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Abstract Curry is a multi-paradigm declarative language aiming to amalgamate functional, logic,
and concurrent programming paradigms. Curry combines in a seamless way features from func-
tional programming and (concurrent) logic programming. Curry’s operational semantics is based on
the combination of lazy reduction of expressions together with a possibly non-deterministic bind-
ing of free variables occurring in expressions. Moreover, (equational) constraints can be executed
concurrently which provides for passive constraints and concurrent computation threads that are
synchronized on logical variables. This paper sketches a first prototype implementation of Curry in
Java. The main emphasis of this implementation is the exploitation of Java threads to implement
the concurrent and non-deterministic features of Curry.

Keywords: Functional logic programming, lazy evaluation, concurrency, implementation

1 Introduction

Curry [11, 12] is a multi-paradigm declarative language aiming to integrate functional, logic, and
concurrent programming paradigms. Curry combines in a seamless way features from functional
programming (nested expressions, lazy evaluation, higher-order functions), logic programming (lo-
gical variables, partial data structures, built-in search), and concurrent programming (concurrent
evaluation of expressions with synchronization on logical variables). Moreover, Curry provides addi-
tional features in comparison to the pure languages (compared to functional programming: search,
computing with partial information; compared to logic programming: more efficient evaluation due
to the deterministic and demand-driven evaluation of functions). Moreover, it also amalgamates the
most important operational principles developed in the area of integrated functional logic languages:
“residuation” and “narrowing” (see [9] for a survey on functional logic programming).

Curry’s operational semantics is based on a single computation model, described in [11], which
combines lazy reduction of expressions with a possibly non-deterministic binding of free variables
occurring in expressions. Thus, purely functional programming, purely logic programming, and
concurrent (logic) programming are obtained as particular restrictions of this model. Moreover, due
to the use of an integrated functional logic language, one can choose the best of the two worlds in
application programs. For instance, input/output (implemented in logic languages by side effects)
can be handled with the monadic I/O concept [20] in a declarative way. Similarly, many other
impure features of Prolog (e.g., arithmetic, cut) can be avoided by the use of functions.

Beyond this computation model, Curry provides higher-order functions, a parametrically poly-
morphic type system, modules, monadic I/O, a connection to external functions, and primitives to
encapsulate non-deterministic computations (committed choice, encapsulated search). To provide
the full power of logic programming, (equational) constraints can be used in conditions of function
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definitions. Such basic constraints can be combined to more complex constraint structures by a
concurrent conjunction operator which evaluates them concurrently. The concurrent conjunction
of constraints is useful to reduce the search space with passive constraints or to model concurrent
objects as functions synchronizing on a stream of messages.

Since Curry is an amalgamation of functional and logic programming languages, it can also
serve as a common basis to unify research efforts and to boost declarative programming in general.
Actually, Curry has been successfully applied to teach functional and logic programming techniques
in a single course without switching between different programming languages [10].

In order to provide a portable implementation of Curry, we have developed an interpreter for
Curry in Java. Each function defined in a Curry program is translated into a Java class containing
instructions of an abstract machine for Curry programs.1 These instructions implement the pattern
matching and control flow of a Curry program. They are executed by a small interpreter implemented
in Java.

In this implementation we exploit the concurrent features of Java in two ways. Don’t know
non-deterministic computations (corresponding to search in logic programming) are implemented by
starting independent computation threads (this corresponds to OR-parallel implementations of logic
languages). The concurrent conjunction of constraints is implemented by starting two threads eval-
uating these constraints. Such a thread suspends if it requires the value of a currently unbound vari-
able (consumer of the variable), or if it tries to bind a variable to different values (non-deterministic
binding to compute potential solutions) while its corresponding twin thread is already active. The
latter case avoids the duplication of processes for don’t know non-deterministic computations which
is also known as stability from AKL [15]. This scheme implements coroutining features of current
Prolog systems [18] as well as features of concurrent constraint languages [22].

In the next section, we review the basic computation model of Curry. Its concurrent im-
plementation in Java is described in Section 3. Section 4 discusses some extensions of the basic
computation model, and Section 5 contains our conclusions.

2 The Computation Model of Curry

This section provides an informal introduction to the computation model of Curry. A formal defin-
ition can be found in [11, 12].

The basic computational domain of Curry is, similarly to functional or logic languages, a set
of data terms constructed from constants and data constructors. These are introduced through data
type declarations like2

data bool = true | false

data nat = z | s(nat)

data list(A) = [] | [A|list(A)]

true and false are the Boolean constants, z and s are the zero value and the successor function to

1A straightforward direct translation of defined functions into Java functions is not possible in
a simple way due to the potential non-deterministic evaluation of Curry expressions which we want
to implement concurrently (by Java threads) rather than sequentially as in Prolog. Thus, standard
techniques to translate (sequential) logic programs into procedures of imperative languages (e.g.,
[19]) cannot be applied here.

2In the following we use a Prolog-like syntax which is slightly different from the actual Curry
syntax.
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construct natural numbers,3 and polymorphic lists (A is a type variable ranging over all types) are
defined as in Prolog.

A data term is a well-formed expression containing variables, constants and data constructors,
e.g., s(s(z)), [true|Z] etc. Functions (or predicates in logic programming, but throughout this
paper we consider predicates as Boolean functions for the sake of simplicity) operate on data terms.
Their meaning is specified by equations (or rules) of the form l = r where l has the form f(t1, . . . , tn)
with f being a function, t1, . . . , tn data terms and each variable occurs only once (expressions of this
form are also called patterns), and r is a well-formed expression which may also contain function
calls. A conditional equation has the form l | {c} = r, where the condition c is a constraint consisting
of a conjunction of equations. A conditional equation can be applied if its condition is satisfiable.
A head normal form is a variable, a constant, or an expression of the form c(e1, . . . , en) where c is
a data constructor. A Curry program is a set of data type declarations and equations.

Example 1 Assume that the above data type declarations are given. Then the following rules
define the addition and the predicate “less than or equal to” for natural numbers:

add(z ,Y) = Y leq(z ,X ) = true

add(s(X),Y) = s(add(X,Y)) leq(s(X),z ) = false

leq(s(X),s(Y)) = leq(X,Y)

The following rules define the concatenation of lists and the last element of a list:

concat([] ,Ys) = Ys

concat([X|Xs],Ys) = [X|concat(Xs,Ys)]

last(Xs) | {concat(Ys,[X])=Xs} = X

If the equation concat(Ys,[X])=Xs is solvable, then X is the last element of the list Xs. ✷

From a functional point of view, we are interested in computing values of expressions, where a
value does not contain function symbols (i.e., it is a data term) and should be equivalent (w.r.t. the
program rules) to the initial expression. The value can be computed by applying rules from left to
right. For instance, we compute the value of add(s(s(z)),s(z)) by applying the rules for addition
to this expression:

add(s(s(z)),s(z)) → s(add(s(z),s(z))) → s(s(add(z,s(z)))) → s(s(s(z)))

The difficulty in computing such values is to find a normalizing strategy which selects a reducible
function call (“redex”) such that a value is always computed (provided that it exists). Since it is well
known that innermost reduction is not normalizing, Curry is based on a lazy (outermost) strategy.
This also allows the computation with infinite data structures and provides more modularity by
separating control aspects [13].

A subtle point in the definition of a lazy evaluation strategy in combination with pattern
matching is the selection of the “right” outermost redex. For instance, consider the rules of Example 1
together with the rule f = f. Then the expression leq(add(z,z),f) has two outermost redexes,
namely add(z,z) and f. If we select the first one, we compute the value true after one further
outermost reduction step. However, if we select the redex f, we run into an infinite reduction
sequence instead of computing the value. Thus, it is important to know which outermost redex
is selected. Since most lazy functional languages follow a left-to-right pattern-matching strategy

3Curry has also built-in integer values and arithmetic functions (see Section 3.3). We use here
the explicit definition of naturals only to provide some simple and self-contained examples.
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and choose the leftmost outermost redex, Curry follows the same approach.4 Thus, in order to
evaluate the expression leq(add(z,z),f), the first subterm add(z,z) must be evaluated to head
normal form (in this case: z) since its value is required by all rules defining leq (we also call such
an argument demanded). If the first subterm evaluates to an expression of the form s(·), then the
second subterm needs to be evaluated.

Sometimes there is no single argument in the rules’ left-hand sides demanded by all rules. In
particular, functions defined by rules with overlapping left-hand sides, like the “parallel-or”

true∨ X = true

X∨ true = true

false∨ false = false

have this property. For the expression e1 ∨ e2, it is not clear which subterm must be evaluated first.
Since our computation model must already include some kind of non-determinism in order to cover
logic programming languages, we non-deterministically evaluate the first or the second argument,
i.e., rules with overlapping left-hand sides cause don’t know non-deterministic computations similarly
to logic programming.

Up to now, we have only considered functional computations where ground expressions are
reduced to values. In logic languages, the initial expression (often an expression of Boolean type,
called a goal) may contain free variables. A logic programming system should find values for these
variables such that the goal is reducible to true. Fortunately, it requires only a slight extension of the
reduction strategy to cover non-ground expressions and variable instantiation: if the value of a free
variable is demanded by the left-hand sides of program rules in order to proceed the computation,
the variable is non-deterministically bound to the different demanded values. For instance, if the
function f is defined by the rules

f(a) = c

f(b) = d

(where a, b, c, d are constants), then the expression f(X) with the free variable X is evaluated to c or d
by binding X to a or b, respectively. In order to reflect not only the computed value (like in functional
programming) but also the different variable bindings (answers, like in logic programming), the
computational domain of Curry is a disjunction of answer/expression pairs. For instance, in the
previous example the evaluation of f(X) is reflected by the following (non-deterministic) computation
step:

f(X) → {X=a}c| {X=b}d

(Here | denotes a disjunction, {X=a} denotes a substitution (binding), and {X=a}c represents a
answer/expression pair.) A single computation step performs a reduction in exactly one unsolved
expression of a disjunction. This reduction may yield a single new expression (deterministic step)
or a disjunction of new expressions together with corresponding bindings (non-deterministic step).
For inductively sequential programs [1] (these are, roughly speaking, function definitions without
overlapping left-hand sides), this strategy, called needed narrowing [2], computes the shortest possible
successful derivations (if common subterms are shared) and a minimal set of solutions, and it is fully
deterministic if free variables do not occur.5

4Since the exact evaluation strategy of Curry is specified using definitional trees [1, 11], Curry
also supports more powerful evaluation strategies than current functional languages.

5These properties also shows some of the advantages of integrating functions into logic programs,
since similar properties for purely logic programs are not known.
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Note that Curry is not based on a backtracking strategy. Backtracking is one possible (but
unfair) implementation of disjunctions. However, the concrete evaluation order is not important for
the computed results, since Curry has no side effects. Because there is no need to ensure a sequential
backtracking semantics as in Prolog (e.g., unlike in the ACE parallel Prolog system [21]), we will
implement disjunctive computations by independent threads. However, this implementation issue is
less important than in Prolog since most parts of larger computations are purely deterministic due
to the use of functions in Curry.

Functional logic languages are often used to solve equations between expressions containing
defined functions. For instance, consider the function add defined in Example 1 and the equation
add(X,z)=s(z). This equation can be solved by evaluating the left-hand side add(X,z) to the
answer expression {X=s(z)}s(z) (here we omit the other alternatives in the disjunction). Since the
resulting equation is trivial, the equation is valid w.r.t. the computed answer {X=s(z)}. In general,
an equation or equational constraint e1=e2 is satisfied if both sides e1 and e2 are reducible to a
same data term. As a consequence, if both sides are undefined (non-terminating), then the equality
does not hold.6 Operationally, an equational constraint e1=e2 is solved by evaluating e1 and e2 to
unifiable data terms where the lazy evaluation of the expressions is interleaved with the binding of
variables to constructor terms [16]. Thus, an equational constraint e1=e2 without occurrences of
defined functions has the same meaning (unification) as in Prolog. The basic kernel of Curry only
provides equations e1=e2 between expressions as constraints. Since it is conceptually fairly easy to
add other constraint structures, future extensions of Curry will provide richer constraint systems
to support constraint logic programming applications. Note that constraints are solved when they
appear at the top level or in conditions of program rules (cf. Section 4) in order to apply this rule.

The use of functions together with lazy evaluation and demanded instantiation of free variables
can reduce the number of non-deterministic choices compared to pure logic programming. On the
other hand, it is also known that the guessing of free variables should not be applied to all functions
or predicates, since some of them (in particular, those defined on recursive data structures) may not
terminate if demanded arguments are unknown. Moreover, many logic languages provide flexible
selection rules (coroutining, i.e., concurrent computations based on the synchronization on free
variables). To support such features, Curry provides the suspension of function calls if a demanded
argument is not instantiated. Such functions are called rigid in contrast to flexible functions which
instantiate their arguments if it is necessary to proceed their evaluation. As a default in Curry (which
can be easily changed), non-Boolean functions are marked as rigid and predicates are marked as
flexible. Thus, pure logic programs behaves as in Prolog, and pure functional programs are executed
as in lazy functional languages like Haskell.

If function calls may suspend, we need a mechanism to specify concurrent computations. For
this purpose, constraints can be combined with the concurrent conjunction operator ∧. If c1 and
c2 are constraints, c1 ∧ c2 is a constraint which is evaluated by solving c1 and c2 concurrently. In a
sequential implementation, c1 ∧ c2 can be evaluated by an attempt to solve c1. If the evaluation of
c1 suspends, an evaluation step is applied to c2. If a variable responsible to the suspension of c1 was
bound during the last step, the left expression will be evaluated in the subsequent step. In this way
we obtain a concurrent behavior with an interleaving semantics. In our concurrent implementation,
we assign different threads to the evaluation of c1 and c2. These computation threads synchronize
on the bindings of common variables.

This fairly simple model for concurrent computations is able to cover applications of Prolog
systems with coroutining [18]. For instance, if gen is a predicate or constraint which instantiates its
argument with potential solutions (i.e., gen is flexible) and test checks whether the argument is a

6This notion of equality is also known as strict equality [7, 17] and is the only reasonable notion
of equality in the presence of non-terminating functions.
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correct solution (i.e., test is rigid), then a constraint like “test(X)∧gen(X)” specifies a “test-and-
generate” solution where the test is activated as soon as its argument is sufficiently instantiated.

It is also interesting to note that this model is able to cover recent developments in parallel
functional computation models like Eden [4] or Goffin [5]. For instance, a constraint of the form
“X=f(t1)∧Y=g(t2)∧Z=h(X,Y)” specifies a potentially concurrent computation of the functions f, g
and h where the function h can proceed its computation only if the arguments have been bound by
evaluating the expressions f(t1) and g(t2) (provided that h is rigid in all arguments).

The advantage of Curry’s computation model is the clear separation between sequential and
concurrent parts. Sequential computations, which could be considered as the basic units of a pro-
gram, could be expressed as usual functional (logic) programs, and they are composed to concurrent
computation units via concurrent conjunctions of constraints. Since constraints could be passed as
arguments or results of functions (like any other data object or function), it is possible to specify
general operators to create flexible communication architectures similarly to Goffin [5]. Thus, the
same abstraction facilities could be used for sequential as well as concurrent programming. On the
other hand, the clear separation between sequential and concurrent computations supports the use
of efficient and optimal evaluation strategies for the sequential parts, where similar techniques for
the concurrent parts are not available. This is in contrast to other, more fine-grained concurrent
computation models like AKL [15], CCP [22], or Oz [23].

3 Implementation of Curry Programs

In this section we sketch a Java-based implementation of an abstract machine for executing Curry
programs. We describe the implementation of data terms, defined functions, and the computational
model of Curry (variable bindings, non-determinism, concurrency).

The main motivation for using Java is to provide a portable implementation of Curry and its
concurrency features. Due to the use of Java, it is also evident that this implementation cannot
compete with other highly optimized implementations of Prolog. On the other hand, the use of Java
provides automatic memory management and support for concurrent programming which largely
simplifies the implementation task for Curry.

3.1 Representation of Data Terms and Functions

The run-time system of our implementation is completely written in Java [24]. This has influenced
some implementation choices, in particular, the run-time representation of constructors and func-
tions. Java is an object-oriented programming language where the compiler transforms source code
not into native machine code but into code (the bytecode) for the Java Virtual Machine (JVM), an
abstract machine dedicated to execute Java programs. The JVM code is independent of a particular
hardware. Therefore, a compiled Java program can run on different hardware architectures provided
that a JVM implementation is available on this hardware. The JVM interprets the compiled byte-
code and manages a heap where all objects constructed by the program reside. It is not necessary to
call a destructor for unused objects, since the memory of unused objects is automatically reclaimed
by the garbage collector of the JVM.

In order to simplify the implementation task, we use Java’s object system for the representation
of dynamically created data terms and expressions. Thus, expressions in Curry are represented as
Java objects in a straightforward way. Constructors and functions are instances of the classes
Constructor and Function, respectively. Every instance of this class represent an expression of
Curry, where the possible arguments of the expression are references from this instance to other
objects representing the arguments. Therefore, these classes have the following structure (Term is a
superclass of both Constructor and Function):
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class Constructor extends Term {
private ConsDesc cd ; // infos about name and type

Term [] args ; // reference to arguments

...

}

abstract class Function extends Term {
...

Term [] args ; // reference to arguments

static Command code[] ;

}

In the following, we will show the principles of our implementation by discussing the implementation
of the simple function add of Example 1. For instance, a data term like s(z) is represented by two
instances of the class Constructor where the instance for the constructor s refers to the instance
representing z.

Function calls are represented as instances of a subclass of Function. Each function object has
a component code containing the instruction sequence to be executed if this function call must be
evaluated (due to the static declaration, the code is represented only once for all instances). Thus,
the Curry compiler translates each function definition into a definition of a subclass of Function. For
instance, the function add is translated into the class Function_addwhich contains in the component
code the corresponding instructions for an abstract Curry machine, which will be described below.

The creation of instances of these classes is performed by the Curry run-time system. As an
example, consider that the user enters the expression “add(s(z),z)” to be evaluated. Then the
run-time system performs the following operations:

1. It searches for the class Function_add and loads it into memory (loading of classes during
run-time is supported by the JVM).

2. An instance of the class is created that represents the initial expression. This instance refers
to representations of the actual arguments s(z) and z which are also created as instances of
the class Constructor.

3. The abstract Curry machine is started. Since the entered goal is the function add, the machine
starts the execution of the code stored in the class Function_add.

Now we discuss more details of the code instructions. The operational model of Curry requires that
the code of the function add should do something like this:

if <1st argument is a function>

<evaluate the function (to head normal form)>

if <1st argument is a constructor c>

switch on c:

case ’z’:

<return argument 2 as result>

case ’s’:

T = <first argument of this constructor ’s’>

<return the expression ’s(add(T,argument 2))’ as result>

Note that the lazy evaluation of expressions requires the creation of new, partially evaluated expres-
sions. Thus, the abstract Curry machine must be able to execute instructions
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• to test the type of arguments (function or constructor),

• to construct new expressions (the right-hand sides of rules), and

• to change the execution path (e.g., call functions and return results).

To perform these tasks, the machine has the following registers and data areas:

• Argument registers that holds the actual arguments of a function call.

• Some auxiliary registers for pattern matching, i.e., to get access to the arguments of constructor
terms (see “T” in the pseudo code above).

• A result register containing the result of a function call.

• A program counter pointing to the next instruction.

• A small stack for the construction of expressions.

• A call stack to store the actual machine state when a function is called.

Single commands are represented by instances of classes that are derived from the abstract class
Command:

abstract class Command {
abstract void execute(...) ;

}

Thus, a command is executed by calling its execute-method. A machine program (i.e., a sequence
of commands) is implemented as an array of Command-objects (stored in the component code of
functions). The complete code of the function add looks like this:

public class Function_add extends Function {
...

private static final Command code[]={
// Argument 1 is in register 0, Argument 2 in register 1

new CmdSwitchOnType(0,11), // register 0 is function -> line 11

// code for case ’isConstructor’

new CmdSwitchOnCons(0,{2,4}), // Constructor: z -> line 2, s -> line 4

// code for rule 1, line 2:

new CmdPushReg(1),

new CmdReturn(), // return register 1 as result

// code for rule 2, line 4:

new CmdLoadArgs(0),

new CmdLoadReg(0,0), // get argument of constructor: s(X) -> X

new CmdPushReg(0),

new CmdPushReg(1),

new CmdPushFunc("add",2),

new CmdPushCons("s",1),

new CmdReturn(), // return s(add(X,Y)) as result

// code for case ’isFunction’, line 11:

new CmdCall(0,2), // execute function call in register 0

new CmdGetResult(0),

new CmdJump(0) // and try again
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};

}

This is only a brief description of the abstract machine. The current implementation additionally
performs some optimizations (e.g., right-hand sides of rules which do not contain control transfer
instructions are directly compiled into Java code in order to avoid the stepwise execution of the
command sequence).

In this section we have described only the implementation of the purely functional part of
Curry. However, Curry also inherits from logic programming free variables and non-determinism.
The implementation of these features are sketched in the following section.

3.2 Free Variables and Disjunctive Computations

Since Curry subsumes purely logic languages, we have to implement free variables and their (non-
deterministic) bindings. Free variables may be bound by pattern matching or by unification of an
equational constraint. We describe only the binding by pattern matching, since the unification of
data terms can be similarly implemented (iterative pattern matching). The main problem to bind
a free variable by pattern matching is caused by the fact that a variable may be bound to different
constructors leading to alternative solutions. We implement such non-deterministic bindings by
starting several abstract Curry machines which evaluate the expressions with the different bindings
of the variable.

Example 2 Consider the rules for add of Example 1 and the evaluation of the expression add(Y,z).
Since Y must be bound to z or s(X) (where X is a new free variable) to proceed the evaluation, we
create two machines for the further evaluation: one machine works with the binding {Y=z} and the
other with {Y=s(X)}. ✷

The run-time system of our implementation uses threads to implement different abstract machines.
Each machine needs a data structure that stores the bindings initiated by the machine (see [8] for
an overview of different implementation methods). Our current implementation is based on binding
arrays: every variable has a unique number that is interpreted as an index in an array of expressions.
This array (the binding array) contains the expressions the variables are bound to. Thus, variables
are represented as instances of the class Variable containing the index in the binding array:

class Variable {

int index ;

...

}

The binding array method guarantees constant variable access but results in a non-constant machine
creation time: in fact it is linear in the number of used logical variables. In contrast to logic
programming, this is not a problem in a functional logic language: free variables do not occur so
often in application programs compared to logic programs, since they are not necessary for passing
intermediate values due to the use of nested expressions. Moreover, the larger part of Curry programs
are purely functional computations which do not need free variables and non-deterministic bindings
at all.

In order to extend the code for the add example of the previous section to include the possible
binding of free variables, we replace the first command (SwitchOnType) by the instruction

SwitchOnType(0,11,14) // register 0: function -> line 11, variable -> 14
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Thus, the command SwitchOnType(n,l1,l2) inspects the contents of argument register n and jumps
to line l1, if it is a function call, and to line l2, if it is a free variable. Otherwise, it proceeds with
the next instruction.

Furthermore, we append the following code sequence (case ’isVariable’) at the end of
the previous code for add (here we show the generated code instead of the creation commands
“new Cmd...”):

// handling of free variable as first argument (this is line 14)

NewMachine(18), // start a copy of this machine at line 18

// choice 1:

PushCons("z",0),

SimpleBind(0), // bind register 0 to ’z’

Jump(2),

// choice 2 (this is line 18)

PushVar(), // create new variable X

PushCons("s",1),

SimpleBind(0), // bind register 0 to ’s(X)’

Jump(4)

If the first argument of a call to add is a free variable, the current computation thread is duplicated.
One thread binds the free variable to the constructor z and proceeds with the first rule, while the
other thread binds the variable to s(X) (where X is a newly created variable) and proceeds with the
second rule.

3.3 Concurrent Execution of Constraints

As introduced in Section 2, Curry also supports the suspension of function evaluations that are
not sufficiently instantiated. As known from logic programming with coroutining [18], this feature
is quite useful to avoid an unrestricted generation of infinite solution sets and also supports a
concurrent programming style like in concurrent constraint/logic programming languages. Moreover,
the suspension of function calls is also essential to connect external functions in a clean way [3]. For
instance, the integer numbers can be considered as an infinite set of constants where the addition
on integers is conceptually defined by an infinite set of rules:

0+0 = 0

0+1 = 1

...

2+3 = 5

...

These rules are not explicitly available in the program but this addition is implemented by some
external operation. Therefore, an addition with unknown values, like X+3=Y must be delayed until
the arguments are known. Since Curry supports the concurrent execution of constraints by the
concurrent conjunction operator ∧, a goal like “X+3=Y ∧ X=2*3” is executed by suspending the first
constraint, evaluating the second constraint which binds X to 6, and activating the first constraint
which evaluates 6+3 and binds Y to 9.

It is reasonable to implement the concurrent conjunction of constraints by different threads
in Java, where the threads evaluate different constraints. The synchronization of these threads is
organized through the binding of common variables. This has the consequence that the run-time
system must start new evaluation machines not only for OR-parallel computations but also for
AND-parallel computations.
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To implement this feature, our previous concept of a strong connection between a machine and
the expression/goal to be evaluated must be replaced by a new data structure. This structure (the
so-called computation structure) contains—apart from the binding array that is now shared by all
AND-parallel machines—the AND-tree representing the structure of concurrent conjunctions. This
tree organizes the AND-parallel evaluation of a goal:

• The leaves represent working machines evaluating a constraint.

• An evaluation of a concurrent conjunction c1 ∧ c2 replaces the calling leaf (i.e., the machine
which attempts to evaluate this constraint) by an AND-node with two sons that represent the
constraints c1 and c2, respectively.

• If the two sons of an AND-node terminate successfully (i.e., the constraints are solved), this
AND-node is replaced by a leaf which continues the evaluation thread containing this conjunc-
tion.

• A failure of one leaf results in a failure of the entire computation structure, since the entire
constraint is unsolvable.

• The computation structure terminates successfully only if all leaves have terminated success-
fully.

Since function calls may suspend if free variables are passed as arguments (e.g., X+3), an AND-tree
may contain two types of leaves:

1. Active leaves represent running machines.

2. Suspended leaves represent machines that are waiting on a variable binding in order to proceed
their computation. Since this binding can only be done by an active leaf, the lack of any active
machine in the tree will cause a failure of the entire computation structure.

Since the binding array for variables is shared by all machines of the computation structure, it is
fairly simple to organize the access to a variable in a synchronized way, which is supported in Java
by the monitor concept. Only one machine at a time can access and bind the value of a variable
shared by the computation structure. A problem occurs if one thread wants to bind a variable
to different values (OR-parallelism). The two extreme solutions to this problem are the complete
copying of the entire computation structure (which corresponds to full OR-parallelism) or to forbid
the non-deterministic binding inside concurrent computations. We prefer a middle course and adopt
a solution which is also known as stability from AKL [15]:

• Leaves which want to bind a variable deterministically are allowed to do it immediately.

• Non-deterministic binding will cause the leaf to suspend. This leaf can only be reactivated

– if there is no other active leaf, or

– if another active leaf has bound the variable.

This can avoid unnecessary duplications of active threads and prefers deterministic parts of the
computation, similarly to the Andorra computation model [14]. If all leaves in a computation
structure are suspended but there are several leaves waiting to bind a variable non-deterministically,
then only one of them (e.g., the leaf corresponding to the leftmost constraint) is reactivated.

A small example helps to see how this works. Our program consists of one predicate (i.e., a
function that returns a Boolean value):
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digit(0) = true

...

digit(9) = true

This (flexible) function acts in goals like

X+X=Y ∧ X*X=Y ∧ digit(X)=true

as a generator for values of X. The bindings produced by this generator are consumed by the (rigid)
arithmetic functions + and *:

1. When the goal is started, a computation structure with three leaves for the constraints X+X=Y,
X*X=Y and digit(X)=true is created.

2. If the machine evaluating digit(X) attempts to bind X in a non-deterministic way, it suspends
as long as there are other active leaves.

3. The evaluations of the functions + and * suspend since all arguments are uninstantiated.

4. Now all consumers are suspended. This permits the machine for digit(X) to create bindings
for the variable X.

5. The leaves which represent the consumers receive a message that the variable has been bound.
This cause the reactivation of the machines.

Note that the entire computation structure must be copied before reactivating the machines in case
of a non-deterministic binding.

3.4 Global Synchronization

The user interface of the run-time system consists of a main thread waiting for user-input. When
an expression or goal has been entered, the main thread creates a new computation structure for
this expression (containing initially only one leaf) and starts its execution.

A terminating computation structure sends a message to the main thread. This message may
include a solution for the goal or simply signals a failed computation. In the former case, the main
thread writes the solution on the terminal and re-enters into the message-loop, ready to receive
further messages.

Note that—unlike the backtracking mechanism of Prolog—an infinite computation can not
inhibit the output of other solutions, since the OR-parallel computation paths are executed as
independent threads.

4 Extensions of the Basic Computation Model

Higher-order functions has been shown to be very useful to structure programs and write reusable
software [13]. Although the computation model described so far includes only first-order functions,
higher-order features can be implemented by providing a (first-order) definition of the application
function (as shown by Warren [25] for logic programming). Curry supports the higher-order fea-
tures of current functional languages (partial function applications, lambda abstractions) by this
technique, where the rules for the application function are implicitly defined. In particular, function
application is rigid in the first argument, i.e., an application is delayed until the function to be
applied is known (this avoids the expensive and operationally complex synthesis of functions by
higher-order unification).
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To recognize partially applied functions, every function call (i.e., instance of a subclass of
Function) stores the arity of the function and the number of arguments currently bound to the
function object. If a partial function call (i.e., an object whose number of arguments is less than
its arity) is applied to an argument, it simply adds the new argument to the function object and
increments the argument counter.7

Conditional rules, in particular with extra variables (i.e., variables not occurring in the left-
hand side) in conditions, are one of the essential features to provide the full power of logic program-
ming. Our implementation can be easily extended to conditional rules following the approach taken
in Babel [17]: consider a conditional rule “l | {c} = r” (the condition c is a constraint) as syntactic
sugar for the rule l = (c ⇒ r), where the right-hand side is a guarded expression. The operational
meaning of a guarded expression “c ⇒ r” is defined by the predefined rule

({} ⇒ x) = x .

Thus, a guarded expression is evaluated by an attempt to solve the constraint. If this is successful
(i.e., leads to the empty constraint {}), the guarded expression is replaced by the right-hand side r

of the conditional rule.

5 Conclusions and Results

We have presented the structure of a first implementation of the multi-paradigm language Curry
in Java. Since Curry contains features from functional, logic, and concurrent programming, the
implementation also reflects them: functional computations are implemented by an elementary
stack-based machine, and the concurrent features of Java are exploited to implement the logic (OR-
parallelism) and concurrent (AND-parallelism) elements of Curry.

The fact that Curry does not depend on a backtracking semantics like Prolog (since Curry
has no side effects) has simplified the structure of the implementation. The user does not need
to take any precautions when he want to use parallelism in his program. The explicit no-
tion of a concurrent conjunction results in a transparent AND-OR-parallelism that can be con-
trolled with the high-level concept of constraints. For example, the evaluation of a goal like
“generate(X)∧test(X)” does not show any difference—neither in result nor in execution time—
to the evaluation of “test(X)∧generate(X)”. Concerning this, the implementation is comparable
with the Andorra model [14].

Since the run-time system of our implementation is written in Java, its speed is highly depend-
ent on the efficiency of the JVM. First results of our implementation indicate that our implement-
ation is much slower than highly optimized implementations of Prolog. This is not due to the use
of threads to implement AND/OR-parallelism, but it is caused by the fact that the JVM performs
many run-time checks to ensure a reliable execution of Java programs. For instance, the (completely
deterministic) execution of the classical “naive reverse” benchmark (note that it is executed by
Curry in a (more costly) lazy manner in contrast to Prolog) is performed with approximately 10000
LIPS (“Logical Inferences Per Second”, where a logical inference is here a reduction step with an
equation) on a Pentium 100MHz-system. The use of an intermediate abstract machine in our im-
plementation causes only a limited overhead. A direct translation of the functions occurring in the
naive reverse example into Java procedures, which is possible due to absence of non-deterministic
choices in this example, yields an efficiency improvement with a factor around 2. We have also tested
the behavior of generating threads to implement the non-deterministic search (OR-parallelism). For
this purpose, we executed a highly non-deterministic program (a map coloring problem with 47

7Note that the machine has to make a copy of the function object because it may be shared with
other OR-parallel computation structures.
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solutions) with our system. To compute all solutions for this problem, our implementation created
124 threads during an execution time of 2.2 seconds.

Since Java is relatively new and Java compilers (in particular Just-in-Time-compilers) are not
comparable to highly developed compilers like GNU-C, we can expect further efficiency improve-
ments in the future. On the other hand, a good efficiency was not the main motivation to use
Java. The concurrency features of Java together with its automatic memory management simplified
our implementation. Moreover, the use of objects to represent data structures supports an easy
connection of Curry and external functions directly implemented in Java.

The use of Java as an implementation language has—in spite of its efficiency—also other
advantages: the ability of the JVM to load classes during run time allows the user to hold only those
functions in memory that are actually needed (this feature has also been used by other projects like
the Prolog-to-Java-compiler JProlog [6]). And last but not least: since the Java-compiler produces
bytecode for the JVM, the entire Curry run-time system is portable to other platforms: any computer
with an installed JVM (e.g., a WWW-browser) is able to run an application written in Curry without
recompilation of the source files.

Future extensions of this implementation will include methods to restrict and control the non-
determinism by a committed choice and the encapsulation of search. Furthermore, we will investigate
program analysis methods to detect deterministic subcomputations and to transform lazy into eager
evaluation. This would provide a method to translate parts of a Curry program directly into Java
code which avoids the indirect execution by our abstract Curry machine.
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[17] J.J. Moreno-Navarro and M. Rodŕıguez-Artalejo. Logic programming with functions and pre-
dicates: The language BABEL. Journal of Logic Programming, 12:191–223, 1992.

[18] L. Naish. Negation and Control in Prolog. Springer LNCS 238, 1987.

[19] J.F. Nilsson. On the compilation of a domain-based Prolog. In Proc. IFIP’83, pages 293–298.
Elsevier Science Publishers, 1983.

[20] S.L. Peyton Jones and P. Wadler. Imperative functional programming. In Proc. 20th Symposium
on Principles of Programming Languages (POPL’93), pages 71–84, 1993.

[21] E. Pontelli and G. Gupta. Implementation mechanisms for dependent and-parallelism. In Proc.
of the Fourteenth International Conference on Logic Programming (ICLP’97), pages 123–137.
MIT Press, 1997.

[22] V.A. Saraswat. Concurrent Constraint Programming. MIT Press, 1993.

[23] G. Smolka. The Oz programming model. In J. van Leeuwen, editor, Computer Science Today:
Recent Trends and Developments, pages 324–343. Springer LNCS 1000, 1995.

[24] Sun Microsystems. Java documentation. Available at http://java.sun.com/docs/, 1997.

[25] D.H.D. Warren. Higher-order extensions to Prolog: are they needed? In Machine Intelligence
10, pages 441–454, 1982.


