
EÆient Translation of Lazy Funtional Logi

Programs into Prolog

Mihael Hanus

Informatik II, RWTH Aahen

D-52056 Aahen, Germany

hanus�informatik.rwth-aahen.de

In Pro. Fifth International Workshop on Logi Program Synthesis and

Transformation (LOPSTR'95), Utreht, Springer LNCS 1048, pp. 252{266, 1995

Abstrat. In this paper, we present a high-level implementation of lazy

funtional logi programs by transforming them into Prolog programs.

The transformation is ontrolled by generalized de�nitional trees whih

speify the narrowing strategy to be implemented. Sine we onsider a

sophistiated narrowing strategy, a diret mapping of funtions into pred-

iates is not possible. Therefore, we present new tehniques to redue the

interpretational overhead of the generated Prolog ode. This leads to a

portable and eÆient implementation of funtional logi programs.

1 Introdution

In reent years, a lot of proposals have been made to amalgamate funtional and

logi programming languages [15℄. Funtional logi languages with a sound and

omplete operational semantis are based on narrowing, a ombination of the

redution priniple of funtional languages and the resolution priniple of logi

languages. Narrowing, originally introdued in automated theorem proving [26℄,

is used to solve equations by �nding appropriate values for variables ourring

in arguments of funtions. A narrowing step instantiates some variables in a goal

and applies a redution step to a redex of the instantiated goal. The instantiation

of goal variables is usually omputed by unifying a subterm of the goal with the

left-hand side of some rule.

Example 1. Consider the following rules de�ning the addition and omparison of

natural numbers whih are represented by terms built from 0 and s:

0 + y ! y (R

1

)

s(x) + y ! s(x+ y) (R

2

)

0 � x ! true (R

3

)

s(x) � 0 ! false (R

4

)

s(x) � s(y) ! x � y (R

5

)

The equation x + y � 0 � true an be solved by a narrowing step with rule R

1

followed by a narrowing step with rule R

3

so that x and y are instantiated to 0

and the instantiated equation is redued to the trivial equation true � true:

x+ y � 0 � true ;

fx 7!0g

y � 0 � true ;

fy 7!0g

true � true

Hene we have found the solution fx 7! 0; y 7! 0g to the given equation. 2

Similarly to funtional languages, we have to �x the seletion of positions for

the next narrowing step in order to redue the searh spae. Eager funtional

logi languages like ALF [12℄, eager-BABEL [18℄, or SLOG [8℄ apply narrowing

steps at innermost positions. To ensure ompleteness, they require a terminating

set of rewrite rules whih prohibit the appliation of typial funtional program-

ming tehniques like in�nite data strutures. Therefore, we are interested in lazy

narrowing strategies [22, 25℄ where narrowing steps are applied at outermost po-

sitions in general and at an inner position only if it is demanded and ontributes

to some later narrowing step at an outer position. Although suh a lazy strategy

an avoid useless omputation steps, it has been shown that this is not generally

true if one does not take are of a ontrolled instantiation of logial variables

[4℄. However, for the lass of indutively sequential programs, whih overs typi-

al funtional programs, there is a strategy, alled needed narrowing [4℄, whih is

optimal w.r.t. the length of the narrowing derivations and the number of omput-

ed solutions. Indutively sequential programs do not allow overlapping left-hand

sides of the rewrite rules. However, in some appliations, partiularly in logi

programming, suh overlapping rules are useful. Unfortunately, overlapping rules

may lead to nonterminating omputations w.r.t. lazy narrowing strategies [11℄.

This an be avoided if lazy narrowing is ombined with simpli�ation between

narrowing steps [14℄. Therefore, we obtain a good lazy narrowing strategy if we

apply needed narrowing on indutively sequential programs and integrate sim-

pli�ation for the remaining programs.

In this paper, we onsider the high-level implementation of suh a sophisti-

ated narrowing strategy. To avoid a omplex diret implementation based on a

new abstrat mahine (see [15℄ for a survey on these implementation tehniques),

we follow the proposals presented in [2, 6, 17, 19℄. We translate lazy funtional

logi programs into Prolog programs and obtain by this simple transformation

a portable and eÆient implementation of our narrowing strategy. The trans-

lation of eager narrowing strategies into Prolog is straightforward by attening

nested funtion alls [5℄. However, the translation of lazy narrowing strategies

is a hallenging task, in partiular, if narrowing is interleaved with simpli�a-

tion. Our solution is the �rst Prolog implementation of a lazy narrowing strategy

whih omprises simpli�ation. Nevertheless, we obtain a better run-time be-

havior w.r.t. previous work sine we apply partial evaluation tehniques to the

translated program.

In the next setion, we reall basi notions and introdue our narrowing strat-

egy. In Setion 3, we present the translation of indutively sequential programs,

whereas Setion 4 ontains the translation of arbitrary funtional logi programs.

Optimizations obtained by partial evaluation and the implementation of sharing

are disussed in Setions 5 and 6, respetively. Finally, we disuss the eÆieny

of our translation tehniques by means of some benhmarks.

2 Lazy Narrowing Strategies

We assume familiarity with basi notions of term rewriting [7℄. We onsider a

many-sorted signature partitioned into a set C of onstrutors and a set F of

funtions. We write =n 2 C and f=n 2 F for n-ary onstrutor and funtion

symbols, respetively. The set of terms and onstrutor terms with variables from

2

X are denoted by T (C [F ;X) and T (C;X). Var(t) denotes the set of variables

ourring in a term t. A pattern is a term of the form f(t

1

; : : : ; t

n

) where f=n 2 F

and t

1

; : : : ; t

n

2 T (C;X). A head normal form is a variable or a term of the form

(t

1

; : : : ; t

n

) with =n 2 C. A position p in a term t is represented by a sequene

of natural numbers, tj

p

denotes the subterm of t at position p, and t[s℄

p

denotes

the result of replaing the subterm tj

p

by the term s (see [7℄ for details).

A term rewriting system R is a set of rewrite rules l ! r where l is a pattern

and Var(r) � Var(l). l and r are alled left-hand side and right-hand side,

respetively.

1

A rewrite rule is alled a variant of another rule if it is obtained by

a unique replaement of variables by other variables.

Narrowing is a method to ompute solutions to an equation s � t. t;

�

t

0

is

a narrowing step if there are a nonvariable position p in t (i.e., tj

p

62 X), a variant

l ! r of a rewrite rule of R with Var(t)\ Var(l) = ;, and a uni�er

2

� of tj

p

and

l with t

0

= �(t[r℄

p

).

3

Sine narrowing applies rewrite rules only in one diretion,

additional restritions are neessary for the ompleteness of narrowing, i.e., we

require the onuene of R. This an be ensured by the following ondition: if

l

1

! r

1

and l

2

! r

2

are variants of rewrite rules and � is a uni�er for l

1

and l

2

,

then �(r

1

) = �(r

2

) (weak orthogonality).

Sine we do not require terminating term rewriting systems, normal forms may

not exist. Therefore, we de�ne the validity of an equation as a strit equality on

terms [10, 22℄ by the following rules, where ^ is assumed to be a right-assoiative

in�x symbol.

 � ! true 8=0 2 C

(x

1

; : : : ; x

n

) � (y

1

; : : : ; y

n

)! (x

1

� y

1

) ^ � � � ^ (x

n

� y

n

) 8=n 2 C

true ^ x ! x

A solution of an equation t

1

� t

2

is omputed by narrowing it to true with

these rules. Sine this simple narrowing proedure (enumerating all narrowing

derivations) is very ineÆient, several authors have proposed restritions on the

admissible narrowing derivations (see [15℄ for a detailed survey). We are interest-

ed in lazy narrowing [21, 25℄ whih is inuened by the idea of lazy evaluation in

funtional programming languages. Lazy narrowing steps are only applied at out-

ermost positions with the exeption that arguments are evaluated by narrowing

to their head normal form if their values are required for an outermost narrowing

step. Sine the notion of \required arguments" depends on the rule to be applied

1

In this paper, we onsider only unonditional rewrite rules for the sake of simpliity.

Nevertheless, the presented implementation tehniques an be extended to onditional

rules (e.g., as done in [19℄) and ompleteness results for the onditional ase an be

found in [16℄.

2

In most papers, narrowing is de�ned with most general uni�ers. As shown in [4℄, an

optimal narrowing strategy whih avoids superuous steps an only be obtained if the

restrition to mgu's is dropped. Therefore, we onsider arbitrary uni�ers. However,

only a small subset of these uni�ers are omputed by our narrowing strategy.

3

Sine the instantiation of the variables in the rule l ! r by � is not relevant for the

omputed solution of a narrowing derivation, we omit this part of � in the example

derivations in this paper.

3

and leaves some freedom, di�erent lazy narrowing strategies have been proposed

[4, 17, 19, 21, 22℄. We will speify our narrowing strategy by the use of de�ni-

tional trees, a onept introdued by Antoy [3℄ to de�ne eÆient normalization

strategies.

T is alled generalized de�nitional tree with pattern � i� one of the following

ases holds:

T = rule(� ! r), where � ! r is a variant of a rule in R.

T = branh(�; o; T

1

; : : : ; T

k

), where � is a pattern, o is an ourrene of a variable

in �,

1

; : : : ;

k

are di�erent onstrutors of the sort of �j

o

(k > 0), and, for i =

1; : : : ; k, T

i

is a generalized de�nitional tree with pattern �[

i

(x

1

; : : : ; x

n

)℄

o

,

where n is the arity of

i

and x

1

; : : : ; x

n

are new distint variables.

T = or(T

1

; : : : ; T

k

), where T

1

; : : : ; T

k

are generalized de�nitional trees with pat-

tern �.

A generalized de�nitional tree of an n-ary funtion f is a generalized de�nitional

tree T with pattern f(x

1

; : : : ; x

n

), where x

1

; : : : ; x

n

are distint variables, suh

that for eah rule l ! r with l = f(t

1

; : : : ; t

n

) there is a node rule(l

0

! r

0

) in T

with l variant of l

0

. A de�nitional tree is a generalized de�nitional tree without

or-nodes.

4

For instane, the de�nitional tree of the funtion � in Example 1 is

branh(x � y; 1; rule(0 � y ! true);

branh(s(x

1

) � y; 2; rule(s(x

1

) � 0! false);

rule(s(x

1

) � s(y

1

)! x

1

� y

1

)))

A funtion f is alled indutively sequential if there exists a de�nitional tree of

f suh that eah rule node orresponds to exatly one rule of R. We denote this

property by f=n 2 IS(R). The term rewriting system R is alled indutively

sequential if eah funtion de�ned by R is indutively sequential.

A generalized de�nitional tree de�nes a strategy to apply narrowing steps.

5

To

narrow a term t, we onsider the generalized de�nitional tree T of the outermost

funtion symbol of t (note that, by de�nition of strit equality, the outermost

symbol is always a funtion if we narrow equations):

T = rule(� ! r): Apply rule � ! r to t (note that t is always an instane of �).

T = branh(�; o; T

1

; : : : ; T

k

): Consider the subterm tj

o

.

1. If tj

o

has a funtion symbol at the top, we narrow this subterm (to a head

normal form) by reursively applying our strategy to tj

o

.

2. If tj

o

has a onstrutor symbol at the top, we narrow t with T

j

, where

the pattern of T

j

uni�es with t, otherwise (if no pattern uni�es) we fail.

3. If tj

o

is a variable, we nondeterministially selet a subtree T

j

, unify t

with the pattern of T

j

(i.e., tj

o

is instantiated to the onstrutor of the

pattern of T

j

at position o), and narrow this instane of t with T

j

.

T = or(T

1

; : : : ; T

k

): Nondeterministially selet a subtree T

j

and proeed nar-

rowing t with T

j

.

4

This orresponds to Antoy's notion [3℄ exept that we ignore exempt nodes.

5

Due to lak of spae, we omit a preise de�nition whih an be found in [4℄ for

indutively sequential systems and in [19℄ for generalized de�nitional trees.

4

For de�nitional trees (i.e., without or nodes), this strategy is alled needed nar-

rowing [4℄ whih is the urrently best narrowing strategy due to its optimality

w.r.t. the length of derivations (if terms are shared, ompare Setion 6) and the

number of omputed solutions. For instane, the rewrite system of Example 1 is

indutively sequential and the suessful derivation is a needed narrowing deriva-

tion. There is only one further needed narrowing derivation for this goal, whih

is not suessful:

x+ y � 0 � true ;

fx 7!s(x

1

)g

s(x

1

+ y) � 0 � true ;

fg

false � true

Note that the equivalent Prolog program obtained by attening [5℄ has an in�nite

searh spae, sine the �rst literal of the goal \add(X,Y,Z),leq(Z,0,true)" has

in�nitely many solutions (whih an be avoided by additional delay delarations

[23℄; however, this may ause the loss of ompleteness).

We onsider generalized de�nitional trees as a part of the program sine they

speify the onrete evaluation strategy (like when/wait delarations in Prolog

systems). However, the user an also omit the trees sine there are various meth-

ods to onstrut them (e.g., [19℄).

3 Translation of Indutively Sequential Programs

In this setion, we assume that R is indutively sequential. For this lass of pro-

grams, it is shown in [4℄ that needed narrowing, i.e., narrowing with de�nitional

trees, is an optimal strategy. To implement this strategy, we de�ne three kinds

of prediates in Prolog:

1. A === B is satis�ed if A and B are stritly equal, i.e., A and B are reduible to

a same ground onstrutor term. This prediate is implemented by repeated

narrowing of A and B to head normal forms and omparing the outermost

onstrutors (note that lazy narrowing redues terms to head normal form

and not to normal form).

2. hnf(T,H) is satis�ed if H is a head normal form of T. If T is not in head normal

form, T is narrowed using the strategy desribed above.

3. f

p

(t

1

; : : : ; t

n

;H) is satis�ed if H is a head normal form of f(t

1

; : : : ; t

n

), where

the subterms of f(t

1

; : : : ; t

n

) at the positions in the set p are already in head

normal form.

The lauses to de�ne strit equality are straightforward:

A === B :- hnf(A,HA), hnf(B,HB), seq(HA,HB).

seq((X

1

; : : : ; X

n

),(Y

1

; : : : ; Y

n

)) :- X

1

===Y

1

,...,X

n

===Y

n

. 8=n 2 C

The lauses to de�ne hnf are also a straightforward translation of the de�nition

of head normal form:

hnf(T,T) :- var(T), !.

hnf(f(X

1

; : : : ; X

n

),H) :- !, f

;

(X

1

; : : : ; X

n

,H). 8f=n 2 F

hnf(T,T). % T is onstrutor-headed due to the previous lauses.

The de�nition of the lauses for the prediates f

p

(X

1

; : : : ; X

n

;H) is slightly more

ompliated but also an obvious translation of our previously desribed strategy.

5

We speify the generation of these lauses by a translation funtion trans whih

takes a de�nitional tree T with pattern � and a set p of already evaluated posi-

tions of � as input and yields a set of Prolog lauses. Eah funtion f is translated

by trans(T ; ;) if T is a de�nitional tree of f .

trans(rule(f(t

1

; : : : ; t

n

)! r); p) : =

f

p

(t

1

; : : : ; t

n

,H) :- hnf(r,H).

trans(branh(�; o; T

1

; : : : ; T

k

); p) : =

f

p

(t

1

; : : : ; t

n

,H) :- hnf(x,Y), f

p[fog

(t

0

1

; : : : ; t

0

n

,H).

trans(T

1

; p [fog)

...

trans(T

k

; p [fog)

where � = f(t

1

; : : : ; t

n

); �j

o

= x; �[Y℄

o

= f(t

0

1

; : : : ; t

0

n

)

In these and all subsequent translation shemes, all unspei�ed variables our-

ring in the rules are new (here: H and Y are new variables). It is obvious that

this translation sheme implements the narrowing strategy desribed above. To

distinguish the di�erent prediates orresponding to di�erent nodes of T , the

prediate names are indexed by p. A rule node is translated into a lause whih

applies this rule by omputing the head normal form of the right-hand side. For

a branh node, the requested subterm is evaluated to head normal form followed

by a all to the prediate orresponding to the immediate subtrees.

If we translate all rules of Example 1 by this sheme (the generated lauses

are shown in Appendix A), we an ompute solutions to the equation z+ s(0) �

s(s(0)) by proving the Prolog goal \?- Z+s(0)===s(s(0))."

4 Translation of Lazy Narrowing with Simpli�ation

Indutively sequential systems do not allow or nodes in the de�nitional trees, in

partiular, overlapping rules are not permitted. Nevertheless, overlapping rules

sometimes our in programs written in a logi programming style. Therefore, we

onsider in this setion a term rewriting system R whih may not be indutively

sequential. Our translation sheme ould be simply extended to suh programs

by de�ning the following additional rule to translate or nodes:

trans(or(T

1

; : : : ; T

k

); p) : =

trans(T

1

; p) � � � trans(T

k

; p)

This means that the di�erent alternatives represented by an or node are translat-

ed into alternative lauses (this is idential to the translation sheme in [19℄), and

we obtain the behavior of (simple) lazy narrowing [21, 22, 25℄. However, in the

presene of overlapping rules, simple lazy narrowing has a high risk to run into

in�nite loops by seleting the \wrong" rule and evaluating the \wrong" argument

to head normal form.

Example 2. Consider the following rules de�ning arithmeti operations:

0 � x ! 0 (R

1

)

x � 0 ! 0 (R

2

)

one(0) ! s(0) (R

3

)

one(s(x)) ! one(x) (R

4

)

6

To ompute a solution to the equation one(x)�0 � 0, we ould hoose rule R

1

to

evaluate the left-hand side. Rule R

1

demands the evaluation of one(x) to a head

normal form. Unfortunately, there are in�nitely many possibilities to evaluate

one(x), in partiular, there is an in�nite derivation using R

4

in eah step:

one(x) � 0 � 0 ;

fx 7!s(x

1

)g

one(x

1

) � 0 � 0 ;

fx

1

7!s(x

2

)g

� � �

This in�nite loop an be avoided if the goal is simpli�ed before a narrowing step

is performed. Simpli�ation is similar to narrowing but does not instantiate goal

variables and is, therefore, a deterministi evaluation proess. Sine the term

one(x) � 0 an be simpli�ed to 0 by rule R

2

, lazy narrowing with simpli�ation

[14℄ has a �nite searh spae in this example. 2

Lazy narrowing with simpli�ation redues the searh spae and is sound and

omplete if the set of rules used for simpli�ation is terminating [14℄. Moreover,

simpli�ation must be performed with the same strategy as narrowing (of ourse,

without instantiating goal variables). Thus, we an de�ne a similar translation

sheme for simpli�ation and all the prediates performing simpli�ation before

eah narrowing step. However, simpli�ation has no e�et for indutively sequen-

tial systems due to the optimality of needed narrowing (see [14℄ for more details).

Therefore, simpli�ation should be applied only if a funtion f=n 62 IS(R) ours

at run time. This leads to the following implementation sheme:

1. We generate the narrowing sheme of Setion 3 for indutively sequential

funtions.

2. We generate a simpli�ation sheme similar to the narrowing sheme. Howev-

er, there are some important di�erenes sine simpli�ation always sueeds

and returns a simpli�ed term whih is not neessarily in head normal form.

The lauses of the prediate hnf are de�ned by the following modi�ed sheme:

hnf(T,T) :- var(T), !.

hnf(f(X

1

; : : : ; X

n

),H) :- !, f

;

(X

1

; : : : ; X

n

,H). 8f=n 2 IS(R)

hnf(f(X

1

; : : : ; X

n

),H) :- !, simp(f(X

1

; : : : ; X

n

),T),

nstep(T,R,_), hnf(R,H). 8f=n 62 IS(R)

hnf(T,T).

simp simpli�es a term using the same strategy as narrowing, and nstep performs

a single narrowing step on the simpli�ed term. Due to the similarity of the strate-

gies for simpli�ation and narrowing, we implement simpli�ation by a sheme

similar to narrowing presented above. Thus, the prediate simp orresponds to

the prediate hnf but with the di�erene that simp does not fail and always

returns a simpli�ed term (whih may not be in head normal form if simpliation

rules are not appliable due to the insuÆient instantiation of variables).

simp(T,T) :- var(T), !.

simp(f(X

1

; : : : ; X

n

),T) :- !, simp

f;;

(X

1

; : : : ; X

n

,T). 8f=n 2 F

simp(T,T).

simp is alled if a term T should be redued to head normal form in order to

apply a simpli�ation step. The following translation sheme is similar to trans.

It generates for eah generalized de�nitional tree of a funtion f the lauses for

simplifying a funtion all f(� � �):

7

simptrans(rule(f(t

1

; : : : ; t

n

)! r); p) : =

simp

f;p

(t

1

; : : : ; t

n

,R) :- !, simp(r,R).

simptrans(branh(�; o; T

1

; : : : ; T

k

); p) : =

simp

f;p

(t

1

; : : : ; t

n

,R) :- !, simp(x,Y),

(nonvar(Y) -> simp

f;p[fog

(t

0

1

; : : : ; t

0

n

,R) ; R=f(t

0

1

; : : : ; t

0

n

)).

simptrans(T

1

; p [fog)

...

simptrans(T

k

; p [fog)

simp

f;p[fog

(t

1

; : : : ; t

n

,f(t

1

; : : : ; t

n

)).

where � = f(t

1

; : : : ; t

n

); �j

o

= x; �[Y℄

o

= f(t

0

1

; : : : ; t

0

n

)

The uts in the generated rules emphasize the deterministi behavior of the sim-

pli�ation proess. The �nal lause generated for eah branh node is neessary

to return the urrent term instead of ausing a failure if no simpli�ation rule

is appliable. The ondition nonvar(Y) in the translation of branh nodes is

neessary to ensure that the goal variable Y is not instantiated in subsequent

simpli�ation rules (reall that this is the basi di�erene between simpli�a-

tion and narrowing). If Y is an unbound variable, then no simpli�ation rules of

the subtrees T

1

; : : : ; T

k

are appliable. Hene, the simpli�ed term f(t

0

1

; : : : ; t

0

n

) is

returned instead of applying further simpli�ation rules.

Additionally, a node or(T

1

; : : : ; T

k

) is proessed by simptrans

6

by translating

eah T

j

into separate Prolog prediates. However, the translation sheme for

T

j

is slightly hanged for j = 1; : : : ; k � 1. Instead of onstruting the term

f(t

1

; : : : ; t

n

) if no rule is appliable, the simpli�ation prediates orresponding to

the generalized de�nitional tree T

j+1

are alled sine T

j+1

may ontain alternative

simpli�ation rules (see Appendix B for the translation of the overlapping *-rules

of Example 2).

The prediate nstep is responsible to perform a single narrowing step. For this

purpose, an additional argument C is used whih is instantiated i� a narrowing

step has been applied. Therefore, we generate the lauses

nstep(T,T,C) :- var(T), !.

nstep(f(X

1

; : : : ; X

n

),T,C) :- !, f_step

;

(X

1

; : : : ; X

n

,T,C). 8f=n 2 F

nstep(T,T,C). % T is onstrutor-headed due to the previous lauses.

and lauses for eah generalized de�nitional tree by the following sheme, whih

is a slightly modi�ed translation sheme for narrowing rules:

steptrans(rule(f(t

1

; : : : ; t

n

)! r); p) : =

f_step

p

(t

1

; : : : ; t

n

,r,step). % instantiate ontrol variable to step

steptrans(branh(�; o; T

1

; : : : ; T

k

); p) : =

f_step

p

(t

1

; : : : ; t

n

,R,C) :- nstep(x,Y,C),

(var(C) -> f_step

p[fog

(t

0

1

; : : : ; t

0

n

,R,C) ; R=f(t

0

1

; : : : ; t

0

n

)).

steptrans(T

1

; p [fog)

...

6

Due to spae limitations, we do not show the formal de�nition.

8

steptrans(T

k

; p [fog)

where � = f(t

1

; : : : ; t

n

); �j

o

= x; �[Y℄

o

= f(t

0

1

; : : : ; t

0

n

)

steptrans(or(T

1

; : : : ; T

k

); p) : =

steptrans(T

1

; p)

...

steptrans(T

k

; p)

Due to the ondition var(C)->� � � in lauses orresponding to branh nodes, the

prediate f_step

p

may not return a head normal form but performs only one

narrowing step. All lauses generated by our sheme for Example 2 are shown

in Appendix B. The size of the translated programs is approximately doubled in

omparison to the translation without the simpli�ation sheme. This is due to

the fat that eah rule an be applied in a \narrowing mode" and a \simpli�ation

mode" whih requires di�erent implementations.

Sine the rewrite rules are separately translated into lauses for narrowing

and simpli�ation, we an also hoose di�erent rewrite rules for narrowing and

simpli�ation. Atually, the programmer has to speify a terminating subset of

R whih is used for simpli�ation in order to ensure ompleteness (see [14℄).

Moreover, it has been argued in [8℄ that it is sensible to use additionally indutive

onsequenes or CWA-valid rules for simpli�ation. All this is supported by our

separate translation of narrowing and simpli�ation rules.

5 Optimization by Partial Evaluation

It is not surprising that our general translation sheme ontains many opportuni-

ties for optimization. Therefore, we add the following useful optimizations whih

are standard in the partial evaluation of logi programs [9℄:

Delete redundant onstrutors: In a generalized de�nitional tree, the pat-

terns of subtrees are instanes of the patterns of anestor nodes. Therefore,

the generated lauses often ontain redundant onstrutors, i.e., there are

prediates p where all alls to p are of the form p(: : : ; (t); : : :) and all left-

hand sides have the same struture. In this ase, we delete .

Swap arguments for better indexing: Most Prolog implementations use

�rst argument indexing [1℄. In order to provide a portable and eÆient im-

plementation, we swap arguments so that the ase distintion in left-hand

sides is always made on the �rst argument (note that the branh nodes in a

tree learly indiate the indexed argument).

Unfold deterministi literals: The translation sheme for lazy narrowing

with simpli�ation often generates hains of prediate alls where at most

one lause is appliable (see, for instane, prediates hnf, simp, nstep). To

improve the exeution time of the generated ode, we unfold suh determin-

isti prediate alls.

The optimized lauses orresponding to Example 1 an be found in Appendix C.

9

6 Implementation of Sharing

It is well-known that lazy evaluation strategies require the sharing of terms in

order to avoid potential reevaluations of idential expressions. For instane, on-

sider the rule

double(x) ! x+ x

and the term double(t) whih is immediately rewritten to t + t. Thus, without

sharing, t is evaluated twie. To avoid this problem, we have to share the result of

evaluating t among the di�erent ourrenes of t. This an be implemented in Pro-

log by representing eah funtion all f(t

1

; : : : ; t

n

) by the term f(S; t

1

; : : : ; t

n

; H)

where S is an unbound variable until the all f(t

1

; : : : ; t

n

) will be evaluated (to

the head normal form H).

7

Therefore, we only have to hange the de�nition of

the prediates whih triggers the omputation of a head normal form (e.g., hnf

in Setion 3) so that a term f(S,...,H) will be evaluated to the head normal

form H only if S is an unbound variable, otherwise H already ontains the result.

Thus, the new de�nition of hnf to implement sharing is

hnf(T,T) :- var(T), !.

hnf(f(S,X

1

; : : : ; X

n

,H),H) :- !, (var(S) -> S=eval, f

;

(X

1

; : : : ; X

n

,H)

; true). 8f=n 2 F

hnf(T,T).

7 Experimental Results

We have implemented the translation sheme as a ompiler from lazy funtional

logi programs into Prolog. If all funtions are indutively sequential, the sheme

of Setion 3 is used, otherwise the sheme presented in Setion 4.

First we onsider indutively sequential programs. The following table on-

tains a omparison of our translation method w.r.t. the methods proposed in

[2, 6, 17, 19℄. Remember that natural numbers are implemented by 0=s-terms.

The translated programs are exeuted with Sistus-Prolog 2.1 on a Spar-10. The

run times are in seonds for omputing the �rst solution (an entry \?" denotes a

run time of more than 1000 seonds).

Goal: [2℄ [6℄ [17℄ [19℄ trans sharing Babel diret

10000 � 10000+ 10000 � true 0.39 6.1 0.7 0.32 0.25 0.39 0.16 0.10

1000 � x+ x � true 3.2 86.6 ? 2.7 1.9 1.8 4.3 1.2

400 + x � (x+ 200) + x � true 4.8 ? ? 2.2 1.7 2.3 4.1 0.6

2000 � 1000+ (x+ x) � true 3.3 83.1 ? 2.7 1.9 1.8 4.2 5.3

double(double(one(100000)))� x 2.8 36.1 2.9 3.5 2.8 0.9 0.35 0.17

The olumn trans ontains the exeution times of our translation sheme (with

the optimizations of Setion 5) and olumn sharing the timings of our sheme

7

This is nearly idential to the tehnique proposed in [6℄. Jim�enez-Martin et al. [17℄

proposed a similar tehnique, but it does not really implement sharing sine they

omitted the evaluation ag S.

10

with sharing (Setion 6). In many ases sharing has no advantage but auses an

overhead (note that [2, 19℄ do not implement sharing). Sine [6, 17℄ are based on

narrowing strategies di�erent from needed narrowing, the results learly show the

superiority of the needed narrowing strategy. [2℄ uses only one prediate to imple-

ment all rewrite rules, and Loogen et al. [19℄ do not perform any optimizations

on the generated lauses. This explains the worse exeution times in omparison

to our approah.

The olumn \Babel" shows the exeution time of needed narrowing imple-

mented in the funtional logi language Babel based on the ompilation into a

low-level abstrat mahine [11℄. It is interesting to note that our high-level imple-

mentation is faster for typial searh problems. The olumn diret shows the run

times of a diret de�nition of the prediates in Prolog whih is often more eÆient

sine term strutures with nested funtions alls are not generated (note that

diret orresponds to a all-by-value strategy whih an be implemented more

eÆiently). However, there is also an example where needed narrowing is muh

faster sine it avoids the superuous omputation of some subterms. Moreover,

needed narrowing allows the omputation with in�nite data strutures and may

terminate where logi programs have an in�nite searh spae (see, for instane,

Example 1). In order to make a fair omparison between our implementation of

needed narrowing and Prolog, we have omitted suh examples.

The diret implementation has a good behavior on this example sine ur-

rent Prolog implementations are tailored towards the eÆient implementation of

\funtional-like" programs. However, there is an interesting lass of programs,

namely \generate-and-test" programs, where it has been shown that narrowing

with simpli�ation an dramatially redue the searh spae [8, 13℄. A typial

example for suh programs is the \permutation sort" program, where a list is

sorted by enumerating all permutations and heking whether they are sorted. In

the Prolog version of this program [27, p. 55℄, all permutations are enumerated

and heked. However, if we exeute the same program by lazy narrowing with

simpli�ation (in this ase prediates are onsidered as Boolean funtions, see [8,

p. 182℄), then the simpli�ation proess uts some parts of the searh spae so

that not all permutations are ompletely enumerated. Therefore, we obtain the

following exeution times in seonds to sort the list [n,...,2,1℄ for di�erent

values of n:

Length n Prolog Lazy Lazy+Simp

5 0.01 0.06 0.06

6 0.05 0.4 0.2

7 0.4 2.8 0.4

8 3.0 22.9 1.0

9 27.3 212.2 2.1

10 281.3 2188.2 4.7

The olumn \Lazy+Simp" ontains the exeution times for lazy narrowing with

simpli�ation implemented as shown in this paper, the olumn \Lazy" the times

for pure lazy narrowing without simpli�ation (implemented as proposed in the

beginning of Setion 4), and the olumn \Prolog" the times for the diret im-

11

plementation of permutation sort in Prolog. The searh spaes of \Prolog" and

\Lazy" are essentially the same. However, the last olumn shows that the over-

head of the lazy narrowing implementation an be ompensated by the searh

spae redution due to the simpli�ation proess.

8 Conlusions

We have presented a high-level implementation of lazy funtional logi languages

by a transformation into Prolog. For the operational semantis, we have onsid-

ered needed narrowing for indutively sequential programs and lazy narrowing

with simpli�ation for programs with overlapping left-hand sides. We have in-

trodued generalized de�nitional trees in order to speify the onrete narrow-

ing strategy. We have shown that generalized de�nitional trees are also useful

to speify and implement the transformation of funtional logi programs into

Prolog. Our implementation of needed narrowing is faster ompared to previous

approahes, whereas the implementation of lazy narrowing with simpli�ation

is a ompletely new approah. We have demonstrated the advaned operational

behavior of the latter strategy in omparison to Prolog for a typial lass of logi

programs.

Our transformation yields a portable and eÆient implementation of lazy

funtional logi programs. Sine the transformation is strongly based on the for-

mal de�nition of a narrowing strategy for whih soundness and ompleteness

results are known [4, 14℄, the implementation is also sound and omplete (mod-

ulo inompleteness problems of Prolog implementations due to the baktraking

strategy). This is in ontrast to other, possibly more eÆient implementations of

funtional logi programs in Prolog with oroutining [20, 24℄ that do not enjoy

ompleteness due to oundering (i.e., unevaluable delayed literals).

Referenes

1. H. A��t-Kai. Warren's Abstrat Mahine. MIT Press, 1991.

2. S. Antoy. Non-Determinism and Lazy Evaluation in Logi Programming. In Pro.

Int. Workshop on Logi Program Synthesis and Transformation (LOPSTR'91), pp.

318{331. Springer Workshops in Computing, 1991.

3. S. Antoy. De�nitional Trees. In Pro. of the 3rd Int. Conferene on Algebrai and

Logi Programming, pp. 143{157. Springer LNCS 632, 1992.

4. S. Antoy, R. Ehahed, and M. Hanus. A Needed Narrowing Strategy. In Pro. 21st

ACM Symp. on Priniples of Programming Languages, pp. 268{279, Portland, 1994.

5. P.G. Boso, E. Giovannetti, and C. Moiso. Narrowing vs. SLD-Resolution. Theo-

retial Computer Siene 59, pp. 3{23, 1988.

6. P.H. Cheong and L. Fribourg. Implementation of Narrowing: The Prolog-Based

Approah. In Logi programming languages: onstraints, funtions, and objets,

pp. 1{20. MIT Press, 1993.

7. N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, editor,

Handbook of Theoretial Computer Siene, Vol. B, pp. 243{320. Elsevier, 1990.

8. L. Fribourg. SLOG: A Logi Programming Language Interpreter Based on Clausal

Superposition and Rewriting. In Pro. IEEE Int. Symposium on Logi Program-

ming, pp. 172{184, Boston, 1985.

12

9. J.P. Gallagher. Tutorial on Speialisation of Logi Programs. In Proeedings of the

ACM SIGPLAN Symposium on Partial Evaluation and Semantis Based Program

Manipulation (PEPM'93), pp. 88{98. ACM Press, 1993.

10. E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel LEAF: A Logi plus

Funtional Language. Journal of Computer and System Sienes, Vol. 42, No. 2,

pp. 139{185, 1991.

11. W. Hans, R. Loogen, and S. Winkler. On the Interation of Lazy Evaluation and

Baktraking. In Pro. of the 4th Int. Symposium on Programming Language Im-

plementation and Logi Programming, pp. 355{369. Springer LNCS 631, 1992.

12. M. Hanus. Compiling Logi Programs with Equality. In Pro. of the 2nd Int.

Workshop on Programming Language Implementation and Logi Programming, pp.

387{401. Springer LNCS 456, 1990.

13. M. Hanus. Improving Control of Logi Programs by Using Funtional Logi Lan-

guages. In Pro. of the 4th International Symposium on Programming Language

Implementation and Logi Programming, pp. 1{23. Springer LNCS 631, 1992.

14. M. Hanus. Combining Lazy Narrowing and Simpli�ation. In Pro. of the 6th In-

ternational Symposium on Programming Language Implementation and Logi Pro-

gramming, pp. 370{384. Springer LNCS 844, 1994.

15. M. Hanus. The Integration of Funtions into Logi Programming: From Theory to

Pratie. Journal of Logi Programming, Vol. 19&20, pp. 583{628, 1994.

16. M. Hanus. On Extra Variables in (Equational) Logi Programming. In Pro. In-

ternational Conferene on Logi Programming, pp. 665{679. MIT Press, 1995.

17. J.A. Jim�enez-Martin, J. Marino-Carballo, and J.J. Moreno-Navarro. EÆient Com-

pilation of Lazy Narrowing into Prolog. In Pro. Int. Workshop on Logi Program

Synthesis and Transformation (LOPSTR'92), pp. 253{270. Springer, 1992

18. H. Kuhen, R. Loogen, J.J. Moreno-Navarro, and M. Rodr��guez-Artalejo. Graph-

based Implementation of a Funtional Logi Language. In Pro. ESOP 90, pp.

271{290. Springer LNCS 432, 1990.

19. R. Loogen, F. Lopez Fraguas, and M. Rodr��guez Artalejo. A Demand Driven Com-

putation Strategy for Lazy Narrowing. In Pro. of the 5th Int. Symp. on Pro-

gramming Language Implementation and Logi Programming, pp. 184{200. Springer

LNCS 714, 1993.

20. T. Mogensen. Personal Communiation. 1995

21. J.J. Moreno-Navarro, H. Kuhen, R. Loogen, and M. Rodr��guez-Artalejo. Lazy

Narrowing in a Graph Mahine. In Pro. Seond International Conferene on Al-

gebrai and Logi Programming, pp. 298{317. Springer LNCS 463, 1990.

22. J.J. Moreno-Navarro and M. Rodr��guez-Artalejo. Logi Programming with Fun-

tions and Prediates: The Language BABEL. Journal of Logi Programming,

Vol. 12, pp. 191{223, 1992.

23. L. Naish. Negation and Control in Prolog. Springer LNCS 238, 1987.

24. L. Naish. Adding equations to NU-Prolog. In Pro. of the 3rd Int. Symposium

on Programming Language Implementation and Logi Programming, pp. 15{26.

Springer LNCS 528, 1991.

25. U.S. Reddy. Narrowing as the Operational Semantis of Funtional Languages. In

Pro. IEEE Int. Symposium on Logi Programming, pp. 138{151, Boston, 1985.

26. J.R. Slagle. Automated Theorem-Proving for Theories with Simpli�ers, Commu-

tativity, and Assoiativity. Journal of the ACM, Vol. 21, No. 4, pp. 622{642, 1974.

27. L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1986.

13

A Generated Prolog Clauses for Example 1

The program of Example 1 is indutively sequential where both funtions have a unique

de�nitional tree. Therefore, our transformation sheme of Setion 3 generates the fol-

lowing Prolog program.

A===B :- hnf(A,HA), hnf(B,HB), seq(HA,HB).

seq(0,0).

seq(s(A),s(B)) :- A===B.

seq(false,false).

seq(true,true).

hnf(T,T) :- var(T), !.

hnf(A+B,H) :- !, +(A,B,H).

hnf(leq(A,B),H) :- !, leq(A,B,H).

hnf(T,T).

+(A,B,R) :- hnf(A,HA), '+_1'(HA,B,R).

'+_1'(0,B,R) :- hnf(B,R).

'+_1'(s(A),B,R) :- hnf(s(A+B),R).

leq(A,B,R) :- hnf(A,HA), leq_1(HA,B,R).

leq_1(0,B,R) :- hnf(true,R).

leq_1(s(A),B,R) :- hnf(B,HB), leq_1_2(s(A),HB,R).

leq_1_2(s(A),0,R) :- hnf(false,R).

leq_1_2(s(A),s(B),R) :- hnf(leq(A,B),R).

B Generated Prolog Clauses for Example 2

Sine the program of Example 2 is not indutively sequential, we have to translate it

by the transformation sheme of Setion 4 whih yields the following Prolog program.

A===B :- hnf(A,HA), hnf(B,HB), seq(HA,HB).

seq(0,0).

seq(s(A),s(B)) :- A===B.

hnf(T,T) :- var(T), !.

hnf(A*B,H) :- !, simp(A*B,T), nstep(T,R,_), hnf(R,H).

hnf(one(A),H) :- !, one(A,H).

hnf(T,T).

one(A,R) :- hnf(A,HA), one_1(HA,R).

one_1(0,R) :- hnf(s(0),R).

one_1(s(A),R) :- hnf(one(A),R).

simp(T,T) :- var(T), !.

simp(A*B,T) :- !, 'simp_*'(A,B,T).

simp(one(A),T) :- !, simp_one(A,T).

simp(T,T).

'simp_*'(A,B,R) :- !, simp(A,SA),

(nonvar(SA) -> 'simp_*_1'(SA,B,R) ; 'simp_*_or'(SA,B,R)).

'simp_*_1'(0,A,R) :- !, simp(0,R). % �rst alternative of *

'simp_*_1'(A,B,R) :- 'simp_*_or'(A,B,R).

14

'simp_*_or'(A,B,R) :- !, simp(B,SB),

(nonvar(SB) -> 'simp_*_or_2'(A,SB,R) ; R=A*SB).

'simp_*_or_2'(A,0,R) :- !, simp(0,R). % seond alternative of *

'simp_*_or_2'(A,B,A*B).

simp_one(A,R) :- !, simp(A,SA),

(nonvar(SA) -> simp_one_1(SA,R) ; R=one(SA)).

simp_one_1(0,R) :- !, simp(s(0),R).

simp_one_1(s(A),R) :- !, simp(one(A),R).

simp_one_1(A,one(A)).

nstep(T,T,C) :- var(T), !.

nstep(A*B,T,C) :- !, '*_step'(A,B,T,C).

nstep(one(A),T,C) :- !, one_step(A,T,C).

nstep(T,T,C).

'*_step'(A,B,R,C) :- nstep(A,NA,C),

(var(C) -> '*_step_1'(NA,B,R,C) ; R=NA*B).

'*_step'(A,B,R,C) :- nstep(B,NB,C),

(var(C) -> '*_step_2'(A,NB,R,C) ; R=A*NB).

'*_step_1'(0,A,0,step).

'*_step_2'(A,0,0,step).

one_step(A,R,C) :- nstep(A,NA,C),

(var(C) -> one_step_1(NA,R,C) ; R=one(NA)).

one_step_1(0,s(0),step).

one_step_1(s(A),one(A),step).

C Optimized Prolog Program for Example 1

If we apply the optimization tehniques disussed in Setion 5 to the program of Ap-

pendix A, we obtain the following optimized Prolog program (where superuous lauses

are deleted).

A===B :- hnf(A,HA), hnf(B,HB), seq(HA,HB).

seq(0,0).

seq(s(A),s(B)) :- hnf(A,HA), hnf(B,HB), seq(HA,HB).

seq(false,false).

seq(true,true).

hnf(T,T) :- var(T), !.

hnf(A+B,H) :- !, hnf(A,HA), '+_1'(HA,B,H).

hnf(leq(A,B),H) :- !, hnf(A,HA), leq_1(HA,B,H).

hnf(T,T).

'+_1'(0,B,R) :- hnf(B,R).

'+_1'(s(A),B,s(A+B)).

leq_1(0,B,true).

leq_1(s(A),B,R) :- hnf(B,HB), leq_1s_2(HB,A,R).

leq_1s_2(0,A,false).

leq_1s_2(s(B),A,R) :- hnf(A,HA), leq_1(HA,B,R).

15

