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Abstract

Pure logic programming lacks some features known from other modern pro-
gramming languages, e.g., type systems for detection of particular program-
ming errors at compile time and higher-order facilities for treating programs
as data objects and writing more compact programs. On the one hand there
are several proposals for polymorphic type systems for logic programming,
and on the other hand Warren [35] has shown that higher-order programming
can be simulated in first-order logic. But the integration of these proposals
fails because Warren’s first-order programs are ill-typed in the sense of the
polymorphic type systems.

This paper presents a polymorphic type system for logic programming
which allows the application of higher-order programming techniques. For
Prolog-like applications of higher-order programming techniques it is possible
to compute optimizations by abstract interpretation so that the polymorphic
logic programs have the same operational efficiency as untyped Prolog pro-
grams.

1 Introduction

Pure logic programming is based on untyped first-order logic and does not
permit detection of many programming errors at compile time. Therefore
various attempts have been made to integrate types into logic programming.
One research direction follows an operational approach: The main goal of
the operational approaches is to ensure that predicates are only called with
appropriate arguments at run time. This should be attained by a static
analysis of the program. These approaches have only a syntactic notion
of “type”, i.e., types are sets of terms rather than subsets of carrier sets of
interpretations (on which the declarative semantics of logic programs is based
[22]). Type information is frequently inferred by a type inference algorithm
(see, for instance, [25] [20] [38] [21] [15] [5] [37]). Mycroft and O’Keefe [27]
have adapted the polymorphic type discipline of modern functional languages
[8] to pure Prolog. In their proposal the programmer has to declare the types
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of functions and predicates and the types of variables in clauses are inferred
by a type checker. Since they have put restrictions on the use of polymorphic
types in function declarations and clauses, their programs “do not go wrong”
in the sense of well-typedness. But these restrictions prevent the application
of higher-order programming techniques in the sense of Warren [35] (see
below). The type system was extended to subtypes on the basis of mode
declarations by Dietrich and Hagl [10], but they have no semantic notion of
a type, similarly to Mycroft and O’Keefe’s work.

Another research direction, to which this papers belongs, follows a declar-
ative approach: The programmer has to declare all types of functions and
predicates that he wants to use in the program. These approaches have a
formal semantics of a type, i.e., types represent subsets of carrier sets of inter-
pretations. This influences the operational mechanism because correctness
can only be ensured by a typed unification procedure. In many-sorted Horn
logic [29] typed unification is the same as untyped unification, but in order-
sorted logic [11] [33], polymorphically order-sorted logic [32], or in a logic
with subtypes and inheritance [3] the unification procedure has to consider
the types of terms.

Higher-order objects well-known from functional languages are another
useful extension to pure logic programming. Aı̈t-Kaci, Lincoln and Nasr [2]
have proposed an untyped language with functions and relations which per-
mits higher-order functions. Although they have presented an operational
semantics for this language based on delayed evaluation of expressions, a
declarative semantics is not defined. Generally, a semantically clean amalga-
mation of higher-order objects with logic programming techniques like unifi-
cation is not trivial since the unification of higher-order terms is undecidable
in general [12]. Miller and Nadathur [24] have defined an extension of first-
order Horn clause logic to include predicate and function variables based on
the typed lambda calculus. For the operational semantics it is necessary to
unify typed lambda expressions which leads to a complex and semi-decidable
unification [18]. The latter efficiency argument is our motivation to keep first-
order Horn clause logic as our formal framework. But there is still another
reason: Higher-order unification means solving equations between functions
and guessing or computing new functions that satisfy the equations. This is
a new feature not available in functional languages and, in our opinion, not
necessary for programming. From a practical point of view it is sufficient to
apply only user-defined functions to appropriate arguments at run time.

In order to integrate the higher-order facilities of functional languages
into logic programming, Warren [35] has shown that first-order logic need
not be extended because the usual higher-order programming techniques can
be simulated in first-order logic by an axiomatization of an apply predicate.
Since he is concerned with Prolog and its untyped logic, he does not have a
clear distinction between first-order and higher-order objects. A type system
may help to obtain this distinction. But the clauses for the apply predicate
are not well-typed in the sense of the usual polymorphic type systems for
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logic programming [27] [10] [32] (see below).
Mycroft and O’Keefe [27] have also proposed an apply predicate for

higher-order programming, but the precise meaning of the predicate is not
defined. Prolog has also a predefined predicate call for the application of
higher-order programming techniques [7], but the meaning of call cannot
be described in first-order logic because the called predicate name must be
instantiated to an atom at run time (a non-declarative restriction).

Hanus [14] has proposed a generalized polymorphic type system for logic
programming based on a semantic notion of polymorphic types. Since the
type system is rather general, it is necessary to consider the types of terms
in the unification procedure. In this paper we show that Warren’s first-
order specification of the apply predicate is well-typed in the sense of [14].
Therefore this type system is a basis for the application of higher-order pro-
gramming techniques in a typed framework. Moreover, we show that in most
applications it is possible to compute optimizations by abstract interpreta-
tion so that the polymorphic logic programs can be executed with the same
efficiency as untyped Prolog programs, i.e. the typed unification can be re-
placed by untyped unification without loss of soundness.

The next section gives an outline of the polymorphic type system of [14]
and presents an example with higher-order predicates. In a further section
we develop an optimization technique based on abstract interpretation to
detect the cases where all type information can be omitted at run time.

2 Polymorphically typed logic programs

We are interested in an ML-like polymorphic type system for logic program-
ming, i.e., types may contain type variables that are universally quantified
over all types [8]. The programmer has to declare the types of all functions
and predicates occurring in the program. The types of variables in clauses
can be inferred by an ML-like type checker. Therefore the clauses of a pro-
gram need not be annotated with type information by the programmer, but
the type annotations are computed by the type checker. Moreover, the type
checker can detect a lot of programming errors at compile time.

The typing rules are quite simple. First the programmer has to declare the
basic types like int or bool and type constructors like list which he wants to use
in the program. Each type constructor has a fixed arity (e.g., list has arity
1, denoted by list/1). We assume a given infinite set of type variables and we
denote members of this set by α and β. A (polymorphic) type is a term built
from basic types, type constructors and type variables (see [17] for the notion
of term). A monomorphic type is a type without type variables. For instance,
list(int) and list(α) are monomorphic and polymorphic types which denote
lists of integers and lists of elements of an arbitrary type, respectively. A type
τ1 is an instance of another type τ2 if τ1 can be obtained from τ2 by replacing
type variables in τ2 by other types. Two types τ1 and τ2 are equivalent if
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τ1 is an instance of τ2 and τ2 is an instance of τ1, i.e., they are equal up to
renaming of type variables.

Next the user has to declare the argument and result types of functions
and predicates occurring in the program. A function declaration has the form

func f: τ1, . . . , τn → τ

(where τ1, . . . , τn, τ are arbitrary types) and means that function f takes n
arguments of types τ1, . . . , τn and produces a value of type τ . f is called
constant of type τ if n = 0. A predicate declaration has the form

pred p: τ1, . . . , τn

(where τ1, . . . , τn are arbitrary types) and means that predicate p has n ar-
guments of types τ1, . . . , τn. In order to compute the most general type of
a term and to apply some optimization techniques (see below), we forbid
overloading: For each function and predicate symbol there is only one type
declaration. Note that there are no restrictions on the use of type variables
in function declarations in contrast to [27].1

The type variables in a declaration are universally quantified over all
types, i.e., functions and predicates can be used with an arbitrary substitution
of types for type variables in the declaration. Hence we call a function or
predicate declaration a generic instance of another declaration if it can be
obtained from the other declaration by replacing each occurrence of one or
more type variables by other types (cf. [8]). For instance, if there is the
declaration

pred append: list(α), list(α), list(α)

for the predicate append, then

pred append: list(int), list(int), list(int)

is a generic instance of the declaration.
According to [6], types are embedded in terms, i.e., each symbol in a

term is annotated with an appropriate type expression. These annotations
are useful for the unification of polymorphic terms (see below). The type
annotations need not be provided by the user because most general type
annotations can be computed. We assume a given infinite set V ar of variable
names distinguishable from type variables. A typed variable has the form x:τ
where x ∈ V ar and τ is an arbitrary type. We call V an allowed set of
typed variables if V contains only typed variables and x:τ, x:τ ′ ∈ V implies
τ = τ ′. We call L ← G a polymorphic program clause if there is an allowed
set of typed variables V and V ⊢ L ← G is derivable by the inference rules
in table 1. Note that there are no restrictions on the use of types and type
variables in clauses in contrast to [27], [32] and similar type systems.2 A

1In their type system each type variable occurring in the argument type of a function
must also occur in the result type [26].

2In these type systems the left-hand side of a clause must have a type that is equivalent
to the declared type of the predicate.

4



Variable:
V ⊢ x:τ

(x:τ ∈ V )

Term:
V ⊢ t1:τ1, . . . , V ⊢ tn:τn
V ⊢ f(t1:τ1, . . . , tn:τn):τ

(f :τ1, . . . , τn → τ is a generic inst.
of a function declaration, n ≥ 0)

Literal:
V ⊢ t1:τ1, . . . , V ⊢ tn:τn
V ⊢ p(t1:τ1, . . . , tn:τn)

(p:τ1, . . . , τn is a generic instance
of a predicate declaration, n ≥ 0)

Clause:
V ⊢ L0, . . . , V ⊢ Ln

V ⊢ L0 ← L1, . . . , Ln

(each Li has the form p(· · ·),
i = 0, . . . , n)

Table 1: Typing rules for polymorphic program clauses

polymorphic logic program is a finite set of polymorphic program clauses.
We give an example of a polymorphic logic program that defines the

higher-order predicate map. The constant [] represents the empty list, and
the function • concatenates an element with a list of the same type. We write
[E|L] instead of •(E,L) (throughout this paper we use the Prolog notation
for lists, cf. [7]). The literal map(P,L1,L2) should be satisfied if predicate P

is satisfied for each pair of corresponding elements from lists L1 and L2. In
order to define the type of map we introduce a type constructor pred2 of arity
2 that denotes the type of binary predicates. The type of map is

pred map: pred2(α, β), list(α), list(β)

For each binary predicate p of type “τ1, τ2” we introduce a corresponding
constant λp of type “pred2(τ1, τ2)”. The relation between each predicate p
and the constant λp is defined by clauses for the predicate apply2. Hence
we get the following example program for the predicate map (we omit type
annotations in program clauses because they can be automatically inferred
by an ML-like type checker [8]):

type bool, nat, list/1, pred2/2
func true : → bool
func false: → bool
func 0 : → nat
func s : nat→ nat
func [] : → list(α)
func • : α, list(α)→ list(α)
func λnot: → pred2(bool, bool)
func λinc: → pred2(nat, nat)
pred not: bool, bool
pred inc: nat, nat
pred map: pred2(α, β), list(α), list(β)

5



pred apply2: pred2(α, β), α, β

clauses:

map(P,[],[]) ←

map(P,[E1|L1],[E2|L2]) ← apply2(P,E1,E2), map(P,L1,L2)

not(true,false) ←

not(false,true) ←

inc(N,s(N)) ←

apply2(λnot,B1,B2) ← not(B1,B2)

apply2(λinc,I1,I2) ← inc(I1,I2)

We can use this definition of map to compute a new list from a given one or to
search for predicates which relate two lists (see next section for operational
semantics):

?- map(λnot,[true,false,false],L)
L = [false,true,true]

?- map(P,[0],[s(0)])

P = λinc

Note that the last two clauses for the predicate apply2 are not well-typed
in the sense of [27] and similar type systems since apply2 has the declared
type “pred2(α, β), α, β” but is used in the clause heads with the specialized
types “pred2(bool, bool), bool, bool” and “pred2(nat, nat), nat, nat”, respec-
tively. Therefore such first-order axiomatizations of higher-order predicates
cannot be well-typed with the usual polymorphic type systems in a reason-
able way.

We remark that it is also possible to permit lambda expressions which
can be translated into new identifiers and apply clauses for these identifiers
(see [35] for more discussion). If the lambda expressions have polymorphic
arguments that do not occur in the result (e.g., the length function on lists
length: list(α) → nat), then typing of such expressions is no problem
because type variables in argument types that do not occur in the result
type are permitted in our type system in contrast to [27]. If the underlying
system implements indexing on the first arguments of predicates (as done in
most compilers for Prolog, cf. [36] and [13]), then there is no essential loss of
efficiency in our translation scheme for higher-order objects in comparison to
a specific implementation of higher-order objects [35].

Since our foundation is first-order logic, the predicate symbol map is se-
mantically not interpreted as a higher-order predicate. The constants λnot
and λinc are also interpreted as values and not as predicates. But the first
apply2 clause ensures that in each model of the above program the constant
λnot and the predicate not are related together. From an operational point
of view the behaviour of our map program is similar to the behaviour of a
corresponding program in a higher-order language. To be more precise we
give a short outline of the semantics in the next section.
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3 Declarative and operational semantics

First we give a short outline of the declarative semantics. The type variables
in a clause vary over all possible types, i.e., a clause containing a type vari-
able α is true for each type which is substituted for α. The carrier of an
interpretation is a family of sets with one set for each (monomorphic) type.
Function symbols are interpreted as functions on appropriate carrier sets, and
predicates are interpreted as relations between appropriate carrier sets. This
leads to a similar notion of validity and equivalent results as in many-sorted
Horn clause logic [29]. Especially, an initial model can be constructed as the
intersection of all Herbrand models where the carrier sets contain all ground
terms with monomorphic types. We call a goal (goals have the same form as
the right-hand side of a polymorphic program clause) valid with respect to a
program P if it is valid in each interpretation which satisfies all clauses from
P .

In [14] it is shown that resolution is a sound and complete proof pro-
cedure for polymorphic logic programs with goals that may contain type
variables if the unification is extended to polymorphic terms. The unifica-
tion of polymorphic terms can be reduced to common first-order unification
[30] if the annotated types are treated as first-order terms. Type terms are
distinguished from other terms by their position (type terms occur only after
a colon ‘:’). For instance, a unifier of the polymorphic terms []:list(α) and
v:list(int) is the substitution that replaces α by int and v by []. This could
also be computed by a first-order unification algorithm if the symbol ‘:’ is
treated as a term constructor of arity 2. Therefore it is possible to translate
polymorphic logic programs into Prolog programs (more details can be found
in [14]).

Since we have an unrestricted type system, the unification procedure has
to consider the types of polymorphic terms. Otherwise the resolution is not
sound and produces ill-typed goals. For instance, assume that the above map
program is given. We may ask for a predicate that relates two lists of naturals
and apply this predicate to the constant 0:

?- map(P,[N1],[N2]), apply2(P,0,N3)

(P has type pred2(nat, nat) and N1, N2 and N3 have type nat). If we omit all
types at run time and solve the goal by the computation rule of Prolog, P,
N1 and N2 are bound to λnot, true and false, respectively, and we obtain
the ill-typed goal

?- apply2(λnot,0,N3)

Resolution with typed terms and typed unifiers is correct, since

apply2(P:pred2(nat, nat),N1:nat,N2:nat)

and

apply2(λnot:pred2(bool, bool),B1:bool,B2:bool)

are not unifiable. But
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apply2(P:pred2(nat, nat),N1:nat,N2:nat)

and

apply2(λinc:pred2(nat, nat),I1:nat,I2:nat)

are unifiable and therefore we obtain the well-typed goal

?- apply2(λinc:pred2(nat, nat),0:nat,N3:nat)

in the resolution process. This example demonstrates that types are necessary
for soundness of resolution in general. But there are some cases where types
are unnecessary in the resolution process. This should be shown in the next
section.

4 Optimization

The unification procedure has to consider the types of polymorphic terms
because of our unrestricted type system. Hence the polymorphic unifica-
tion is more complex and less efficient than the unification in untyped logic
languages. But Mycroft and O’Keefe [27] have shown that types can be
completely omitted at run time if the program has particular restrictions.
In section 2 we have seen that these restrictions prevent the application of
higher-order programming techniques. Nevertheless, there are cases where
all type information can be omitted at run time in the presence of clauses
for an apply predicate. This section presents some sufficient criteria to omit
type information in the resolution process. It is shown that in Prolog-like
applications of higher-order predicates no type information is needed at run
time.

4.1 General optimization techniques

First we review two optimizations mentioned in [14]. One optimization can
be applied to most functions: A function symbol f is called type preserving
if all type variables occurring in the argument type also occur in the result
type. For instance, all function symbols in the above map program are type
preserving, whereas the function

func first: pair(α, β)→ α

is not type preserving. Since all type information of a type preserving func-
tion can be computed from the type declaration and the actual instantiation
of the result type, the type annotations of arguments can be omitted at unifi-
cation time. Hence only the direct result types of the arguments of predicates
are needed in the above map program. For instance, we need instead of the
completely typed goal

map(P:pred2(α, β),[E1:α|L1:list(α)]:list(α),[E2:β|L2:list(β)]:list(β))

only the goal

map(P:pred2(α, β),[E1|L1]:list(α),[E2|L2]:list(β))
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for correctly typed unification.
All types can be omitted in the resolution proof of a predicate if the

predicate is type-generally defined: Intuitively, a predicate is called type-
generally defined if in each clause for the predicate all predicates in the body
are also type-generally defined and the clause head has a most general type
according to the type declaration of the predicate. Usually, a literal with
predicate symbol p has a most general type if the types of the arguments are
equivalent to the declared type of p. For instance, the clause head

map(P:pred2(α, β),[E1|L1]:list(α),[E2|L2]:list(β))

has a most general type, but not

apply2(λnot:pred2(bool, bool),A1:bool,A2:bool)

because the declared type of apply2 is “pred2(α, β), α, β”.
In a well-typed program in the sense of Mycroft and O’Keefe each function

must be type preserving and each predicate must be type-generally defined.
This is the reason why these programs can be executed without dynamic
type checking. As shown above, the first-order specification of an apply

predicate is not a type-general definition and therefore only the first opti-
mization technique for type preserving functions is applicable to programs
with higher-order predicates. In order to omit all types in this case, better
optimization techniques are required.
In which cases does the untyped unification lead to ill-typed goals? Two
conditions must be satisfied:

1. There is a predicate p and a clause for p where the head of the clause
does not have a most general type w.r.t. the type declaration of p
(otherwise all predicates are type-generally defined and all types can
be omitted, see above).

2. At run time there is a call to this predicate and after the call some
variables are bound to terms with specialized types (for instance, if
the map program of section 2 is given, a call of apply2(P,A1,A2) bind
variable P to λnot which has type pred2(bool, bool)).

If type annotations should be omitted at run time, it must be ensured that
these conditions cannot be satisfied. Therefore we need some knowledge
about the run-time behaviour of the program. Since detailed run-time prop-
erties of Prolog programs are generally undecidable, we give sufficient criteria
for the absence of the second condition.

We call a predicate p type-specialized if there is a program clause of the
form

p(t1:τ1, . . . , tn:τn)← L1, . . . , Lm

where τ1, . . . , τn is not equivalent to the declared type of p. The critical points
of a program are the calls of type-specialized predicates. We need a sufficient
criterion to ensure that
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• the unifiability of literals with clause heads does not depend on argu-
ment types, and

• no variable arguments in literals are bound to terms with specialized
types while unifying the literal with a clause head.

In this case the argument types can be omitted at run time. A sufficient
criterion for this property is groundness of arguments: If there is an argument
of the predicate call which is a ground term and the corresponding argument
in the clause head has a most general type, then the unification does not
depend on the argument types and no variable argument is instantiated to a
term with a specialized type. In the following we give a precise definition of
this criterion.

Let p be a type-specialized predicate with declared type ν1, . . . , νn,
p(r1:ρ1, . . . , rn:ρn) be a literal that calls p and

p(t1:τ1, . . . , tn:τn)← L1, . . . , Lm

be a clause for p. The type annotations ρ1, . . . , ρn and τ1, . . . , τn are not
required for correct unification if the following conditions are satisfied:

1. There is an argument position i (1 ≤ i ≤ n) such that νi contains all
type variables occurring in the declared type ν1, . . . , νn.

2. ri:ρi is a ground term.

3. The term ti:τi has a most general type w.r.t. νi, i.e., there is no term
t′
i
:τ ′
i
which is equal to ti:τi up to type annotations so that τ ′

i
is an

instance of νi, τi is an instance of τ ′
i
, and τi is not equivalent to τ ′

i
.

By the first condition, the actual instantiation of type ν1, . . . , νn is determined
by the type of the i-th argument. This condition could be extended to more
than one argument position that contain all type variables and are ground,
but this would complicate the definition. The condition with one argument
position is sufficient for our purpose of higher-order programming. The third
condition ensures that each other well-typing of the i-th argument term of
the clause head gives a type which is an instance of τi (the notion “equal up to
type annotations” means that the terms become equal if all type annotations
are deleted).

We show that the types of predicate arguments can be omitted if the above
conditions are satisfied. If p(r1, . . . , rn) and p(t1, . . . , tn) are not unifiable,
then p(r1:ρ1, . . . , rn:ρn) and p(t1:τ1, . . . , tn:τn) are not unifiable, too. Let
p(r1, . . . , rn) and p(t1, . . . , tn) be unifiable. Then ri is also unifiable with ti.
Since ti:τi has a most general type (condition 3), ρi is an instance of type τi.
Thus a most general unifier σ of ri:ρi and ti:τi exists and does not instantiate
any type variable in ρi (w.l.o.g. all type variables in ti:τi are disjoint from
type variables in ri:ρi). σ(τ1, . . . , τn) = ρ1, . . . , ρn because σ(τi) = σ(ρi) = ρi
and the declared argument type νi contains all type variables of the declared
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type (condition 1). Therefore p(r1:ρ1, . . . , rn:ρn) and p(t1:τ1, . . . , tn:τn) are
unifiable, too, and a most general unifier does not instantiate any variable
argument in p(r1:ρ1, . . . , rn:ρn) to a term with a specialized type. Hence the
absence of argument types does not influence unifiability and the types of
arguments can be omitted at run time.

Condition 3 is necessary for this optimization. For instance, a predicate
p is declared by

pred p: list(α), α

and the only call of predicate p is of the form p([]:list(bool),B:bool). If the
only clause for p is

p([]:list(nat),0:nat) ←

then the clause is not applicable to literal p([]:list(bool),B:bool). If we omit
the argument types, then the clause would be applicable and the Boolean
variable B would be instantiated to term 0 of type “nat”. If the only clause
for P has the form

p([]:list(α),X:α) ←

then the argument types can be omitted because type variable α is instanti-
ated to “bool”. The argument types can also be omitted if there is a clause
of the form

p([0]:list(nat),X:nat) ←

(we omit the type annotation of 0 because function ‘•’ is type preserving)
since the term [0]:list(nat) has a most general type.

The above three conditions can be checked at compile time if information
about the groundness of variables at run time is available. Condition 3 can
be checked by the use of a type checker that computes the most general
type of a term. Groundness condition 2 can be verified if we know the
modes of type-specialized predicates [23] [9] [34]: If the i-th argument of
predicate p is in input mode, then ri:ρi is always ground at run time. Since we
only need groundness information about some arguments and not the modes
of all predicates, we prefer to use abstract interpretation techniques [1] to
compute groundness information at compile time. Abstract interpretation
have been applied to derive groundness information by Jones, Søndergaard
[19] and Nilsson [28]. The results of abstract interpretation are sufficient for
our purposes.

4.2 Application to logic programs with higher-order predi-

cates

We have implemented the optimization techniques developed above and we
have applied it to a number of logic programs with first-order axiomatizations
of higher-order predicates. In the following we outline the implementation
and the results.

To compute groundness information of variables we have implemented
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Nilsson’s abstract interpretation technique [28]. The computation of infor-
mation is based on distinguished program points. The point before a literal
L in the body of a clause or in a goal is called calling point of L and the
point after L is called success point of L. Abstract interpretation of a logic
program is started by supplying a goal pattern that describes possible ini-
tial goals and groundness information of these goals. Then the program is
translated into a graph structure and groundness information is computed
for each program point. For each critical program point (calling point of a
type-specialized predicate) the above three criteria are checked. If these cri-
teria are satisfied for each critical program point, then all type annotations
of predicate arguments can be omitted.

For instance, assume that the above polymorphic logic program for the
predicate map is given. The initial goal information is

map(P,L1,L2) with ground P

which means that the map program is only started with a goal of the form
map(P,L1,L2) where the first argument is a ground term. Now groundness
information is computed for all program points. Since apply2 is the only
type-specialized predicate, the only critical program point is the calling point
of literal apply2(P,E1,E2) in the second clause for the map predicate. The
following groundness information is computed for this polymorphic clause
(the list of ground variables is shown for each calling and success point of
each literal in the clause body):

map(P:pred2(α, β),[E1|L1]:list(α),[E2|L2]:list(β)) ←
*** Ground variables: [P]

apply2(P:pred2(α, β),E1:α,E2:β),
*** Ground variables: [P,α,β]

map(P:pred2(α, β),L1:list(α),L2:list(β))
*** Ground variables: [P,α,β]

(the type annotations of arguments of type preserving functions are omitted).
We see that after a successful call of the apply2-literal the type variables α
and β are also bound to monomorphic types since there are only apply2-
clauses for monomorphically typed predicates. Next the three conditions are
checked for the apply2-literal:

1. The declared type of apply2 is “pred2(α, β), α, β” and therefore the
type of the first argument contains all type variables occurring in the
declared type.

2. The first argument of the apply2-literal is a ground term.

3. The first arguments of the heads of the apply2-clauses are
λnot:pred2(bool, bool) and λinc:pred2(nat, nat), respectively. Since
these constants are declared with monomorphic types, these terms have
most general types.
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Hence all type annotations can be omitted at run time of this program since
all functions are type preserving.

The actual implementation automatically checks all conditions. For con-
dition 3 all types in term ti:τi are deleted, the type checker is called for the
term without type annotations to obtain a term t′

i
:τ ′
i
with most general type

annotations, and it is checked whether τi and τ ′
i
are equivalent. Since the

implementation language is Prolog, equivalence of type expressions can be
decided by the use of the common meta-logical predicate numbervars.

It is easy to see that conditions 1 and 3 are satisfied by all clauses for an
apply predicate in our implementation scheme for higher-order predicates: If
an higher-order predicate which takes an n-ary predicate as argument should
be defined, we have to declare a type constructor predn with arity n, a
corresponding predicate

pred applyn: predn(α1, . . . , αn), α1, . . . , αn

and for each n-ary predicate

pred p: τ1, . . . , τn

a constant

func λp: → predn(τ1, . . . , τn)

For each of these constants there is a clause

applyn(λp:predn(τ1, . . . , τn),A1:τ1,...,An:τn) ← p(A1:τ1,...,An:τn)

The type of the first argument of applyn contains all type variables occurring
in the declared type of p (condition 1). Since predn(τ1, . . . , τn) is the declared
type of constant λp, the term λp:predn(τ1, . . . , τn) has a most general type
(condition 3). Condition 2 is dependent on the actual program, but the
abstract interpreter gives precise information in most cases.

We have applied these optimization techniques to several polymorphic
logic programs with higher-order predicates and obtained the following re-
sults:

• If higher-order predicates are used in a Prolog-like way, i.e., the apply
predicate is only used with a non-variable first argument at run time
(this is the only possibility in Prolog, otherwise a run-time error occurs),
then this is recognized by the optimizer and no types are needed at
run time. This means that in Prolog-like applications of higher-order
predicates we have no overhead because of types.

• The cases where types are needed at run time are rare in practical
programs. It occurs when somebody wants to compute predicates that
could be applied to certain terms. This feature is not available in
Prolog and it shows that our notion of higher-order programming has a
declarative meaning and is type secure in contrast to Prolog. In these
cases types are not superfluous but may reduce the search space (this
is also an argument to include types in the computation process of
order-sorted logic [16]).
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5 Conclusions

We have presented a polymorphic type system for logic programming that
allows the application of higher-order programming techniques. In most
cases, polymorphic logic programs with higher-order predicates can be ex-
ecuted with the same efficiency as untyped logic programs if an optimization
technique based on the computation of groundness information by abstract
interpretation is used. The polymorphic logic language has a well-defined
semantics based on first-order logic. Higher-order objects are specified by a
name and distinguished clauses that defines the application of these objects
to other ones. The necessary definitions can be automatically generated.
This technique was proposed by Warren for untyped Horn clause logic.

Logic programming with higher-order functions was also proposed by
Smolka [31]. In his language Fresh higher-order functional programming is
combined with unification. To avoid the difficulties with higher-order unifica-
tion, a name is associated with each function and equality between functions
is defined as identity of associated names. This is similar to our approach
except that Fresh is an untyped language.

The compilation of higher-order functions into first-order logic was also
proposed by Bosco and Giovannetti [4], but in their language IDEAL type-
checking is only performed for the source program and not for the target
program. Clearly, the target program is not well-typed in the sense of [27]
because of the clauses for the apply predicate.

Since higher-order logic programs can be translated into polymorphic
logic programs, the use of higher-order objects is type secure in our frame-
work. The typing rules are similar to functional languages and the type
system ensures that a predicate is only called with appropriate arguments
at run time. Hence our polymorphic logic language is a sound and clearly
defined framework for higher-order programming in comparison with other
ad-hoc approaches (call predicate in Prolog, apply predicate in [27]). Since
we have restricted the domain of predicate variables to user-defined pred-
icates, our theoretical foundation is first-order logic and not higher-order
logic. The advantage of this restriction is an efficient operational semantics,
and the occurrence of type variables in goals raises no problems (in contrast
to [24]).

Further work remains to be done. From a practical point of view a type
inference algorithm should automatically derive type declarations for predi-
cates from the given program [37]. But the distinction between type errors
and well-typings is not trivial because of our general type system.
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