
In Pro. of the Tenth International Conferene on Logi Programming,

Budapest, June 1993, pp. 83{99, MIT Press

Analysis of Nonlinear Constraints

in CLP(R)

Mihael Hanus

Max-Plank-Institut f�ur Informatik

Im Stadtwald, W-6600 Saarbr�uken, Germany

mihael�mpi-sb.mpg.de

Abstrat

Solving nonlinear onstraints over real numbers is a omplex problem. Hene

onstraint logi programming languages like CLP(R) or Prolog III solve only

linear onstraints and delay nonlinear onstraints until they beome linear.

This eÆient implementation method has the disadvantage that sometimes

omputed answers are unsatis�able or in�nite loops our due to the unsat-

is�ability of delayed nonlinear onstraints. These problems ould be solved

by using a more powerful onstraint solver whih an deal with nonlinear

onstraints like in RISC-CLP(Real). Sine suh powerful onstraint solvers

are not very eÆient, we propose a ompromise between these two extremes.

We haraterize a lass of CLP(R) programs for whih all delayed nonlinear

onstraints beome linear at run time. Programs belonging to this lass an

be safely exeuted with the eÆient CLP(R) method while the remaining

programs need a more powerful onstraint solver.

1 Introdution

The onstraint logi programming paradigm [13℄ generalizes logi program-

ming by replaing the Herbrand universe of terms by other, in general more

powerful, domains. Uni�ation of terms is replaed by solving onstraints over

these domains. For instane, CLP(R) [15, 11℄ adds real numbers to the Her-

brand universe and ontains equations and inequations as onstraints. The

system inludes a onstraint solver over the real numbers. Sine solving non-

linear onstraints is a omplex problem, the onstraint solver in CLP(R) is

restrited to linear onstraints. Nonlinear onstraints are delayed until some

variables in these onstraints get unique values during the further omputa-

tion proess so that the delayed onstraints beome linear [16℄ (this approah

is also taken in Prolog III [4℄). If a omputation stops with some delayed

nonlinear onstraints, the system generates a \maybe" answer, i.e., it is not

ensured that a solution exists.

Example 1 Consider the following CLP(R) program to ompute mortgage

payments:

mortgage(P,T,IR,B,MP) :-

T > 0, T <= 1, B = P*(1+T*IR) - T*MP.

mortgage(P,T,IR,B,MP) :-

T > 1, mortgage(P*(1+IR)-MP, T-1, IR, B, MP).

The parameters are the prinipal P, the life of the mortgage T (in months),

the monthly interest rate IR, the outstanding balane B, and the monthly

payment MP. Due to the onstraint solving mehanism this program an be

queried in di�erent ways. The query

?- mortgage(100000, T, 0.01, 0, 1400).

1

asks for the time to �nane a mortgage, and the answer onstraint is

T=125.901. The query

?- mortgage(P, 180, 0.01, B, MP).

asks for a relationship between the prinipal, the outstanding balane and the

monthly payment, and the answer onstraint is P=0.166783*B+83.3217*MP.

But if we want to ompute the interest rate as in the query

?- mortgage(1000, 2, IR, 0, 600).

CLP(R) annot ompute a solved answer due to the restrition to linear

onstraints. The omputed answer is 600=(1000*IR+400)*(IR+1). 2

The CLP(R) method of delaying nonlinear onstraints and solving only lin-

ear onstraints is eÆient and suessful for many appliations. However,

there are also programs where this method is not suÆient beause CLP(R)

ontinues a omputation with unsatis�able nonlinear onstraints. This may

generate unsatis�able answers or in�nite loops. Suh problems an be avoided

if a more powerful onstraint solver is used. For instane, CAL [2℄ and RISC-

CLP(Real) [12℄ do not delay nonlinear onstraints but apply speial methods

from omputer algebra to hek the satis�ability of all onstraints.

Example 2 [12℄ Consider the following program for omputing Pythagorean

numbers:

nat(X) :- X = 1.

nat(X) :- X > 1, nat(X-1).

pyth(X,Y,Z) :- X*X+Y*Y= Z*Z, X <= Y, nat(Z), nat(X), nat(Y).

CLP(R) runs into an in�nite loop for the query ?-pyth(X,Y,Z) sine it

does not detet the unsatis�ability of the nonlinear onstraints, while RISC-

CLP(Real) omputes the answers X=3,Y=4,Z=5, X=6,Y=8,Z=10, et. 2

Unfortunately, it is diÆult to deal with nonlinear onstraints, and onstraint

solvers for nonlinear onstraints are not very eÆient. It is undesirable to

use suh omplex onstraint solvers for problems whih an be solved by the

CLP(R) method. Therefore we propose a ompromise between these two

extremes. In the following we will haraterize a lass of CLP(R) programs

for whih all delayed nonlinear onstraints beome linear at run time. Sine

suh a property is undeidable in general, our haraterization is based on

a ompile-time analysis of CLP(R) programs using abstrat interpretation

tehniques. Consequently, we annot give a preise haraterization of this

lass of programs but we ompute a safe approximation of it. It is ensured

that the CLP(R) omputation of a program belonging to this approximated

lass does not stop with delayed nonlinear onstraints.

Our method analyses the nonlinear onstraints whih may our at run

time. A nonlinear onstraint is an equation or inequation ontaining an ex-

pression X*Y where both X and Y do not have unique values. In order to deide

whether suh a onstraint beomes linear, we must know if X or Y are on-

strained to unique values. Thus we need a program analysis orresponding to

groundness analysis in logi programming [3, 7, 22℄. A groundness analysis

where variables are simply abstrated into values like ground, free or any is

not suÆient for our purpose sine in onstraint logi programming variables

often beome ground due to the addition of new onstraints. For instane,

onsider the following sequene of onstraints:

?- Z = X*Y, X = A+B, C = 3+A, B = 5, C = 6.

2

A simple groundness analysis would infer that only B and C are ground after

the left-to-right evaluation of this goal. But due to the onstraint solving

mehanism, also A and X beome ground and therefore the onstraint Z=X*Y

is linear at the end of this goal.

1

In order to provide an analysis of suh

situations, our method onsiders the dependenies of variables in onstraints

and approximates the grounding of variables due to onstraint solving.

In the next setion we give a short desription of the syntax and the op-

erational semantis of a restrited lass of CLP(R) programs for whih our

analysis is designed. The abstrat domain and the abstrat interpretation

algorithm for the analysis of nonlinear onstraints in CLP(R) programs are

presented in Setion 3. The orretness of our method is outlined in Setion 4.

In Setion 5 we show the extension of our method to other delayed onstraints

whih may our in CLP(R) programs. Finally, we disuss possible applia-

tions of our method in Setion 6.

2 Operational semantis of CLP(R) programs

In this setion we present the lass of CLP(R) programs whih we will analyse

together with their operational semantis.

A CLP(R) program is a olletion of Horn lauses where some funtors

and prediates have a prede�ned meaning. Terms are built from variables,

numeri onstants (real numbers), atoms (string onstants), uninterpreted

funtor symbols with a positive arity, and the prede�ned arithmeti funtions

+, - and *.

2

An arithmeti term does not ontain atoms and uninterpreted

funtor symbols.

3

A onstraint is an equation t

1

=t

2

, where t

1

and t

2

are

terms, or an inequation t

1

� t

2

, where t

1

and t

2

are arithmeti terms and

� 2 f<; >; <=; >=g. A literal is a de�ned prediate name together with a

list of argument terms. Literals are sometimes onsidered as terms, i.e., the

de�ned prediate names are also funtor symbols. A lause has the form

L :- L

1

,: : : ,L

n

where L is a literal and L

1

,: : : ,L

n

is a sequene of literals

and onstraints. For instane, the lauses of Examples 1 and 2 are CLP(R)

programs in this sense.

The operational semantis of CLP(R) programs is similar to Prolog's op-

erational semantis (SLD-resolution with leftmost seletion rule) but with the

di�erene that uni�ation is replaed by adding a new equation between the

literal and the lause head, and the omputation proeeds only if all on-

straints (exept the nonlinear) are satis�able. Hene the set of onstraints is

divided into a set of ative onstraints and a set of delayed onstraints. The

onstraint solver does only hek the satis�ability of the ative onstraints.

If a new onstraint is generated during a omputation step, it is added to

the delayed onstraints if it is nonlinear, otherwise to the ative onstraints.

Moreover, delayed onstraints are moved to the ative onstraint set if they

beome linear due to the addition of new ative onstraints. For instane,

the delayed onstraint Z=X*Y is ativated if the new onstraint X=5 is added.

1

In this simple example the groundness analysis an be improved by onsidering all

onstraints in an arbitrary order instead of a left-to-right order. However, this annot be

done in general if the onstraints originate from the exeution of several prediates.

2

Similarly to CLP(R) [15℄ we assume that a CLP(R) program is well-typed.

3

In ontrast to CLP(R) we do not onsider other arithmeti funtions like /, sin, os,

pow, abs, min and max. These funtions an be treated similarly to * in our abstrat

interpretation algorithm. We will disuss this subjet in Setion 5.

3

More details about the operational semantis and the delay mehanism an

be found in [15, 11, 16℄. The main goal of this paper is the harateriza-

tion of a lass of programs whih have no delayed onstraints at the end of a

omputation.

In order to keep our analysis simple, we transform CLP(R) programs into

at CLP(R) programs where eah literal has the form p(X

1

; : : : ;X

n

) (all X

i

are distint variables) and eah onstraint has one of the following forms (X,

Y, Y

1

,: : : ,Y

n

, Z are variables, is an atom or numeri onstant and f is an

uninterpreted funtor symbol):

X = Y X = X = f(Y

1

,: : : ,Y

n

)

X = Y+Z X = Y-Z X = Y*Z X < Y X > Y X <= Y X >= Y

It is obvious that every CLP(R) program an be transformed into a at

CLP(R) program by replaing terms by new variables and adding equations

between the replaed terms and the orresponding new variables. This trans-

formation does not hange the prinipal answer behaviour. The only di�er-

ene is that the transformed programs have more derivation steps (for the

new equations) and additional equational onstraints for the new variables.

In the following we assume that all programs are at CLP(R) programs.

3 Abstrat interpretation of CLP(R) programs

In this setion we present a method for the ompile-time analysis of non-

linear onstraints in CLP(R), i.e., a method for heking at ompile time

whether all nonlinear onstraints beome linear during the exeution of the

program. Obviously, a preise analysis requires a solution to the halting prob-

lem. Therefore we present an approximation to it based on an abstration of

the onrete behaviour of the program. If this approximation yields a positive

answer, then it is ensured that all nonlinear onstraints beome linear at run

time.

We assume familiarity with basi ideas of abstrat interpretation teh-

niques (see, for instane, the olletion [1℄). After the fundamental work of

Cousot and Cousot [6℄ on systemati methods for program analysis several

frameworks for the abstrat interpretation of logi programs have been devel-

oped (see, for instane, [3, 18, 22℄). These frameworks an also be used for

the analysis of CLP(R) programs beause of the similar operational seman-

tis (SLD-resolution with left-to-right seletion rule). The only di�erenes to

logi programming are:

� Substitutions are replaed by onstraint sets. E.g., fX 7!1,Y 7!f(a)g an

be represented by the onstraint set fX=1,Y=f(a)g.

� Uni�ation of a literal L and a lause head H is replaed by adding the

onstraint L=H to the urrent onstraint set. The existene of a uni�er

is then equivalent to the satis�ability of the extended onstraint set.

� The omposition of substitutions (e.g., ombining the omputed uni-

�er with the previous substitution) is replaed by the onjuntion of

onstraints.

Therefore we must de�ne an appropriate abstration of onstraints (the ab-

strat domain) and of onstraint solving (the abstrat operations). The or-

retness of the abstrat interpretation algorithm an be proved by relating

the abstrations to the onrete onstraints. In the following we present the

abstrat domain and the abstrat operations. The relation to onrete om-

putations is presented in Setion 4.

4

3.1 An abstrat domain for analysing nonlinear onstraints

The most important omponent of an abstrat interpretation proedure is

an abstrat domain whih approximates subsets of the onrete domain by

�nite representations. An element of the abstrat domain desribes ommon

properties of a subset of the onrete domain. In our ase the onrete domain

is the set of all onstraints where a onstraint is a onjuntion of equations

and inequations. The important property of suh a onstraint is the existene

of nonlinear elements in it. The preise form of these elements is not relevant

for the analysis. Only the variable names in the nonlinear elements are needed

in order to deide the potential linearity of these elements. Hene our abstrat

domain ontains elements of the form delay(X or Y) representing a potential

nonlinear onstraint whih will beome linear if X or Y are onstrained to

unique values. Thus a orret abstration of the onstraint set

X = Y*Z, X = A*B, T = A*C, B = 3

must ontain the elements delay(Y or Z) and delay(A or C). It may also ontain

the element delay(A or B) if the information \B is unique" is not available.

Note that the order of the variables in delay(X or Y) is not relevant, i.e., in the

following we identify the elements delay(X or Y) and delay(Y or X).

To deide the potential linearity of these elements, we must know whih

variables are ground, i.e., whih variables have unique values in all solutions of

the onstraint. A simple abstration of groundness information of variables is

a list of variables whih are de�nitely ground [22℄ or an assignment of variables

to the values ground, free or any [3℄. However, this is not suÆient in our ase

sine in onstraint logi programming variables beome ground not only by

uni�ation but also, and more important, by solving onstraints when new

onstraints are added or delayed nonlinear onstraints are awakened (like in

CLP(R)). For instane, if the urrent onstraints ontain X=Y*Z, T=3+Y,

then the addition of the new onstraint T=5 would ause Y to beome ground

and Y*Z to beome linear. Hene our abstrations ontain information about

the dependenies between variables. To be more preise, our abstrat domain

ontains elements of the form V)X representing the fat that the variables in

the set V uniquely determines the value of the variable X. As an extreme ase,

the abstration element ;)X represents the fat that X has unique value, i.e., X

is ground. For instane, an abstration of the onstraints A=B+C, D=3+A may

ontain the elements fB,Cg)A, fA,Cg)B, fA,Bg)C, fAg)D, and fDg)A.

In our abstrat interpretation algorithm we analyse the goal and eah

lause ourring in the program. The abstrations omputed in this algorithm

ontain information about the variables in the goal or lause. Hene eah

abstration A has a domain dom(A) whih is a set of variables ourring in

some lause or goal. All variables ourring in A must belong to dom(A).

Altogether, the abstrat domain A ontains the element ? (representing

the empty subset of the onrete domain) and sets ontaining the following

elements (suh sets are alled abstrations and denoted by A, A

1

et):

Element: Meaning:

V)X the values of V determine the value of X

delay(X or Y) there is a delayed onstraint whih will be awakened if X

or Y are ground, i.e., if X or Y have a unique value

delay there is a delayed onstraint whih depends on arbitrary

variables

5

Obviously, �niteness of dom(A) imply �niteness of A. The additional element

delay is the \worst ase" in the algorithm and will be used if the dependenies

between nonlinear onstraints and their variables are too omplex for a �nite

representation. For onveniene we simply write \X" instead of \;)X". Hene

an abstration element \X" means that variable X has a unique value.

For the sake of simpliity we will sometimes generate abstrations on-

taining redundant information. The following normalization rules eliminate

some redundanies in abstrations:

Normalization rules for abstrations:

A [fZ; V [fZg)Xg �! A [fZ; V)Xg (N1)

A [fX; delay(X or Y)g �! A [fXg (N2)

A [fV

1

)X; V

2

)Xg �! A [fV

1

)Xg if V

1

� V

2

(N3)

An abstration A is alled normalized if none of these normalization rules is

appliable to A. Later we will see that the normalization rules are invariant

w.r.t. the onrete onstraints orresponding to abstrations. Therefore we

an assume that we ompute only with normalized abstrations in the abstrat

interpretation algorithm. In a onrete implementation one should add fur-

ther normalization rules to delete other redundanies. However, the three

rules above are suÆient for our intended results.

3.2 The abstrat interpretation algorithm

The abstrat interpretation algorithm is based on abstrat operations orre-

sponding to onrete operations during program exeution. The most impor-

tant onrete operations are the proessing of a new onstraint, the all of a

lause for a prediate and the exit of a lause. In the following we desribe

the orresponding abstrat operations.

First we desribe the abstrat proessing of a new onstraint. It is the

most important operation in onstraint logi programming and orresponds

to uni�ation in logi programming. At the abstrat level it is a funtion

ai-on(�;C) whih takes an element of the abstrat domain � 2 A and a

single onstraint C (equation or inequation) as input and produes another

abstrat domain element as the result. � is an abstration of the possible

given onstraints and the result should be an abstration of the given on-

straints together with the new onstraint C. Sine we are dealing with at

CLP(R) programs where all onstraints have a restrited form (ompare Se-

tion 2), it is suÆient to de�ne ai-on by the following equations:

ai-on(?; C) = ?

ai-on(A; X=Y) = A [ffXg)Y; fYg)Xg

ai-on(A; X=) = A [fXg

ai-on(A; X=f(Y

1

,: : : ,Y

n

)) = A [ffY

1

,: : : ,Y

n

g)X; fXg)Y

1

; : : : ; fXg)Y

n

g

ai-on(A; X=Y+Z) = A [ffY,Zg)X; fX,Zg)Y; fX,Yg)Zg

ai-on(A; X=Y-Z) = A [ffY,Zg)X; fX,Zg)Y; fX,Yg)Zg

ai-on(A; X=Y*Z) = A [ffY,Zg)X; delay(Y or Z)g

ai-on(A; X�Y) = A if � 2 f<; >; <=; >=g

The onstraint X=Y implies a mutual dependeny between both variables while

the onstraint X=f(Y

1

,: : : ,Y

n

) implies a dependeny between X and the ar-

gument variables of the ompound term. The variable X beomes ground by

6

the onstraint X= while it beome ground by the onstraints X=Y+Z or X=Y-Z

if two of the three variables are ground. The situation for X=Y*Z is a little

bit di�erent. Here X is ground if Y and Z are ground. But Y beomes ground

only if X and Z are ground and Z 6= 0. Sine we have no aess to the onrete

values in our abstrat domain, we annot formulate this ondition at the ab-

strat level.

4

Similarly, we annot express the fat that X beomes ground by

the onstraint X=Y*Z if Y or Z have a zero value. This is also the reason why

inequations have no inuene on the abstration, i.e., impliit equations gen-

erated by inequations (e.g., the inequations X<=1,X>=1 generate the impliit

equation X=1) are not deteted at the abstrat level.

Note that the funtion ai-on adds information to the urrent abstration.

The proessing of this information (orresponding to onstraint solving) is

performed by the normalization rules. For instane, onsider the goal

?- Z = X*Y, U = V+X, U = 5, V = 3.

If we apply ai-on to the onstraints from left to right starting with the empty

abstration, we obtain the abstration

f fX,Yg)Z, delay(X or Y), fV,Xg)U, fU,Xg)V, fU,Vg)X, U, V g

whih is not normalized. But this abstration an be transformed by the

normalization rules into

f fYg)Z, X, U, V g

This normalized abstration is a orret abstration of the simpli�ed answer

onstraint Z=2*Y, X=2,U=5, V=3. But note that fZg)Y is not ontained in the

last abstration sine the onrete value of X is not present in this abstration.

We also need abstrat operations for the abstrat interpretation of de�ned

prediates. The next operation restrits an abstration A to a set of variables

W � dom(A). It will be used in a prediate all to omit the information

about variables not passed from the prediate all to the applied lause:

all(?;W) = ?

all(A;W) = fV)X 2 A j fXg [V �Wg

This operation also deletes all delay information in the given abstration. This

is justi�ed sine all omitted information is reonsidered after the prediate all

(see below).

At the end of a lause a similar operation is neessary to forget the infor-

mation about loal lause variables. Hene we de�ne:

exit(?;W) = ?

exit(A;W) = fV)X 2 A j fXg [V �Wg

[fdelay(X or Y) 2 A j X; Y 2Wg

[fdelay j delay 2 A or delay(X or Y) 2 A with fX; Yg 6�Wg

This restrition operation for lause exits transforms an abstration element

delay(X or Y) into the element delay if one of the involved variables is not

ontained in W , i.e., it is noted that there may be a delayed onstraint whih

depends on loal variables at the end of the lause, but the possible depen-

denies are too omplex for a �nite abstrat analysis. For a similar reason,

the dependeny V)X is simply omitted if V 6�W .

4

This an be improved by inluding information about the sign of variables in our abstrat

domain. For instane, we ould inlude (strit) inequalities between variables and the

onstant 0 as in the abstrat domain Ineq of [17℄.

7

The least upper bound operation is used to ombine the results of di�erent

lauses for a prediate all:

?tA = A

At? = A

A

1

tA

2

= fV

1

[V

2

)X j V

1

)X 2 A

1

; V

2

)X 2 A

2

g

[fdelay(X or Y) j delay(X or Y) 2 A

1

or delay(X or Y) 2 A

2

g

[fdelay j delay 2 A

1

or delay 2 A

2

g

Now we are able to present the algorithm for the abstrat interpretation of a

at CLP(R) program. It is spei�ed as a funtion ai(�;L) whih takes an ab-

strat domain element � and a literal or onstraint L and yields a new abstrat

domain element as result. Clearly, ai(?; L) =? and ai(A;C) = ai-on(A;C)

for all onstraints C. The interesting ase is the abstrat interpretation of a

de�ned prediate all ai(A; p(X

1

; : : : ;X

n

)) whih is omputed by the follow-

ing steps (var(�) denotes the set of all variables ourring in �):

1. Let p(Z

1

; : : : ; Z

n

) :- L

1

; : : : ; L

k

be a lause for prediate p (if neessary,

rename the lause variables suh that they are disjoint from X

1

; : : : ;X

n

)

Compute: A

all

= all(A; fX

1

; : : : ;X

n

g)

A

0

= hreplae X

i

by Z

i

in A

all

i (dom(A

0

) = fZ

1

; : : : ; Z

n

g [

k

[

i=1

var(L

i

))

A

1

= ai(A

0

; L

1

); A

2

= ai(A

1

; L

2

); : : : ; A

k

= ai(A

k�1

; L

k

)

A

out

= exit(A

k

; fZ

1

; : : : ; Z

n

g)

A

exit

= hreplae all Z

i

by X

i

in A

out

i (i.e., dom(A

exit

) = dom(A))

2. Let A

1

exit

; : : : ; A

m

exit

be the exit substitutions of all lauses for p as

omputed in step 1. Then de�ne A

suess

= A

1

exit

t : : : tA

m

exit

3. ai(A; p(X

1

; : : : ;X

n

)) = A

suess

[(A�A

all

) if A

suess

6=?, else ?

Step 1 interprets a lause in the following way. Firstly, the all abstration is

omputed, i.e., the information ontained in the abstration for the prediate

all is restrited to the argument variables (A

all

). The domain is hanged

to the lause variables by mapping argument variables to the orresponding

variables of the applied lause (A

0

). Then eah literal in the lause body

is interpreted. The resulting abstration (A

k

) is restrited to the variables

in the lause head, i.e., we forget the information about the loal variables

in the lause. Potential delayed onstraints whih are not awakened at the

lause end are passed to the abstration A

out

by the exit operation. In the

last step the domain is hanged to the original variables by renaming the

variables of the lause head into the variables of the prediate all (A

exit

). If all

lauses de�ning the alled prediate p are interpreted in this way, all possible

interpretations are ombined by the least upper bound of all abstrations

(A

suess

). The ombination of this abstration with the information whih

was forgotten by the restrition at the beginning of the prediate all yields

the abstration after the prediate all (step 3).

Unfortunately, this abstrat interpretation algorithm does not terminate

in ase of reursive programs. Sine this problem is solved in all frameworks

for abstrat interpretation, we do not develop a new solution to this prob-

lem but we use one of the well-known tehniques. Following Bruynooghe's

framework [3℄ we onstrut a rational abstrat AND-OR-tree representing

the omputation of the abstrat interpretation algorithm. During the on-

strution of the tree we hek before the interpretation of a prediate all P

8

whether there is an anestor node P

0

with a all to the same prediate and

the same all abstration (up to renaming of variables). If this is the ase we

take the suess abstration of P

0

(or ? if it is not available) as the suess

abstration of P instead of interpreting P . If the further abstrat interpreta-

tion omputes a suess abstration A

0

for P

0

whih di�ers from the suess

abstration used for P , we start a reomputation beginning at P with A

0

as

new suess abstration. This iteration terminates beause all operations used

in the abstrat interpretation are monotone (w.r.t. the order on A de�ned in

Setion 4) and the abstrat domain is �nite. A detailed desription of this

method an be found in [3, 9℄.

3.3 Examples

The following at CLP(R) program omputes the produt of all elements of

a list of arithmeti expressions:

prod(A,B) :- A = [℄, B = 1.

prod(A,B) :- A = [E|R℄, B = E*P, prod(R,P).

If we query this program with a list of numbers, as in

?- prod([2,3,4℄,Pr).

then the answer onstraint is Pr=24. Our abstrat interpretation algorithm

omputes the following abstrations for the initial goal prod(L,Pr) and the

initial abstration fLg (speifying the groundness of the �rst argument):

ai(fLg; prod(L,Pr)) :

Interpret the �rst lause:

ai(fAg; A=[℄) = fAg

ai(fAg; B=1) = fA; Bg

Interpret the seond lause:

ai(fAg; A=[E|R℄) = fA; E; Rg

ai(fA; E; Rg; B=E*P) = fA; E; R; fPg)Bg

ai(fA; E; R; fPg)Bg; prod(R,P)):

Reursive all:

Take ? as result sine suess abstration of anestor all not available:

ai(fLg; prod(L,Pr)) = fL; Prgt ?= fL; Prg

Reursive all prod(R,P) again:

Take the new suess abstration fR; Pg of anestor all:

ai(fA; E; R; fPg)Bg; prod(R,P)) = fA; E; R; fPg)B; Pg ! fA; E; R; B; Pg

ai(fLg; prod(L,Pr)) = fL; Prg t fL; Prg = fL; Prg

Hene the omputed suess abstration is fL; Prg. This means that after a

suessful omputation of the goal prod(L,Pr) the variable Pr is bound to a

ground term and there are no delayed onstraints.

In a similar way one an ompute the suess abstration of the goal

prod(L,Pr) w.r.t. the initial abstration fPrg. The result is fPr; delayg indi-

ating that there may be a delayed onstraint at the end of the onrete om-

putation. In fat, the CLP(R) omputation of the goal ?-prod([A,B,C℄,24)

produes the \maybe" nonlinear answer onstraint 24=A*B*C.

Similarly, our abstrat interpretation algorithm omputes the expeted

answers (w.r.t. to the delay information) to all queries shown in Example 1.

More detailed examples an be found in [9℄.

9

4 Corretness of the analysis

In this setion we will disuss the orretness of our abstrat interpretation

algorithm. As mentioned in Setion 3 we use Bruynooghe's framework [3℄ for

abstrat interpretation of logi programs with the modi�ations listed in the

beginning of Setion 3. Therefore we have to relate the abstrat domain to

the onrete domain of onstraints by de�ning a onretisation funtion, and

then we have to prove the orretness of the abstrat operations w.r.t. the

orresponding operations on the onrete domain. Due to lak of spae we

omit the proofs of all theorems, but the interested reader will �nd them in

[9℄.

The onretisation funtion : A ! 2

C

maps an abstration into a subset

of the onrete domain. In our ase the onrete domain C is the set of all

olletions of onstraints of the form

X = Y X = X = f(Y

1

,: : : ,Y

n

)

X = Y+Z X = Y-Z X = Y*Z X < Y X > Y X <= Y X >= Y

where X, Y, Y

1

,: : : ,Y

n

, Z are variables, is an atom or numeri onstant and f is

an uninterpreted funtor symbol. These are the onstraints aumulated dur-

ing the exeution of a at CLP(R) program and therefore sometimes alled

at onstraints. In pratie a olletion of suh onstraints is transformed

into a simpli�ed non-at form in order to get a more eÆient satis�ability

hek and readable answer onstraints, but this is not relevant for our pur-

pose. The meaning of a olletion C 2 C of onstraints is the onjuntion of

all its elements, i.e., it spei�es a set of solutions (mappings from variables

into elements of the underlying onstraint struture) satisfying eah single

onstraint (f. [13℄):

Sol(C) : = f� j � is a valuation where �() is true for all 2 Cg

The notion of \groundness" in logi programming orresponds to \unique-

ness" of solutions in onstraint logi programming. We say that variable X is

unique in the onstraints C if �

1

(X) = �

2

(X) for all �

1

; �

2

2 Sol(C). More-

over, we say that a variable set V determines X in C if �

1

(X) = �

2

(X) for

all �

1

; �

2

2 Sol(C) with �

1

=

V

�

2

.

5

In this ase we write V

C

)X. Hene ;

C

)X

is equivalent to X unique in C. We all the arithmeti term X*Y nonlinear

in the onstraints C if both X and Y are not unique in C, i.e., a onstraint

ontaining this term would be delayed in CLP(R).

Now we are able to present the preise de�nition of the onretisation

funtion : A ! 2

C

whih relates an abstration to a set of onstraints:

(?) = ;

(A) = fC 2 C j 1. V

C

)X for all V)X 2 A

2. X=Y*Z 2 C with Y; Z 2 dom(A) and Y*Z nonlinear in C

=) delay 2 A or delay(Y or Z) 2 A g

The �rst ondition expresses that for all abstration elements V)X 2 A the

variables in V determine the value of X in all onstraints orresponding to

A. The seond ondition ensures that all nonlinear parts of onstraints are

ontained in A. If this ondition holds, we say that the nonlinear term Y*Z

is overed by A. But note that only nonlinear terms having variables in the

domain of A must be overed by A. This is due to the fat that A ontains

5

�

1

=

V

�

2

is equivalent to the ondition �

1

(Z) = �

2

(Z) for all Z 2 V .

10

abstrat information about the variables of one lause but during the onrete

omputation the aumulated onstraints may ontain nonlinear parts from

arbitrary lauses. Sine we are interested in the analysis of all nonlinear

onstraints, we will show in Theorem 3 that the nonlinear onstraints with

variables outside dom(A) are also overed by the abstration A.

Sine our abstrat interpretation algorithm always simpli�es the omputed

abstrations by the normalization rules of Setion 3.1, it is important that

these rules are invariant w.r.t. the onrete interpretation of abstrations. In

fat, it an be shown that (A) = (A

0

) if A! A

0

[9℄.

All operations on the abstrat domain must be monotone to ensure the

the termination of the abstrat interpretation algorithm. Hene we de�ne the

following order relation on normalized abstrations:

(a) ?v � for all � 2 A

(b) A v A

0

() 1. V

0

)X 2 A

0

=) 9V � V

0

with V)X 2 A

2. delay(X or Y) 2 A) delay(X or Y) 2 A

0

3. delay 2 A) delay 2 A

0

It is easy to prove that v is a reexive, transitive and anti-symmetri relation

on normalized abstrations. Moreover, the operation t de�ned in Setion 3.2

omputes the least upper bound of two abstrations, and and all abstrat

operations de�ned in Setion 3.2 are monotone funtions.

Following the framework presented in [3℄, the orretness of the abstrat

interpretation algorithm an be proved by showing the orretness of eah ba-

si operation of the algorithm (like abstrat onstraint solving, lause entry

and lause exit). Corretness means in this ontext that all onrete ompu-

tations, i.e., the results of the onrete onstraint solving, lause entry and

lause exit (f. Setion 2) are subsumed by the abstrations omputed by the

orresponding abstrat operations. The preise formulations and proofs of

these properties an be found in [9℄.

There is one remaining problem with our abstrat interpretation algo-

rithm. The main motivation of this paper is the haraterization of a lass

of CLP(R) programs where all nonlinear onstraints beome linear during

the omputation. If we analyse a CLP(R) program with our algorithm, the

absene of delay elements in the suess abstration of the goal does not ne-

essarily indiate that there are no delayed nonlinear onstraints at the end

of the omputation. Due to the de�nition of our onretisation funtion ,

this indiates that there are no delayed nonlinear onstraints ontaining goal

variables. But it does not exlude the ase that there are delayed onstraints

with variables loal to some lauses. The next theorem shows that this ase

annot our sine all delayed onstraints are overed by our algorithm. We

need the notion of \equivalene" of variables w.r.t. a onstraint to formulate

this theorem. We all two variables X;Y equivalent w.r.t. onstraint C, de-

noted X�

C

Y , if C onstrains X and Y to the same values, i.e., �(X) = �(Y)

for all � 2 Sol(C).

Theorem 3 (Completeness of delay abstrations) Let L be a at lit-

eral or onstraint with abstration A and A

0

= ai(A;L). Let C 2 (A) and

C

0

2 (A

0

) with C

0

= C [C

L

where C

L

are the new onstraints added to C

during the exeution of L. Then delay 2 A

0

or for all Z=Z

1

*Z

2

2 C

L

with

Z

1

*Z

2

nonlinear in C

0

there exists delay(Z

0

1

or Z

0

2

) 2 A

0

with Z

1

�

C

0

Z

0

1

and

Z

2

�

C

0

Z

0

2

.

11

Due to this theorem our abstrat interpretation algorithm haraterizes a lass

of CLP(R) programs (those ontaining no new delay elements in the suess

abstration of the goal) for whih all nonlinear onstraints beome linear at

run time.

5 Extension to other delayed onstraints

In Setion 2 we have de�ned the sublass of CLP(R) programs whih we an

analyse by our abstrat interpretation algorithm. However, CLP(R) programs

may also ontain the arithmeti funtions /, sin, os, pow, abs, min and max

whih are also delayed until partiular onditions are satis�ed. For instane,

the onstraint Z=sin(X) is delayed until X is ground while the onstraint

Z=abs(X) is delayed until X is ground, Z=0 or Z is ground and negative [11℄.

Sine the exat value of a ground variable is not available in our abstrat

domain, we an only approximate this behaviour. In order to analyse these

new onstraints we have to extend our algorithm as follows:

1. De�ne a new element in the abstrat domain appropriate to the abstrat

desription of the delayed onstraint.

2. Extend the abstrat onstraint solver ai-on to the new onstraint.

3. Extend the normalization rules for abstrations to desribe the wakeup

onditions of the delayed onstraint.

We demonstrate the neessary extensions by the new onstraint Z=min(X,Y).

This onstraint delays until X and Y are ground. Therefore we introdue the

element delay(X and Y) in our abstrat domain and extend the de�nition of

ai-on to:

ai-on(A; Z=min(X,Y)) = A [f fX,Yg)Z; delay(X and Y) g

The wakeup ondition for suh onstraints is desribed by the following nor-

malization rule:

A [fX; Y; delay(X and Y)g �! A [fX; Y g

All other types of delayed onstraints an be handled in a similar way. Al-

though we have not expliitly mentioned the neessary hanges to exit, it is

obvious how to adapt the de�nition of exit to the new kinds of onstraints.

6 Appliations

We have presented an algorithm to approximate the potential run-time o-

urrenes of nonlinear onstraints in a CLP(R) program. In this setion we

will outline possible appliations of this algorithm.

6.1 Better user support

In CLP(R) the programmer an formulate arbitrary arithmeti onstraints.

However, during the omputation proess only linear arithmeti onstraints

are atively used to restrit the searh spae and ontrol the omputation.

The programmer is responsible for writing the programs in suh a way that

all nonlinear onstraints beome linear during the omputation. If this is not

the ase, the program may stop with a set of omplex nonlinear onstraints for

whih the satis�ability is diÆult to deide. Unfortunately, it is not easy to

see whether onstraints beome linear beause this depends on the dataow

and the onstraint solving in the program. Our algorithm is able to support

the user in this diÆult question sine the algorithm an be applied in the

following ways:

12

1. We start the algorithm with a partiular goal and an initial abstration.

If the suess abstration omputed for this goal ontains no delay ele-

ments, then all omputed answer onstraints are linear, i.e., the CLP(R)

onstraint solver an deide the satis�ability of the �nal answer. Condi-

tionally suessful answers [11℄ annot our in this ase.

2. If the user is interested not only in the �nal answer onstraints but also

in onstraints produed during the omputation proess, we start the al-

gorithm with a goal and an abstration and onsider at the end of the

abstrat interpretation the all and suess abstrations of all literals in

the program. Sine these abstrations are valid approximations of all on-

straints whih our at run time, we an infer properties of intermediate

onstraints. For instane, if none of these abstrations ontains a delay

element, the programmer an be sure that the CLP(R) onstraint solver

deides the satis�ability of all onstraints during the entire exeution and

thus useless derivations with unsolvable nonlinear onstraints are not ex-

plored. On the other hand, delay elements in some abstration indiate

the program points where nonlinear onstraints may our at run time.

This an be a useful information for the programmer.

6

6.2 More eÆient implementations

The knowledge about the potential presene of nonlinear onstraints an be

used to optimize the implementation of logi programs with arithmeti on-

straints. In this ase it is neessary to onsider the all and suess ab-

strations of all literals rather than the suess abstration of the main goal

(similarly to item 2 in Setion 6.1 above). There are at least two potential

optimizations:

1. If none of the abstrations ontains a delay element, nonlinear onstraints

annot our at run time. Therefore general instrutions for reating non-

linear onstraints an be speialized to simpler instrutions for reating

linear onstraints [14℄ and the program an be ompiled without the delay

mehanism for nonlinear onstraints [16℄.

2. In the RISC-CLP(Real) system [12℄ nonlinear arithmeti onstraints are

not delayed but heked by a powerful onstraint solver. But this on-

straint solver is very omplex and sometimes too ineÆient for solving

simple linear onstraints. We an optimize the RISC-CLP(Real) system

by omputing the program points where nonlinear onstraints may our

and where all onstraints are de�nitively linear. Then we an all a more

eÆient linear onstraint solver for the latter program points without re-

striting the omputational power of the RISC-CLP(Real) system.

6.3 Improving the termination behaviour

One of the priniples of onstraint logi programming is the satis�ability hek

during omputation: a derivation proeeds only if all aumulated onstraints

are solvable [13℄. This allows an early failure detetion and avoids in�nite

derivation paths whih may be present in pure logi programming. However,

6

For suh an appliation it may be neessary to hange the de�nition of all so that

delay elements are passed into the applied lause. Then the potential presene of nonlinear

onstraints an be immediately seen by onsidering the loal abstration without inluding

the abstrations of anestor nodes in the tree.

13

in CLP(R) this advantage is sometimes lost sine nonlinear onstraints are

not heked for satis�ability. For instane, onsider the following CLP(R)

program for omputing fatorial numbers:

fa(0,1).

fa(N,N*F) :- N >= 1, fa(N-1,F).

To ompute a fatorial we start with the goal ?-fa(8,F) and obtain the

answer onstraint F=40320. If we want to know whether a given number is

a fatorial, we try to prove a goal like ?-fa(N,24). In this ase CLP(R)

omputes the answer onstraint N=4 after some baktraking steps. Although

nonlinear onstraints are generated during this omputation, they beome

linear if the �rst lause is used and binds the unknown �rst argument. But if

we try to prove a (unsolvable) goal like ?-fa(N,10), CLP(R) runs into an

in�nite loop by applying the seond lause again and again. The aumulated

nonlinear onstraints are not solvable but this is not deteted by CLP(R) due

to the delay mehanism. If we use a more powerful onstraint solver whih is

able to treat nonlinear onstraints (like in CAL [2℄ or RISC-CLP(Real) [12℄),

this in�nite loop an be avoided.

We an use our abstrat interpretation algorithm to �nd suh soures of

nontermination. For this purpose we ompute the all abstration of eah

literal in the program. If the abstration of a reursive all ontains a delay

element, either we warn the user that there may be delayed nonlinear on-

straints before the reursive all (whih an ause an in�nite loop if these

onstraints are not solvable), or we use a powerful onstraint solver for non-

linear onstraints before the reursive all at run time in order to avoid the

desribed soure of nontermination. This seems to be a good ompromise

between the eÆieny of the CLP(R) system and the power of the RISC-

CLP(Real) system.

7 Conlusions and related work

We have presented a method for the analysis of nonlinear onstraints ourring

at run time in the exeution of a CLP(R) program. Sine an exat analysis is

impossible at ompile time, we have used an abstrat interpretation algorithm

to approximate the possible delayed nonlinear onstraints and the variable

dependenies ourring at run time. The appliation of this algorithm to

various examples shows that our algorithm has enough preision for pratial

programs. The information produed by this algorithm an be used to support

the programmer when using the delay mehanism of the CLP(R) system or

to optimize the program when using a more powerful onstraint solver like

RISC-CLP(Real).

We have developed our analysis algorithm on the basis of a given frame-

work for the abstrat interpretation of logi programs [3℄ sine the opera-

tional semantis of CLP(R) is very similar to logi programming. The only

di�erene is the use of sets of onstraints instead of substitutions. Therefore

any other framework may also be appliable. Marriott and S�ndergaard [19℄

have developed a partiular framework for the abstrat interpretation of on-

straint logi programming languages based on a denotational desription of

the semantis. They have also shown the appliation of their framework to

the freeness and groundness analysis of CLP programs. However, they have

not applied their method to a partiular domain of onstraints. Therefore

they have not preisely desribed a solution to one of the main diÆulties

14

in a onrete appliation: the abstration of the freeness or uniqueness of

a variable w.r.t. a given onrete set of onstraints. This is one of the main

points addressed in this paper. We have derived uniqueness information w.r.t.

arithmeti onstraints over the real numbers by onsidering the variable de-

pendenies aused by onstraints. The normalization rules for our abstrat

domain orresponds to onstraint solving in the onrete domain.

Most of the well-known abstrat interpretation algorithms for the deriva-

tion of groundness information of variables or mode information for prediates

in logi programs use a small number of abstrat values like ground, free or

any (see, for instane, [21, 22, 3℄ or [17℄ for the ase of CLP(R)). Suh a

domain yields quite good results for many pratial logi programs. But for

onstraint logi programming it must be re�ned sine the possible reasons for

the groundness of variables are muh more ompliated. For instane, the

arithmeti onstraint X=Y+Z implies the groundness of Y if X and Z are ground

but not the groundness of Y and Z if X is ground. A typial programming

methodology in onstraint logi programming is \test and generate" [15, 23℄

where variables are instantiated by generators after the reation of a network

of onstraints between these variables. The following simple digital iruit

program uses this tehnique (reall that we assume a left-to-right strategy for

the evaluation of subgoals):

p(X,Y,Z):- not(X,NX),and(NX,Y,NXY),not(Z,NZ),and(NXY,NZ,1),

bit(X), bit(Y), bit(Z). % generate

not(A,NA) :- NA = 1-A.

and(A,B,AB) :- AB = A*B.

bit(0).

bit(1).

The unique answer onstraint to the goal ?-p(X,Y,Z) is X=0,Y=1,Z=0, i.e.,

there are no delayed nonlinear onstraints in the answer. However, a simple

mode analysis as in [17℄ would infer that the prediate and is alled with free

variables in the �rst and seond argument position and hene there may be a

delayed nonlinear onstraint at run time. In order to improve the auray of

the analysis, we have used impliations of the form V)X to desribe depen-

denies between di�erent variables. For the last example our algorithm infer

the dependenies fXg)NX, fNX,Yg)NXY and fZg)NZ (among others). Sine

the variables X, Y and Z are bound to ground terms by the last bit-literals

in the �rst lause, our algorithm infers (using the variable dependenies) that

there are no delayed nonlinear onstraints in the answer. This example shows

that our algorithm has a better preision than other algorithms for groundness

analysis whih is due to the fat that grounding variables by onstraint solv-

ing and awakening delayed onstraints an be easily desribed on the abstrat

level with our abstrat domain.

Marriott and S�ndergaard have also proposed an abstrat domain Prop

for a more preise analysis of groundness information [20, 5℄. Their domain

ontains propositional formulas over the program variables and the logial

onnetives _, ^ and $. Suh a domain is appropriate for pure logi pro-

gramming sine the groundness information after a uni�ation like X=f(Y,Z)

an be expressed by the propositional formula X $ Y ^ Z meaning that the

groundness of X is equivalent to the groundness of Y and Z. But in onstraint

logi languages the instantiation of variables may have di�erent reasons as

shown above by the onstraint X=Y+Z. These di�erent possibilities an be

15

easily expressed in our abstrat domain of variable dependenies.

Our abstrat domain has some similarities to the abstrat domain used for

the analysis of residuating logi programs [10℄. This is due to the fat that

the analysis of variable dependenies is also essential for a preise analysis

of residuating logi programs. However, the meaning of abstrations is quite

di�erent in both approahes. In ase of residuating logi programs the on-

rete domain onsists of substitutions and residuated equations and therefore

substitutions must be interpreted w.r.t. the urrent set of residuated equa-

tions. In our ase abstrations have a more diret meaning in the onrete

domain and therefore the onretisation funtion and the orretness proofs

are simpler. Further essential di�erenes show up in the de�nition of ab-

strat uni�ation whih is more sophistiated in the ase of onstraint logi

programs.

Reently, Gar��a de la Banda and Hermenegildo [8℄ have independently

developed a framework for the analysis of onstraint logi programs by extend-

ing Bruynooghe's framework. Although they were mainly interested in the

derivation of groundness information and did not inlude information about

nonlinear onstraints in their abstrat domain, the abstrat representation of

variable dependenies is very similar to our approah. They also assoiate

to eah variable sets of variables whih uniquely determine the value of that

variable. However, they have given a diret de�nition of abstrat onstraint

solving whih results in more ompliated de�nitions than our approah using

normalization rules to simplify abstrations after abstrat onstraint solving.

Although our algorithm yields quite good results for pratial programs,

the preision of the uniqueness analysis an be improved in various ways.

For instane, we do not onsider the free variables in onstraints and thus

we do not detet the uniqueness of these variables in some ases. E.g., the

onstraint 3=5*X-2*X restrits variable X to the unique value 1. But our anal-

ysis algorithm does not infer that X is unique sine the information that both

subexpressions ontain the same free variable is not present in the orrespond-

ing abstration. Hene the analysis an be improved if the abstrat domain is

re�ned to store information about variables in expressions. Another possibil-

ity for improving the preision of the analysis is to derive information about

possible values of variables. This would allow to detet that the onstraints

X=3,6=X*Y restrits Y to a unique value or that the onstraints X>2,Z=1,X<Z

are unsolvable.

Aknowledgements. This researh was supported in part by the German Ministry

for Researh and Tehnology (BMFT) under grant ITS 9103 and by the ESPRIT

Basi Researh Working Group 6028 (Constrution of Computational Logis). The

responsibility for the ontents of this publiation lies with the author.

Referenes

[1℄ S. Abramsky and C. Hankin, editors. Abstrat Interpretation of Delarative

Languages. Ellis Horwood, 1987.

[2℄ A. Aiba, K. Sakai, Y. Sato, D.J. Hawley, and R. Hasegawa. Constraint Logi

Programming Language CAL. In Pro. Int. Conf. on Fifth Generation Com-

puter Systems, pp. 263{276, 1988.

[3℄ M. Bruynooghe. A Pratial Framework for the Abstrat Interpretation of Logi

Programs. Journal of Logi Programming (10), pp. 91{124, 1991.

[4℄ A. Colmerauer. An Introdution to Prolog III. Communiations of the ACM,

Vol. 33, No. 7, pp. 69{90, 1990.

16

[5℄ A. Cortesi, G. File, andW.Winsborough. Prop revisited: Propositional Formula

as Abstrat Domain for Groundness Analysis. In Pro. IEEE Symposium on

Logi in Computer Siene, pp. 322{327, 1991.

[6℄ P. Cousot and R. Cousot. Abstrat interpretation: A uni�ed lattie model for

stati analysis of programs by onstrution of approximation of �xpoints. In

Pro. of the 4th ACM Symposium on Priniples of Programming Languages, pp.

238{252, 1977.

[7℄ S.K. Debray. Stati Inferene of Modes and Data Dependenies in Logi Pro-

grams. ACM Transations on Programming Languages and Systems, Vol. 11,

No. 3, pp. 418{450, 1989.

[8℄ M.J. Gar��a de la Banda and M. Hermenegildo. A Pratial Approah to the

Global Analysis of Constraint Logi Programs. Tehnial Report, Universidad

Politenia de Madrid, 1992.

[9℄ M. Hanus. Analysis of Nonlinear Constraints in CLP(R). Tehnial Report

MPI-I-92-251, Max-Plank-Institut f�ur Informatik, Saarbr�uken, 1992.

[10℄ M. Hanus. On the Completeness of Residuation. In Pro. of the 1992 Joint

International Conferene and Symposium on Logi Programming, pp. 192{206.

MIT Press, 1992.

[11℄ N. Heintze, J. Ja�ar, S. Mihaylov, P. Stukey, and R. Yap. The CLP(R)

Programmer's Manual, Version 1.1. IBM Thomas J. Watson Researh Center,

Yorktown Heights, 1991.

[12℄ H. Hong. Non-linear Real Constraints in Constraint Logi Programming. In

Pro. of the 3rd International Conferene on Algebrai and Logi Programming,

pp. 201{212. Springer LNCS 632, 1992.

[13℄ J. Ja�ar and J.-L. Lassez. Constraint Logi Programming. In Pro. of the

14th ACM Symposium on Priniples of Programming Languages, pp. 111{119,

Munih, 1987.

[14℄ J. Ja�ar, S. Mihaylov, P.J. Stukey, and R.H.C. Yap. An Abstrat Mahine

for CLP(R). In Pro. SIGPLAN Conferene on Programming Language Design

and Implementation, pp. 128{139. SIGPLAN Noties, Vol. 27, No. 7, 1992.

[15℄ J. Ja�ar, S. Mihaylov, P.J. Stukey, and R.H.C. Yap. The CLP(R) Lan-

guage and System. ACM Transations on Programming Languages and Sys-

tems, Vol. 14, No. 3, pp. 339{395, 1992.

[16℄ J. Ja�ar, S. Mihaylov, and R.H.C. Yap. A Methodology for Managing Hard

Constraints in CLP Systems. In Pro. ACM SIGPLAN'91 Conferene on Pro-

gramming Language Design and Implementation, pp. 306{316. SIGPLAN No-

ties, Vol. 26, No. 6, 1991.

[17℄ N. J�rgensen, K. Marriott, and S. Mihaylov. Some Global Compile-Time Op-

timizations for CLP(R). In Pro. 1991 International Logi Programming Sym-

posium, pp. 420{434. MIT Press, 1991.

[18℄ B. Le Charlier, K. Musumbu, and P. Van Hentenryk. A Generi Abstrat

Interpretation Algorithm and its Complexity Analysis. In Pro. International

Conferene on Logi Programming, pp. 64{78. MIT Press, 1991.

[19℄ K. Marriott and H. S�ndergaard. Analysis of Constraint Logi Programs. In

Pro. of the 1990 North Amerian Conferene on Logi Programming, pp. 531{

547. MIT Press, 1990.

[20℄ K. Marriott, H. S�ndergaard, and P. Dart. A Charaterization of Non-

Floundering Logi Programs. In Pro. of the 1990 North Amerian Conferene

on Logi Programming, pp. 661{680. MIT Press, 1990.

[21℄ C.S. Mellish. Some Global Optimizations for a Prolog Compiler. Journal of

Logi Programming (1), pp. 43{66, 1985.

[22℄ U. Nilsson. Towards a Framework for the Abstrat Interpretation of Logi

Programs. In Pro. of the Workshop on Programming Language Implementation

and Logi Programming, pp. 68{82, Orl�eans, 1988. Springer LNCS 348.

[23℄ P. Van Hentenryk. Constraint Satisfation in Logi Programming. MIT Press,

1989.

17

