
Fundamenta Informaticae XX (2019) 1–30 1

DOI 10.3233/FI-2016-0000

IOS Press

Combining Static and Dynamic Contract Checking for Curry

Michael Hanus∗

Institut für Informatik

CAU Kiel, Germany

Abstract. Static type systems are usually not sufficient to express all requirements on function
calls. Hence, contracts with pre- and postconditions can be used to express more complex con-
straints on operations. Contracts can be checked at run time to ensure that operations are only
invoked with reasonable arguments and return intended results. Although such dynamic contract
checking provides more reliable program execution, it requires execution time and could lead to
program crashes that might be detected with more advanced methods at compile time. To improve
this situation for declarative languages, we present an approach to combine static and dynamic
contract checking for the functional logic language Curry. Based on a formal model of contract
checking for functional logic programming, we propose an automatic method to verify contracts
at compile time. If a contract is successfully verified, it can be omitted from dynamic checking.
This method decreases execution time without degrading reliable program execution. In the best
case, when all contracts are statically verified, it provides trust in the software since crashes due
to contract violations cannot occur during program execution.

Keywords: Declarative programming, contracts, verification

1. Introduction

Static types, provided by the programmer or inferred by the compiler, are useful to detect specific
classes of run-time errors at compile time. This is expressed by Milner [1] as “well-typed expressions

Address for correspondence: M. Hanus, Institut für Informatik, CAU Kiel, D-24098 Kiel, Germany
∗The research described in this paper has been partially supported by the German Federal Ministry of Education and
Research (BMBF) under Grant No. 01IH15006B.

2 M. Hanus / Combining Static and Dynamic Contract Checking for Curry

do not go wrong.” However, not all requirements on operations can be expressed by standard static
type systems. Hence, one can either refine the type system, e.g., use a dependently typed program-
ming language and a more sophisticated programming discipline [2], or add contracts with pre- and
postconditions to operations. Stronger type systems are quite expressive, but programming in a lan-
guage with dependent types can be challenging since one has to construct proofs expressed as types
before running the program. The use of contracts does not provide strong compile-time guarantees,
but contracts are easier to use since they can be automatically checked at run time. Hence, one can
write programs without additional efforts to prove the correctness of contracts.

Since contracts can easily be added to any programming language and do not require changes in
the traditional way of software development, we consider them in this paper. As a motivating example,
consider the well-known factorial function:

fac n = if n==0 then 1

else n * fac (n-1)

Although fac is intended to work on non-negative natural numbers, standard static type systems cannot
express this constraint so that

fac :: Int → Int

is provided or inferred as the static type of fac.1 Although this type avoids the application of fac on
characters or strings, it allows to apply fac on negative numbers which results in an infinite loop.

A precondition is a Boolean expression that restricts the applicability of an operation. Following
the notation proposed in [3], a precondition for an operation f is a Boolean operation with name
f’pre. For instance, a precondition for fac is

fac’pre n = n >= 0

To use this precondition for checking invocations of fac at run time, a preprocessor could transform
each call to fac by attaching an additional test whether the precondition is satisfied (see [3]). After
this transformation, an application to fac to a negative number results in a run-time error (contract
violation) instead of an infinite loop.

Unfortunately, run-time contract checking requires additional execution time so that it is often
turned off, in particular, in production systems. To improve this situation for declarative languages,
we propose to reduce the number of contract checks by (automatically) verifying them at compile
time. Since we do not expect to verify all of them at compile time, our approach can be seen as a
compromise between full static verification, e.g., with proof assistants like Agda, Coq, or Isabelle,
which is time-consuming and difficult, and full dynamic checking, which might be inefficient.

For instance, one can verify (e.g., with an SMT solver [4]) that the precondition for the recursive
call of fac is always satisfied provided that fac is called with a satisfied precondition. Hence, we can
omit the precondition checking for recursive calls so that n− 1 precondition checks are avoided when
we evaluate fac n.

In the following, we make this idea more precise for the functional logic language Curry [5],

1The inferred type depends on the underlying static type system. For instance, Haskell (and also implementations of Curry
supporting type classes) infers the more general overloaded type Num a => a → a.

M. Hanus / Combining Static and Dynamic Contract Checking for Curry 3

briefly reviewed in the next section, so that the same ideas can also be applied to purely functional
as well as logic languages. After discussing contracts for Curry in Sect. 3, we define a formal model
of contract checking for Curry in Sect. 4. This is the basis to extract proof obligations for contracts
at compile time. If these proof obligations can be verified, the corresponding dynamic checks can be
omitted. Some examples for contract verification are shown in Sect. 5. The current implementation
is sketched in Sect. 6 and benchmark results are presented in Sect. 7. Section 8 discusses other areas
where the results of static contract checking can be applied. Finally, we discuss in Sect. 9 related work
before we conclude.

2. Functional Logic Programming and Curry

Functional logic languages combine the most important features of functional and logic programming
in a single language (see [6] for a recent survey). In particular, the language Curry [5] conceptually
extends Haskell with common features of logic programming, i.e., non-determinism, free variables,
and constraint solving. Since we discuss our methods in the context of functional logic programming,
we briefly review those elements of functional logic languages, such as Curry, that are necessary
to understand the contents of this paper. More details can be found in surveys on functional logic
programming [6] and in the language report [5].

The syntax of Curry is close to that of Haskell [7]. In addition to Haskell, Curry applies rules with
overlapping left-hand sides in a (don’t know) non-deterministic manner (where Haskell always selects
the first matching rule) and allows free (logic) variables in conditions and right-hand sides of rules.
These variables must be explicitly declared (e.g., by let...free) unless they are anonymous. Function
calls can contain free variables, in particular, variables without a value at call time. These calls are
evaluated lazily where free variables as demanded arguments are non-deterministically instantiated
[8].

Example 2.1. The following simple program shows the functional and logic features of Curry. It
defines an operation “++” to concatenate two lists. This definition is identical to an implementation in
Haskell. The operation ins inserts an element at some (unspecified) position in a list:

(++) :: [a] → [a] → [a]

[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

ins :: a → [a] → [a]

ins x ys = x : ys

ins x (y:ys) = y : ins x ys

Note that ins is a non-deterministic operation since it might deliver more than one result for a given
argument, e.g., the evaluation of ins 0 [1,2] yields the values [0,1,2], [1,0,2], and [1,2,0]. Non-
deterministic operations, which are interpreted as mappings from values into sets of values [9], are
an important feature of contemporary functional logic languages. Hence, there is also a predefined
choice operation:

4 M. Hanus / Combining Static and Dynamic Contract Checking for Curry

x ? _ = x

_ ? y = y

Thus, the expression “0 ? 1” evaluates to 0 and 1 with the value non-deterministically chosen.
Non-deterministic operations can be used as any other operation. For instance, exploiting ins, we

can define an operation perm that returns an arbitrary permutation of a list:

perm :: [a] → [a]

perm [] = []

perm (x:xs) = ins x (perm xs)

Non-deterministic operations are quite expressive since they can be used to completely eliminate logic
variables in functional logic programs. For instance, consider the definition of the Boolean conjunction
operator “&&” and the operator ifThen to represent conditional expressions:2

(&&) :: Bool → Bool → Bool ifThen :: Bool → a → a

True && x = x ifThen True x = x

False && _ = False

Exploiting these definitions, the expression

let x free in ifThen (x && x) x

evaluates to all values of the logic (free) variable x such that the expression “x && x” evaluates to True.
Traditionally, this is done by narrowing [8]. As an alternative, one can replace the Boolean logic
variable by a non-deterministic generator operation for Booleans defined by

aBool = False ? True

so that the expression above can be transformed into

let x = aBool in ifThen (x && x) x

The equivalence of logic variables and non-deterministic value generators [11, 12] can be exploited
when Curry is implemented by translation into a target language without support for non-determinism
and logic variables. For instance, KiCS2 [13] compiles Curry into Haskell by adding a mechanism
to handle non-deterministic computations. In our case, we exploit this fact by simply ignoring logic
variables since they are considered as syntactic sugar for non-deterministic value generators.

Curry has many additional features not described here, like monadic I/O [14] for declarative in-
put/output, set functions [15] to encapsulate non-deterministic search, functional patterns [16] and
default rules [17] to specify complex transformations in a high-level manner, and a hierarchical mod-
ule system together with a package manager3 that provides access to currently more than one hundred
packages with several hundred modules.

Due to the complexity of the source language, compilers or analysis and optimization tools often
use an intermediate language where the syntactic sugar of the source language has been eliminated
and the pattern matching strategy is explicit. This intermediate language, called FlatCurry, has also

2ifThen can be used to transform conditional into unconditional rules [10] so that we consider only unconditional rules in
our intermediate language presented in Fig. 1.
3http://curry-language.org/tools/cpm

http://curry-language.org/tools/cpm

M. Hanus / Combining Static and Dynamic Contract Checking for Curry 5

P ::= D1 . . . Dm (program)
D ::= f(x1, . . . , xn) = e (function definition)
e ::= x (variable)

| c(e1, . . . , en) (constructor call)
| f(e1, . . . , en) (function call)
| case e of {p1 → e1; . . . ; pn → en} (case expression)
| e1 or e2 (disjunction)
| let {x1 = e1; . . . ;xn = en} in e (let binding)

p ::= c(x1, . . . , xn) (pattern)

Figure 1. Syntax of the intermediate language FlatCurry

been used to specify the operational semantics of Curry programs [18]. Since we will use FlatCurry
as the basis for verifying contracts, we sketch the structure of FlatCurry and its semantics.

The abstract syntax of FlatCurry is summarized in Fig. 1. In contrast to some other presentations
(e.g., [18, 6]), we omit the difference between rigid and flexible case expressions since we do not
consider residuation (which becomes less important in practice and is also omitted in newer imple-
mentations of Curry [13]). A FlatCurry program consists of a sequence of function definitions, where
each function is defined by a single rule. Patterns in source programs are compiled into case expres-
sions and overlapping rules are joined by explicit disjunctions. For instance, the non-deterministic
insert operation ins is represented in FlatCurry as

ins(x, xs) = (x : xs) or (case xs of {y : ys → y : ins(x, ys)}

The semantics of FlatCurry programs is defined in [18] as an extension of Launchbury’s natural se-
mantics for lazy evaluation [19]. For this purpose, we consider only normalized FlatCurry programs,
i.e., programs where the arguments of constructor and function calls and the discriminating argument
of case expressions are always variables. Any FlatCurry program can be normalized by introducing
new variables by let expressions [18]. For instance, the expression “y : ins(x, ys)” is normalized
into “let {z = ins(x, ys)} in y : z.” In the following, we assume that all FlatCurry programs are
normalized.

In order to model sharing, which is important for lazy evaluation and also semantically relevant in
case of non-deterministic operations [9], variables are interpreted as references into a heap where new
let bindings are stored and function calls are updated with their evaluated results. To be more precise, a
heap, denoted by Γ,∆, or Θ, is a partial mapping from variables to expressions. The domain of a heap
Γ is the set of variables bound in the heap, i.e., Dom(Γ) = {x | Γ(x) is defined}. The empty heap is
denoted by []. Γ[x 7→ e] denotes a heap Γ′ with Γ′(x) = e and Γ′(y) = Γ(y) for all y ∈ Dom(Γ) with
x 6= y.

Using heap structures, one can provide a high-level description of the operational behavior of
FlatCurry programs in natural semantics style. The semantics uses judgements of the form “Γ :
e ⇓ ∆ : v” with the meaning that in the context of heap Γ the expression e evaluates to value (head

6 M. Hanus / Combining Static and Dynamic Contract Checking for Curry

Val Γ : v ⇓ Γ : v where v is constructor-rooted

VarExp
Γ : e ⇓ ∆ : v

Γ[x 7→ e] : x ⇓ ∆[x 7→ v] : v

Fun
Γ : ρ(e) ⇓ ∆ : v

Γ : f(xn) ⇓ ∆ : v
where f(yn) = e ∈ P and ρ = {yn 7→ xn}

Let
Γ[yk 7→ ρ(ek)] : ρ(e) ⇓ ∆ : v

Γ : let {xk = ek} in e ⇓ ∆ : v

where ρ = {xk 7→ yk}
and yk are fresh variables

Or
Γ : ei ⇓ ∆ : v

Γ : e1 or e2 ⇓ ∆ : v
where i ∈ {1, 2}

Select
Γ : x ⇓ ∆ : c(yn) ∆ : ρ(ei) ⇓ Θ : v

Γ : case x of {pk → ek} ⇓ Θ : v

where pi = c(xn)

and ρ = {xn 7→ yn}

Figure 2. Natural semantics of normalized FlatCurry programs

normal form) v and produces a modified heap ∆. Figure 2 shows the rules defining this semantics
w.r.t. a given normalized FlatCurry program P , i.e., a set of function definitions according to Fig. 1.
We use the notation ok to refer to a sequence of objects o1, . . . , ok.

Constructor-rooted expressions (i.e., head normal forms) are just returned by rule Val. Rule VarExp
retrieves a binding for a variable from the heap and evaluates it. In order to avoid the re-evaluation
of the same expression, VarExp updates the heap with the computed value, which models sharing. In
contrast to the original rules [18], VarExp removes the binding from the heap. On the one hand, this
allows the detection of simple loops (“black holes”) as in functional programming. On the other hand,
it is crucial in combination with non-determinism to avoid the binding of a variable to different values
in the same derivation (see [20] for a detailed discussion on this issue). Rule Fun unfolds function
calls by evaluating the right-hand side after binding the formal parameters to the actual ones via the
renaming substitution ρ. Let introduces new bindings in the heap and renames the variables in the
expressions with the fresh names introduced in the heap. Or non-deterministically evaluates one of
its arguments. Finally, rule Select deals with case expressions. When the discriminating argument
of case evaluates to a constructor-rooted term, Select evaluates the corresponding branch of the case
expression.

The FlatCurry representation of Curry programs and its operational semantics has been used for
various language-oriented tools, like compilers, partial evaluators, or debugging and profiling tools
(see [6] for references). We use it in this paper to define a formal model of contract checking and
extract proof obligations for contracts from programs.

M. Hanus / Combining Static and Dynamic Contract Checking for Curry 7

3. Contracts

The use of contracts in declarative programming languages has been motivated in Sect. 1. Contracts
in the form of pre- and postconditions as well as specifications have been introduced into functional
logic programming in [3]. Contracts and specifications for some operation are operations with the
same name and a specific suffix. If f is an operation of type τ → τ ′, then a specification for f is an
operation f’spec of type τ → τ ′, a precondition for f is an operation f’pre of type τ → Bool, and a
postcondition for f is an operation f’post of type τ → τ ′ → Bool.

Intuitively, an operation and its specification should be equivalent operations. For instance, a spec-
ification of non-deterministic list insertion could be stated with a single rule containing a functional
pattern [16] as follows:

ins’spec :: a → [a] → [a]

ins’spec x (xs ++ ys) = xs ++ [x] ++ ys

A precondition should be satisfied if an operation is invoked, and a postcondition is a relation between
input and output values which should be satisfied when an operation yields some result. We have
already seen a precondition for the factorial function in Sect. 1. A postcondition for the same operation
could state that the result is always positive:

fac’post n f = f > 0

This postcondition ensures that the precondition of nested fac applications always holds, like in the
expression fac (fac 3). If an operation has no postcondition but a specification, the latter can be used
as a postcondition. For instance, a postcondition derived from the specification for ins is

ins’post :: a → [a] → [a] → Bool

ins’post x ys zs = zs ‘valueOf‘ ins’specS x ys

This postcondition states that the value zs computed by ins is in the set of all values computed by
ins’spec (where fS denotes the set function of f , see [15]).

Antoy and Hanus [3] describe a tool that transforms a program containing contracts and specifi-
cations into a program where these contracts and specifications are dynamically checked. This tool is
available as Curry package dsdcurry for various Curry implementations. It acts as a preprocessor so
that the transformation can be automatically performed when Curry programs are compiled. Further-
more, the property-based testing tool CurryCheck [21] automatically tests contracts and specifications
with generated input data.

Although these dynamic and static testing tools provide some confidence in the software under
development, static verification of contracts is preferable since it holds for all input values, i.e., it is
ensured that violations of verified contracts cannot occur at run time so that their run-time tests can
be omitted. As a first step towards this objective, we specify the operational meaning of contract
checking by extending the semantics of Fig. 2. Since pre- and postconditions are checked before and
after a function invocation, respectively, it is sufficient to extend rule Fun. Assume that function f
has a precondition f’pre and a postcondition f’post (if one of them is not present, we assume that
they are defined as predicates that always return True). Then we replace rule Fun by the extended rule

8 M. Hanus / Combining Static and Dynamic Contract Checking for Curry

FunCheck:

Γ : f’pre(xn) ⇓ Γ′ : True Γ′ : ρ(e) ⇓ ∆′ : v ∆′ : f’post(xn, v) ⇓ ∆ : True

Γ : f(xn) ⇓ ∆ : v

where f(yn) = e ∈ P and ρ = {yn 7→ xn}. For the sake of readability, we omit the normalization of
the postcondition in the premise, which can be added by an introduction of a let binding for v. The
reporting of contract violations can be specified by the following rules:

Γ : f’pre(xn) ⇓ Γ′ : False

Γ : f(xn) ⇓ "Error: precondition of f violated"

Γ : f’pre(xn) ⇓ Γ′ : True Γ′ : ρ(e) ⇓ ∆′ : v ∆′ : f’post(xn, v) ⇓ ∆ : False

Γ : f(xn) ⇓ "Error: postcondition of f violated"

These rules are intended to specify when an error is reported but not used as part of a normal evalua-
tion. This means that if Γ : e ⇓ ∆ : v is a valid judgement (where rule FunCheck is used instead of
rule Fun), all pre- and postconditions are satisfied during the evaluation of e to v.

Note that rule FunCheck specifies eager contract checking, i.e., pre- and postconditions are imme-
diately and completely evaluated. Although this is often intended, there are cases where eager contract
checking might influence the execution behavior of a program, e.g., if the evaluation of a pre- or post-
condition requires to evaluate more than demanded by the original program. To avoid this problem,
Chitil et al. [22] proposed lazy contract checking where contract arguments are not evaluated but the
checks are performed when the demanded arguments become evaluated by the application program.
Lazy contract checking could have the problem that the occurrence of contract violations depend on
the demand of evaluation so that they are detected “too late.” Since there seems to be no ideal solution
to this problem [23] and lazy contract checking is operationally more complex, we simply stick to
eager contract checking.

4. Contract Verification

In order to statically verify contracts, we have to extract some proof obligation from the program and
contracts. For instance, consider the factorial function and its precondition, as shown in Sect. 1. The
normalized FlatCurry representation of the factorial function is

fac(n) = let { x = 0 ; y = n==x }

in case y of True → 1

False → let { n1 = n - 1 ; f = fac(n1) }

in n * f

Now consider the call fac(n). Since we assume that the precondition holds when an operation is
invoked, we know that n ≥ 0 holds before the case expression is evaluated. If the False branch of the
case expression is selected, we know that n = 0 has the value False. Altogether, we know that

n ≥ 0 ∧ ¬(n = 0)

M. Hanus / Combining Static and Dynamic Contract Checking for Curry 9

Val Γ : C | z ← v ⇓ C ∧ z = v
where v is constructor-rooted or

v is a variable not bound in Γ

VarExp
Γ : C | z ← e ⇓ D

Γ[x 7→ e] : C | z ← x ⇓ D

Fun Γ : C | z ← f(xn) ⇓ C ∧ f’pre(xn) ∧ f’post(xn, z)

Let
Γ[yk 7→ ρ(ek)] : C | z ← ρ(e) ⇓ D
Γ : C | z ← let {xk = ek} in e ⇓ D

where ρ = {xk 7→ yk}
and yk are fresh variables

Or
Γ : C | z ← e1 ⇓ D1 Γ : C | z ← e2 ⇓ D2

Γ : C | z ← e1 or e2 ⇓ D1 ∨D2

Select
Γ : C | x← x ⇓ D Γ : D1 | z ← e1 ⇓ E1 . . . Γ : Dk | z ← ek ⇓ Ek

Γ : C | z ← case x of {pk → ek} ⇓ E1 ∨ . . . ∨ Ek

where Di = D ∧ x = pi (i = 1, . . . , k)

Figure 3. Assertion-collecting semantics

holds when the right-hand side of the False branch is evaluated. Since this implies that n > 0 and,
thus, (n− 1) ≥ 0 holds (in integer arithmetic), we know that the precondition of the recursive call to
fac always holds. Hence, its check can be omitted at run time.

This example shows that we have to collect properties that are ensured to be valid when we reach
particular points in the rules’ right-hand sides. For this purpose, we define an assertion-collecting se-
mantics. It is oriented towards the concrete semantics shown before but has the following differences:

1. We compute with symbolic values instead of concrete ones.

2. We collect properties that are known to be valid (also called assertions in the following).

3. Instead of evaluating functions, we collect their pre- and postconditions.

This semantics uses judgements of the form “Γ : C | z ← e ⇓ D” where Γ is a heap, z is a (result)
variable, e is an expression, and C and D are assertions, i.e., Boolean formulas over the program
signature. Intuitively, this judgement means that if e is evaluated to z in the context Γ where C holds,
then D holds after the evaluation.

Figure 3 shows the rules defining the assertion-collecting semantics. In order to emphasize the
relation between the concrete semantics (Fig. 2) and this assertion-collecting semantics, we use the
same names but different fonts for the inference rules. Rule Val immediately returns the collected
assertions. Since this semantics is intended to compute with symbolic values, there might be vari-
ables without a binding to a concrete value. Hence, Val also returns such unbound variables. Rule

10 M. Hanus / Combining Static and Dynamic Contract Checking for Curry

VarExp behaves similarly to rule VarExp of the concrete semantics and returns the assertions collected
during the evaluation of the expression. Note that the assertion-collecting semantics does not really
evaluate expressions since it should always return the collected assertions in a finite amount of time.
For the same reason, rule Fun does not invoke the function in order to evaluate its right-hand side.
Instead, the pre- and postcondition information is added to the collected assertions since they must
hold if the function returns some value. The notation f’pre(xn) and f’post(xn, z) in the assertion
means that the logical formulas corresponding to the pre- and postcondition are added as an assertion.
These formulas might be simplified by replacing occurrences of operations defined in the program
by their definitions. Rule Let adds the let bindings to the heap, similarly to the concrete semantics,
before evaluating the argument expression. Rules Or and Select collect all information derived from
alternative computations, instead of the non-deterministic concrete semantics. Rule Select also col-
lects inside each branch the condition that must hold in the selected branch, which is important to get
precise proof obligations. To avoid the renaming of local variables in different branches, we implicitly
assume that all local variables are unique in a normalized function definition.

In contrast to the concrete semantics, the assertion-collecting semantics is deterministic:

Proposition 4.1. (Uniqueness)
Let Γ be a heap, C an assertion, z a variable, and e an expression. Then there is a unique (up to
variable renamings in let bindings) proof tree and assertion D so that the judgement

Γ : C | z ← e ⇓ D

is derivable.

Proof:
First of all, note that for any heap Γ, assertionC, variable z, and expression e, there is one and only one
(up to the names of fresh variables chosen in rule Let) applicable inference rule for a judgement of the
form Γ : C | z ← e ⇓ D for some assertion D. Thus, in order to prove the proposition, it is sufficient
to show that the premises are always smaller than the conclusion w.r.t. some size measure. For this
purpose, we define the size of an expression as the number of all symbols occurring in it. The size of
a heap is the sum of the sizes of all bound expressions. The size of a judgement Γ : C | z ← e ⇓ D
is the sum of the size of the heap Γ and the size of e. We show that the premises have smaller sizes
than the conclusion by a case distinction on the rules having premises:

• Rule VarExp: Since the bound expression e is removed from the heap and the variable x is
replaced by e, the size of the premise is decreased by one symbol.

• Rule Let: Since ρ is a variable renaming, the sum of the sizes of the heap and expressions in the
premise is smaller than the size of the conclusion.

• Rules Or and Select: In each premise, the size of the expression is decreased and the heap in the
premises remains identical.

ut

M. Hanus / Combining Static and Dynamic Contract Checking for Curry 11

The assertion-collecting semantics allows to extract proof obligations to verify contracts. For instance,
to verify that a postcondition f’post for some function f defined by f(xn) = e holds, one derives a
judgement (where z is a new variable)

[] : f’pre(xn) | z ← e ⇓ C

and proves that C implies f’post(xn, z).
As an example, consider the non-deterministic operation

coin = 1 or 2

and its postcondition

coin’post z = z > 0

(the precondition is simply True). We construct for the right-hand side of coin the following proof
tree:

Val
[] : true | z ← 1 ⇓ z = 1

Val
[] : true | z ← 2 ⇓ z = 2

Or
[] : true | z ← 1 or 2 ⇓ z = 1 ∨ z = 2

Since z = 1 ∨ z = 2 implies z > 0, the postcondition of coin is always satisfied.
If we construct the proof tree for the right-hand side e of the factorial function, we derive the

following judgement:

[] : n ≥ 0 | z ← e ⇓ (n ≥ 0 ∧ y = true ∧ z = 1) ∨ (n ≥ 0 ∧ y = false)

Since there is no condition on the result variable z in the right part of the disjunction, this assertion
does not imply the postcondition z > 0. The reason is that the recursive call to fac is not considered
in the proof tree since it does not occur at the top level. Note that rule Fun only adds the contract
information of top-level operations but no contracts of operations occurring in arguments. Due to the
lazy evaluation strategy, one does not know at compile time whether some argument expression is
evaluated. Hence, it would not be correct to add the contract information of nested arguments. For
instance, consider the operations

const x y = y

f x | x > 0 = 0

f’post x z = x > 0

g x = const (f x) 42

If e denotes the right-hand side of g (in normalized FlatCurry form), then we can derive with the
inference rules of Fig. 3 the judgement

[] : true | z ← e ⇓ true

If we change rule Fun so that the contracts of argument calls are also added to the returned assertion,
then we could derive

[] : true | z ← e ⇓ x > 0

12 M. Hanus / Combining Static and Dynamic Contract Checking for Curry

This postcondition is clearly wrong since (g 0) successfully evaluates to 42.
Nevertheless, we can improve our semantics in cases where it is ensured that arguments are evalu-

ated. For instance, primitive operations, like +, *, or ==, evaluate their arguments before the operation
is applied. This can be specified in the concrete semantics of Fig. 2 by adding the following inference
rule (where the left occurrence of the primitive operation ⊕ in the conclusion denotes the syntax of
the primitive operation, whereas the right occurrence of the same symbol denotes the semantics, i.e.,
the mathematical function denoted by this symbol):

PrimOp
Γ : x ⇓ ∆ : vx ∆ : y ⇓ Θ : vy

Γ : x ⊕ y ⇓ Θ : vx ⊕ vy
where ⊕ ∈ {==, +, -, *, . . .}

In order to collect appropriate assertions for primitive operations, we add the following rule to the
assertion-collecting semantics (and restrict rule Fun to exclude these operations):

PrimOp
Γ : C | x← x ⇓ D Γ : D | y ← y ⇓ E

Γ : C | z ← x ⊕ y ⇓ E ∧ z = x ⊕ y
where ⊕ ∈ {==, +, -, *, . . .}

Since primitive operations are often known to the underlying verifier, we collect the information about
the call of the primitive operations. In a similar way, one can also improve user-defined functions if
some argument is known to be demanded, a property which can be approximated at compile time by
a demand analysis [24].

If we construct a proof tree for the factorial function with these refined inference rules (see Fig. 4),
we obtain the following (simplified) assertion:

(n ≥ 0 ∧ n = 0 ∧ z = 1) ∨ (n ≥ 0 ∧ n 6= 0 ∧ n1 ≥ 0 ∧ f > 0 ∧ z = n ∗ f)

Since this assertion implies z > 0, the postcondition fac’post holds so that its checking can be
omitted at run time.

Proof obligations for preconditions can also be extracted from the proof tree. For this purpose, one
has to consider occurrences of operations with non-trivial preconditions. If such an operation occurs
as a top-level expression or in a let binding associated to a top-level expression and the assertion before
this expression implies the precondition, then one can omit the precondition checking for this call. For
instance, consider again the proof tree for the right-hand side of the factorial function which contains
the following (simplified) judgement:

[] : n ≥ 0 ∧ n 6= 0 | z ← let {n1 = n− 1; f = fac n1} in n ∗ f ⇓ . . .

Since n ≥ 0 ∧ n 6= 0 ∧ n1 = n − 1 implies n1 ≥ 0, the precondition holds so that its check can be
omitted for this recursive call.

The correctness of our approach relies on the following theorem stating a relation between the
concrete and the assertion-collecting semantics. In this claim, Γ̂ denotes the representation of heap
information as a logic formula, i.e.,

Γ̂ =
∧
{x = e | x 7→ e ∈ Γ, e constructor-rooted or a variable}

M. Hanus / Combining Static and Dynamic Contract Checking for Curry 13

[S
ub

tr
ee
C
a
se

1
]

Va
l

[]
:
n
≥

0
∧
y

=
(n

=
0
)
∧
y

=
tr
u
e
|z
←

1
⇓
n
≥

0
∧
n

=
0
∧
z

=
1

[S
ub

tr
ee
C
a
se

2
]

Va
l

Γ
1

:
n
≥

0
∧
n
6=

0
|n
←
n
⇓
n
≥

0
∧
n
6=

0

F
un

Γ
2

:
n
≥

0
∧
n
6=

0
|f
←
f
a
c
n

1
⇓
n
≥

0
∧
n
6=

0
∧
n

1
≥

0
∧
f
>

0
Va

rE
xp

Γ
1

:
n
≥

0
∧
n
6=

0
|f
←
f
⇓
n
≥

0
∧
n
6=

0
∧
n

1
≥

0
∧
f
>

0
P

ri
m

O
p

Γ
1

:
n
≥

0
∧
n
6=

0
|z
←
n
∗
f
⇓
n
≥

0
∧
n
6=

0
∧
n

1
≥

0
∧
f
>

0
∧
z

=
n
∗
f

Le
t

[]
:
n
≥

0
∧
y

=
(n

=
0)
∧
y

=
f
a
ls
e
|z
←

le
t
{n

1
=
n
−

1
;f

=
f
a
c
n

1}
in
n
∗
f
⇓
n
≥

0
∧
n
6=

0
∧
n

1
≥

0
∧
f
>

0
∧
z

=
n
∗
f

w
he

re
Γ
1

=
[n

1
7→
n
−

1,
f
7→
f
a
c
n

1]
an

d
Γ
2

=
[n

1
7→
n
−

1
]

..
.

P
ri

m
O

p
[]

:
n
≥

0
|y
←
n
=
=
0
⇓
n
≥

0
∧
y

=
(n

=
0
)

[S
ub

tr
ee
C
a
se

1
]

[S
ub

tr
ee
C
a
se

2
]

Se
le

ct
[]

:
n
≥

0
|z
←

ca
se
n
=
=
0
o
f
..
.
⇓

(n
≥

0
∧
n

=
0
∧
z

=
1
)
∨

(n
≥

0
∧
n
6=

0
∧
n

1
≥

0
∧
f
>

0
∧
z

=
n
∗
f

)

Fi
gu

re
4.

Pr
oo

ft
re

e
fo

rt
he

de
fin

iti
on

of
f
a
c

(w
he

re
as

se
rt

io
ns

ar
e

sl
ig

ht
ly

si
m

pl
ifi

ed
)

14 M. Hanus / Combining Static and Dynamic Contract Checking for Curry

Theorem 4.2. (Correctness)
Let Γ : e ⇓ ∆ : v be a valid judgement, z a variable, and C an assertion such that Γ̂ ⇒ C is valid.
Then there is a valid judgement Γ : C | z ← e ⇓ D with (∆̂ ∧ z = v)⇒ D.

In this theorem and the subsequent propositions, we assume a semantics with contract checking which
consists of the rules shown in Fig. 2 where rule Fun is replaced by rule FunCheck and the additional
rule PrimOp is used to evaluate primitive operations.

Theorem 4.2 can be applied as follows. If some function f is defined by rule f(xn) = e, the
judgement

[] : f’pre(xn) | z ← e ⇓ D

is valid, and D implies f’post(xn, z), we know that the postcondition holds for any call to f so that
we can remove the postcondition check for f from the program code. Note that this relates to the
partial correctness of postconditions. If the actual evaluation does not terminate, as for

loop = loop

any postcondition for loop can be verified (which is fine since removing the postcondition checking
code from loop does not change the result).

In order to prove this theorem, we need a few lemmas. The first lemma shows that assertions that
are valid w.r.t. an initial heap are also valid w.r.t. the result heap of a computation.

Lemma 4.3. Let Γ be a heap and C an assertion such that Γ̂ ⇒ C. If Γ : e ⇓ ∆ : v is a valid
judgement, then ∆̂⇒ C.

Proof:
We prove by induction on the height of the proof tree for the judgement Γ : e ⇓ ∆ : v (w.r.t. the
natural semantics with contract checking) that Γ̂⇒ C implies ∆̂⇒ C for any assertion C.

Base case: Rule Val is applied so that ∆ = Γ and the claim vacuously holds.
For the induction step, we consider the different kinds of inference rules used to derive the judge-

ment Γ : e ⇓ ∆ : v.

• Rule VarExp is applied so that

Γ′ : e ⇓ ∆′ : v

Γ′[x 7→ e] : x ⇓ ∆′[x 7→ v] : v

where Γ = Γ′[x 7→ e] and ∆ = ∆′[x 7→ v].

We distinguish the kind of expression e bound to x:

1. e is constructor-rooted: Then Γ̂ = Γ̂′ ∧ x = e. Since e is constructor-rooted, rule Val is
applied to the premise Γ′ : e ⇓ ∆′ : v so that ∆′ = Γ′ and v = e. Hence

∆̂ = ̂∆′[x 7→ v] = ∆̂′ ∧ x = v = Γ̂′ ∧ x = e = ̂Γ′[x 7→ e] = Γ̂

and ∆̂⇒ C follows from our assumption.

M. Hanus / Combining Static and Dynamic Contract Checking for Curry 15

2. e is some variable y: Then Γ̂ = Γ̂′∧x = y and Γ̂′∧x = y ⇒ C. We defineC ′ by replacing
all occurrences of x by y in C. Then Γ̂′ ⇒ C ′. By the induction hypothesis, ∆̂′ ⇒ C ′.
Since e is the variable y, rule VarExp has been applied to the premise Γ′ : e ⇓ ∆′ : v
so that ∆′(y) = v. Hence, ∆̂′ ⇒ C ′ is equivalent to ∆̂′ ∧ y = v ⇒ C ′. This implies
∆̂′ ∧ x = v ∧ y = v ⇒ C ′. Due to the definition of C ′, ∆̂′ ∧ x = v ∧ y = v ⇒ C. Since
x and y are both bound to v in ∆, ∆̂⇒ C.

3. e is operation-rooted: Then Γ̂ = Γ̂′. By the induction hypothesis, ∆̂′ ⇒ C which implies
∆̂′ ∧ x = v ⇒ C. This proves the claim since ∆̂ = ∆̂′ ∧ x = v.

• Rule FunCheck is applied:

Γ : f’pre(xn) ⇓ Γ′ : True Γ′ : ρ(e) ⇓ ∆′ : v ∆′ : f’post(xn, v) ⇓ ∆ : True

Γ : f(xn) ⇓ ∆ : v

where f(yn) = e ∈ P and ρ = {yn 7→ xn}. Assume that Γ̂ ⇒ C. By induction hypothesis
applied to the first premise, Γ̂′ ⇒ C holds. This implies ∆̂′ ⇒ C (by induction hypothesis on
the second premise) and ∆̂⇒ C (by induction hypothesis on the third premise).

• Rule Let is applied:
Γ[yk 7→ ρ(ek)] : ρ(e) ⇓ ∆ : v

Γ : let {xk = ek} in e ⇓ ∆ : v

Assume that Γ̂ ⇒ C holds. Since yk are fresh variables, also ̂Γ[yk 7→ ρ(ek)] ⇒ C holds. By
induction hypothesis, ∆̂⇒ C holds.

• Rule Or is applied:
Γ : ei ⇓ ∆ : v

Γ : e1 or e2 ⇓ ∆ : v

for i ∈ {1, 2}. Then the claim follows from the induction hypothesis.

• Rule Select is applied:

Γ : x ⇓ Θ : c(yn) Θ : ρ(ei) ⇓ ∆ : v

Γ : case x of {pk → ek} ⇓ ∆ : v

where, for some i, pi = c(xn) and ρ = {xn 7→ yn}. Assume that Γ̂⇒ C holds. The induction
hypothesis implies Θ̂⇒ C. Again, we can apply the induction hypothesis to show that ∆̂⇒ C
holds.

• Rule PrimOp is applied:
Γ : x ⇓ Θ : x′ Θ : y ⇓ ∆ : y′

Γ : x ⊕ y ⇓ ∆ : x′ ⊕ y′

where ⊕ ∈ {==, +, -, *, . . .} is some primitive operation. Assume that Γ̂ ⇒ C holds. The
induction hypothesis implies Θ̂⇒ C. Again, we can apply the induction hypothesis to the right
premise to show that ∆̂⇒ C holds.

16 M. Hanus / Combining Static and Dynamic Contract Checking for Curry

ut

The next lemma shows that assertions collected with a result heap can also be collected with the initial
heap of a computation.

Lemma 4.4. Let Γ : e ⇓ ∆ : v and ∆ : C | z ← e′ ⇓ D′ be valid judgements where e′ does not
contain fresh variables introduced by evaluating e, i.e., variables fromDom(∆)\Dom(Γ). Then there
exists an assertion D and a valid judgement Γ : C | z ← e′ ⇓ D with D′ ⇒ D.

Proof:
By Prop. 4.1, there is a unique proof tree for the judgement Γ : C | z ← e′ ⇓ D for an assertion D.
The difference between Γ and ∆ are (1) additional bindings (by rule Let) and (2) updated bindings for
non-constructor-rooted expressions (by rule VarExp). In the assertion collecting semantics, the heap is
used only in rule VarExp to look up variables which are further inspected and might lead to additional
assertions. Since e′ does not contain variables from Dom(∆)\Dom(Γ), the only difference between
D′ and D is that D′ might contain additional equations for variables which are bound to operation-
rooted expressions in Γ. Hence, D′ ⇒ D. ut

Now we return to the proof of the main theorem.

Proof:
[of Theorem 4.2] The proof is by induction on the height h of the proof tree w.r.t. the natural semantics
with contract checking.

Base case (h = 0): Rule Val is applied, i.e., e = v and v is constructor-rooted. By rule Val,
Γ : C | z ← v ⇓ C ∧ z = v is a valid judgement. If Γ̂⇒ C, then Γ̂∧ z = v ⇒ C ∧ z = v also holds
which shows the claim.

For the induction step (h > 0), we consider the different kinds of inference rules used to derive
the judgement Γ : e ⇓ Γ′ : v.

• Rule VarExp is applied:
Γ : e ⇓ ∆ : v

Γ[x 7→ e] : x ⇓ ∆[x 7→ v] : v

Assume that ̂Γ[x 7→ e]⇒ C.

1. e is constructor-rooted: Then, by rule Val, ∆ = Γ, v = e, and

Γ : C | z ← e ⇓ C ∧ z = e

Γ[x 7→ e] : C | z ← x ⇓ C ∧ z = e

is a valid derivation. Since ̂Γ[x 7→ e] ∧ z = e⇒ C ∧ z = e, the claim holds in this case.

2. e is operation-rooted: Then ̂Γ[x 7→ e] = Γ̂ so that Γ̂ ⇒ C. Since the height of the proof
tree for Γ : e ⇓ ∆ : v is smaller than h, by induction hypothesis, Γ : C | z ← e ⇓ D is
valid and ∆̂ ∧ z = v ⇒ D. Hence,

Γ : C | z ← e ⇓ D
Γ[x 7→ e] : C | z ← x ⇓ D

M. Hanus / Combining Static and Dynamic Contract Checking for Curry 17

is a valid derivation. Since ̂∆[x 7→ v] = ∆̂ ∧ x = v and ∆̂ ∧ z = v ⇒ D, we have
̂∆[x 7→ v] ∧ z = v ⇒ D so that the claim also holds in this case.

• Rule FunCheck is applied:

Γ : f’pre(xn) ⇓ Γ′ : True Γ′ : ρ(e) ⇓ ∆′ : v ∆′ : f’post(xn, v) ⇓ ∆ : True

Γ : f(xn) ⇓ ∆ : v

where f(yn) = e ∈ P and ρ = {yn 7→ xn}. Assume that Γ̂⇒ C. Since Γ : f’pre(xn) ⇓ Γ′ :
True, the precondition holds w.r.t. Γ′, i.e., Γ̂′ ⇒ f’pre(xn). By Lemma 4.3, Γ̂′ ⇒ C so that
we have Γ̂′ ⇒ C ∧ f’pre(xn). Similarly, we have

∆̂ ⇒ C ∧ f’pre(xn) ∧ f’post(xn, v) (1)

The application of rule Fun shows

Γ : C | z ← f(xn) ⇓ C ∧ f’pre(xn) ∧ f’post(xn, z)

Thus, the claim holds since ∆̂∧ z = v ⇒ C ∧ f’pre(xn)∧ f’post(xn, v) is a consequence of
(1).

• Rule Let is applied:
Γ[yk 7→ ρ(ek)] : ρ(e) ⇓ ∆ : v

Γ : let {xk = ek} in e ⇓ ∆ : v

Assume that Γ̂ ⇒ C holds. Let Γ′ = Γ[yk 7→ ρ(ek)]. Then Γ̂′ ⇒ C also holds. By induction
hypothesis,

Γ[yk 7→ ρ(ek)] : C | z ← ρ(e) ⇓ D

is valid and ∆ ∧ z = v ⇒ D. Then the application of rule Let

Γ[yk 7→ ρ(ek)] : C | z ← ρ(e) ⇓ D
Γ : C | z ← let {xk = ek} in e ⇓ D

is a valid derivation step so that the claim holds.

• Rule Or is applied:
Γ : ei ⇓ ∆ : v

Γ : e1 or e2 ⇓ ∆ : v

for i ∈ {1, 2}. Assume that Γ̂⇒ C holds and i = 1 (the other case is symmetric). By induction
hypothesis, Γ : C | z ← e1 ⇓ D1 is valid and Γ̂∧ z = v ⇒ D1. By Prop.4.1, there exists some
assertion D2 and a derivation tree showing that Γ : C | z ← e2 ⇓ D2 is valid. Thus,

Γ : C | z ← e1 ⇓ D1 Γ : C | z ← e2 ⇓ D2

Γ : C | z ← e1 or e2 ⇓ D1 ∨D2

is a valid derivation step. Since Γ̂ ∧ z = v ⇒ D1, Γ̂ ∧ z = v ⇒ D1 ∨ D2 which shows the
claim.

18 M. Hanus / Combining Static and Dynamic Contract Checking for Curry

• Rule Select is applied:

Γ : x ⇓ ∆ : c(yn) ∆ : ρ(ei) ⇓ Θ : v

Γ : case x of {pk → ek} ⇓ Θ : v

where, for some i, pi = c(xn) and ρ = {xn 7→ yn}. Assume that Γ̂ ⇒ C holds and i = 1
(the other cases are symmetric). By induction hypothesis applied to Γ : x ⇓ ∆ : c(yn),
Γ : C | x ← x ⇓ D is valid and ∆̂ ∧ x = c(yn) ⇒ D holds. Since rule VarExp must be
applied to derive Γ : x ⇓ ∆ : c(yn), ∆ = ∆[x 7→ c(yn)] so that ∆̂ ⇒ D ∧ x = c(yn).
Let D1 = D ∧ x = c(yn). Hence, by induction hypothesis applied to ∆ : ρ(e1) ⇓ Θ : v,
∆ : D1 | z ← ρ(e1) ⇓ E′1 is valid and Θ̂ ∧ z = v ⇒ E′1. Since the difference between ρ(e1)
and e1 are the missing bindings of fresh pattern variables and rule Val adds simple equations
for unbound variables, there is also a derivation tree for ∆ : D1 | z ← e1 ⇓ E′′1 where E′′1 is
weaker than E′1, i.e., Θ̂ ∧ z = v ⇒ E′′1 . By Lemma 4.4, there is an assertion E1 and a valid
judgement Γ : D1 | z ← e1 ⇓ E1 with E′′1 ⇒ E1. By Prop. 4.1, there are derivations for the
remaining branches, i.e., Γ : Di | z ← ei ⇓ Ei (i = 2, . . . , k). Altogether, the inference step

Γ : C | x← x ⇓ D Γ : D1 | z ← e1 ⇓ E1 . . . Γ : Dk | z ← ek ⇓ Ek

Γ : C | z ← case x of {pk → ek} ⇓ E1 ∨ . . . ∨ Ek

is valid and Θ̂ ∧ z = v ⇒ E′′1 ⇒ E1 ⇒ E1 ∨ . . . ∨ Ek which shows the claim.

• Rule PrimOp is applied:
Γ : x ⇓ ∆ : x′ ∆ : y ⇓ Θ : y′

Γ : x ⊕ y ⇓ Θ : x′ ⊕ y′

where ⊕ ∈ {==, +, -, *, . . .} is some primitive operation. Assume that Γ̂ ⇒ C holds. By
induction hypothesis applied to the left premise, Γ : C | x ← x ⇓ D is valid and ∆̂ ∧ x =
x′ ⇒ D holds. Since rule VarExp must be applied to derive Γ : x ⇓ ∆ : x′, ∆ = ∆[x 7→ x′]
so that ∆̂ ⇒ D. Similarly, the induction hypothesis applied to the right premise yields a valid
judgement ∆ : D | y ← y ⇓ E′ with Θ̂ ⇒ E′. By Lemma 4.4, there is an assertion E and a
valid judgement Γ : D | y ← y ⇓ E with E′ ⇒ E. Altogether, the inference step

Γ : C | x← x ⇓ D Γ : D | y ← y ⇓ E
Γ : C | z ← x ⊕ y ⇓ E ∧ z = x ⊕ y

is valid and Θ̂ ∧ z = x ⊕ y ⇒ E ∧ z = x ⊕ y which shows the claim.
ut

5. Examples for Contract Verification

There are various recursively defined operations with pre- and postconditions that can be verified sim-
ilarly to fac as shown above. For instance, the postcondition and the preconditions for both recursive
calls to fib in

M. Hanus / Combining Static and Dynamic Contract Checking for Curry 19

fib :: Int → Int

fib x | x == 0 = 0

| x == 1 = 1

| otherwise = fib (x-1) + fib (x-2)

fib’pre n = n >= 0

fib’post n f = f >= 0

can be verified with a similar reasoning.
SMT solvers like Z3 [4] provide good reasoning on integer theories. This can be successfully

applied to verify more complex postconditions. For instance, consider the function that sums up all
natural numbers:

sum :: Int → Int

sum n = if n==0 then 0

else n + sum (n-1)

The precondition requires that the argument must be non-negative, and the postcondition specifies the
correctness of this function by Gauss’ formula:

sum’pre n = n>=0

sum’post n f = f == n * (n+1) ‘div‘ 2

Our method allows a fully automatic verification of this postcondition.
The precondition on the operation take defined by

take :: Int → [a] → [a]

take 0 xs = []

take n (x:xs) | n>0 = x : take (n-1) xs

take’pre n xs = n >= 0

can be verified similarly to fac or fib since the list structures are not relevant here. On the other hand,
the verification of the precondition of the recursive call of function last defined by

last :: [a] → a

last [x] = x

last (_:x:xs) = last (x:xs)

last’pre xs = not (null xs)

requires the verification of the implication

not (null xs) ∧ xs = (y:ys) ∧ ys = (z:zs)⇒ not (null (z:zs))

This can be proved by evaluating not (null (z:zs)) to true. Hence, a reasonable verification strat-
egy includes the simplication of proof obligations by symbolic evaluation before passing them to the
external verifier.4

A more involved operation is the list index operator which selects the nth element of a list:
4Since Curry programs might contain non-terminating operations, one has to be careful when simplifying expressions. In

20 M. Hanus / Combining Static and Dynamic Contract Checking for Curry

nth :: [a] → Int → a

nth (x:xs) n | n==0 = x

| n>0 = nth xs (n-1)

nth’pre xs n = n >= 0 && length (take (n+1) xs) == n+1

The precondition ensures that the element to be selected always exists since the selected position is
not negative and not larger than the length of the list. The use of the operation take (instead of the
simpler condition length xs > n) is important to allow the application of nth also to infinite lists. To
verify that the precondition holds for the recursive call, one has to verify that

n ≥ 0 ∧ length (take (n+ 1) xs) = n+ 1 ∧ xs = (y:ys) ∧ n 6= 0 ∧ n > 0

implies

(n− 1) ≥ 0 ∧ length (take ((n− 1) + 1) ys) = (n− 1) + 1

The proof of the first conjunct uses reasoning on integer arithmetic as in the previous examples. The
second conjunct can also be proved by SMT solvers when the rules of the operations length and take

are axiomatized as logic formulas (see below).
The final example is strongly related to functional logic programming since it states a property

about a non-deterministic operation. We already presented in Sect. 2 the definition of the operation
perm which non-deterministically returns some permutation of a list. Any correct implementation of
a permutation algorithm should satisfy the property that the length of a permutation of a list l should
be identical to the length of l. This can be expressed by the following postcondition:

perm’post :: [a] → [a] → Bool

perm’post xs ys = length xs == length ys

Antoy et al. [26] propose methods and a tool to translate Curry programs into Agda programs in order
to verify properties of a given Curry program. Two different transformation methods to deal with
non-deterministic operations are presented. Depending on the transformation method, the proof of
the property perm’post requires between a few lines and one page of Agda code. Using our contract
checker, the property can be verified in a fully automatic manner. Similarly to [26], we also state a
property about the non-deterministic list insertion operation ins:

ins’post :: a → [a] → [a] → Bool

ins’post _ xs ys = length xs + 1 == length ys

Both postconditions perm’sort and ins’sort will automatically be verified with our implemented
tool (see next section), where the postcondition ins’sort is necessary to verify the postcondition
perm’post.

order to ensure the termination of the simplification process, one can either limit the number of simplification steps or use
only operations for simplification that are known to be terminating. Since the latter property can be approximated by various
program analysis techniques, the Curry program analyzer CASS [25] contains such an analysis.

M. Hanus / Combining Static and Dynamic Contract Checking for Curry 21

6. Implementation

We implement static contract verification as a fully automatic tool which tries to verify contracts at
compile time and, in case of a successful verification, does not generate code for dynamic (run-time)
contract checking. The complete compilation chain with this tool is as follows:

1. The program under consideration is compiled with the standard Curry front end into an inter-
mediate FlatCurry program.

2. For each postcondition f’post, the contract verifier extracts the proof obligation as described
in Sect. 4.

3. Each proof obligation is translated into SMT-LIB format (the standard input language for SMT
solvers [27]) and sent to an SMT solver (here: Z3 [4]).

4. If the validity of the postcondition cannot be verified by the SMT solver, the definition of the
operation f is decorated with code to check the postcondition at run time.

5. Similarly, for each precondition f’pre and each call to f , the contract verifier extracts the proof
obligation for this call together with the precondition and sends it to the SMT solver. If the
validity of the precondition cannot be verified, f will be called with a run-time check for this
precondition, otherwise the run-time check will be omitted.

Thus, if no static proof is successful, all contracts are added as run-time checks, as sketched in Sect. 3
and described in [3]. If all contracts can be verified, the program code is not modified and we have a
high confidence in our code.

Although the general extraction of proof obligations from a given program with contracts is clear
from the description in Sect. 4, the translation of these proof obligations into SMT-LIB format requires
some design decisions caused by the specific nature of a functional logic language like Curry. We
discuss some of these issues in the following.

When pre- and postconditions are constructed from a fixed set of operations that are known to the
underlying SMT solver (e.g., as in LiquidHaskell [28]), one can directly translate the proof obligations
for contract checking into SMT-LIB formulas. However, we also allow user-defined operations (like
length or take in the precondition of nth) in contracts so that their meaning must be axiomatized in
the SMT language. Due to the features of Curry, it might be necessary to transform

• polymorphic algebraic data types and

• polymorphic, possibly non-deterministic operations

into SMT-LIB. The transformation of data types can be directly implemented. Since version 2.6 of
SMT-LIB [27], there are commands declare-datatype and declare-datatypes to introduce single
and mutually recursive data types, respectively, which can also be parameterized by sorts. Further-
more, there is a match construct for pattern matching on values of algebraic data types.

The transformation of arbitrary Curry operations is more involved. Although mutually recursive
functions can be defined in SMT-LIB via the define-funs-rec command, functions defined in Curry

22 M. Hanus / Combining Static and Dynamic Contract Checking for Curry

can be polymorphic and also non-deterministic. Both features are not supported by SMT-LIB (al-
though some SMT solvers have extensions for polymorphic functions). Inspired by [29], we introduce
a new SMT construct define-pfuns-rec to define a set of mutually recursive function signatures and
corresponding terms defining the semantics of these functions. The general syntax is

(define-pfuns-rec (st1 . . . stm))

Each sti has the form

(par (s1 . . . sk) (f ((x1 σ1) . . . (xn σn)) σ) t)

where s1, . . . , sk are sort parameters, σ1, . . . , σn, σ are sorts, possibly containing the sort parameters,
describing the signature of the function f , and t is a term over the parameters x1, . . . , xn, specifying
the meaning of the function f . For instance, the polymorphic predicate null (used in the example
last) is defined in the prelude of Curry as follows:

null :: [a] → Bool

null [] = True

null (_:_) = False

Since pattern matching is represented in FlatCurry by case expressions, the translation into SMT is
straightforward:

(define-pfuns-rec

((par (a) (null ((x1 (List a))) Bool)

(match x1 ((nil true)

((insert h t) false))))))

Since SMT-LIB does not support polymorphic operations, this definition cannot be directly translated
into SMT. In order to reason about properties of polymorphic operations (as in the examples take,
last, or nth), one could introduce a new “type variable” sort

(declare-sort TVar 0)

and instantiate all sort parameters to this specific sort so that the definition above is translated into the
SMT statements

(declare-fun null ((List TVar)) Bool)

(assert

(forall ((x1 (List TVar)))

(= (null x1)

(match x1 ((nil true)

((insert h t) false))))))

However, this does not work for operations that are applied to values of specific types. For instance,
if we apply null to a list of Booleans and a list of integers, we need different type instantiations.
Therefore, our contract prover collects all type instantiations of polymorphic operations used in an
SMT script and specializes the generic operations on these types, e.g., type-specific operations like
null-Bool or null-Int are generated. Since these operations might call other generic operations
which must also be type-specialized, the entire process is implemented as a fixpoint computation on

M. Hanus / Combining Static and Dynamic Contract Checking for Curry 23

Table 1. Benchmarks comparing dynamic and static contract checking

Expression dynamic static+dynamic speedup

fac 20 0.00 0.00 n.a.
sum 1000000 0.99 0.19 5.10
fib 35 1.95 0.60 3.23
last [1..20000000] 0.63 0.35 1.78
take 200000 [1..] 0.31 0.19 1.68
nth [1..] 50000 26.33 0.01 2633
allNats 200000 0.27 0.19 1.40
init [1..10000] 2.78 0.00 >277
[1..20000] ++ [1..1000] 4.21 0.00 >420
nrev [1..1000] 3.50 0.00 >349
rev [1..10000] 1.88 0.00 >188

each define-pfuns-rec definition.
To translate non-deterministic operations into SMT functions, one can use existing approaches to

transform non-deterministic operations into pure functions. For instance, methods to translate Curry
programs into Agda programs are proposed in [26]. One of these techniques, called “planned choices,”
is quite appropriate here since it assumes an oracle for making the right non-deterministic choices.
This oracle is added as an argument to each non-deterministic operation and its initial value can be
modeled as a constant in an SMT script.

Note that the translation of user-defined operations is necessary only if such operations are used
in pre- and postconditions. Thus, it is an acceptable limitation that not all features of Curry are fully
modeled by our translator. For instance, higher-order features are replaced by free variables (i.e.,
properties introduced by their application are ignored), and the SMT solver is invoked with a timeout
to deal with possibly non-terminating operations. This might imply that some valid contracts cannot
be verified, but this does not cause a problem in our framework since such unverified contracts are
checked at run time. However, the examples presented so far and the benchmarks shown in the next
section demonstrate that our contract prover yields useful results.

7. Benchmarks

In order to get an idea about the efficiency improvement by static contract verification, we apply our
tool described in the previous section to some benchmark programs. For this purpose, we compared
the execution time of the program with and without static contract checking. Note that in case of
preconditions, only verified preconditions for recursive calls can be omitted so that the operations can
safely be invoked as before.

24 M. Hanus / Combining Static and Dynamic Contract Checking for Curry

For the benchmarks, we used the Curry implementation KiCS2 (Version 0.6.0) [13] with the Glas-
gow Haskell Compiler (GHC 7.10.3, option -O2) as its back end on a Linux machine (Debian 8.9) with
an Intel Core i7-4790 (3.60Ghz) processor and 8GiB of memory. Table 1 shows the execution times
(in seconds, where “0.00” means less than 10 ms) of executing a program with the given main expres-
sion. Column “dynamic” denotes purely dynamic contract checking and column “static+dynamic”
denotes the combination of static and dynamic contract checking as described in this paper. The col-
umn “speedup” is the ratio of the previous columns (where a lower bound is given if the execution
time of the optimized program is below 10 ms).

Many of the programs that we tested are already discussed in this paper. allNats produces (non-
deterministically) some natural number between 0 and the given argument, where the precondition
requires that the argument must be non-negative. init removes the last element of a list, where the
precondition requires that the list is non-empty and the postcondition states that the length of the
output list is decremented by one. The list concatenation (++) has a postcondition which states that the
length of the output list is the sum of the lengths of the input lists. nrev and rev are naive and linear
list reverse operations, respectively, where their postconditions require that the input and output lists
are of identical length.

As expected, the benchmarks show that static contract checking has a positive impact on the ex-
ecution time. If contracts are complex, e.g., require recursive computations on arguments, as in nth,
init, “++”, or rev, static contract checking can improve the execution times by orders of magnitudes.
Even if the improvement is small or not measurable (e.g., fac), static contract verification is useful
since any verified contract increases the confidence in the correctness of the software and contributes
to a more reliable software product.

Our contract verification tool is available as package contract-prover which can easily be in-
stalled with the Curry package manager.5 The package also contains many further examples of suc-
cessful static contract checking, ranging from arithmetic functions, like the McCarthy 91 or the Ack-
ermann function, to list functions and non-deterministic operations.

8. Applications

Increasing reliability and efficiency of programs is the main motivation for static contract verification.
However, there are also other areas where the results of static contract verification can be applied. In
the following, we discuss two of them.

Precondition verification is used to optimize the call site of operations, i.e., it is related to a specific
use of an operation. Postcondition verification is more general since a verified postcondition shows
a property that holds for all valid calls of an operation. Therefore, our contract checker stores each
successfully proved post-condition so that this information is available to other tools. For instance,
if the postcondition of operation f defined in module M has been verified, the proof, i.e., the SMT-
LIB script, is stored in file PROOF-M-f-SatisfiesPostCondition.smt so that it is available to other
programming tools. Currently, such proofs are used by two tools: a property-based test tool and a
verifier for non-failing programs.

5http://curry-language.org/tools/cpm

http://curry-language.org/tools/cpm

M. Hanus / Combining Static and Dynamic Contract Checking for Curry 25

CurryCheck [21] is a property-based test tool, i.e., it automatically tests properties parameterized
over input data by generating test inputs and evaluating the properties on these inputs. CurryCheck
uses EasyCheck [30] to generate test inputs in a systematic way by functional logic programming
features. Usually, properties to be tested are defined by the programmer. However, there are also
properties which are automatically generated and tested by CurryCheck. These properties are related
to contracts and specifications. For instance, if an operation f of type τ → τ ′ has a precondition
f’pre and a postcondition f’post, then CurryCheck generates the property

f _SatisfiesPostCondition :: τ → Prop

f _SatisfiesPostCondition x =

f’pre x ==> always (f’post x (f x))

The property “always x” is satisfied if all values of x are True and the property “b ==> p” is satisfied
if p is satisfied for all values where b evaluates to True. Thus, this generated property expresses the fact
that the postcondition must be satisfied for all results computed from inputs satisfying the precondition.
Usually, CurryCheck tests this property with hundreds of input values (see [30] for a description about
the generation of these inputs). However, these tests are superfluous if the postcondition is already
verified. Therefore, CurryCheck takes the results of the static contract checker described in this paper
into account: if a proof file for a post condition exists, the property to check is not generated so that
CurryCheck does not waste time to test it.

A tool to verify the absence of failures due to calling partially defined operations with unintended
arguments is presented in [31]. It is based on the idea to express sufficient conditions about executing
operations without failing as “non-fail conditions.” For instance, the operation to compute the first
element of a list

head :: [a] → a

head (x:xs) = x

has the non-fail condition

head’nonfail xs = not (null xs)

Although non-fail conditions look similar to preconditions, non-fail conditions are weaker. If a pre-
condition of f is not satisfied for a given argument, it is not allowed to invoke f with this argument.
On the other hand, a non-fail condition provides a sufficient criterion to avoid failing computations,
but it might be reasonable to invoke partially defined operations in logic-oriented computations. Thus,
non-fail conditions have a different semantics so that they require different verification methods. Nev-
ertheless, it has been shown in [31] that SMT solvers are a reasonable tool to verify non-fail conditions.

There are cases where the verification of non-fail conditions can be considerably improved by
exploiting verified postconditions. For instance, consider the operation split that splits a list into
components delimited by separators, where the separator elements are characterized by a given predi-
cate:

split :: (a → Bool) → [a] → [[a]]

split _ [] = [[]]

split p (x:xs) | p x = [] : split p xs

| otherwise = let sp = split p xs

26 M. Hanus / Combining Static and Dynamic Contract Checking for Curry

in (x : head sp) : tail sp

split’nonfail p xs = True

In order to verify that the trivial non-fail condition for split is correct, one has to show that the calls
“head sp” and “tail sp” are non-failing. This demands to show that the result of split p xs is a
non-empty list. This property can be stated as a postcondition:

split’post p xs ys = not (null ys)

Using the techniques presented in this paper, this postcondition can be verified so that our contract
verifier stores a proof for this postcondition. The proof and, thus, the knowledge about the correctness
of the postcondition are exploited to deduce that not (null sp) holds so that the non-fail conditions
of the calls to head and tail are satisfied. Thus, the trivial non-fail condition of split is verified.

9. Related Work

As contract checking is an important contribution to obtain more reliable software, techniques for it
have been extensively explored. Mostly related to our approach is the work of Stulova et al. [32] on
reducing run-time checks of assertions by static analysis in logic programs. Although the objectives
of this and our work are similar, the techniques and underlying programming languages are different.
For instance, Curry with its demand-driven evaluation strategy prevents the construction of static call
graphs that are often used to analyze the data flow as in logic programming. The latter is used by
Stulova et al. where assertions are verified by static analysis methods. Hence, the extensive set of
benchmarks presented in their work is related to typical abstract domains used in logic programming,
like modes or regular types. There are also approaches to approximate argument/result size relations
in logic programs, e.g., [33], which might be used to verify assertions related to the size of data. In
contrast to these fixpoint-based approaches, we simply collect assertions from program expressions
and use symbolic reasoning, e.g., integer arithmetic with user-defined functions, to solve them. SMT
solvers are well suited for this purpose and we showed that they can be successfully applied to verify
complex assertions (as in the example nth shown in Sect. 5).

Static contract checking has also been explored in purely functional languages. For instance,
Xu et al. [34] present a method for static contract checking in Haskell by a program transformation
and symbolic execution. Since an external verifier is not used, the approach is more limited. SMT
solvers for static contract checking are also used in [35]. Similarly to our work, abstract assertions
are collected and solved by an SMT solver in order to verify contracts. However, we consider a non-
strict non-deterministic language which requires a different reasoning compared to the strict functional
language used there. Another approach is the extension of the type system to express contracts as
specific types. Dependent types are quite powerful since they allow to express size or shape constraints
on data in the language of types. Although this supports the development of programs together with
their correctness proofs [2], programming in such a language could be challenging if the proofs are
difficult to construct. Therefore, we prefer a more practical method: properties which cannot be
statically verified are checked at run time. One can also express contracts as refinement types as in
LiquidHaskell [36, 28]. Similarly to our approach, LiquidHaskell uses an external SMT solver to

M. Hanus / Combining Static and Dynamic Contract Checking for Curry 27

verify contracts. Hence, LiquidHaskell can verify quite complex assertions, as shown by various case
studies in [36]. Nevertheless, there might be assertions that cannot be verified so that a combination
of static and dynamic checking is preferable in practice.

An alternative approach to make dynamic contract checking more efficient has been proposed in
[37] where assertions are checked in parallel to the application program. Thus, one can exploit the
power of multi-core computers for assertion checking by running the main program and the contract
checker on different cores.

10. Conclusions

In this paper we proposed a framework to combine static and dynamic contract checking. Contracts
are useful to make software more reliable, e.g., avoid invoking operations with unintended arguments.
Since checking all contracts at run time increases the overall execution time, we presented a method
to verify contracts in Curry at compile time by using an external SMT solver. Of course, this might
not be successful in all cases so that unverified contracts are still required to be checked at run time.
Nevertheless, our experiments show the advantages of this technique, in particular, to reduce dy-
namic contract checking for recursive calls. Since we developed this framework for Curry, a language
combining functional and logic programming features, the same techniques can be applied to purely
functional or purely logic languages.

We do not expect that all contracts can be statically verified. Apart from the complexity of some
contracts, preconditions of operations of the API of some libraries or packages cannot be checked since
their use is unknown at compile time. However, one could provide two versions of such operations, one
with a dynamic precondition check and one (“unsafe”) without this check. Whenever one can verify
that the precondition is satisfied at the call site, one can invoke the version without the precondition
check. If all versions with precondition checks become dead code in a complete application, one has
a high confidence in the quality of the entire application.

Another refinement of our approach is the consideration of the individual conjuncts of contracts.
For instance, if a pre- or postcondition is a conjunction of formulas, each conjunct can separately
be verified so that only the remaining unverified conjuncts have to be added for run-time checking.
This allows to make dynamic contract checking more efficient even if the complete contract cannot be
verified.

Our tool could be improved by exploiting strictness information. Currently, information about
functions as arguments to other functions is ignored except for primitive operations where the demand
on arguments is known. This can be extended to any user-defined function if its demand is known at
compile time. The latter can be approximated by a demand analysis. A simple approach to it is shown
in [24] but needs to be improved for our purposes.

It could also be interesting to combine our tool with other tools related to program testing and
verification. Potential benefits of such a combination were discussed in Sect. 8 but should be further
explored. On the other hand, program analysis tools might be useful to improve static verification,
e.g., demand information can be used to generate more precise proof obligations. If the contract
verifier finds counter-examples to some proof obligation, one could also analyze these in order to
check whether they show an actual contract violation. Furthermore, it might also be interesting to

28 M. Hanus / Combining Static and Dynamic Contract Checking for Curry

improve the power of static contract checking by integrating abstract interpretation techniques, like
[38, 32].

Acknowledgments. The author is grateful to John Gallagher, Grigore Rosu, and the anonymous
reviewers for their helpful comments to improve the paper.

References

[1] Milner R. A Theory of Type Polymorphism in Programming. Journal of Computer and System Sciences,
1978. 17:348–375.

[2] Stump A. Verified Functional Programming in Agda. ACM and Morgan & Claypool, 2016. doi:10.1145/
2841316.

[3] Antoy S, Hanus M. Contracts and Specifications for Functional Logic Programming. In: Proc. of the 14th
International Symposium on Practical Aspects of Declarative Languages (PADL 2012). Springer LNCS
7149, 2012 pp. 33–47. doi:10.1007/978-3-642-27694-1 4.

[4] de Moura L, Bjørner N. Z3: An Efficient SMT Solver. In: Proc. of the 14th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2008). Springer LNCS
4963, 2008 pp. 337–340. doi:10.1007/978-3-540-78800-3.

[5] Hanus (ed) M. Curry: An Integrated Functional Logic Language (Vers. 0.9.0). Available at http://www.

curry-language.org, 2016.

[6] Hanus M. Functional Logic Programming: From Theory to Curry. In: Programming Logics -
Essays in Memory of Harald Ganzinger. Springer LNCS 7797, 2013 pp. 123–168. doi:10.1007/
978-3-642-37651-1\ 6.

[7] Peyton Jones S (ed.). Haskell 98 Language and Libraries—The Revised Report. Cambridge University
Press, 2003.

[8] Antoy S, Echahed R, Hanus M. A Needed Narrowing Strategy. Journal of the ACM, 2000. 47(4):776–822.
doi:10.1145/347476.347484.

[9] González-Moreno J, Hortalá-González M, López-Fraguas F, Rodrı́guez-Artalejo M. An approach to
declarative programming based on a rewriting logic. Journal of Logic Programming, 1999. 40:47–87.

[10] Antoy S. Constructor-based Conditional Narrowing. In: Proc. of the 3rd International ACM SIGPLAN
Conference on Principles and Practice of Declarative Programming (PPDP 2001). ACM Press, 2001 pp.
199–206.

[11] Antoy S, Hanus M. Overlapping Rules and Logic Variables in Functional Logic Programs. In: Proceedings
of the 22nd International Conference on Logic Programming (ICLP 2006). Springer LNCS 4079, 2006
pp. 87–101.

[12] de Dios Castro J, López-Fraguas F. Extra variables can be eliminated from functional logic programs.
Electronic Notes in Theoretical Computer Science, 2007. 188:3–19.

[13] Braßel B, Hanus M, Peemöller B, Reck F. KiCS2: A New Compiler from Curry to Haskell. In: Proc.
of the 20th International Workshop on Functional and (Constraint) Logic Programming (WFLP 2011).
Springer LNCS 6816, 2011 pp. 1–18. doi:10.1007/978-3-642-22531-4\ 1.

http://www.curry-language.org
http://www.curry-language.org

M. Hanus / Combining Static and Dynamic Contract Checking for Curry 29

[14] Wadler P. How to Declare an Imperative. ACM Computing Surveys, 1997. 29(3):240–263.

[15] Antoy S, Hanus M. Set Functions for Functional Logic Programming. In: Proceedings of the 11th ACM
SIGPLAN International Conference on Principles and Practice of Declarative Programming (PPDP’09).
ACM Press, 2009 pp. 73–82. doi:10.1145/1599410.1599420.

[16] Antoy S, Hanus M. Declarative Programming with Function Patterns. In: Proceedings of the International
Symposium on Logic-based Program Synthesis and Transformation (LOPSTR’05). Springer LNCS 3901,
2005 pp. 6–22.

[17] Antoy S, Hanus M. Default Rules for Curry. Theory and Practice of Logic Programming, 2017.
17(2):121–147. doi:10.1017/S1471068416000168.

[18] Albert E, Hanus M, Huch F, Oliver J, Vidal G. Operational Semantics for Declarative Multi-Paradigm
Languages. Journal of Symbolic Computation, 2005. 40(1):795–829.

[19] Launchbury J. A Natural Semantics for Lazy Evaluation. In: Proc. 20th ACM Symposium on Principles
of Programming Languages (POPL’93). ACM Press, 1993 pp. 144–154.

[20] Braßel B. Implementing Functional Logic Programs by Translation into Purely Functional Programs.
Ph.D. thesis, Christian-Albrechts-Universität zu Kiel, 2011.

[21] Hanus M. CurryCheck: Checking Properties of Curry Programs. In: Proceedings of the 26th International
Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2016). Springer LNCS
10184, 2017 pp. 222–239. doi:10.1007/978-3-319-63139-4\ 13.

[22] Chitil O, McNeill D, Runciman C. Lazy Assertions. In: Proceedings of the 15th International Workshop
on Implementation of Functional Languages (IFL 2003). Springer LNCS 3145, 2004 pp. 1–19.

[23] Degen M, Thiemann P, Wehr S. True Lies: Lazy Contracts for Lazy Languages (Faithfulness is Better
than Laziness). In: 4. Arbeitstagung Programmiersprachen (ATPS’09). Springer LNI 154, 2009 pp. 370;
2946–2259.

[24] Hanus M. Improving Lazy Non-Deterministic Computations by Demand Analysis. In: Technical Commu-
nications of the 28th International Conference on Logic Programming, volume 17. Leibniz International
Proceedings in Informatics (LIPIcs), 2012 pp. 130–143. doi:10.4230/LIPIcs.ICLP.2012.130.

[25] Hanus M, Skrlac F. A Modular and Generic Analysis Server System for Functional Logic Programs.
In: Proc. of the ACM SIGPLAN 2014 Workshop on Partial Evaluation and Program Manipulation
(PEPM’14). ACM Press, 2014 pp. 181–188. doi:10.1145/2543728.2543744.

[26] Antoy S, Hanus M, Libby S. Proving Non-Deterministic Computations in Agda. In: Proc. of the 24th
International Workshop on Functional and (Constraint) Logic Programming (WFLP 2016), volume 234
of Electronic Proceedings in Theoretical Computer Science. Open Publishing Association, 2017 pp. 180–
195. doi:10.4204/EPTCS.234.13.

[27] Barrett C, Fontaine P, Tinelli C. The SMT-LIB Standard: Version 2.6. Technical report, Department of
Computer Science, The University of Iowa, 2017. Available at www.SMT-LIB.org.

[28] Vazou N, Seidel E, Jhala R, Vytiniotis D, Peyton Jones S. Refinement Types for Haskell. In: Proceedings
of the 19th ACM SIGPLAN International Conference on Functional Programming (ICFP). ACM Press,
2014 pp. 269–282. doi:10.1145/2628136.2628161.

[29] Claessen K, Johansson M, Rosén D, Smallbone N. TIP: Tons of Inductive Problems. In: Int. Conf. on
Intelligent Computer Mathematics (CICM 2015). Springer LNCS 9150, 2015 pp. 333–337. doi:10.1007/
978-3-319-20615-8\ 23.

30 M. Hanus / Combining Static and Dynamic Contract Checking for Curry

[30] Christiansen J, Fischer S. EasyCheck - Test Data for Free. In: Proc. of the 9th International Symposium
on Functional and Logic Programming (FLOPS 2008). Springer LNCS 4989, 2008 pp. 322–336.

[31] Hanus M. Verifying Fail-Free Declarative Programs. In: Proceedings of the 20th International Symposium
on Principles and Practice of Declarative Programming(PPDP 2018). ACM Press, 2018 pp. 12:1–12:13.
doi:10.1145/3236950.3236957.

[32] Stulova N, Morales J, Hermenegildo M. Reducing the Overhead of Assertion Run-time Checks via Static
Analysis. In: Proc. 18th International Symposium on Principles and Practice of Declarative Programming
(PPDP 2016). ACM Press, 2016 pp. 90–103.

[33] Serrano A, López-Garcı́a P, Bueno F, Hermenegildo M. Sized Type Analysis for Logic Pro-
grams. Theory and Practice of Logic Programming, 2013. 13(4-5-Online-Supplement). doi:
http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20161018085635834-0697:
S1471068413000112:tlp2013011.pdf.

[34] Xu D, Peyton Jones S, Claessen K. Static contract checking for Haskell. In: Proc. of the 36th
ACM Symposium on Principles of Programming Languages (POPL 2009). 2009 pp. 41–52. doi:
10.1145/1480881.1480889.

[35] Nguyen P, Tobin-Hochstadt S, Van Horn D. Soft Contract Verification. In: Proceedings of the 19th
ACM SIGPLAN International Conference on Functional Programming (ICFP 2014). ACM Press, 2014
pp. 139–152. doi:10.1145/2628136.2628156.

[36] Vazou N, Seidel E, Jhala R. LiquidHaskell: Experience with Refinement Types in the Real World. In:
Proceedings of the 2014 ACM SIGPLAN Symposium on Haskell. ACM Press, 2014 pp. 39–51. doi:
10.1145/2633357.2633366.

[37] Dimoulas C, Pucella R, Felleisen M. Future Contracts. In: Proceedings of the 11th ACM SIGPLAN
International Conference on Principles and Practice of Declarative Programming (PPDP’09). ACM Press,
2009 pp. 195–206.

[38] Fähndrich M, Logozzo F. Static contract checking with Abstract Interpretation. In: Proc. of the Conference
on Formal Verification of Object-oriented Software (FoVeOOS 2010). Springer LNCS 6528, 2011 pp. 10–
30. doi:10.1007/978-3-642-18070-5\ 2.

	Introduction
	Functional Logic Programming and Curry
	Contracts
	Contract Verification
	Examples for Contract Verification
	Implementation
	Benchmarks
	Applications
	Related Work
	Conclusions

