaluates to a logic variable, rule
Guess non-deterministically binds this variable to some pattern and evaluates
the corresponding branch. If the discriminating argument of an fcase expression

18



Val Γ : v ⇓ Γ : v
where v is constructor-rooted, v = Suspend

or a variable with Γ (v) = v

VarExp
Γ : e ⇓ ∆ : v

Γ [x 7→ e] : x ⇓ ∆[x 7→ v] : v
where x 6= e

Fun
Γ : ρ(e) ⇓ ∆ : v

Γ : f(xn) ⇓ ∆ : v
where f(yn) = e ∈ P and ρ = {yn 7→ xn}

Let
Γ [y 7→ ρ(e)] : ρ(e′) ⇓ ∆ : v

Γ : let x = e in e′ ⇓ ∆ : v
where y fresh and ρ = {x 7→ y}

Free
Γ [y 7→ y] : ρ(e) ⇓ ∆ : v

Γ : let x free in e ⇓ ∆ : v
where y fresh and ρ = {x 7→ y}

Or
Γ : ei ⇓ ∆ : v

Γ : e1 or e2 ⇓ ∆ : v
where i ∈ {1, 2}

Select
Γ : e ⇓ ∆ : c(yn) ∆ : ρ(ei) ⇓ Θ : v

Γ : (f )case e of {pk → ek} ⇓ Θ : v

where pi = c(xn)
and ρ = {xn 7→ yn}

Guess
Γ : e ⇓ ∆ : x ∆ : ρ(ei) ⇓ Θ : v

Γ : fcase e of {pk → ek} ⇓ Θ : v

where pi = c(xn), ρ = {xn 7→ yn}, and yn fresh variables

Suspend
Γ : e ⇓ ∆ : x

Γ : case e of {pk → ek} ⇓ ∆ : Suspend

CaseSusp
Γ : e ⇓ ∆ : Suspend

Γ : case e of {pk → ek} ⇓ ∆ : Suspend

Fig. 7. Natural semantics of a normalized FlatCurry program P

evaluates to a logic variable, rule Suspend indicates the suspension of this com-
putation by returning the specific constant Suspend. Finally, CaseSusp handles
a suspended computation in the discriminating argument of a case and fcase
expression.

Our goal is to show that suspended computations cannot occur if the residu-
ation analysis approximates this behavior. A difficulty is the fact that the resid-
uation analysis returns only the positions of arguments which must be ground
for non-residuation, whereas we have to deal with the concrete state of variables
in the natural semantics. Therefore, we change the abstract domain to contain
variables instead of positions. Thus, rule FDecl is modified to

FDecl
A[x1 7→ {x1}, . . . , xn 7→ {xn}] ` e : α

A ` f(x1, . . . , xn) = e : α

Another difference between the residuation analysis and the concrete semantics is
the fact that the latter is defined on normalized expressions where the bindings of

19



the arguments are stored in the heap. To transform such normalized expressions
into their standard form without heap information, we dereference normalized
expressions w.r.t. a heap Γ by putting all bindings stored in the heap into the
expression. This dereference operation is denoted by Γ ∗ and defined by (for the
sake of simplicity, we assume that all pattern and let-bound variables are fresh,
otherwise one has to rename them):

Γ ∗(e) =



x if e = x and Γ (x) undefined
x if e = x and Γ (x) = x

Γ ∗(Γ (x)) if e = x and Γ (x) 6= x

c(Γ ∗(xn)) if e = c(xn)

f(Γ ∗(xn)) if e = f(xn)

case Γ ∗(e′) of {pk → Γ ∗(ek)} if e = case e′ of {pk → ek}
fcase Γ ∗(e′) of {pk → Γ ∗(ek)} if e = fcase e′ of {pk → ek}

Γ ∗(e1) or Γ ∗(e2) if e = e1 or e2
let y free in Γ ∗(e′) if e = let y free in e′

let y = Γ ∗(e1) in Γ ∗(e2) if e = let y = e1 in e2

For instance, if e = h(x), Γ (x) = g(y), and Γ (y) = 0, then Γ ∗(e) = h(g(0)).

The soundness of the residuation analysis can be stated as follows:

Theorem 1. Let A be correct assumption for a given program, Γ : e ⇓ ∆ : v
be a valid judgement of the natural semantics, and z be ground w.r.t. Γ for all
z ∈ α if A ` Γ ∗(e) : α (i.e., ⊥ 6= α 6= >). Then v = c(yn) and yi is ground
w.r.t. ∆ (i = 1, . . . , n).

Here, an expression e is called ground w.r.t. a heap Γ if, whenever the judgement
Γ : e ⇓ ∆ : v holds, v = c(yn) for some constructor c and yi is ground w.r.t.
∆ (for i = 1, . . . , n). In other words, if e evaluates to some result, it is a ground
constructor term and this evaluation does not suspend. Thus, the theorem also
implies that v 6= Suspend, i.e., the computation does not suspend.

Since Suspend might occur in expressions in the concrete semantics, we add
the abstract judgement A ` Suspend : > to express the fact that a suspended
computation trivially residuates. To deal with abstraction of free variables oc-
curring in the concrete semantics, we extend rule Var with a case for variables
not defined in the assumption A:

A ` x : > if A(x) undefined

Proof (of Theorem 1). Let A be a correct assumption for a given program,
Γ : e ⇓ ∆ : v be a valid judgement, and A ` Γ ∗(e) : α with α = {x1, . . . , xk}
and x is ground w.r.t. Γ for all x ∈ α. We have to show that v = c(yn) and yi
is ground w.r.t. ∆ (i = 1, . . . , n).

We prove this claim by induction on the height of the proof tree of Γ :
e ⇓ ∆ : v and the height of the proof trees to evaluate the arguments of v (if v
is not a constant and these proof trees exist).

20



Base case: Rule Val is applied, i.e., e = v with

Γ : v ⇓ Γ : v

and v is constructor-rooted, v = Suspend, or a variable with Γ (v) = v. If
v = Suspend or v is a variable with Γ (v) = v, the A ` Γ ∗(v) : >, which is a
contradiction to our assumption. Hence, v is constructor-rooted, i.e., e = c(yn)
for some constructor c. If n = 0, v is a constant and the base case is proven.

Otherwise, we are in the inductive case where we consider the proof tree to
evaluate yi (i = 1, . . . , n). By rule Cons, A ` Γ ∗(yi) : αi with αi v α. Hence, by
our assumption on α, z is ground w.r.t. Γ for all z ∈ αi so that we can apply
the induction hypothesis to the evaluation of yi which shows that yi is ground
w.r.t. Γ .

For the inductive case, we consider the different rules applied to prove the judge-
ment Γ : e ⇓ ∆ : v:

VarExp: Then e = x, Γ = Γ ′[x 7→ e′], ∆ = ∆′[x 7→ v], and

Γ ′ : e′ ⇓ ∆′ : v

Γ : x ⇓ ∆ : v

By definition of dereferencing, Γ ∗(e) = Γ ∗(x) = Γ ′
∗
(e′) (note that x cannot

occur in e′, otherwise Γ ∗ would be undefined). Hence, A ` Γ ′∗(e′) : α so
that we can apply the induction hypothesis to Γ ′ : e′ ⇓ ∆′ : v. Thus, the
claim holds for this case.

Fun: Then e = f(xn). W.l.o.g. we assume that f(xn) = e′ is a program rule,
i.e., the renaming ρ in rule Fun is the identity (this can always be obtained
by renaming program rules). Hence, the inference rule

Γ : e′ ⇓ ∆ : v

Γ : f(xn) ⇓ ∆ : v

is applied. Note that the left- and right-hand side of a program rule have the
same abstraction: if ⊥ 6= A(f) 6= >, then rules Fun and Var imply

A[x1 7→ {x1}, . . . , xn 7→ {xn}] ` f(x1, . . . , xn) : A(f)

and rule FDecl yields

A[x1 7→ {x1}, . . . , xn 7→ {xn}] ` e′ : A(f)

The same holds when the arguments xi are instantiated. Hence, if z ∈ α
is ground w.r.t. Γ for A ` Γ ∗(f(xn)) : α, then z ∈ α is ground w.r.t.
Γ for A ` Γ ∗(e′) : α. Thus, we can apply the induction hypothesis to
Γ : e′ ⇓ ∆ : v which implies the claim for this case.

Let: Then e = let x = e1 in e2 and rule

Γ [x 7→ e1] : e2 ⇓ ∆ : v

Γ : let x = e1 in e2 ⇓ ∆ : v

21



is applied (for the sake of simplicity, we assume that x is already fresh so
that we ignore the renaming). By rule Let, A[x 7→ ⊥] ` Γ ∗(e1) : α1 and
A[x 7→ α1] ` Γ ∗(e2) : α. If x is used in expression e2 (otherwise, we can
ignore its binding), α1 v α. Hence, A ` Γ [x 7→ e1]

∗
(e2) : α so that we can

apply the induction hypothesis to Γ [x 7→ e1] : e2 ⇓ ∆ : v which implies the
claim for this case.

Free: Then e = let x free in e′ and rule

Γ [x 7→ x] : e′ ⇓ ∆ : v

Γ : let x free in e′ ⇓ ∆ : v

is applied (for the sake of simplicity, we assume that x is already fresh so that
we ignore the renaming). Since x is abstracted to > by rule Free, x is not
an element of α if A ` Γ ∗(e′) : α. Hence, by our assumption on α, all z ∈ α
are ground w.r.t. Γ [x 7→ x]. Thus, we can apply the induction hypothesis to
Γ [x 7→ x] : e′ ⇓ ∆ : v which implies the claim for this case.

Or: Then e = e1 or e2 and rule

Γ : ei ⇓ ∆ : v

Γ : e1 or e2 ⇓ ∆ : v

is applied for some i ∈ {1, 2}. If A ` Γ ∗(e1 or e2) : α, then A ` Γ ∗(ei) : αi
and αi v α by rule Or. Hence, if z ∈ αi, then z is ground w.r.t. Γ by
our assumption on α. Thus, we can apply the induction hypothesis to Γ :
ei ⇓ ∆ : v which implies the claim for this case.

Select/Guess/Suspend/CaseSusp: Then e = (f )case e′ of {pk → ek}. By our
assumption on α, we have

A ` Γ ∗((f )case e′ of {pk → ek}) : α

By rule Case and FCase, A ` Γ ∗(e′) : α0 and α0 v α. If z ∈ α0, then z is
ground w.r.t. Γ by our assumption on α. Thus, we can apply the induction
hypothesis to Γ : e ⇓ ∆ : w. Hence, the claim states that w = c(yn), i.e.,
rules Guess, Suspend, and CaseSusp have not been applied here so that only
Select is applicable:

Γ : e ⇓ ∆ : c(yn) ∆ : ei ⇓ Θ : v

Γ : (f )case e of {pk → ek} ⇓ Θ : v

where pi = c(yn) (for the sake of simplicity, we assume that the branch
variables are already fresh so that we ignore their renaming). Again by rule
Case and FCase, A[y1 7→ α0, . . . , yk 7→ α0] ` Γ ∗(ei) : αi and αi v α. Thus,
we can apply the induction hypothesis to ∆ : ei ⇓ Θ : v which implies the
claim.

ut

22


	Improving Residuation in Declarative Programs

