
In Pro. of the 1992 Joint International Conferene and Symposium on

Logi Programming (Washington),

November 1992, pp. 192{206, MIT Press

On the Completeness of Residuation

Mihael Hanus

Max-Plank-Institut f�ur Informatik

Im Stadtwald, W-6600 Saarbr�uken, Germany

mihael�mpi-sb.mpg.de

Abstrat

Residuation is an operational mehanism for the integration of funtions into

logi programming languages. The residuation priniple delays the evaluation

of funtions during the uni�ation proess until the arguments are suÆiently

instantiated. This has the advantage that the deterministi nature of fun-

tions is preserved but the disadvantage of inompleteness: if the variables in a

delayed funtion all are not instantiated by the logi program, this funtion

an never be evaluated and some answers whih are logial onsequenes of

the program are lost. In this paper we present a method for deteting suh sit-

uations. The method is based on a ompile-time analysis of the program and

approximates the possible residuations and instantiation states of variables

during program exeution.

1 Introdution

Many proposals for the integration of funtional and logi programming lan-

guages have been made during reent years (see [8℄ for a olletion). From an

operational point of view these proposals an be partitioned into two lasses:

approahes with a omplete operational semantis and a nondeterministi

searh (narrowing) for solving equations with funtional expressions (EQLOG

[10℄, SLOG [9℄, K-LEAF [5℄, BABEL [16℄, ALF [11℄, among others), and ap-

proahes whih try to avoid nondeterministi omputations for funtional

expressions by reduing funtional expressions only if the arguments are suf-

�iently instantiated (Funlog [20℄, Le Fun [3℄, LIFE [2℄, NUE-Prolog [17℄,

among others). The former approahes are omplete under some well-de�ned

onditions (e.g., anoniity of the axioms), i.e., they ompute all answers

whih an be logially inferred from the given program. The prie for this

ompleteness is an inreased searh spae sine there may be several inom-

parable uni�ers of two terms if these terms ontain unevaluated funtional

expressions. The latter approahes try to avoid this nondeterminism in the

uni�ation proess. In these approahes a term is redued to normal form be-

fore it is uni�ed with another term, i.e., funtional expressions are evaluated

(if possible) before uni�ation. If a funtion annot be evaluated beause the

arguments are not suÆiently instantiated, the uni�ation annot proeed.

Instead of ausing a failure, the evaluation of the funtion is delayed until the

arguments will be instantiated. This mehanism is alled residuation in Le

Fun [3℄. For instane, onsider the following program (we write residuating

logi programs in the usual Prolog syntax but it is allowed to use arbitrary

evaluable funtions in terms):

1

q :- p(X,Y,5), pik(X,Y).

p(A,B,A+B).

pik(2,3).

together with the goal \?- q". After applying the �rst lause to the goal,

the literals p(X,Y,5) and p(A,B,A+B) are uni�ed. This binds A to X and B

to Y, but the uni�ation of X+Y and 5 is not suessful sine the arguments

of the funtion all X+Y are not instantiated to numbers. Hene this uni�a-

tion auses the generation of the residuation X+Y=5 whih will be proved (or

disproved) if X and Y will be bound to ground terms. We proeed by proving

the literal pik(X,Y) whih binds X and Y to 2 and 3, respetively. As a

onsequene, the instantiated residuation 2+3=5 an be veri�ed and therefore

the entire goal has been proved.

The residuation priniple seems to be preferable to the narrowing ap-

proahes sine it preserves the deterministi nature of funtions. However,

it fails to ompute all answers if funtions are used in a logi programming

manner. For instane, onsider the funtion append for onatenating two

lists. In a funtional language with pattern-mathing it an be de�ned by the

following equations (we use the Prolog notation for lists):

append([℄, L) = L

append([E|R℄,L) = [E|append(R,L)℄

From a logi programming point of view we an ompute the last element E

of a given list L by solving the equation append(_,[E℄)=L. Sine the �rst

argument of the left-hand side of this equation will never be instantiated,

residuation fails to ompute the last element with this equation whereas nar-

rowing omputes the unique value for E [12℄. Similarly, we an speify by the

equation append(LE,[_℄)=L a list LE whih is the result of deleting the last

element in the list L. Combining the spei�ation of the last element and the

rest of a list, we de�ne the reversing of a list by the following lauses:

rev([℄,[℄).

rev(L, [E|LR℄) :- append(LE,[E℄) = L, rev(LE,LR).

Now onsider the goal \?- rev([a,b,℄,R)". Sine the arguments of the

alls to the funtion append are never instantiated to ground terms, the residu-

ation priniple annot verify the orresponding residuation. Hene the answer

R=[,b,a℄ is not omputed and there is an in�nite derivation path using the

residuation priniple and applying the seond lause in�nitely many times.

On the other hand a funtional-logi language based on the narrowing prini-

ple an solve this goal and has a �nite searh spae [12℄. Therefore we should

use narrowing instead of residuation in this example.

The last example raises the important question whether it is possible to

detet the ases where the (more eÆient) residuation priniple is able to

ompute all answers. If this would be possible we an avoid the nondeter-

ministi and hene expensive narrowing priniple in many ases and replae

it by omputations based on the residuation priniple without loosing any

answers. A simple riterion to the ompleteness of residuation is the ground-

2

ness of all residuating variables: if at the end of a omputation all variables

ourring in residual funtion alls are bound to ground terms, then all resid-

uations an be evaluated and hene the answer substitution does not depend

on an unsolved residuation. Sine the satisfation of this riterion depends

on the data ow during program exeution, an exat answer is reursively

undeidable. Therefore we present an approximation to this answer by ap-

plying abstrat interpretation tehniques to this kind of programs. Previous

approahes for abstrat interpretation of logi programs (see, for instane,

[1, 7, 18℄) depend on SLD-resolution as the operational semantis. Hene we

annot diretly apply these frameworks to our ase. However it is possible to

develop a similar tehnique by onsidering unsolved residuations as part of

the urrent substitution.

In the next setion we give a short desription of the operational semantis

onsidered in this paper. The abstrat domain and the abstrat interpretation

algorithm for reasoning about residuating programs are presented in Setion 3.

Finally, the orretness of our method is outlined in Setion 4.

2 The residuation priniple

In residuating logi programs terms are built from variables, onstrutors and

(de�ned) funtions. Construtors (denoted by a, b, , d) are used to ompose

data strutures, while de�ned funtions (denoted by f, g, h) are operations on

these data strutures. We do not require any formalism for the spei�ation

of funtions, i.e., they may be de�ned by equations or in a ompletely di�erent

language (external or prede�ned funtions). However, the following onditions

must be satis�ed in order to reason about residuating logi programs:

1. A funtion all an be evaluated if all arguments are ground terms.

2. The result of the evaluation is a ground onstrutor term (ontaining

only onstrutors) or an error message (i.e., the omputation annot

proeed beause of type errors, division by zero et.).

The di�erene between residuating logi programs and ordinary logi pro-

grams shows up in the uni�ation proedure: if a all to a de�ned funtion

f(t

1

; : : : ; t

n

) should be uni�ed with a term t, the funtion all is evaluated if

all arguments t

1

; : : : ; t

n

are bound to ground terms and the uni�ation pro-

eeds with the evaluated term, otherwise the uni�ation immediately sueeds

and the residuation f(t

1

; : : : ; t

n

) = t is added. If all variables in t

1

; : : : ; t

n

will

be bound to ground terms in the further omputation proess, the residua-

tion f(t

1

; : : : ; t

n

) = t will be immediately veri�ed by evaluating the left-hand

side and omparing the result with the right-hand side. Preise desriptions

of this algorithm an be found in [3, 13℄ ([4℄ ontains a more sophistiated

version) and therefore we omit the details here. The result of the residuating

uni�ation algorithm is fail or a substitution/residuation pair h�; �i with

� = fx

1

7! t

1

; : : : ; x

k

7! t

k

g and � = fs

1

= s

0

1

; : : : ; s

m

= s

0

m

g

3

where eah variable x

i

does not our in t

j

or � and s

i

or s

0

i

are unevaluable

(non-ground) funtion alls. In the entire omputation � is part of the answer

substitution and � will be added to the uni�ation problem in the next resolu-

tion step. The operational semantis of residuating logi programs onsidered

in this paper is similar to Prolog's operational semantis (SLD-resolution with

leftmost seletion rule) but with the di�erene that the standard uni�ation

is replaed by a residuating uni�ation algorithm. Thus the onrete domain

of omputation C is not simply the set of all substitutions but a set of substi-

tution/residuation pairs, i.e.,

C = fh�; �i j � is a substition, � is a set of residuationsg

where a residuation is an equation r = r

0

and r (or r

0

) is a funtion all.

Sine ground funtion alls are evaluated during uni�ation, we assume in

the following that all elements h�; �i of the onrete domain C do not ontain

funtion alls with ground terms in the residuation part �.

As an example onsider the following residuating logi program:

q :- p(X,Y,5), 1 = W-V, X = V*W, Y = V+W, pik(V,W).

p(A,B,A+B).

pik(1,2).

If the initial goal is q, the following elements of the onrete domain are

omputed during the proessing of the �rst lause:

Before \p(X,Y,5)": h;; ;i

After \p(X,Y,5)": h;; f5=X+Ygi

After \1 = W-V": h;; f5=X+Y; 1=W-Vgi

After \X = V*W": hfX 7! V*Wg; f5=(V*W)+Y; 1=W-Vgi

After \Y = V+W": hfX 7! V*W; Y 7! V+Wg; f5=(V*W)+(V+W); 1=W-Vgi

After \pik(V,W)": hfX 7! 1*2; Y 7! 1+2; V 7! 1; W 7! 2g; ;i

At the lause end the residuation set is empty sine all funtions ould be

evaluated. Hene the initial goal is proved to be true.

From a semantial point of view residuations an be onsidered as on-

straints on substitutions and therefore the residuation framework ould

be viewed as a speial ase of the CLP framework [14℄. However, this

is not the ase from an operational point of view. Sine funtions are

user-de�ned, there need not exist a onstraint solver whih heks the

satis�ablity of the aumulated residuations. E.g., the unsatis�ability of

fappend(L1,L2)=[1℄; append(L2,L1)=[2℄g is not deteted by the uni�a-

tion algorithms in [3, 4℄. This would require a onstraint solver for the de�ned

list operations. In fat, it is reasonable to integrate the residuation priniple

into the CLP paradigm [19℄.

3 Abstrat interpretation of residuating programs

In this setion we present a method for heking whether the residuation part

of the answer to a goal is empty, i.e., whether the residuation priniple is

omplete w.r.t. a given program and goal. Sine this problem is reursively

4

undeidable in general, we present an approximation to it based on a ompile-

time analysis of the program. If this approximation yields a positive answer,

then it is ensured that all residuations an be solved at run time. In the

following we present the abstrat domain and the motivation for it. The rela-

tion to the onrete domain and the orretness of the abstrat interpretation

algorithm are disussed in Setion 4 in more detail. We assume familiarity

with basi ideas of abstrat interpretation tehniques [1℄.

3.1 Abstrat domain

There has been done a lot of work onerning the ompile-time derivation of

run-time properties of logi programs (see, for instane, the olletion [1℄).

Sine we have abstrated the di�erent operational behaviour of residuating

logi programs into an additional omponent of the onrete domain, we an

use the well-known frameworks (e.g., [7, 18℄) in a similar way. The heart

of an abstrat interpretation proedure is an abstrat domain whih approxi-

mates subsets of the onrete domain by �nite representations. An element of

the abstrat domain desribes ommon properties of a subset of the onrete

domain. The properties must be hosen so that they ontain relevant propo-

sitions about the interesting run-time properties. So what are the abstrat

properties in our ase?

We are interested in unevaluated residuations at run time (seond om-

ponent of the onrete domain). A residuation an be veri�ed if the funtion

all in it an be evaluated. Sine a funtion all an be evaluated if all ar-

guments are ground, we need some information about the variables in it and

the instantiation state of these variables in order to deide the emptiness of

the residuation set. Hene our abstrat domain ontains information about

the following properties:

Potential residuations: Residuations are generated by the uni�ation of

terms. For instane, if variable X is bound to A+B and variable Y is bound

to 2 at run time, the uni�ation of X and Y generates the residuation A+B=2.

Hene, in order to state properties of all residuations whih may our at run

time, we must know all potential funtion alls in the bindings of a program

variable. Moreover, we must also know the variables in this funtion all in

order to deide whether or not this funtion all an be evaluated. Therefore

our abstrat domain ontains elements of the form \X with+j

fA,Bg

" meaning:

variable X may be bound to a term ontaining a all to funtion + whih an

be evaluated if A and B are ground.

Dependenies between variables: Funtion alls an be evaluated if all

variables in it are bound to ground terms. Hene we must have some infor-

mation about the dependenies between variables. E.g., onsider the goal

?- A+B = C, C*2 = 6, A = 1, B = 2.

During uni�ation of C*2 and 6 the �rst term annot be evaluated sine C is

not ground. But the groundness of C depends on the groundness of A and B.

5

Thus we an dedue that the funtion all C*2 an be evaluated if A and B

are bound to ground terms. Hene our abstrat domain ontains the element

\C if fA,Bg". In general, \X ifV " means that variable X is bound to a ground

term if all variables in V are bound to ground terms.

Sharing between variables: The potential residuations an be opied be-

tween di�erent variables in the uni�ation proess. E.g., onsider the goal

?- Z = (X), Y = f(A), X = Y, : : :

After the uni�ation of X and Y the variable Z ontains the funtion all f(A).

In order to manage orretly the potential residuations, we must store the

information that Z and X share a term. Hene our abstrat domain ontains

the element fX,Zg representing the sharing between X and Z.

Summarizing the previous disussion, our abstrat domain A ontains the el-

ement ? (representing the empty subset of the onrete domain) and sets

ontaining the following elements (suh sets are alled abstrations and de-

noted by A, A

1

et):

Element: Meaning:

X ifV X is ground if all variables in the variable set V are ground

X withfj

V

X may be bound to a term ontaining a all to f whih an be

evaluated if all variables in V are ground

f there may be an unevaluated funtion all to f depending on

arbitrary variables

fX,Yg X and Y may share a term

Obviously, A is �nite if the set of variables and funtion symbols is �nite.

Sine we use only program variables and funtions ourring in the program

in the abstrat domain, A is �nite in ase of a �nite program. For onve-

niene we simply write \X" instead of \X if ;". Hene an element \X" in an

abstration means that variable X is bound to a ground term if it does not

ontain any funtion all.

Given an abstration A, a variable X is alled funtion-free in A if A does

not ontain elements of the form \X withf j

V

" and \f". In the subset of

the onrete domain orresponding to A a funtion-free variable an only be

interpreted as a term without unevaluable funtion alls (ompare Setion 4).

To present a simple desription of the abstrat interpretation algorithm,

we will sometimes generate abstrations ontaining redundant information.

The following normalization rules eliminate some redundanies in abstra-

tions:

Normalization rules for abstrations:

A [fZ; X ifV [fZgg ! A [fZ; X ifV g if Z is funtion-free in A

A [fZ; X with f j

V [fZg

g ! A [fZ; X with f j

V

g if Z is funtion-free in A

A [fX withf j

;

g ! A

A [fX ifV

1

; X ifV

2

g ! A [fX ifV

1

g if V

1

� V

2

A [fX; fX;Y gg ! A [fXg

The additional ondition in the �rst two rules ensures that Z is bound to a

6

ground term ontaining no unevaluable funtion alls. We all an abstra-

tion A normalized if none of these normalization rules is appliable to A.

Later we will see that the normalization rules are invariant w.r.t. the onrete

substitutions/residuations orresponding to abstrations. Therefore we an

assume that we ompute only with normalized abstrations in the abstrat

interpretation algorithm.

In order to keep the abstrat interpretation algorithm simple, we assume

that prediate alls and lause heads have the form p(X

1

; : : : ;X

n

) where

all X

i

are distint (similarly to the example in [7℄). All other literals in

the lause bodies and goals have the form X = Y , X = (Y

1

; : : : ; Y

n

) or

X = f(Y

1

; : : : ; Y

n

). It is easy to see that every residuating logi program an

be transformed into a at residuating logi program satisfying the above re-

stritions without hanging the answer behaviour. For instane, the residuat-

ing logi program in Setion 2 an be transformed into the following equivalent

at program:

q :- Z=5, p(X,Y,Z), T=1, T=W-V, X=V*W, Y=V+W, pik(V,W).

p(A,B,C) :- C=A+B.

pik(A,B) :- A=1, B=2.

In the following we assume that all programs are in the required form.

3.2 The abstrat interpretation algorithm

The abstrat interpretation algorithm is based on several operations on the

abstrat domain. The �rst operation restrits an abstration A to a set of

variables W . It will be used in a prediate all to omit the information about

variables not passed from the prediate all to the applied lause:

all restrit(?;W)=?

all restrit(A;W) = fX 2 A j X 2Wg

[fX with f j

V

2 A j fXg [V �Wg

[ff j f 2 A or X withf j

V

2 A with X 2W;V 6�Wg

[ffX;Y g 2 A j X;Y 2Wg

The restrition operation for prediate alls transforms an abstration element

X withf j

V

into the element f if the dependent variables are not ontained in

W , i.e., it is noted that there may be an unevaluated funtion all to f but the

possible dependenies are too omplex for the abstrat analysis. Similarly, an

abstration element of the form X ifV is passed to the lause only if V = ;.

A similar operation is needed at the lause end to forget the abstrat in-

formation about loal lause variables. Hene we de�ne:

exit restrit(?;W) = ?

exit restrit(A;W) = fX ifV 2 A j fXg [V �Wg

[fX with f j

V

2 A j fXg [V �Wg

[ff j f 2 A or X withf j

V

2 A with fXg [V 6�Wg

[ffX;Y g 2 A j X;Y 2Wg

The restrition operation for lause exits transforms an abstration element

X withf j

V

into the element f if one of the involved variables is not ontained

7

in W , i.e., it is noted that there may be an unevaluated funtion all to f

whih depends on loal variables at the end of the lause.

The following operation omputes the remaining abstrat information of

a prediate all restrition all restrit(A;W) in order to ombine it after a

prediate all:

rest(?;W) = ?

rest(A;W) = fX ifV 2 A j X 62W or V 6= ;g

[fX withf j

V

2 A j X 62Wg

[ffX;Y g 2 A j X 62W or Y 62Wg

The least upper bound operation is used to ombine the results of di�erent

lauses for a prediate all:

? t A = A

A t ? = A

A

1

t A

2

= fX ifV

1

[V

2

j X ifV

1

2 A

1

; X ifV

2

2 A

2

g

[fX withf j

V

j X withf j

V

2 A

1

or X withf j

V

2 A

2

g

[ff j f 2 A

1

or f 2 A

2

g

[ffX;Y g j fX;Y g 2 A

1

or fX;Y g 2 A

2

g

Now we are able to de�ne the abstrat uni�ation algorithm for the abstrat

interpretation of equations ourring in lause bodies or goals. Abstrat uni�-

ation is a funtion au(�; t

1

; t

2

) whih takes an element of the abstrat domain

� 2 A and two terms t

1

; t

2

as input and produes another abstrat domain

element as the result. Beause of our restritions on goal equations, the fol-

lowing de�nition is suÆient:

1

au(?; t

1

; t

2

) =?

au(A;X;X) = A

au(A;X; Y) = losure(A [fX if fY g; Y if fXg; fX;Y gg) if X 6= Y

au(A;X; (Y

1

; : : : ; Y

n

)) = losure(A [fX if fY

1

; : : : ; Y

n

g; Y

1

if fXg; : : : ;

Y

n

if fXg; fX;Y

1

g; : : : ; fX;Y

n

gg)

au(A;X; f(Y

1

; : : : ; Y

n

)) = losure(A[fX if fY

1

; : : : ; Y

n

g;X with f j

fY

1

;:::;Y

n

g

g)

In this de�nition and in the rest of this paper losure(A) denotes the least

set A

0

ontaining A whih is losed under the following rules for transitivity

and distribution of sharing information:

fX;Y g 2 A

0

; fY;Zg 2 A

0

=) fX;Zg 2 A

0

fX;Y g 2 A

0

; X with f j

V

2 A

0

=) Y withf j

V

2 A

0

Now we an present the algorithm for the abstrat interpretation of a resid-

uating logi program in at form. It is spei�ed as a funtion ai(�;L) whih

takes an abstrat domain element � and a goal literal L and yields a new

abstrat domain element as result. Clearly, ai(?; L) =? and ai(A; t = t

0

) =

au(A; t; t

0

). The interesting ase is the abstrat interpretation of a prediate

all ai(A; p(X

1

; : : : ;X

n

)) whih is omputed by the following steps:

1

For simpliity we omit the our hek in the abstrat uni�ation.

8

1. Let p(Z

1

; : : : ; Z

n

) :-L

1

; : : : ; L

k

be a lause for prediate p (if neessary,

rename the lause variables suh that they are disjoint from X

1

; : : : ;X

n

).

Compute A

all

= all restrit(A; fX

1

; : : : ;X

n

g)

A

0

= hreplae all X

i

by Z

i

in A

all

i

A

1

= ai(A

0

; L

1

); A

2

= ai(A

1

; L

2

); : : : ; A

k

= ai(A

k�1

; L

k

)

A

out

= exit restrit(A

k

; fZ

1

; : : : ; Z

n

g)

A

exit

= hreplae all Z

i

by X

i

in A

out

i

2. Let A

1

exit

; : : : ; A

m

exit

be the exit substitutions of all lauses for p as

omputed in step 1. Then de�ne A

suess

= A

1

exit

t : : : tA

m

exit

3. ai(A; p(X

1

; : : : ;X

n

)) = losure(A

suess

[rest(A; fX

1

; : : : ;X

n

g))

if A

suess

6=?, else ?

Hene a lause is interpreted in the following way. Firstly, the all abstration

is omputed, i.e., the information ontained in the prediate all abstration

is restrited to the argument variables (A

all

). The variables in this all ab-

stration are mapped to the orresponding variables in the applied lause

(A

0

). Then eah literal in the lause body is interpreted. The resulting ab-

stration (A

k

) is restrited to the variables in the lause head, i.e., we forget

the information about the loal variables in the lause. Potential residua-

tions whih are unsolved at the lause end are passed to the abstration A

out

by the exit restrit operation. In the last step the lause variables are re-

named into the variables of the prediate all (A

exit

). If all lauses de�ning

the alled prediate p are interpreted in this way, all possible interpretations

are ombined by the least upper bound of all abstrations (A

suess

). The

ombination of this abstration with the information whih was forgotten by

the restrition at the beginning of the prediate all yields the abstration

after the prediate all (step 3).

The abstrat interpretation algorithm desribed above is useless in ase of

reursive programs due to the nontermination of the algorithm. This lassial

problem is solved in all frameworks for abstrat interpretation and therefore

we do not want to develop a new solution to this problem but use one of

the well-known solutions. Following Bruynooghe's framework [7℄ we an on-

strut a rational abstrat AND-OR-tree representing the omputation of the

abstrat interpretation algorithm. During the onstrution of the tree we

hek before the interpretation of a prediate all P whether there is an an-

estor node P

0

with a all to the same prediate and the same all abstration

(up to renaming of variables). If this is the ase we take the suess abstra-

tion of P

0

(or ? if it is not available) as the suess abstration of P instead

of interpreting P . If the further abstrat interpretation omputes a suess

abstration A

0

for P

0

whih di�ers from the suess abstration used for P ,

we start a reomputation beginning at P with A

0

as new suess abstration.

This iteration terminates beause all operations used in the abstrat inter-

pretation are monotone (w.r.t. the order on A de�ned in Setion 4) and the

abstrat domain is �nite.

9

3.3 An example

The following example is the at form of a Le Fun program presented in [3℄:

q(Z) :- p(X,Y,Z), X=V-W, Y=V+W, pik(V,W).

p(A,B,C) :- C=A*B.

pik(A,B) :- A=9, B=3.

The abstrat interpretation algorithm omputes the following abstrations

w.r.t. the initial goal q(T) and the initial abstration ; (speifying the set of

all substitutions without unevaluated funtion alls):

ai(;; q(T)):

ai(;; p(X,Y,Z)): ai(;; C=A*B) = fC if fA,Bg; C with*j

fA,Bg

g

ai(;; p(X,Y,Z)) = fZ if fX,Yg; Z with*j

fX,Yg

g =: A

1

ai(A

1

; X=V-W) = fZ if fX,Yg; X if fV,Wg; Z with*j

fX,Yg

; X with-j

fV,Wg

g=:A

2

ai(A

2

; Y=V+W) = fZ if fX,Yg; X if fV,Wg; Y if fV,Wg;

Z with*j

fX,Yg

; X with-j

fV,Wg

; Y with+j

fV,Wg

g =: A

3

ai(A

3

; pik(V,W)): ai(;; A=9) = fAg

ai(fAg; B=3) = fA; Bg

ai(A

3

; pik(V,W)) = fV; W; Z if fX,Yg; X if fV,Wg; Y if fV,Wg;

Z with*j

fX,Yg

; X with-j

fV,Wg

; Y with+j

fV,Wg

g

normalize

�! fV; W; Z; X; Yg

ai(;; q(T)) = fTg

Hene the omputed suess abstration is fTg meaning that after a suessful

omputation of the goal q(T) the variable T is bound to a ground term and

the residuation set is empty, i.e., the residuation priniple allows to ompute

a fully evaluated answer. Similarly, the ompleteness of the residuation prin-

iple an be proved by our algorithm for all other residuating logi programs

presented in [3℄. A more omplex example involving reursion an be found

in [13℄.

4 Corretness of the abstrat interpretation algo-

rithm

In this setion we will disuss the orretness of the presented abstrat inter-

pretation algorithm by relating the abstrat domain to the onrete domain.

Due to lak of spae we omit the proofs of the theorems. The interested reader

will �nd the proofs in [13℄.

To relate the omputed abstrat properties of the program to the onrete

run-time behaviour, we have to de�ne a onretisation funtion :A ! 2

C

whih maps an abstration into a subset of the onrete domain. The most

diÆult point in the de�nition of is the orret interpretation of an abstra-

tion \X ifV ". The intuitive meaning is \the interpretation of X is ground if

all interpretations of V are ground". To be more preise, \X ifV " desribes a

10

dependeny between the instantiation of X and the instantiation of the vari-

ables in V , i.e., we ould de�ne:

(*) If X ifV 2 A and h�; �i 2 (A), then var(�(X)) � var(�(V))

(var(�) denotes the set of all variables ourring in the syntati onstru-

tion �). Suh a de�nition seems to justify the generation of the abstrations

\X if fYg" and \Y if fXg" in the abstrat uni�ation algorithm if X is uni�ed

with Y. But this interpretation is not true if X or Y are bound to terms on-

taining unevaluated residuations. E.g., if X is bound to f(B) and Y is bound

to (A) during program exeution, then the omputation of the literal X=Y

yields the substitution/residuation pair h;; ff(B)=(A)gi. Thus the variables

ontained in the bindings of X and Y are not idential after the uni�ation

step. Therefore we must weaken (*) to the ondition that only the variables

of �(X) ourring outside funtion alls are ontained in the variables of �(V)

w.r.t. to the residuation �.

To give a preise desription of the ondition, we need the following de�ni-

tions. By lvar(t) we denote the set of all variables ourring outside funtion

alls in the term t:

lvar(X) = fXg

lvar((t

1

; : : : ; t

n

)) = lvar(t

1

) [� � � [lvar(t

n

)

lvar(f(t

1

; : : : ; t

n

)) = ;

The extension of a set of variables V w.r.t. to the residuation � is de�ned by

var

�

(V) = V [flvar(e) j f(t) = e 2 � or e = f(t) 2 � with var(t) � V g

(where t denotes the argument sequene t

1

; : : : ; t

n

). Note that var

�

(;) = ; if �

does not ontain unevaluated ground residual funtion alls (whih do not o-

ur in our onrete domain) and for an empty residuation we have var

;

(V) =

V . The intuition of this de�nition is that we add to a set of variables V

all these variables whih will be ground during the omputation proess if all

variables in V are ground. For instane, if � = ff(X)=(Y); f(X)=(Z)g, then

var

�

(fXg) = fX; Y; Zg. We extend the funtion var

�

to �nite sets of terms by

var

�

(ft

1

; : : : ; t

k

g) = var

�

(var(ft

1

; : : : ; t

k

g))

Sine we are interested in the property whether a funtion all ourring in a

term an be ompletely evaluated, it is suÆient to look at the main funtion

alls and not at funtion alls whih our inside other funtion alls (this is

due to the fat that a uni�ation between a funtion all and another term

does not bind any variables in this all). Therefore we say a term t ours

diretly in a term t

0

if t ours in t

0

outside a funtion all. For instane, the

term X + (Y � 2) ours diretly in the term (X + (Y � 2)) but the subterm

(Y � 2) is not a diret ourrene.

Now we are able to de�ne the semantis of abstrations by the onretisa-

tion funtion :A ! 2

C

(where t denotes the argument sequene t

1

; : : : ; t

n

):

11

(?) = ;

(A) = fh�; �i 2 C j 1. X ifV 2 A) lvar(�(X)) � var

�

(�(V))

2. f(t) ours diretly in �(X) or � with var(t) 6= ;

) f 2 A or var(t) � var(�(V)) for some X withf j

V

2 A

3. lvar(�(X)) \ lvar(�(Y)) 6= ; for X 6= Y) fX;Y g 2 A g

Condition 1 implies for X ifV 2 A that all variables ourring outside fun-

tion alls in the urrent instantiation of X are ground if all variables in V are

instantiated to ground terms. Condition 2 ensures that all unevaluated fun-

tion alls in variable bindings and in residuations are ontained in A. Sine

we are interested in potential residuations, it is suÆient to look at fun-

tion alls whih our diretly in some variable binding (and not at funtion

alls nested in other funtion alls). Hene the sharing information is also

restrited to lvar instead of var (ondition 3). Note that for an unevaluated

funtion all in the residuation part it is suÆient that there is an arbitrary

variable X whih over this funtion all whereas for an unevaluated fun-

tion all in the binding of a variable X there must be an abstration element

X withf j

V

with the same variable. This is neessary for passing the orret

information about potential residuations in ase of a prediate all (ompare

all restrition operation).

From this interpretation it is lear that an abstration without elements

of the form \X withf j

V

" or \f" an only be interpreted as a fully evalu-

ated pair h�; �i if � = ; and � does not ontain unevaluable funtion alls.

This argument has been used to state the ompleteness of the example in

Setion 3.3.

Due to this semantis of abstrations it an be proved that the normal-

ization rules de�ned on abstrations in Setion 3.1 are invariant w.r.t. the

onrete interpretation. The following lemma justi�es the appliation of the

normalization rules.

Lemma 4.1 If A and A

0

are abstrations with A! A

0

, then (A) = (A

0

).

For the termination of the abstrat interpretation algorithm it is important

that all operations on the abstrat domain are monotone. Therefore we de�ne

the following order relation on normalized abstrations:

(a) ?v � for all � 2 A

(b) A v A

0

() 1. X ifV

0

2 A

0

) 9V � V

0

with X ifV 2 A

2. X withf j

V

2 A) X withf j

V

2 A

0

3. f 2 A) f 2 A

0

4. fX;Y g 2 A) fX;Y g 2 A

0

It is easy to prove that v is a reexive, transitive and anti-symmetri relation

on normalized abstrations, the operation t de�ned in Setion 3.2 omputes

the least upper bound of two abstrations, and is monotone.

12

The orretness of the abstrat interpretation algorithm is based on the

orretness of eah omponent of the algorithm. The entire proof an be on-

struted following the ideas in [7℄. Due to the omplex abstrat domain the

detailed proofs require some e�ort and annot be shown in this paper. In

the following we only state an important theorem whih is the basis for the

orretness of the abstrat interpretation algorithm:

Theorem 4.2 (Corretness of abstrat uni�ation) Let X be a vari-

able, t be a term of the form t = Y , t = (Y

1

; : : : ; Y

n

) or t = f(Y

1

; : : : ; Y

n

)

and A be an abstration. Then for all h�; �i 2 (A) and all uni�ers h�

0

; �

0

i

for �(X) and �(t), h�

0

Æ �; �

0

[�

0

(�)i 2 (au(A;X; t)).

5 Conlusions and related work

In this paper we have onsidered an operational mehanism for the integration

of funtions into logi programs. This mehanism, alled residuation, extends

the standard uni�ation algorithm used in SLD-resolutions by delaying uni�-

ations between unevaluable funtion alls and other terms. If all variables of

a delayed funtion all are bound to ground terms, then this funtion all is

evaluated in order to verify the delayed uni�ation. This residuation priniple

yields a nie operational behaviour for many funtional logi programs but has

two disadvantages. One problem is that the answer to a query may ontain

unsolved and omplex residuations for whih the user annot easily deide

their solvability. A further problem is that the searh spae of a residuating

logi program an be in�nite in ontrast to the equivalent logi program. This

ase an our if the residuation priniple generates more and more residua-

tions whih are simultaneously not solvable. Hene it is important to hek

at ompile time whether or not this ase an our at run time. Sine this

is undeidable in general, we have presented an approximation to this prob-

lem based on the abstrat interpretation of residuating logi programs. Our

algorithm manages information about all possible residuations together with

their argument variables and the dependenies between di�erent variables in

order to ompute groundness information. Hene the algorithm is able to

infer whih residuations an be ompletely solved at run time.

We an also interpret our algorithm as an attempt to ompile funtional

logi programs from languages with a omplete but often omplex operational

semantis (e.g., EQLOG [10℄, SLOG [9℄, BABEL [16℄, or ALF [11℄) into a

more eÆient exeution mehanism without loosing ompleteness. For this

purpose we hek a given funtional logi program by our algorithm. If the

algorithm omputes an abstration ontaining no potential residuations, we

an safely exeute the program with the residuation priniple. Otherwise we

must apply the nondeterministi narrowing priniple to ompute all answers.

This method an also be applied to individual parts of the program so that

some parts are exeuted by residuation and other parts by narrowing.

The operational semantis onsidered in this paper originates from Le

Fun [3℄. The uni�ation proedure is very similar to S-uni�ation [4℄. How-

13

ever, S-uni�ation immediately reports an error if some residuations annot

be evaluated after the uni�ation of a literal with a lause head. E.g., the ex-

ample programs in setion 2 and 3.3 annot be evaluated using S-uni�ation.

Therefore Boye has extended this framework to omputation with delayed

residuations [6℄. He has also haraterized a lass of operationally omplete

programs based on notions from attribute grammars. Compared to our ab-

strat interpretation proedure, Boye's haraterization is mainly based on

the syntati struture of the program while we have tried to approximate

the operational behaviour. Hene we obtain positive results for programs

where Boye's hek fails. E.g., our method yields a positive answer to the

ompleteness question of the program

p(A,A+A).

p(A+A,A).

w.r.t. the initial goal p(2+2,1+1) while Boye's hek fails (sine there are

external funtors in input positions).

Marriott, S�ndergaard and Dart [15℄ have also presented an abstrat in-

terpretation algorithm for analysing logi programs with delayed evaluation.

The purpose of their work was to hek logi programs with negation for

oundering, i.e., whether a delayed evaluation of negated subgoals is om-

plete. This has some similarities to our framework but it is a simpler problem

beause a delayed evaluation of a negated literal annot bind any goal vari-

ables sine this literal is evaluated only if all arguments are ground. In our

ontext it is important that a delayed evaluation of a residuation an bind

variables in order to enable the evaluation of other residuations (see the exam-

ple in Setion 3.3). Therefore we have to manage the dependenies between

residuations and their variables in order to analyse the data ow in this ase.

Sine we must restrit all abstrat information to a �nite domain, our

algorithm annot manage all dependenies between residuations and their

variables. If a residuation depends only on variables of one lause and these

variables are bound to ground terms at the end of the lause, the algorithm

detets the solvability of the residuation. But if a residuation depends on

loal variables from di�erent lauses, then the algorithm annot manage it

and therefore it simply infers the unsolvability of this residuation. It seems

to be possible to improve the algorithm at this point by re�ning the abstrat

domain (whih makes the de�nition of the onretisation funtion and the

orretness proofs more omplex).

Another interesting topi for further researh is the question whether it

is possible to adapt our proposed method to the abstrat interpretation of

other logi languages whih are not based on SLD-resolution with the leftmost

seletion rule. Suh a method ould be applied to analyse logi programs with

delay primitives.

Referenes

[1℄ S. Abramsky and C. Hankin, editors. Abstrat Interpretation of Delarative

Languages. Ellis Horwood, 1987.

14

[2℄ H. A��t-Kai. An Overview of LIFE. In J.W. Shmidt and A.A. Stogny, editors,

Pro. Workshop on Next Generation Information System Tehnology, pp. 42{58.

Springer LNCS 504, 1990.

[3℄ H. A��t-Kai, P. Linoln, and R. Nasr. Le Fun: Logi, equations, and Funtions.

In Pro. 4th IEEE Int. Symposium on Logi Programming, pp. 17{23, 1987.

[4℄ S. Bonnier. Uni�ation in Inompletely Spei�ed Theories: A Case Study. In

Mathematial Foundations of Computer Siene, pp. 84{92. Springer LNCS 520,

1991.

[5℄ P.G. Boso, E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. A omplete

semanti haraterization of K-LEAF, a logi language with partial funtions.

In Pro. 4th IEEE Int. Symposium on Logi Programming, pp. 318{327, 1987.

[6℄ J. Boye. S-SLD-resolution { An Operational Semantis for Logi Programs

with External Proedures. In Pro. of the 3rd Int. Symposium on Programming

Language Implementation and Logi Programming, pp. 383{393. Springer LNCS

528, 1991.

[7℄ M. Bruynooghe. A Pratial Framework for the Abstrat Interpretation of Logi

Programs. Journal of Logi Programming (10), pp. 91{124, 1991.

[8℄ D. DeGroot and G. Lindstrom, editors. Logi Programming, Funtions, Rela-

tions, and Equations. Prentie Hall, 1986.

[9℄ L. Fribourg. SLOG: A Logi Programming Language Interpreter Based on

Clausal Superposition and Rewriting. In Pro. IEEE Int. Symposium on Logi

Programming, pp. 172{184, 1985.

[10℄ J.A. Goguen and J. Meseguer. Eqlog: Equality, Types, and Generi Modules

for Logi Programming. In [8℄, pp. 295{363.

[11℄ M. Hanus. Compiling Logi Programs with Equality. In Pro. of the 2nd Int.

Workshop on Programming Language Implementation and Logi Programming,

pp. 387{401. Springer LNCS 456, 1990.

[12℄ M. Hanus. EÆient Implementation of Narrowing and Rewriting. In Pro. Int.

Workshop on Proessing Delarative Knowledge, pp. 344{365. Springer LNAI

567, 1991.

[13℄ M. Hanus. An Abstrat Interpretation Algorithm for Residuating Logi Pro-

grams. Report MPI-I-92-217, Max-Plank-Institut f�ur Informatik, 1992.

[14℄ J. Ja�ar and J.-L. Lassez. Constraint Logi Programming. In Pro. of the 14th

ACM POPL, pp. 111{119, Munih, 1987.

[15℄ K. Marriott, H. S�ndergaard, and P. Dart. A Charaterization of Non-

Floundering Logi Programs. In Pro. of the 1990 North Amerian Conferene

on Logi Programming, pp. 661{680. MIT Press, 1990.

[16℄ J.J. Moreno-Navarro and M. Rodr��guez-Artalejo. Logi Programming with

Funtions and Prediates: The Language BABEL. Journal of Logi Program-

ming, Vol. 12, pp. 191{223, 1992.

[17℄ L. Naish. Adding equations to NU-Prolog. In Pro. of the 3rd Int. Symposium

on Programming Language Implementation and Logi Programming, pp. 15{26.

Springer LNCS 528, 1991.

[18℄ U. Nilsson. Systemati Semanti Approximations of Logi Programs. In Pro.

of the 2nd Int. Workshop on Programming Language Implementation and Logi

Programming, pp. 293{306. Springer LNCS 456, 1990.

[19℄ G. Smolka. Residuation and Guarded Rules for Constraint Logi Programming.

Researh Report 12, DEC Paris Researh Laboratory, 1991.

[20℄ P.A. Subrahmanyam and J.-H. You. FUNLOG: a Computational Model Inte-

grating Logi Programming and Funtional Programming. In [8℄, pp. 157{198.

15

