
In Pro. of the Twelfth International Conferene on Logi Programming,

Tokyo, June 1995, MIT Press, pp. 665{679

On Extra Variables in (Equational)

Logi Programming

Mihael Hanus

Informatik II, RWTH Aahen

D-52056 Aahen, Germany

hanus�informatik.rwth-aahen.de

Abstrat

Extra variables in a lause are variables whih our in the body but not in

the head. It has been argued that extra variables are neessary and ontribute

to the expressive power of logi languages. In the �rst part of this paper, we

show that this is not true in general. For this purpose, we provide a simple

syntati transformation of eah logi program into a logi program without

extra variables, and we show a strong orrespondene between the original

and the transformed program. In the seond and main part of this paper,

we use a similar tehnique to provide new ompleteness results for equational

logi programs with extra variables. In equational logi programming it is

well known that extra variables ause problems sine narrowing, the stan-

dard operational semantis for equational logi programming, may beome

inomplete in the presene of extra variables. Using a simple syntati trans-

formation, we derive a number of new ompleteness results for narrowing. In

partiular, we show the ompleteness of narrowing strategies in the presene

of nonterminating funtions and extra variables in right-hand sides of rewrite

rules. Using these results, urrent funtional logi languages an be extended

in a pratially useful way.

1 Introdution

Extra variables in a Horn lause L (B are variables in the body B whih

do not our in L (other notions are existential variables [20℄, loal variables

[2℄, or fresh variables [19℄). It has been argued that extra variables are nees-

sary and ontribute to the expressive power of logi languages. For instane,

Dershowitz and Okada [7℄ laim that the restrition of logi programming to

lauses without extra variables \is unaeptable sine even very simple rela-

tions, suh as transitivity, require extra variables in onditions." In the �rst

part of this paper, we show that this is not true in general sine eah lause

ontaining extra variables an be transformed into a lause without extra

variables by adding the extra variables as a new argument to the prediate

in the head. We state a strong orrespondene between the original and the

transformed program w.r.t. the delarative and the operational semantis, in

order to show that there is no loss due to this transformation.

In the seond and main part of this paper, we onsider equational logi

programs. This lass of programs is important sine it is a basis for integrating

funtional and logi programming (see [14℄ for a reent survey on this subjet).

In equational logi programming it is well known that extra variables ause

problems sine narrowing, the standard operational semantis for equational

logi programming, may beome inomplete in the presene of extra variables.

This an be seen by the following example [11℄:

1

Example 1.1 Consider the following equational logi program:

1

a ! b b ! (f(X,b)=f(,X)

a !

This system has all the properties usually required for ompleteness of narrow-

ing, i.e., it is onuent and terminating. However, narrowing annot infer the

validity of the equation b= sine there is only the following in�nite derivation

(the subterm where a rule is applied is underlined in eah step):

b= ; f(X,b)=f(,X), =

; f(X1,b)=f(,X1), f(X,)=f(,X), = ; � � �

In order to prove the ondition of the last rule, the extra variable X must

be instantiated to a and the instantiated ourrenes must be derived to

and b, respetively. However, this is not provided by the narrowing alulus.

Although narrowing is omplete for onuent and terminating equational logi

programs without extra variables, this example shows that narrowing beomes

inomplete in the presene of extra variables. 2

Extra variables are useful from a programming point of view. For instane,

the let onstrut used in funtional programming to share ommon subexpres-

sions an be expressed in equational logi programming using extra variables

[5℄. Therefore, muh researh has been arried out in order to haraterize

lasses of equational logi programs with extra variables for whih narrowing

is omplete (see Setion 3 for a detailed disussion). The aim of the seond

part of this paper is to provide suh ompleteness results. For this purpose,

we transform general equational logi programs into programs without extra

variables and disuss onditions for the adequay of this transformation. The

main ondition is the property that di�erent ourrenes of an extra variable

need not be derived to di�erent terms in an instantiated rule (note that this

is neessary in Example 1.1). An interesting lass satisfying this ondition

are almost orthogonal programs, whih is a reasonable lass from a program-

ming point of view. Based on these observations, we haraterize new lasses

of equational logi programs for whih narrowing and partiular narrowing

strategies are omplete. For instane, we show the ompleteness of narrowing

and lazy narrowing for a lass of programs whih allows extra variables in

right-hand sides of lause heads. Suh programs are very useful in pratie

but seldom disussed in the narrowing literature.

2 Extra Variables in Logi Programming

In this setion we propose a method to avoid extra variables in pure logi

programming. We use standard notions from logi programming as to be

found in [16℄. Terms are onstruted from variables and funtion symbols,

and (program) lauses have the form L

0

(L

1

; : : : ; L

k

, where eah literal L

i

is a prediate p applied to a sequene of terms t

1

; : : : ; t

n

(in the following we

abbreviate sequenes of terms by t). L

0

is alled head and L

1

; : : : ; L

k

is alled

body of the lause. The set of variables ourring in a term t is denoted by

1

Sine the equation in the lause head is always used to derive an instane of the left-

hand side to an instane of the right-hand side, we use the arrow `!' instead of the equality

symbol in the head.

2

Var(t) (similarly for other syntati onstrutions). A term t is alled ground

if Var(t) = ;. A logi program is a set of lauses. Consider the lause

C: p(t)(q

1

(t

1

); : : : ; q

k

(t

k

)

A variable x 2 Var(C) is alled extra variable if x 62 Var(t). In order to

eliminate all extra variables, we apply the transformation eev (eliminate extra

variables) to this lause, whih is de�ned by

eev(C): p(t; v

n+k

(x

1

; : : : ; x

n

; y

1

; : : : ; y

k

))(q

1

(t

1

; y

1

); : : : ; q

k

(t

k

; y

k

)

where x

1

; : : : ; x

n

are the extra variables of C and y

1

; : : : ; y

k

are new variables

not ourring in C.

2

Moreover, v

0

; v

1

; v

2

; : : : is a family of new funtion sym-

bols not ourring in the original program. We extend the transformation eev

to programs by applying eev to eah lause of the program.

Example 2.1 Let P be the program onsisting of the following lauses:

append([℄,L,L)

append([E|R℄,L,[E|RL℄) (append(R,L,RL)

last(L,E) (append(R,[E℄,L)

Then the transformed program eev(P) ontains the following lauses:

append([℄,L,L,v

0

)

append([E|R℄,L,[E|RL℄,v

1

(Y)) (append(R,L,RL,Y)

last(L,E,v

2

(R,Y)) (append(R,[E℄,L,Y)

2

In the following, we state a strong orrespondene between P and eev(P)

w.r.t. the delarative and operational semantis. In partiular, we show

that the initial model of P is idential to the initial model of eev(P) pro-

vided that the last argument of all prediates is deleted. For this purpose,

we de�ne a mapping on Herbrand interpretations whih deletes the addi-

tional arguments introdued by eev. Let H be a Herbrand interpretation.

Then dla(H) (delete last argument) is the Herbrand interpretation de�ned by

dla(H) := fp(t

1

; : : : ; t

n

) j p(t

1

; : : : ; t

n

; t

n+1

) 2 Hg.

Theorem 2.2 Let H be the least Herbrand model of the logi program P ,

and H

0

be the least Herbrand model of P

0

:= eev(P). Then H = dla(H

0

).

This theorem shows that there is no basi di�erene in the delarative se-

mantis between P and eev(P). Everything whih is valid w.r.t. P is also

valid w.r.t. eev(P), and vie versa, if we disregard the additional arguments

in eev(P). The following theorem shows a similar property for the operational

semantis (SLD-resolution).

Theorem 2.3 Let P be a logi program, G = p

1

(t

1

); : : : ; p

k

(t

k

) be a goal,

and x

1

; : : : ; x

k

be new variables.

1. If � is a omputed answer for G w.r.t. P , then there are terms e

1

; : : : ; e

k

suh that fx

1

7! e

1

; : : : ; x

k

7! e

k

g Æ � is a omputed answer for G

0

=

p

1

(t

1

; x

1

); : : : ; p

k

(t

k

; x

k

) w.r.t. eev(P).

2. If �

0

is a omputed answer for G

0

= p

1

(t

1

; x

1

); : : : ; p

k

(t

k

; x

k

) w.r.t.

eev(P), then �

0

restrited to Var(G) is a omputed answer for G w.r.t.

P .

2

The order of the variables in the term v

n+k

(x

1

; : : : ; x

n

; y

1

; : : : ; y

k

) is irrelevant. There-

fore, we an �x an arbitrary order for eah lause.

3

The proof of this theorem is based on the fat that eah resolution derivation

w.r.t. P an be transformed into a resolution derivation w.r.t. eev(P), and vie

versa. Thus there is also a strong orrespondene between P and eev(P) w.r.t.

the derivation trees, i.e., P and eev(P) have the same operational behavior.

This shows that the restrition to logi programs without extra variables is

not a real restrition, i.e., extra variables are not an important feature of logi

programming.

3 Extra Variables in Equational Logi Programs

Equational logi programming (see [14℄ for a survey) amalgamates funtional

and logi programming styles. It permits the de�nition of prediates by Horn

lauses and the de�nition of funtions by (onditional) equations. Sine pred-

iates an be represented as Boolean funtions, we assume that all lauses in

an equational logi program have the form

l ! r (s

1

= t

1

; : : : ; s

k

= t

k

(k � 0), where l; r; s

1

; t

1

; : : : ; s

k

; t

k

are terms and l is not a variable. Suh a

lause is also alled onditional rewrite rule, and unonditional rewrite rule

in ase of k = 0. A onditional term rewriting system (CTRS) is a set of

onditional rewrite rules. For instane, Example 1.1 is a CTRS. We onsider

an equational logi program as a CTRS.

3.1 Basi De�nitions

In order to give a preise de�nition of the omputation with CTRS, we reall

basi notions of (onditional) term rewriting [4, 6℄.

Substitutions and most general uni�ers are de�ned as in logi program-

ming [16℄. A position p in a term t is represented by a sequene of natural

numbers (where � denotes the root position), tj

p

denotes the subterm of t at

position p, and t[s℄

p

denotes the result of replaing the subterm tj

p

by the

term s (see [6℄ for details).

Let ! be a binary relation on a set S. Then !

�

denotes the transitive

and reexive losure of the relation !. We write e

1

e

2

if there exists an

element e

3

2 S with e

1

!

�

e

3

and e

2

!

�

e

3

. ! is alled onuent if e

1

e

2

for all e; e

1

; e

2

2 S with e!

�

e

1

and e!

�

e

2

.

Let R be an unonditional term rewriting system, i.e., an equational logi

program where all rules have the form l ! r with Var(r) � Var(l). A rewrite

step (w.r.t. R) is an appliation of a rewrite rule to a term (rewriting with

onditional rules is disussed below), i.e., t!

R

s if there are a position p in t,

a rewrite rule l ! r 2 R and a substitution � with tj

p

= �(l) and s = t[�(r)℄

p

.

In this ase we say t is reduible. A term t is alled irreduible or in normal

form if there is no term s with t!

R

s.

The onuene of the rewrite relation!

R

is a basi requirement to apply

rules only in one diretion during equational reasoning. In order to ensure

onuene even for nonterminating rewrite systems,

3

we need some syntati

restritions on the rewrite rules. A rewrite rule l ! r is alled left-linear if

3

We do not require the termination of the rewrite system sine this annot be heked

automatially. Moreover, suh a requirement exludes important funtional programming

tehniques like programming with in�nite data strutures.

4

there are no multiple ourrenes of the same variable in l. An unonditional

term rewriting system R is alled orthogonal if eah rule l ! r 2 R is left-

linear and for eah non-variable subterm lj

p

of l there exists no rule l

0

! r

0

2 R

suh that lj

p

and l

0

unify (where l

0

! r

0

is not a variant of l ! r in ase of

p = �). R is almost orthogonal if all rules are left-linear and for eah pairs of

rules l ! r; l

0

! r

0

2 R, nonvariable subterm lj

p

of l, and mgu � for lj

p

and

l

0

, p is the root position � and the terms �(r) and �(r

0

) are idential.

An important property of almost orthogonal systems is the onuene

of the rewrite relation (see [15℄ for a omprehensive survey on results for

orthogonal systems).

If R is a CTRS, we denote by R

u

:= fl ! r j l ! r (C 2 Rg the

unonditional part of R. A CTRS R is alled (almost) orthogonal if R

u

is

(almost) orthogonal.

3.2 Equational Logi Programs

The omputation mehanism of unonditional term rewrite systems was de-

�ned by the rewrite relation !

R

in the previous setion. If we want to de�ne

the omputation with a CTRS, we have to explain the evaluation of the on-

dition in a rewrite step. Due to [4, 7℄, there are di�erent possibilities. Here

we onsider normal CTRS where t

1

; : : : ; t

k

are ground normal forms w.r.t. R

u

for eah ondition s

1

= t

1

; : : : ; s

k

= t

k

, and suh a ondition is provable if

every s

i

is reduible to t

i

. Note that this de�nition of onditional rewriting

is reursive, but we an also provide an iterative de�nition. Let R be a nor-

mal CTRS. We indutively de�ne the following unonditional term rewriting

systems R

n

(n � 0) by:

R

0

:= fl ! r j l ! r 2 Rg

R

n+1

:= f�(l) ! �(r) j l ! r (s

1

= t

1

; : : : ; s

k

= t

k

2 R and �(s

i

)!

R

n

t

i

g

We have s !

R

t i� s !

R

n

t for some n � 0. The restrition to normal

CTRS is essential, otherwise the rewrite relation may not be onuent even

for orthogonal CTRS (see [4℄). On the other hand, normal CTRS have the

following onuene property [15℄:

Theorem 3.1 The rewrite relation of an almost orthogonal normal CTRS is

onuent.

Therefore, we onsider in the following only normal CTRS as equational log-

i programs (this restrition is also made in the funtional logi languages

BABEL [18℄ and K-LEAF [10℄). This is not a restrition from a logi pro-

gramming point of view, sine eah logi program an be transformed into a

almost orthogonal normal CTRS by representing prediates as Boolean fun-

tions and eliminating multiple ourrenes of variables in left-hand sides by

introduing new variables and new equations for them in the ondition part

(see [18℄ for details).

In pratie, most equational logi programs are onstrutor-based, i.e.,

the set of funtion symbols is divided into a set of onstrutors C and a set

of de�ned funtions or operations D (see, for instane, the funtional logi

languages ALF [12℄, BABEL [18℄, K-LEAF [10℄, or SLOG [9℄). A onstrutor

term is a term ontaining only variables and symbols from C. In a onstrutor-

based term rewrite system, the left-hand side of eah lause must be of the form

f(t

1

; : : : ; t

n

), where f 2 D and t

1

; : : : ; t

n

are onstrutor terms. Additionally,

5

in a onstrutor-based normal CTRS, eah onditional rule l ! r (s

1

=

t

1

; : : : ; s

k

= t

k

has the property that t

1

; : : : ; t

k

are ground onstrutor terms.

In onstrutor-based normal CTRS we annot write arbitrary equations

in onditions. However, we an provide an expliit de�nition of an equality

funtion � between onstrutor terms by the following rules (this strit equal-

ity is the only sensible notion of equality for possible nonterminating systems,

sine normal forms may not exist [10, 18℄):

 � ! true for all 0-ary 2 C

(x

1

; : : : ; x

n

) � (y

1

; : : : ; y

n

) ! ^

n

i=1

(x

i

� y

i

) for all n-ary 2 C

true ^ x ! x

The redution of s � t to true is equivalent to the redution of s and t to a

same ground onstrutor term ([1℄, Proposition 1). In the rest of this paper,

we assume that an equation s � t in a ondition of a onstrutor-based normal

CTRS denotes the equation (s � t) = true.

We are interested in the inuene of extra variables to the ompleteness of

narrowing strategies for equational logi programs. In ontrast to pure logi

programming, equational logi programming allows a re�ned lassi�ation of

rules aording to the ourrene of extra variables. Eah onditional rule

l ! r (C is lassi�ed aording to the following table [17℄:

Type Requirement

1 Var(r) [Var(C) � Var(l)

2 Var(r) � Var(l)

3 Var(r) � Var(l) [Var(C)

4 no restritions

All variables in a onditional rule whih do not our in the left-hand side

l are alled extra variables. An n-CTRS ontains only rules of type n, i.e.,

a 1-CTRS does not ontain extra variables, a 2-CTRS may ontain extra

variables only in the ondition, and a 3-CTRS may ontain extra variables in

the right-hand side, but these extra variables must also our in the ondition.

Example 3.2 The program in Example 1.1 is a 2-CTRS, and the following

equational version of Example 2.1 is a onstrutor-based normal 3-CTRS:

append([℄, L) ! L

append([E|R℄,L) ! [E|append(R,L)℄

last(L) ! E (append(R,[E℄)�L

2

3.3 Conditional Narrowing

In equational logi programming we are interested in solving equational goals,

i.e., we want to ompute a substitution suh that terms rewrite to some normal

forms under this substitution. Due to the restrition on onditions in rules

introdued in the previous setion, we de�ne a (normal equational) goal (w.r.t.

a normal CTRS R) as a sequene of equations s

1

= t

1

; : : : ; s

k

= t

k

, where

t

1

; : : : ; t

k

are ground normal forms w.r.t. R

u

. Sine it is straightforward to

extend the de�nitions of Setion 3.1 to goals, we will use them in the following.

For instane, we use notions like \subterms of goals" and apply rewrite steps

to goals.

A narrowing step transforms a goal G into another goal by applying a rule

to some subterm of G. More preisely, G narrows to G

0

, denoted G;

�

G

0

, if

6

there exist a nonvariable position p in the goal G (i.e., Gj

p

is not a variable),

a variant l ! r (C of a rewrite rule in R and a substitution � suh that �

is a mgu of Gj

p

and l, and G

0

= �(C;G[r℄

p

). Sine R is a normal CTRS, it

is lear that G

0

is again a well-de�ned goal. If there is a narrowing sequene

G

1

;

�

1

G

2

;

�

2

� � �;

�

n�1

G

n

, we writeG

1

;

�

�

G

n

with � = �

n�1

Æ� � �Æ�

2

Æ�

1

.

A narrowing sequene is suessful if the �nal goal G

n

is trivial, i.e., it has

the form t

1

= t

1

; : : : ; t

k

= t

k

.

The important property of evaluation strategies for (equational) logi pro-

grams is their ompleteness, i.e., their ability to ompute all answers whih

are valid w.r.t. the delarative semantis. In our ontext we say narrowing

is omplete w.r.t. the equational logi program R if, for all goals G and sub-

stitutions � so that �(G) an be rewritten to a trivial goal, there exists a

narrowing derivation G ;

�

�

0

G

0

, where G

0

is a trivial goal and � = � Æ �

0

for

some substitution �. That is, eah valid answer � is subsumed by a more

general answer �

0

omputed by narrowing.

There are many results for the ompleteness of narrowing w.r.t. di�erent

lasses of programs (see [17℄ for a omprehensive survey). However, simple

narrowing de�ned so far is more or less of theoretial interest due to its huge

searh spae. In order to redue the searh spae and to avoid superuous

work, lazy narrowing strategies have been proposed for languages like BABEL

[18℄ and K-LEAF [10℄, where lazy narrowing selets an outermost position but

also allows narrowing steps at an inner position if the value at this position

is demanded by some rule (see [18℄ for details). It is well-known that lazy

narrowing is omplete for almost orthogonal normal 2-CTRS. However, there

are many ases where 2-CTRS are too restrited and 3-CTRS are appropri-

ate, but no ompleteness results are known for this lass. Moreover, there are

operationally better strategies than lazy narrowing. For instane, needed nar-

rowing [1℄ is an optimal strategy for indutively sequential programs, whih

is a sublass of unonditional orthogonal programs, and for almost orthogo-

nal programs it has been shown that the ombination of lazy narrowing with

intermediate simpli�ation steps yields a better behavior [13℄. Again, there

are no results for these re�ned strategies w.r.t. extra variables.

In order to avoid separate ompleteness proofs w.r.t. extra variables for

all these (and possible future) extensions, we present a systemati method to

eliminate extra variables in equational logi programs. The method is based

on the ideas presented in Setion 2, but the inompleteness of narrowing in

the presene of extra variables shows that this method annot work in general.

Therefore, we will disuss onditions for the adequay of our method.

3.4 Eliminating Extra Variables in Conditional Rules

In this setion we present a transformation on equational logi programs to

eliminate all extra variables. The purpose of this transformation is to pro-

vide a general method to derive ompleteness results in the presene of extra

variables. This method onsists of the following steps:

1. Transform an equational logi program into a new program without

extra variables.

2. Apply a omplete narrowing strategy to the transformed program (note

that more suh strategies are known if extra variables do not our).

3. Chek the orrespondene of narrowing derivations between the original

and the transformed program.

7

In this setion we disuss onditions for the orretness of steps 1 and 3.

Appliations of the entire method are disussed in Setion 3.5.

In order to eliminate extra variables in equational logi programs, we

transform eah rewrite rule by adding new arguments to eah funtion our-

ring in the rule. Sine funtions an be nested, we have to add new arguments

in eah subterm. For this purpose, we denote by

b

t the term obtained from t

by adding a new variable argument to eah funtion ourring in t, i.e.,

b

t an

be de�ned as follows:

b

x = x for all variables x

b

t = f(

b

t

1

; : : : ;

b

t

n

; y) if t = f(t

1

; : : : ; t

n

) and y is a new variable

The new arguments added to eah funtion all are alled extension arguments

and the new variables introdued in these arguments are alled extension vari-

ables. Terms that ontain extension arguments for eah subterm (whih may

be instantiated) are alled extended terms. Although the names of the exten-

sion variables are not �xed, we onsider in the following the transformation b

as a mapping from terms into terms (this an be formalized by taking a list of

new variables as an additional argument to b, but for the sake of readability

we avoid this formalism). The transformation will also be applied to lists of

terms and equations. We omit the straightforward de�nition.

Eah onditional rewrite rule R: f(t)! r (C is transformed into a rule

eev(R) by applying the transformation b to t, r and C, and adding the extra

variables to the left-hand side, i.e.,

eev(R): f(

b

t; v

n

(x

1

; : : : ; x

n

))!

b

r (

b

C

where fx

1

; : : : ; x

n

g = (Var(

b

r) [Var(

b

C))nVar(

b

t).

4

The transformed lause

may not be a normal one, but this auses no problems sine the requirement

for normal CTRS is only neessary for the original programs in order to ensure

the onuene of the original rewrite relation.

We extend eev to sets of rewrite rules by applying it to eah rule. For the

sake of readability, we use the following obvious optimization in onrete ex-

amples: Introdue extension arguments only in funtion alls of the form f(s)

where there is some rewrite rule f(t)! r (C for f . In partiular, extension

arguments are not introdued in onstrutor terms ifR is a onstrutor-based

program.

Example 3.3 Let R be the program of Example 1.1. Then eev(R) is the

following program:

a(v

1

(Y)) ! b(Y) b(v

2

(X,Z)) ! (f(X,b(Z))=f(,X)

a(v

0

) !

It is not neessary to add extension arguments to the funtions and f sine

there are no rewrite rules for them. 2

The elimination of extra variables in equational logi programs seems to be

very similar to pure logi programs. However, there is an essential di�erene.

The transformation does not hange the meaning in the ase of pure logi

4

In ontrast to pure logi programming, the order of the variables in the term

v

n

(x

1

; : : : ; x

n

) is relevant to ensure that the transformed programs are almost orthogonal

if the original programs are almost orthogonal (see Proposition 3.8). Therefore, we �x the

same ordering priniple for all rules. A possible hoie is a left-to-right innermost ordering

for all variables in br;

b

C.

8

programs (f. Theorem 2.2), but this is no longer true in the equational ase.

The meaning of an equational logi program is the set of valid equalities. For

instane, b= is valid w.r.t. Example 1.1 (sine the instantiated ondition

f(a,b)=f(,a) an be rewritten to the trivial equation f(,b)=f(,b), i.e.,

b !

R

1

). However, no instane of the equation b(V)= is valid w.r.t. the

transformed program in Example 3.3. In the original program the term a an

be rewritten to b as well as , whih is neessary to prove the ondition of

the last rule. However, in the transformed program, there is no term whih

is simultaneously reduible to b(Y) and .

The meanings of the original and the transformed program di�er when-

ever it is neessary to rewrite an instane of a variable to di�erent terms in

the original program. The inversion of this observation yields a riterion for

the adequay of the transformation. We an ensure that the original and the

transformed program have the same meaning if all ourrenes of the same

variable are redued to an idential term, i.e., if the same rewrite steps are

applied to all ourrenes of a variable (in the instantiated rule). This an be

expressed by the notion of sharing, whih means that all ourrenes of a rule

variable are represented only one. Sharing is also a well-known implemen-

tation tehnique in funtional and logi languages. Sharing in rewriting an

be formally treated in the framework of term graph rewriting [3℄. In order

to avoid repeating all details of term graph rewriting, we assume familiarity

with graphs to represent shared subterms (see [3℄ for details). We only ite

the following result, whih is important in our framework.

Theorem 3.4 ([3℄) If R is an unonditional almost orthogonal term rewrit-

ing system, then graph rewriting (where all variables in rules are shared) is

a sound and omplete implementation of term rewriting; in partiular, the

normal forms (w.r.t. traditional term rewriting) of terms are also omputable

if all rule variables are shared.

The restrition to almost orthogonal systems is essential. Otherwise, rewriting

with sharing is inomplete (see [3℄). To apply the result of Theorem 3.4 in our

framework, we have to extend it to onditional rewrite systems. Although this

is not possible in general, sharing is a omplete implementation for the lass

of programs whih we onsider as equational logi programs. This also shows

that the restrition to normal CTRS is sensible from an implementation point

of view.

Theorem 3.5 Let R be an almost orthogonal normal CTRS (with extra

variables). Then all variables in rewrite rules an be shared during the om-

putation of a normal form.

Now we want to relate rewrite proofs in R with rewrite proofs in the trans-

formed system eev(R). In order to ompare extended terms with original

terms, we de�ne a mapping dv to delete extension arguments by dv(x) = x

for all variables x and dv(f(t

1

; : : : ; t

n

; t

n+1

)) = f(dv(t

1

); : : : ; dv(t

n

)). Clearly,

dv(

b

t) = t for all terms t. The following theorem shows that every normal

form omputation w.r.t. R an also be performed for the extended terms

w.r.t. eev(R), provided that R is an almost orthogonal normal CTRS.

Theorem 3.6 Let R be an almost orthogonal normal CTRS (with extra

variables), t be a term and R

0

= eev(R). If t !

�

R

s (where s is a normal

form), then there is an extended term t

0

with dv(t

0

) = t and t

0

!

�

R

0

b

s.

9

This theorem implies that all strit equalities w.r.t. R are also valid w.r.t.

eev(R). The next theorem shows that eah narrowing derivation w.r.t. eev(R)

orresponds to a narrowing derivation w.r.t. R, i.e., if there is a narrowing

derivation on the extended level, then there is also a narrowing derivation

on the original level. This property will be used to state new ompleteness

results for narrowing strategies in the presene of extra variables. Remember

that all trivial goals have the form t

1

= t

1

; : : : ; t

n

= t

n

, where t

1

; : : : ; t

n

are

in normal form (not neessarily ground if they ontain extension arguments).

Theorem 3.7 Let R be a normal CTRS suh that eev(R) is almost orthogo-

nal and G be a goal. If there is a narrowing derivation

b

G;

�

�

G

1

, where G

1

is a

trivial goal, then there is a narrowing derivation G;

�

�

G

0

with dv(G

1

) = G

0

and dv(�(x)) = �(x) for all x 2 Var(G). Moreover, the narrowing positions

in both derivations are idential, and the applied rules orrespond via the

transformation eev.

IfR is an almost orthogonal normal CTRS and we want to apply our transfor-

mation in order to show the ompleteness of sophistiated narrowing strate-

gies, we have to ensure that the transformed program eev(R) is also almost

orthogonal (Theorem 3.7). The following proposition shows that this is always

the ase.

Proposition 3.8 If R is an almost orthogonal CTRS, then eev(R) is almost

orthogonal.

We mentioned in Setion 3.3 that simple narrowing has a huge searh spae

and, therefore, sophistiated narrowing strategies are needed in pratie. In

general, a narrowing strategy restrits the number of possible narrowing steps,

i.e., it an be seen as a mapping whih assigns to eah goal a set of pairs of

positions and rules.

5

However, a narrowing strategy should not destroy om-

pleteness, and ompleteness results are often known only for equational logi

programs without extra variables. In order to overome these problems, we

an apply the results of this setion to transfer ompleteness results for nar-

rowing strategies from programs without extra variables to programs whih

may ontain extra variables. The following main result shows the general

method.

Theorem 3.9 Let R be an almost orthogonal normal CTRS (with extra

variables) and N be a narrowing strategy whih is omplete for eev(R). Then

N is also omplete for R.

The following setion ontains onrete appliations of this result.

3.5 Appliation of Extra Variable Elimination

3.5.1 Indutively Sequential Systems

Lazy narrowing is omplete for almost orthogonal normal 2-CTRS [18℄. How-

ever, it is well known that lazy narrowing may perform superuous narrowing

5

An exeption is the needed narrowing strategy [1℄ whih additionally assigns a uni�er

beause the uni�er in a needed narrowing step is not neessarily a most general one.

10

steps due to the interation of redex seletion and rule seletion. As an alter-

native, needed narrowing is proposed in [1℄. The needed narrowing strategy

is optimal w.r.t. the length of the derivations and the number of omputed

solutions. Needed narrowing is de�ned for the lass of indutively sequential

systems. These are partiular onstrutor-based orthogonal unonditional

rewrite systems (see [1℄ for a preise de�nition). Roughly speaking, in indu-

tively sequential systems all rules de�ning a funtion an be organized in a

hierarhial struture, alled de�nitional tree, whih represents a unique sele-

tion of a rule by a ase distintion on the arguments for eah ground funtion

all. For instane, the rules for append in Example 3.2 are indutively se-

quential, sine a unique seletion of a rule an be made by the �rst argument

of append: if this argument is an empty list ([℄), the �rst rule is seleted,

and the seond rule is seleted if this argument is a nonempty list ([�|�℄). On

the other hand, the rules of Example 1.1 are not indutively sequential, sine

the �rst as well as the seond rule an be applied to the term `a'.

We will use the results of the previous setion to extend needed narrowing

to onditional rewrite rules with extra variables in a simple way. A CTRSR is

alled indutively sequential if it is a onstrutor-based normal CTRS and its

unonditional part R

u

is indutively sequential. Sine indutively sequential

systems are orthogonal, we an use the method proposed in [4℄ to translate

indutively sequential normal CTRS into an unonditional system. For this

purpose, we introdue for eah onditional rule R: l ! r (s = u of R (where

u is a ground onstrutor term) a new funtion symbol ond

R

and replae R

by the following unonditional rules:

l ! ond

R

(s; r)

ond

R

(u; x) ! x

We denote by u(R) the new unonditional system obtained from R. Sine

u is a ground onstrutor term, the new unonditional system is indutively

sequential if the original system is an indutively sequential CTRS without

extra variables.

6

Moreover, there is a strong orrespondene between the

rewrite derivations (see [4℄, Proposition 2.5.4). In order to deal with extra

variables, we have to translate R by the transformation eev before applying

u. The following proposition is obvious sine the introdution of extension

arguments does not inuene the non-overlapping of left-hand sides.

Proposition 3.10 If R is an indutively sequential CTRS, then u(eev(R))

is an unonditional indutively sequential rewrite system.

Example 3.11 Consider the following indutively sequential CTRSR whih

de�nes the Boolean funtion member on the basis of the funtion append:

append([℄, L) ! L

append([E|R℄,L) ! [E|append(R,L)℄

member(E,L) ! true (append(L1,[E|L2℄)�L

Then the transformed system u(eev(R)) onsists of the following rules:

append([℄, L,v

0

) ! L

append([E|R℄,L,v

1

(X)) ! [E|append(R,L,X)℄

member(E,L,v

3

(L1,L2,X)) ! ond(append(L1,[E|L2℄,X)�L,true)

ond(true,X) ! X

2

6

Proposition 2.5.3 in [4℄ is not true in the presene of extra variables.

11

Sine needed narrowing is an optimal and omplete strategy for indutively

sequential unonditional systems, we an apply the results of the previous

setion (as summarized in Theorem 3.9), and we obtain the following new

result.

Theorem 3.12 Needed narrowing is omplete for indutively sequential

CTRS (with extra variables). Moreover, it is optimal w.r.t. the length of

the derivations and the number of omputed solutions.

Sine this result an be easily extended to overlapping rules with exlud-

ing onditions, we obtain with our translation method an optimal narrowing

strategy for a large lass of equational logi programs.

3.5.2 Extra Variables in Right-Hand Sides

Current funtional logi languages like BABEL [18℄ and K-LEAF [10℄) permit

extra variables in onditions but not in the right-hand side of onditional rules.

However, as observed by several authors [8, 15, 17℄, it makes good sense to

allow extra variables also in right-hand sides if they our in onditions (3-

CTRS). Example 3.2 shows a sensible use of extra variables in right-hand

sides. The following example [15℄ shows that suh extra variables an be a

replaement for the let onstrut of funtional languages.

Example 3.13 The Fibonai numbers an be omputed by the following

onditional rules:

fib(0) ! <0,1>

fib(s(X)) ! <Z,Y+Z> (fib(X)�<Y,Z>

2

However, an unrestrited use of extra variables in right-hand sides leads to

nononuent rewrite relations even for non-overlapping normal CTRS. To

ensure the onuene of the rewrite relation and ompleteness of narrowing,

additional restritions are needed. Middeldorp and Hamoen [17℄ showed that

narrowing is omplete for level-onuent and terminating 3-CTRS. In [5, 7, 19℄

3-CTRS with a speial rewrite relation are proposed, where extra variables

are instantiated only to irreduible terms and all suh instantiations of ondi-

tional rules must be dereasing (i.e., the left-hand side must greater than the

onditions and right-hand side w.r.t. a termination ordering). Narrowing is

omplete for suh rewrite systems. Sine we do not want to restrit ourselves

to terminating rewrite systems, we need other onditions. For this purpose,

we all a CTRS R funtional if the following onditions hold:

1. R is a normal CTRS.

2. The unonditional part R

u

is almost orthogonal (where we use the same

de�nition as in Setion 3.1 but do not require Var(r) � Var(l) for all

l ! r 2 R

u

).

3. !

R

is onuent.

Conditions 1 and 2 are neessary to extend Theorem 3.5 and Proposition 3.8

to funtional CTRS. Sine these onditions are not suÆient for the onuene

of the rewrite relation, we have the expliit onuene ondition 3. We will

disuss suÆient onditions ensuring onuene below. Note that eah almost

orthogonal normal 2-CTRS is funtional (by Theorem 3.1), while a 4-CTRS

12

annot be funtional. Hene the lass of funtional CTRS lies between the

lasses of almost orthogonal normal 2-CTRS and 3-CTRS.

We want to apply our transformation to show the ompleteness of narrow-

ing strategies for funtional CTRS. Sine funtional CTRS are transformed

by eev into almost orthogonal CTRS, it is easy to hek that Theorem 3.9 is

also valid for funtional CTRS:

Theorem 3.14 Let R be a funtional CTRS and N be a narrowing strategy

whih is omplete for eev(R). Then N is also omplete for R.

We an use this result to show the ompleteness of various narrowing strategies

for equational logi programs with extra variables in right-hand sides. For

instane, ompleteness results for lazy narrowing strategies are only known

for onstrutor-based normal 2-CTRS [18℄. Our transformation method yields

new ompleteness results for funtional CTRS by applying Theorem 3.14 to

the ompleteness result of lazy narrowing [18℄ for onstrutor-based almost

orthogonal normal 2-CTRS.

Corollary 3.15 Lazy narrowing is omplete for onstrutor-based funtional

CTRS.

To obtain a further interesting result, we apply Theorem 3.14 to indutively

sequential systems with extra variables in right-hand sides. For this purpose,

we use the same translation tehniques as introdued in Setion 3.5.1 and we

immediately obtain the following proposition.

Corollary 3.16 Let R be a funtional CTRS suh that the unonditional

part R

u

is indutively sequential.

7

Then needed narrowing is omplete for

R, and it is an optimal strategy w.r.t. the length of the derivations and the

number of omputed solutions.

Thus needed narrowing is a omplete and optimal strategy for the programs

in Examples 3.2 and 3.13.

Due to these results, it is no problem to extend equational logi languages

like BABEL [18℄ or K-LEAF [10℄ by permitting extra variables in right-hand

sides. However, the use of these extra variables must be restrited so that

the programs are funtional. The �rst two onditions of funtional CTRS

are easy to hek, but the onuene ondition 3 is usually hard to verify.

In some ases it is possible to show onuene by proving that the rewrite

system R is level-onuent, i.e., we may show that eah unonditional rewrite

system R

n

is onuent for all n � 0. For instane, it is relatively easy to show

that the rewrite system in Example 3.2 is level-onuent. However, from a

pratial point of view, it is desirable to have syntati riteria to ensure the

onuene of a 3-CTRS. Fortunately, for onstrutor-based programs there

is an interesting sublass of funtional CTRS whih has a simple syntati

haraterization.

8

Note that in onstrutor-based systems eah onditional

rule an be written in the form l ! r (s � t.

7

Sine the property of indutive sequentiality depends only on the left-hand sides of

the rewrite rules, the de�nition an simply be extended to rules with extra variables in

right-hand sides.

8

Reently, Suzuki et al. [21℄ have independently haraterized a lass of level-onuent

3-CTRS with similar restritions.

13

Proposition 3.17 A onstrutor-based normal CTRS R is funtional if the

following onditions holds:

1. The unonditional part R

u

is almost orthogonal.

2. For eah rule l ! r (s � t with extra variables in r, t is a onstrutor

term, Var(s) � Var(l), and Var(r) � Var(l) [Var(t).

As a onsequene of this proposition, the rewrite system in Example 3.13 is

funtional. It is straightforward to re�ne the proposition to onditional rules

with more than one strit equation in the ondition part.

4 Conlusions

In this paper we have disussed the neessity and problems of extra vari-

ables in pure logi programming and equational logi programming. In the

�rst part, we have shown that extra variables are unneessary for pure logi

programming sine all ourrenes of extra variables during a omputation

an be moved into the initial goal. Although this transformation does not

hange the delarative and operational semantis of pure logi programs, it

does not generally work for equational logi programs, sine it is known that

the presene of extra variables may ause inompleteness of narrowing, the

standard operational semantis of equational logi programs. Nevertheless,

we have shown that this transformation works for the important sublass of

almost orthogonal normal programs. As a onsequene of this result, we have

provided a general method to lift ompleteness results for narrowing with-

out extra variables to programs with extra variables. Using this method, we

ould prove various new ompleteness results like ompleteness and optimali-

ty of needed narrowing and ompleteness of lazy narrowing in the presene of

extra variables. Programs with suh properties often our if programming

tehniques like in�nite data strutures (e.g., streams) and let onstruts from

funtional programming are simultaneously used. Therefore, our results are

a ontribution to extend urrent funtional logi languages in a pratially

useful way, sine suh extensions give the programmer more expressivity and

allow a more eÆient exeution of programs. Our method an also be help-

ful to simplify ompleteness proofs for possibly more sophistiated narrowing

strategies that will be developed in the future.

Aknowledgements. The author is grateful to Aart Middeldorp and Enno Ohle-

bush for their omments on this paper. The researh desribed in this paper was

supported in part by the German Ministry for Researh and Tehnology (BMFT)

under grant ITS 9103 and by the ESPRIT Basi Researh Working Group 6028

(Constrution of Computational Logis).

Referenes

[1℄ S. Antoy, R. Ehahed, and M. Hanus. A Needed Narrowing Strategy. In Pro.

21st ACM Symposium on Priniples of Programming Languages, pp. 268{279,

Portland, 1994.

[2℄ R. Barbuti, P. Manarella, D. Pedreshi, and F. Turini. A Transformational

Approah to Negation in Logi Programming. Journal of Logi Programming

(8), pp. 201{228, 1990.

14

[3℄ H.P. Barendregt, M.C.J.D. van Eekelen, J.R.W. Glauert, J.R. Kennaway, M.J.

Plasmeijer, and M.R. Sleep. Term Graph Rewriting. In Pro. Parallel Arhi-

tetures and Languages Europe (PARLE'87), pp. 141{158. Springer LNCS 259,

1987.

[4℄ J.A. Bergstra and J.W. Klop. Conditional Rewrite Rules: Conuene and Termi-

nation. Journal of Computer and System Sienes, Vol. 32, No. 3, pp. 323{362,

1986.

[5℄ H. Bertling and H. Ganzinger. Completion-Time Optimization of Rewrite-Time

Goal Solving. In Pro. of the Conferene on Rewriting Tehniques and Applia-

tions, pp. 45{58. Springer LNCS 355, 1989.

[6℄ N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, editor,

Handbook of Theoretial Computer Siene, Vol. B, pp. 243{320. Elsevier, 1990.

[7℄ N. Dershowitz and M. Okada. A Rationale for Conditional Equational Program-

ming. Theoretial Computer Siene, Vol. 75, pp. 111{138, 1990.

[8℄ N. Dershowitz, M. Okada, and G. Sivakumar. Conuene of Conditional Rewrite

Systems. In Pro. 1st Int. Workshop on Conditional Term Rewriting Systems,

pp. 31{44. Springer LNCS 308, 1987.

[9℄ L. Fribourg. SLOG: A Logi Programming Language Interpreter Based on

Clausal Superposition and Rewriting. In Pro. IEEE Internat. Symposium on

Logi Programming, pp. 172{184, Boston, 1985.

[10℄ E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel LEAF: A Logi

plus Funtional Language. Journal of Computer and System Sienes, Vol. 42,

No. 2, pp. 139{185, 1991.

[11℄ E. Giovannetti and C. Moiso. A ompleteness result for E-uni�ation algorithms

based on onditional narrowing. In Pro. Workshop on Foundations of Logi and

Funtional Programming, pp. 157{167. Springer LNCS 306, 1986.

[12℄ M. Hanus. Compiling Logi Programs with Equality. In Pro. of the 2nd Int.

Workshop on Programming Language Implementation and Logi Programming,

pp. 387{401. Springer LNCS 456, 1990.

[13℄ M. Hanus. Combining Lazy Narrowing and Simpli�ation. In Pro. of the 6th

International Symposium on Programming Language Implementation and Logi

Programming, pp. 370{384. Springer LNCS 844, 1994.

[14℄ M. Hanus. The Integration of Funtions into Logi Programming: From Theory

to Pratie. Journal of Logi Programming, Vol. 19&20, pp. 583{628, 1994.

[15℄ J.W. Klop. Term Rewriting Systems. In S. Abramsky, D. Gabbay, and

T. Maibaum, editors, Handbook of Logi in Computer Siene, volume II. Oxford

University Press, 1992.

[16℄ J.W. Lloyd. Foundations of Logi Programming. Springer, seond, extended

edition, 1987.

[17℄ A. Middeldorp and E. Hamoen. Completeness Results for Basi Narrowing.

Appliable Algebra in Engineering, Communiation and Computing, Vol. 5, pp.

213{253, 1994.

[18℄ J.J. Moreno-Navarro and M. Rodr��guez-Artalejo. Logi Programming with

Funtions and Prediates: The Language BABEL. Journal of Logi Program-

ming, Vol. 12, pp. 191{223, 1992.

[19℄ P. Padawitz. Generi Indution Proofs. In Pro. of the 3rd Intern. Workshop on

Conditional Term Rewriting Systems, pp. 175{197. Springer LNCS 656, 1992.

[20℄ M. Proietti and A. Pettorossi. Completeness of Some Transformation Strategies

for Avoiding Unneessary Logial Variables. In Pro. Eleventh International

Conferene on Logi Programming, pp. 714{729. MIT Press, 1994.

[21℄ T. Suzuki, A. Middeldorp, and T. Ida. Level-Conuene of Conditional Rewrite

Systems with Extra Variables in Right-Hand Sides. Tehnial Report ISE-TR

94-116, Univ. of Tsukuba, 1994. To appear in Pro. RTA'95.

15

