
Curry: A Truly Funtional Logi Language

Mihael Hanus Herbert Kuhen

RWTH Aahen

�

Juan Jos�e Moreno-Navarro

Universidad Polit�enia Madrid

y

In Pro. ILPS'95 Workshop on Visions for the Future of Logi Programming,

Portland (USA), Deember 1995, pp. 95{107

Abstrat

Funtional and logi programming are the most important delarative programming

paradigms, and interest in ombining them has grown over the last deade. However,

integrated funtional logi languages are urrently not widely used. This is due to the

fat that the operational priniples are not well understood and many di�erent evalu-

ation strategies have been proposed whih resulted in many di�erent funtional logi

languages. To overome this situation, we propose the funtional logi language Curry

whih is intended to beome a standard language in this area. It inludes important

ideas of existing funtional logi languages and reent developments, and ombines the

most important features of funtional and logi languages. Thus, Curry an be the basis

to ombine the urrently separated researh e�orts of the funtional and logi program-

ming ommunities and to boost delarative programming in general. Moreover, sine

funtions provide for more eÆient evaluation strategies and are a delarative replae-

ment of some impure features of Prolog (in partiular, pruning operators), Curry an

be also used as a delarative suessor of Prolog.

1 Motivation

During the last deade, many proposals have been made to ombine the most important delar-

ative programming paradigms (see [15℄ for a survey). Funtional logi languages o�er features

from funtional programming (redution of nested expressions, higher-order funtions) and logi

programming (logial variables, partial data strutures, searh for solutions). Compared to pure

funtional languages, funtional logi languages have more expressive power due to the use of log-

ial variables and built-in searh mehanisms. Compared to pure logi languages, funtional logi

languages have more eÆient evaluation mehanisms due to the (deterministi!) redution of fun-

tional expressions (see [8, 13, 17℄ for disussions about the eÆieny improvements of funtional

logi languages in omparison to Prolog). Thus, impure features of Prolog to restrit the searh

spae, like the ut operator, an be avoided in funtional logi languages. However, there is no

obvious way to ombine the searh failities of logi programming with eÆient evaluation prini-

ples of funtional programming. Funtional approahes (i.e., (lazy) lists of suesses [39℄) require a

direted data ow and do not allow partially instantiated data strutures. Approahes whih allow

an arbitrary data ow have a tradeo� between ompleteness and eÆieny (see disussion below

on residuation and narrowing). As a onsequene, quite di�erent methods to integrate funtional

and logi languages have been proposed in the past. The most promising operational priniples are

residuation and narrowing.

�

Informatik II, RWTH Aahen, D-52056 Aahen, Germany, fhanus,herbertg�informatik.rwth-aahen.de

y

Departamento LSIIS, Faultad de Inform�atia, Boadilla del Monte, 28660 Madrid, Spain, jjmoreno�fi.upm.es

1

Residuation is based on the idea to delay funtion alls until they are ready for deterministi

evaluation. The residuation priniple is used, for instane, in the languages Esher [22, 23℄, Le Fun

[2℄, Life [1℄, NUE-Prolog [32℄, and Oz [38℄. Sine the residuation priniple evaluates funtion alls

by deterministi redution steps, nondeterministi searh must be expliitly enoded by prediates

[1, 2, 32℄ or disjuntions [37℄. The residuation priniple is a reasonable integration of the funtional

and the logi paradigm sine it ombines the deterministi redution of funtions with partial data

strutures (logial variables). Moreover, it allows onurrent omputation with synhronization on

logial variables. However, it has also two disadvantages. Firstly, it is inomplete, i.e., it is unable to

ompute solutions if arguments of funtions are not suÆiently instantiated during the omputation.

Seondly, it is not lear whether this strategy is better than Prolog's resolution strategy sine there

are examples where residuation has an in�nite searh spae whereas the equivalent (attened)

Prolog program has a �nite searh spae [16℄.

Funtional logi languages with a omplete operational semantis, e.g., ALF [12℄, Babel [28℄,

K-Leaf [9℄, LPG [6℄, SLOG [8℄, are mainly based on narrowing, a ombination of the redution

priniple of funtional languages with uni�ation for parameter passing. Narrowing provides om-

pleteness in the sense of funtional programming (normal forms are omputed if they exist) as

well as logi programming (solutions are omputed if they exist). However, in order to ompete

with Prolog's resolution strategy, sophistiated narrowing strategies are required. Innermost or

eager narrowing is equivalent to Prolog's left-to-right strategy if funtion alls are attened into

prediates. However, nested funtional expressions allow the appliation of deterministi redution

steps between nondeterministi narrowing steps. Sine suh normalizing narrowing strategies an

largely redue the searh spae in omparison to pure logi programs, they form the basis of lan-

guages like ALF [12℄, LPG [6℄, or SLOG [8℄. Sine many modern funtional languages are based on

lazy evaluation, most reent work has onentrated on lazy narrowing strategies [7, 9, 26, 28, 36℄.

Similarly to lazy evaluation in funtional languages, lazy narrowing evaluates an inner term only

when its value is demanded to narrow an outer term. Thus, lazy narrowing avoids unneessary

omputations of inner subterms and supports typial funtional programming tehniques like in-

�nite data strutures. In ontrast to funtional languages, a naive version of lazy narrowing may

evaluate the same argument several times and may run into in�nite loops (in ontrast to eager

narrowing!) due to the nondeterministi hoie of a funtion's rewrite rules. Therefore, several

methods have been proposed aiming at evaluating arguments ommonly demanded by all rules

before the nondeterministi hoie [5, 11, 24, 27℄. Among these di�erent lazy narrowing strategies,

there is one, alled needed narrowing [5℄, whih is optimal w.r.t. the length of derivations and the

number of omputed solutions. This learly shows the advantages of integrating funtions into

logi programs: by transferring results from funtional programming to logi programming, we

obtain better and, for partiular lasses of programs, optimal evaluation strategies without loosing

the searh failities. De�ning funtions is not a burden to the programmer sine most prediates

of appliation programs are funtions. Moreover, the knowledge about funtional dependenies

an avoid useless omputations (of arguments whih are not needed) and inrease the number of

deterministi evaluation steps.

Improving the evaluation strategy is also a topi in logi programming [33℄. However, most of

the proposals are ad ho (\ut") or do not exploit the full power of deterministi evaluations (An-

dorra model).

1

Therefore, funtional logi languages improve logi languages by avoiding impure

ontrol features. Hene, funtions are a delarative notion to improve ontrol in logi programming.

Moreover, they provide for useful funtional programming tehniques and lead to learer programs.

1

The Andorra omputation model [18℄ prefers the evaluation of literals where at most one lause is appliable. In

ase of lauses with overlapping left-hand sides, there may be several lauses appliable leading to the same result.

The possible pruning of the omputation spae in these ases is not overed by the Andorra model.

2

The urrently existing funtional logi languages over only partiular aspets of known results

in this area and modern funtional and logi languages in general. Therefore, the main motivation

for Curry is to provide an integrated funtional logi programming language whih overs all im-

portant aspets of modern funtional as well as logi languages. It should ombine the best ideas

of existing delarative languages, inluding

1. Haskell [20℄ and SML [25℄ (funtional languages)

2. G�odel [19℄ and �Prolog [30℄ (logi languages)

3. ALF [12℄, Babel [28℄, and Esher [22, 23℄ (funtional logi languages)

Curry does not subsume eah of these language but ombines important aspets of them in a pra-

tial and omprehensive way. In the following, we will desribe the funtional logi language Curry

whih is based on the ideas desribed above. In the next setion we will outline the operational

semantis. In Setion 3 we sketh the other important features of the language.

2 Operational Semantis

As disussed in the previous setion, there is no lear view about the best operational semantis of

funtional logi languages. Residuation allows the eÆient deterministi evaluation of funtion alls

and provides for onurrent programming tehniques, whereas narrowing is the basis of a omplete

and, for indutively sequential programs [5℄, optimal evaluation strategy but requires the imple-

mentation of searh features. Although searh an be ostly and problemati in onjuntion with

I/O operations, it is one of the important extensions of pure funtional programming. Therefore,

Curry is based on a ombination of narrowing and residuation. If the user does not speify any

evaluation strategy, Curry hooses a strategy whih is omplete in the sense of funtional and logi

programming:

1. If there exists a solution to a goal, this solution (or a more general one) is omputed.

2

2. If an expression is reduible to some value (data term), Curry omputes this value.

3

In order to satisfy these requirements, Curry applies a sophistiated lazy narrowing strategy [5,

14, 24, 27℄. However, if the programmer prefers another strategy, he an annotate funtions with

evaluation restritions.

4

These evaluation restritions speify that a funtion will not be evaluated

until the arguments have a partiular form. For instane, onsider the onatenation on lists de�ned

by

5

funtion append: [A℄ -> [A℄ -> [A℄

append [℄ L = L

2

In order to implement Curry eÆiently on sequential arhitetures, Curry implements searh by baktraking

whih may ause inompleteness in the Prolog sense. However, the user is free to hoose a breadth-�rst searh

strategy by partiular searh operators (see below).

3

Ground terms based on funtions de�ned by unonditional rewrite rules are evaluated in a fully deterministi

way. However, if funtions are de�ned by onditional rules with extra variables in onditions, some searh may be

neessary in order to apply suh redution rules. In this ase, ompleteness depends on the ompleteness of the searh

strategy.

4

Evaluation restritions are omparable to oroutining delarations [31℄ in Prolog where the programmer spei�es

onditions under whih a literal is ready for a resolution step. Moreover, they desribe the strategy to evaluate

di�erent and nested arguments.

5

The list notation is similar to Prolog. The type [A℄ denotes all lists with elements of type A.

3

append [E|R℄ L = [E | append R L℄

Without any evaluation restritions, Curry omputes the answer L=[1,2℄ to the goal equation

append L [3,4℄ == [1,2,3,4℄ by narrowing. However, if the evaluation restrition

eval append 1:rigid

is added, an append all is only redued if the �rst argument is not headed by a de�ned funtion

symbol and di�erent from a logial variable,

6

otherwise the all is delayed. Suh evaluation restri-

tions are impliit in Le Fun [2℄ and Life [1℄, expliit in Esher [22, 23℄, and automatially generated

in NUE-Prolog [32℄. Using evaluation restritions, the programmer an speify any evaluation strat-

egy between lazy narrowing and residuation. In this ase the programmer is responsible to ensure

that solutions an be omputed even with the restrited evaluation strategy. On the other hand,

there are program analysis methods whih provide suÆient riteria to ensure the ompleteness of

residuation [16℄.

In ontrast to logi programming, funtional logi programs ontain nested funtion alls. Fur-

thermore, the evaluation of some arguments is neessary only if some other arguments are evaluated

to partiular values. This is demonstrated by the following de�nition of the less-or-equal prediate

on natural numbers represented by terms built from 0 and s:

funtion leq: nat -> nat -> bool

leq 0 N = true

leq (s M) 0 = false

leq (s M) (s N) = leq M N

Consider a funtion all like (leq e

1

e

2

). In order to apply some redution rule, the �rst argument

e

1

must always be evaluated to head-normal form (i.e., to a term without a de�ned funtion symbol

at the top). However, the seond argument must be evaluated only if the �rst argument has the

form (s e).

7

This dependeny between the �rst and the seond argument an be expressed by the

evaluation restrition

eval leq 1:(s => 2)

whih spei�es that the �rst argument is evaluated at the beginning and the seond argument is

only evaluated if the �rst argument has the onstrutor s at the top. In the general ase, we an

also speify deeper positions in arguments and nondeterministi seletion of arguments in ase of

overlapping rules. Thus, evaluation restritions uses de�nitional trees [4℄ and its generalizations

[17, 24℄ whih have been shown useful to speify sophistiated evaluation strategies for funtional

logi programs. Moreover, they an be mixed with information to speify that rules should not

be applied if there is a logial variable at some argument position. For instane, the evaluation

restrition

eval leq 1:rigid(s => 2:rigid)

spei�es the obvious residuation strategy for leq.

In order to support eager evaluation strategies where arguments are redued to normal form

instead of head normal form, we also permit the annotation nf (similar to rigid). One possibility

is to generate suh annotations automatially by a \demandedness" analyzer.

8

Other reasonable

extensions of evaluation restritions are yli patterns to speify re�ned evaluation strategies [27℄.

6

For arguments of funtional type, rigid also requires that it is not of the form F e

1

...e

n

, i.e., a (partial)

appliation of an unknown funtion.

7

Naive lazy narrowing strategies may also evaluate the seond argument in any ase. However, as shown in [5℄,

the onsideration of dependenies between arguments is essential to obtain optimal evaluation strategies.

8

In ontrast to funtional languages, stritness is not suÆient to safely replae lazy by (more eÆient) eager

evaluation in funtional logi languages.

4

The general form of evaluation restritions is de�ned in Appendix A.

3 Language Features

In this setion we disuss various features of Curry.

3.1 Type System

Modern funtional languages (e.g., Haskell [20℄, SML [25℄) allow the detetion of many programming

errors at ompile time by the use of polymorphi type systems. Similar type systems are also used

in modern logi languages (e.g., G�odel [19℄, �Prolog [30℄). Curry has a polymorphi type system

similar to Haskell, inluding type lasses. Sine Curry is a higher-order language, funtion types

are written in their urried form �

1

-> �

2

-> � � � -> �

n

-> � where � is not a funtional type. In

this ase, n is alled the arity of the funtion.

Curry distinguishes between funtions to onstrut data types, alled onstrutors, and de�ned

funtions operating on these data types. Construtors are introdued by data type delarations like

datatype bool = true | false

datatype nat = 0 | s nat

datatype tree A = leaf A | node (tree A) A (tree A)

The extension of this type system to Haskell's type lasses is a topi for future work.

3.2 Funtion Delarations

Funtions are de�ned by a type delaration of the form

funtion f:�

1

-> �

2

-> � � � -> �

n

-> �

where �

1

; : : : ; �

n

; � are polymorphi types and � is not a funtional type, followed by onditional

equations of the form

f t

1

: : : t

n

= t <= C

where the onditional part \<= C" an be omitted. The left-hand side onsists of the funtion

symbol applied to a sequene of n patterns (i.e. variables or (full) appliations of onstrutors to

patterns). Note that de�ning rules of higher-type, e.g., f = g if f and g are of type nat -> nat,

are exluded sine this would ause a gap between the standard notion of higher-order rewriting

and the orresponding equational theory [34℄. Therefore, an equation f = g between funtions is

interpreted in Curry as syntati sugar for the orresponding equation f X = g X on base types.

The ondition C (also sometimes alled a goal) is a onjuntion of Boolean expressions and

strit equations of the form l==r. A strit equation is provable if the left- and right-hand side are

reduible to uni�able onstrutor terms.

9

Note that strit equality is the only sensible notion of

equality in the presene of nonterminating funtions [9, 28℄. A Boolean expression is built from

Boolean funtions, prede�ned Boolean operators like \," (and), \;" (or) and not[28℄. not hanges

true to false and vie versa; it is not handled by �nite failure.

In order to ensure the well-de�nedness and determinism of a funtion spei�ed by several equa-

tions, additional non-ambiguity requirements are neessary (see [28℄ for details). In ontrast to

funtional languages, we allow extra variables in the onditions, i.e., variables whih do not our

9

In the theoretial setting, a strit equation is provable only if both sides are reduible to the same ground on-

strutor term. Sine goal variables are only instantiated to onstrutor terms, we an delay the ground instantiation

of variables by unifying both sides whih permits to deal with partial data strutures as in Prolog (see [10, 24℄ for a

more detailed disussion on this subjet).

5

in the left-hand side. These extra variables provide the power of logi programming sine a searh

for appropriate values is neessary in order to apply a onditional rule with extra variables.

Note that Curry has no speial notation for prediates sine they an be de�ned as Boolean

funtions. Fats and rules are represented by the de�ning equations

p t

1

: : : t

n

= true

p t

1

: : : t

n

= true <= p

1

s

11

: : : s

1n

1

,..., p

k

s

k1

: : : s

kn

k

The funtional notation of prediates provides for more deterministi evaluations than the relational

form.

3.3 Higher-order Features

Curry is a higher-order language supporting the ommon funtional programming tehniques by

partial funtion appliations and lambda abstrations. For instane, the well-known map funtion

is de�ned in Curry by

funtion map: (A -> B) -> [A℄ -> [B℄

map F [℄ = [℄

map F [E|L℄ = [(F E)|map F L℄

However, there is an important di�erene to funtional programming. Sine Curry is also a logi

language, it allows logial variables also for funtional values, i.e., it is possible to evaluate the

goal equation map F [1 2℄ == [2 3℄ whih has, for instane, a solution F=in if in is the inre-

ment funtion on natural numbers. There are di�erent proposals to deal with higher-order logial

variables. In general, higher-order uni�ation is neessary to ompute all solutions to suh goals

[30, 35℄. If logial variables at funtion positions are quanti�ed over all (partial appliations of)

de�ned funtions instead of all lambda expressions, higher-order uni�ation an be avoided and

replaed by an enumeration of all (type-onform) funtion symbols [10, 40℄. A third alternative is

to delay the appliation of unknown funtions until the funtion beomes known [2, 38℄. This last

alternative an be implemented by residuation using the following speial apply funtion:

funtion applyIfKnown: (A -> B) -> A -> B

eval applyIfKnown 1:rigid

applyIfKnown F A = (F A)

Thus, Curry supports only the �rst and seond alternative. Curry provides a restrited form of

higher-order uni�ation (sine the left-hand sides of funtion de�nitions are required to be patterns,

in ontrast to �Prolog [30℄) and an annotation for funtion variables speifying that these variables

are quanti�ed only over all funtion symbols ourring in the program.

Lambda terms are a useful data struture to apture the notion of bound variables and provide

a omfortable way to manipulate programs as objets [30℄. Lambda terms in left-hand sides of

de�ning rules an be used to manipulate objets with bound variables and to apture the notion of

sope in the objet language. The following example ontains a few rules of a symboli di�erentia-

tion funtion where Curry's abbreviation for equations of higher-order type is used (f. Setion 3.2):

funtion diff: (real -> real) -> real -> real

diff �X.F = �X.0

diff �X.X = �X.1

diff �X.(sin (F X)) = �X.(os F X) * diff (�Y.F Y) X

In the �rst rule, the variable F denotes an arbitrary funtion whih does not depend on X (otherwise,

the argument must have the form �X.F(X)). Therefore, �X.F mathes only lambda abstrations

6

where the body has no ourrene of the parameter, i.e., �X.F mathes only onstant funtions.

Note that higher-order uni�ation is neessary to orretly treat bound variables.

3.4 Enapsulated Searh

Global searh, possibly implemented by baktraking, must be avoided in some situations (user-

ontrol of eÆieny, onurrent omputations, non-baktrakable I/O). Hene it is sometimes ne-

essary to enapsulate searh in parts of larger programs. Searh an take plae in Curry whenever

an argument must be evaluated with a logial variable as its atual value. In this ase, the om-

putation must follow di�erent branhes with di�erent substitutions applied to the urrent goal.

To give the programmer ontrol on the ations taken in this situation, Curry provides a searh

operator similar to that of Oz [37℄. However, in Curry it is not neessary to de�ne a funtion by

disjuntions in order to apply the searh operator. Thus, the enapsulation of searh is initiated

by the aller and not visible in the de�nition of the alled funtions. This has the advantage that

the same funtion an be used for deterministi evaluation or searh depending on the struture of

the atual arguments (ground terms or free variables).

Sine searh is used to �nd solutions to some Boolean expression, searh is always initiated by

some goal ontaining a searh variable for whih a solution should be omputed.

10

Sine the searh

variable may be bound to di�erent solutions in di�erent searh paths, they must be abstrated.

Therefore, a searh goal has the form �x:g where x is the searh variable ontained in the goal g.

To desribe the result of the searh steps, Curry o�ers a prede�ned data type

datatype searhspae A = failed | solved (A -> bool) | distributed [A -> bool℄

Intuitively, failed represents a failed searh, solved �x:g denotes a suessful searh where g is

a satis�able goal, and distributed [�x:g

1

,...,�x:g

n

℄ represents an intermediate searh state.

distributed [�x:g

1

,...,�x:g

n

℄ an be understood as a disjuntion of goals. Moreover, there is

a prede�ned funtion

funtion solve: (A -> bool) -> searhspae A

where solve �x:g evaluates the goal until it is not further reduible and unsatis�able (in this ase

the result is failed), it is not further reduible but satis�able (in this ase the result is solved �x:g

0

representing the simpli�ed goal), or it an be redued to n di�erent goals �x:g

1

,. . . ,�x:g

n

by a

nondeterministi narrowing step, i.e., there are at least n di�erent rules appliable to the goal (in

this ase the result is distributed [�x:g

1

,...,�x:g

n

℄). Thus, solve evaluates a goal at most

until the �rst nondeterministi step ours. In this ase, it exposes an intermediate state of the

searh to the user, who an deide in whih diretion the searh spae should be explored further.

For instane, the result of solve �L.(append L [℄ == [0℄) is

distributed [�L.(L==[℄,[℄==[0℄), �L.9X9L1(L==[X|L1℄,[X|append L1 [℄℄==[0℄)℄

(Curry also provides existential quanti�ers, see Setion 3.7). To avoid oniting variable bindings

aused by distributed goals, solve requires an argument without free variables. A depth-�rst searh

strategy an be formulated as:

funtion depthfirst: [A -> bool℄ -> searhspae A

depthfirst [℄ = failed

depthfirst [X|Xs℄ =

ase solve X of

failed: depthfirst Xs

solved Y: solved Y

10

The generalization to more than one searh variable is straightforward by using tuples.

7

distributed [Z|Zs℄:

ase depthfirst [Z℄ of

solved V: solved V

failed: depthfirst (append Zs Xs)

Besides depth-�rst searh, whih omputes only the leftmost solution, many other kinds of searh

strategies an be spei�ed, inluding breadth-�rst searh, olleting all solutions in a list, et. A

library of typial searh strategies is provided, suh that the asual user does not have to bother

on how to implement them.

The searh operators an be used in top-level goals as well as in onditions of rules. For instane,

we an ompute by (depthfirst [�L.(append L [1℄ == [0,1℄)℄) == S a solution of this goal.

If S is of the form solved G, we an bind by the appliation G X a global variable X to the value

[0℄.

3.5 Monadi I/O

Curry provides a delarative model of I/O by onsidering I/O operations as transformations on

the outside world. In order to avoid dealing with di�erent versions of the outside world, it must

be ensured that at eah point of a omputation only one version of the world is aessible. This

ensured by using monadi I/O like in Haskell and by requiring that I/O operations are not allowed

in program parts where nondeterministi searh is possible. Thus, all searh must be enapsulated

between I/O operations. Using the evaluation restritions, the ompiler is able to detet funtions

where searh is de�nitely avoided (if all evaluated positions are delared as rigid). In ombination

with searh operators, the ompiler an infer that searh will not take plae ensuring well-de�ned

delarative I/O operations.

3.6 Constraints

The integration of prede�ned data types by the use of onstraints has been shown useful in logi

programming. Hene onstraints are a neessary feature of any modern logi programming lan-

guage. However, the ombination of arbitrary onstraints with sophistiated narrowing strategies

is a topi for urrent and future researh. As a onsequene, the urrent version of Curry does not

support arbitrary onstraints. Curry provides disequality onstraints [21℄ as a method to express

negative information. The inlusion of other onstraint systems like arithmeti onstraints, �nite

domains, feature terms or reord strutures by a uniform interfae is a topi for future extensions.

3.7 Impliation and Quanti�ers

Impliation and quanti�ers inside onditions are a useful feature of higher-order logi languages

[29, 30℄ sine they are a delarative alternative to some impure features of Prolog, in partiular,

assert and retrat. Moreover, they provide soping onstruts in logi programming. Therefore,

Curry supports these features. When evaluating an impliation rules => e, rules are added to the

program while evaluating e. The value of the impliation is the value of e. If the evaluation of e

fails or is �nished, rules are removed from the program.

The ombination of quanti�ers and impliations provide for soping onstruts to improve the

struture of larger programs. For instane, if a prediate selet is only an auxiliary prediate to

de�ne the prediate perm, it should be made loal to perm. This is possible by the use of quanti�ers

and impliations:

perm([℄,[℄)

8

perm([E|L℄,[F|M℄) <=

(8selet(8E8L(selet(E,[E|L℄,L)) ^

8E8F8L8M(selet(E,[F|L℄,[F|M℄) <= selet(E,L,M)))

=> selet(F,[E|L℄,N), perm(N,M))

The sope of the name of the auxiliary prediate selet is restrited by the quanti�er 8selet

inside the seond lause of perm (see [29℄ for more examples for soping onstruts). Of ourse, the

user is not fored to use this awkward notation sine Curry o�ers where lauses as syntati sugar

for the previous lauses:

perm([℄,[℄)

perm([E|L℄,[F|M℄) <= selet(F,[E|L℄,N), perm(N,M)

where selet(E,[E|L℄,L)

selet(E,[F|L℄,[F|M℄) <= selet(E,L,M)

3.8 Modules

The design of a module system for Curry is not inuened by the funtional logi features of Curry.

Therefore, the urrent version of Curry uses a standard module system similar to ALF's [12℄ or

G�odel's [19℄. The extension to a more sophistiated module system like in SML [25℄ is a topi for

future extensions.

4 Example

Let us onsider an example program in order to demonstrate some features of Curry. We want to

ompute all homomorphisms between two abelian groups. The homomorphism ondition is heked

for all pairs of elements of the �rst group.

funtion hom: [nat℄ -> (nat->nat->nat)

-> [nat℄ -> (nat->nat->nat) -> (nat -> nat) -> bool

hom G1 Op1 G2 Op2 F = and [test Op1 Op2 F X Y | X <- G1, Y <- G1℄

funtion test: (nat->nat->nat) -> (nat->nat->nat) -> (nat -> nat)

-> nat -> nat -> bool

test Op1 Op2 F X Y = true <= Op2 (F X) (F Y) == F (Op1 X Y)

A valid query for the above program is

hom [0,1,2,3℄ add4 [0,1℄ add2 mod2

whih would hek, whether the remainder of the division by 2 (mod2) is a homomorphism between

the groups hf0; 1; 2; 3g; add4i and hf0; 1g; add2i, where add4 and add2 are the addition modulo 4

and modulo 2, respetively. mod2, add4, and add2 as well as the onjuntion and of list elements, are,

among others, assumed to be prede�ned by appropriate rules. [test X Y | X <- G1, Y <- G1℄

is a list omprehension (see e.g. [20℄), and denotes the list of values test X Y where X and Y range

over the elements of the �rst group G1.

The above goal an already be handled in \ordinary" funtional (logi) languages. However,

Curry allows a goal like the following, whih requires (generalized) higher order uni�ation:

hom [0,1,2,3℄ add4 [0,1℄ add2 F

Here, the variable F is bound to a homomorphism between the two groups. Thus, Curry allows to

searh for funtions. A possible solution is F=mod2. Note that Curry also onsiders solutions whih

are omposed of projetions, onstrutor symbols and de�ned funtions (in ontrast to �Prolog)

(see [3℄ for more details).

9

5 Implementation

Although this paper desribes only the design of Curry, we will also briey disuss some implementa-

tion aspets. Curry ombines very powerful onepts. However, Curry ontains various restritions

that allow an eÆient implementation by transferring known implementation tehniques to Curry.

The omission of de�ned funtion symbols in arguments of left-hand sides of funtion de�nitions

provide for eÆient evaluation strategies (see [15℄ for a survey of di�erent strategies and the im-

portane of onstrutor-based rules). The restrition to patterns in left-hand sides ensure that

full higher-order uni�ation is rarely used [35℄. Moreover, the evaluation restritions permit the

de�nition of appliation-spei� evaluation strategies. However, in this ase the programmer is

responsible to ensure the ompleteness of his strategy.

6 Conlusions

From the (informal) desription of Curry in the previous setions it should be lear that Curry is a

real integration of funtional and logi languages sine it overs most aspets of both paradigms. For

funtional programming, Curry provides higher-order funtions, lazy evaluation and deterministi

evaluation of ground expressions. Logi programming features are supported by logial variables,

partial data strutures and searh failities. It is interesting to note that eah purely logi program

an be simply mapped into a Curry program by mapping eah lause p :- p

1

,...,p

n

into the

equation

p=true <= p

1

,...,p

n

If the evaluation restrition of the onjuntion \," is 1:(true => 2), Curry's narrowing strategy is

equivalent to Prolog's left-to-right resolution strategy. However, without any evaluation restritions,

Curry is free to hoose a more sophistiated strategy whih prefer deterministi evaluations in

literals other than the leftmost one.

By the availability of several new features in omparison to pure logi programming, Curry

avoids the following impure onstruts of Prolog:

� The ut and similar pruning operators are replaed by the deterministi evaluation of fun-

tions (note that there is no diret replaement of the ut in Curry sine deterministi funtion

evaluation orresponds to \green uts" due to the omplete operational semantis of Curry).

� The all prediate is replaed by the higher-order features of Curry.

� Many appliations of assert and retrat an be eliminated using impliations in onditions.

� The I/O operations of Prolog are replaed by the delarative monadi I/O onept of fun-

tional programming.

Although not every impure Prolog program an be diretly mapped into a Curry program, we think

that Curry is a suitable delarative alternative for most appliation problems written in Prolog.

The present proposal is far from its �nal shape. Its purpose is to stimulate the disussion

on a standardized funtional logi language. Many aspets have not yet been addressed and may

have to be inluded, for instane, metaprogramming features, default rules, bounded quanti�ation,

onstraints, a dediated software environment (e.g. a debugger).

Aknowledgement

The authors would like to thank Sergio Antoy, John Lloyd, Rita Loogen, and Mario Rodr��guez-

Artalejo for a lot of valuable omments and suggestions on this paper.

10

Referenes

[1℄ H. A��t-Kai. An overview of LIFE. In J.W. Shmidt and A.A. Stogny, editors, Pro. Workshop on Next

Generation Information System Tehnology, pages 42{58. Springer LNCS 504, 1990.

[2℄ H. A��t-Kai, P. Linoln, and R. Nasr. Le Fun: Logi, equations, and funtions. In Pro. 4th IEEE

Internat. Symposium on Logi Programming, pages 17{23, San Franiso, 1987.

[3℄ J. Anastasiadis and H. Kuhen. Higher order babel: Language and implementation. In Pro. Workshop

of Extensions of Logi Programming, 1996.

[4℄ S. Antoy. De�nitional trees. In Pro. of the 3rd International Conferene on Algebrai and Logi

Programming, pages 143{157. Springer LNCS 632, 1992.

[5℄ S. Antoy, R. Ehahed, and M. Hanus. A needed narrowing strategy. In Pro. 21st ACM Symposium on

Priniples of Programming Languages, pages 268{279, Portland, 1994.

[6℄ D. Bert and R. Ehahed. Design and implementation of a generi, logi and funtional programming

language. In Pro. European Symposium on Programming, pages 119{132. Springer LNCS 213, 1986.

[7℄ J. Darlington and Y. Guo. Narrowing and uni�ation in funtional programming - an evaluation meha-

nism for absolute set abstration. In Pro. of the Conferene on Rewriting Tehniques and Appliations,

pages 92{108. Springer LNCS 355, 1989.

[8℄ L. Fribourg. SLOG: A logi programming language interpreter based on lausal superposition and

rewriting. In Pro. IEEE Internat. Symposium on Logi Programming, pages 172{184, Boston, 1985.

[9℄ E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel LEAF: A logi plus funtional language.

Journal of Computer and System Sienes, 42(2):139{185, 1991.

[10℄ J.C. Gonz�alez-Moreno, M.T. Hortal�a-Gonz�alez, and M. Rodr��guez-Artalejo. On the ompleteness of

narrowing as the operational semantis of funtional logi programming. In Pro. CSL'92, pages 216{

230. Springer LNCS 702, 1992.

[11℄ W. Hans, R. Loogen, and S. Winkler. On the interation of lazy evaluation and baktraking. In Pro. of

the 4th International Symposium on Programming Language Implementation and Logi Programming,

pages 355{369. Springer LNCS 631, 1992.

[12℄ M. Hanus. Compiling logi programs with equality. In Pro. of the 2nd Int. Workshop on Programming

Language Implementation and Logi Programming, pages 387{401. Springer LNCS 456, 1990.

[13℄ M. Hanus. Improving ontrol of logi programs by using funtional logi languages. In Pro. of the 4th

International Symposium on Programming Language Implementation and Logi Programming, pages

1{23. Springer LNCS 631, 1992.

[14℄ M. Hanus. Combining lazy narrowing and simpli�ation. In Pro. of the 6th International Symposium

on Programming Language Implementation and Logi Programming, pages 370{384. Springer LNCS

844, 1994.

[15℄ M. Hanus. The integration of funtions into logi programming: From theory to pratie. Journal of

Logi Programming, 19&20:583{628, 1994.

[16℄ M. Hanus. Analysis of residuating logi programs. Journal of Logi Programming, 24(3):161{199, 1995.

[17℄ M. Hanus. EÆient translation of lazy funtional logi programs into Prolog. In Pro. of the Fifth

International Workshop on Logi Program Synthesis and Transformation, 1995.

[18℄ S. Haridi and P. Brand. Andorra prolog: An integration of prolog and ommitted hoie languages. In

Pro. Int. Conf. on Fifth Generation Computer Systems, pages 745{754, 1988.

[19℄ P.M. Hill and J.W. Lloyd. The G�odel Programming Language. MIT Press, 1994.

[20℄ P. Hudak, S. Peyton Jones, and P. Wadler. Report on the programming language Haskell (version 1.2).

SIGPLAN Noties, 27(5), 1992.

11

[21℄ H. Kuhen, F.J. L�opez-Fraguas, J.J. Moreno-Navarro, and M. Rodr��guez-Artalejo. Implementing a

lazy funtional logi language with disequality onstraints. In Pro. of the 1992 Joint International

Conferene and Symposium on Logi Programming. MIT Press, 1992.

[22℄ J.W. Lloyd. Combining funtional and logi programming languages. In Pro. of the International

Logi Programming Symposium, pages 43{57, 1994.

[23℄ J.W. Lloyd. Delarative programming in Esher. Tehnial report str-95-013, University of Bristol,

1995.

[24℄ R. Loogen, F. Lopez Fraguas, and M. Rodr��guez Artalejo. A demand driven omputation strategy for

lazy narrowing. In Pro. of the 5th International Symposium on Programming Language Implementation

and Logi Programming, pages 184{200. Springer LNCS 714, 1993.

[25℄ R. Milner, M. Tofte, and R. Harper. The De�nition of Standard ML. MIT Press, 1990.

[26℄ J.J. Moreno-Navarro, H. Kuhen, R. Loogen, and M. Rodr��guez-Artalejo. Lazy narrowing in a graph

mahine. In Pro. Seond International Conferene on Algebrai and Logi Programming, pages 298{317.

Springer LNCS 463, 1990.

[27℄ J.J. Moreno-Navarro, H. Kuhen, J. Marino-Carballo, S. Winkler, and W. Hans. EÆient lazy narrowing

using demandedness analysis. In Pro. of the 5th International Symposium on Programming Language

Implementation and Logi Programming, pages 167{183. Springer LNCS 714, 1993.

[28℄ J.J. Moreno-Navarro and M. Rodr��guez-Artalejo. Logi programming with funtions and prediates:

The language BABEL. Journal of Logi Programming, 12:191{223, 1992.

[29℄ G. Nadathur, B. Jayaraman, and K. Kwon. Soping onstruts in logi programming: Implementation

problems and their solution. Journal of Logi Programming, 25(2):119{161, 1995.

[30℄ G. Nadathur and D. Miller. An overview of �Prolog. In Pro. 5th Conferene on Logi Programming

& 5th Symposium on Logi Programming (Seattle), pages 810{827. MIT Press, 1988.

[31℄ L. Naish. Negation and Control in Prolog. Springer LNCS 238, 1987.

[32℄ L. Naish. Adding equations to NU-Prolog. In Pro. of the 3rd Int. Symposium on Programming Language

Implementation and Logi Programming, pages 15{26. Springer LNCS 528, 1991.

[33℄ L. Naish. Pruning in logi programming. Tehnial report 95/16, University of Melbourne, 1995.

[34℄ T. Nipkow. Higher-order ritial pairs. In Pro. 6th IEEE Symp. Logi in Computer Siene, pages

342{349. IEEE Press, 1991.

[35℄ C. Prehofer. Higher-order narrowing. In Pro. Ninth Annual IEEE Symposium on Logi in Computer

Siene, pages 507{516, 1994.

[36℄ U.S. Reddy. Narrowing as the operational semantis of funtional languages. In Pro. IEEE Internat.

Symposium on Logi Programming, pages 138{151, Boston, 1985.

[37℄ C. Shulte and G. Smolka. Enapsulated searh for higher-order onurrent onstraint programming.

In Pro. of the 1994 International Logi Programming Symposium, pages 505{520. MIT Press, 1994.

[38℄ G. Smolka. The Oz programming model. In J. van Leeuwen, editor, Current Trends in Computer

Siene. Springer LNCS 1000, 1995.

[39℄ P. Wadler. How to replae failure by a list of suesses. In Funtional Programming and Computer

Arhiteture. Springer LNCS 201, 1985.

[40℄ D.H.D. Warren. Higher-order extensions to PROLOG: are they needed? In Mahine Intelligene 10,

pages 441{454, 1982.

12

A Evaluation Restritions

The general form of evaluation restritions is \eval f restrition" where restrition is de�ned by the

following grammar:

restrition ::= position [:annotation ℄ % evaluate position

j restrition or restrition % alternative argument evaluations

position ::= number

j number.position

annotation ::= rigid [(restrition

�

) ℄ % proeed if position is rigid

j nf [(restrition

�

) ℄ % ompute normal form

j (restrition

�

) % proeed in any ase

restrition ::= => restrition % is a onstrutor

13

