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Abstract

In this paper we present a framework to program autonomous robots in the declar-
ative multi-paradigm language Curry. This is an experiment to use high-level
declarative programming languages for the programming of embedded systems. Our
programming model is based on a recent proposal to integrate a process-oriented
specification language in Curry. We show the basic ideas of our framework and
demonstrate its application to robot programming.

1 Motivation

Although the advantage of declarative programming languages (e.g., func-
tional, logic, or functional logic languages) for a high-level implementation of
software systems is well known, the impact of such languages to many real
world applications is quite limited. One reason for this might be the fact that
many real-world applications have not only a logical (declarative) component
but demand also for an appropriate modeling of the dynamic behavior of a
system. For instance, embedded systems become more important applications
in our daily life than traditional software systems on general purpose comput-
ers, but the reactive nature of such systems seems to make it fairly difficult
to use declarative languages for their implementation. We believe that this
is only partially true since there are many approaches to extend declarative
languages with features for reactive programming. In this paper we try to
apply one such approach, the extension of the declarative multi-paradigm lan-
guage Curry [[3,[[7] with process-oriented features [fj,[]], to the programming
of concrete embedded systems.

The embedded systems we consider in this paper are the Lego Mindstorms
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Fig. 1. The RCX, the “heart” of a Mindstorm robot

robots[?] Although these are toys intended to introduce children to the con-
struction and programming of robots, they have all the typical characteristics
of embedded systems. They act autonomously, i.e., without any connection
to a powerful host computer, have a limited amount of memory (32 kilobytes
for operating system and application programs) and a specialized processor
(Hitachi H8 16 MHz 8-bit microcontroller) which is not powerful compared to
current general purpose computers. In order to understand the examples in
this paper, we shortly survey the structure of these robots.

The Robotics Invention System (RIS) is a kit to build various kinds of
robots. The heart of the RIS kit is the Robotic Command Explorer (RCX,
see Fig. [l) containing a microprocessor, ROM, RAM, connections to sensors
and actuators, etc. To react to the external world, the RCX contains three
input ports to which various kinds of sensors (e.g., touch, light, temperature,
rotation) can be connected. To influence the external world, the RCX has
three output ports for connecting actuators (e.g., motors, lamps), a simple
speaker for playing sounds, and a small LCD display. Furthermore, it has
an infrared (IR) interface for communicating with a host computer (e.g., for
downloading programs) or with other RCX bricks. Since the RCX has no
keyboard (except for four control buttons) and only a small one-line display,
programs for the RCX are usually developed on standard host computers (PCs,
workstations), cross-compiled into code for the RCX and then transmitted to
the RCX via the IR interface.

The RIS is distributed with a simple visual programming language (RCX
code) to simplify program development for children. This programming lan-
guage is based on colored bricks that are put together in order to yield the
control program for the RCX. The different kinds of bricks include commands
(like actuator on/off, wait, set motor direction, set power, etc), sensor watchers
(code blocks executed in case of sensor events), control and macro blocks. In
comparison to traditional programming languages, the language has interest-
ing extensions (multi-threading, sensor and actuator control, delay and time-
out primitives). However, the language is also quite limited at the same time:
no concept of variables (only a simple counter), no expressions, no parame-
terized functions, no arbitrarily nested control structures, no synchronization
with protected resources etc. Therefore, various attempts have been made

2 http://mindstorms.lego.com/| Note that these names are registered trademarks al-
though we do not put trademark symbols at every occurrence of them.
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to replace the standard program development environment by more advanced
systems. On the one hand, one can find more advanced visual languages (e.g.,
RobolabP’]). On the other hand, there are also imperative languages (e.g.,
“Not Quite C"[7]) or extensions of existing programming languages with com-
pilers for the RCX. A popular representative of the latter kind is based on
replacing the default Lego RCX firmware by a new operating system, legOS,P]
and writing programs in C with specific libraries and a variant of the compiler
gcc with a special back end for the RCX controller. The resulting programs
are quite efficient (machine code instead of byte code) and provide full access
to the RCX’s capabilities.

In this paper we will use a declarative multi-paradigm programming lan-
guage (Curry) with synchronization and process-oriented features to program
the RCX. The language Curry [[3[7 can be considered as a general pur-
pose declarative programming language since it combines in a seamless way
functional, logic, constraint, and concurrent programming paradigms. In or-
der to use it also for reactive programming tasks, different extensions have
been proposed. [[4] contains a proposal to extend Curry with a concept of
ports (similar concepts exist also for other languages, like Erlang [[], Oz []],
etc) in order to support the high-level implementation of distributed systems.
These ideas have been applied in [f] to implement a domain-specific language
for process-oriented programming, inspired by the proposal in [[] to combine
processes with declarative programming. The target of the latter is the ap-
plication of Curry for the implementation of reactive and embedded systems.
The example applications shown in [[f] are simulators of artificial systems, e.g.,
a lift controller. In this paper we will apply this framework to a real embedded
system: the Mindstorms robots described above.

This paper is structured as follows. In the next section we sketch the fea-
tures of Curry as necessary for the understanding of this paper. Section [ sur-
veys the framework for process-oriented programming in Curry. We apply this
framework to the programming of autonomous robots in Section f] and show
in Section P concrete programming examples before we make some remarks
about the current implementation of our framework in Section fj and conclude
in Section [ with a discussion of related work. The appendix contains the
definition of the operational semantics of the framework for process-oriented
programming in Curry.

2 Curry

In this section we survey the elements of Curry which are necessary to under-
stand the examples in this paper. More details about Curry’s computation

http://www.lego.com/dacta/robolal
http://www.enteract.com/~dbaum/nqc/|
http://www.legos.sourceforge.net
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model and a complete description of all language features can be found in
3.7

Curry is a multi-paradigm declarative language combining in a seamless
way features from functional, logic, and concurrent programming and supports
programming-in-the-large with specific features (types, modules, encapsulated
search). From a syntactic point of view, a Curry program is a functional
program[’] extended by the possible inclusion of free (logical) variables in con-
ditions and right-hand sides of defining rules. Thus, a Curry program consists
of the definition of functions and the data types on which the functions oper-
ate. Functions are evaluated in a lazy manner. To provide the full power of
logic programming, functions can be called with partially instantiated argu-
ments and defined by conditional equations with constraints in the conditions.
The behavior of function calls with free variables depends on the evaluation
annotations of functions which can be either flexible or rigid. Calls to flex-
ible functions are evaluated by a possibly non-deterministic instantiation of
the demanded arguments (i.e., arguments whose values are necessary to de-
cide the applicability of a rule) to the required values in order to apply a rule
(“narrowing™). Calls to rigid functions (e.g., external functions like arithmetic
operators [[] or functions implementing concurrent objects [[[0]) are suspended
if a demanded argument is uninstantiated (“residuation”).

Example 2.1 The following Curry program defines the data types of Boolean
values and polymorphic lists (first two lines) and a function to compute the
concatenation of two lists:

data Bool = True | False
data List a = [] | a : List a
;0 [al > [a] —> [al

conc [] ys = ys

conc (x:xs) ys = X : conc Xs ys

conc ::

The data type declarations introduce True and False as constants of type
Bool and [] (empty list) and : (non-empty list) as the constructors for poly-
morphic lists (a is a type variable ranging over all types and the type “List a”
is usually written as [a] for conformity with Haskell).

The (optional) type declaration (“::”) of the function conc specifies that
conc takes two lists as input and produces an output list, where all list el-
ements are of the same (unspecified) type[T] Due to the logic programming
features of Curry, an equation “conc ys [x] =:= xs” can be solved by in-
stantiating the first argument ys to the list xs without the last argument, i.e.,

6 Curry has a Haskell-like syntax [@], i.e., (type) variables and function names usually start
with lowercase letters and the names of type and data constructors start with an uppercase
letter. The application of f to e is denoted by juxtaposition (“f €”).

7 Curry uses curried function types where a—->3 denotes the type of all functions mapping
elements of type « into elements of type 3.
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for a given xs, the only solution to this equation satisfies that x is the last
element of xs.

Functions are generally defined by (conditional) rules of the form
“fti...t, | ¢ =e” where f is a function, tq,...,t, are data terms, each vari-
able occurs only once on the left-hand side, the condition ¢ (which can be
omitted) is a constraint (i.e., an expression of the built-in type Success), and
e is a well-formed expression which may also contain function calls, lambda
abstractions etc. A conditional rule can be applied if its left-hand side matches
the current call and its condition is satisfiable.

The operational semantics of Curry, described in detail in [[3[[7], is based
on an optimal evaluation strategy [[] and can be considered as a conservative
extension of lazy functional programming (if no free variables occur in the pro-
gram and the initial goal) and (concurrent) logic programming. Concurrent
programming is supported by a concurrent conjunction operator “&” on con-
straints, i.e., a constraint of the form “c; & ¢,” is evaluated by solving both
constraints ¢; and ¢y concurrently. Furthermore, distributed programming
is supported by ports [[4] which allows the sending of arbitrary data terms
(also including logic variables) between different computation units possibly
running on different machines connected via the Internet.

3 Specification of Process Systems

In this section we review the framework for process-oriented programming in
Curry as originally proposed in []. Here we will present a slightly modified
and improved version. The application of this framework to the programming
of autonomous robots will be discussed in the next section.

The motivation for the process-oriented extension of Curry is the fact that
purely declarative languages are often not adequate for the modeling and pro-
gramming of systems where the dynamic (reactive) behavior is important,
like embedded systems. For this purpose, a process-oriented language is pro-
posed which is embedded into Curry by describing processes as expressions of
a distinct type.

In this framework, a process system consists of a set of processes
(pl,p2,...), a global state (i.e., data visible for all processes inside a com-
ponent but not visible from outside), and a mailbox (queue of messages sent
to this component), see Fig. B[f] For instance, an embedded control system
corresponds to a process system that reacts on messages received from exter-
nal sensors by sending messages to the actuators. The behavior of a process
system is defined by the behavior of each process. A process can be activated
depending on conditions on the global state and the mailbox. If a process
is activated (e.g., because a particular message arrives in the mailbox), it

8 In the original framework [ﬁ]7 such a process system is a component of a dynamic system
which consists of several components that cooperate by exchanging messages, see also [E]
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incoming messages outgoing messages
e — global state ! —_—

Fig. 2. Component of a dynamic system

performs actions and may start other processes (since systems are based on
an interleaving semantics, at most one process can perform actions so that
actions are atomic entities). Similarly to Erlang [P], the mailbox is a finite
list of all currently available messages. Since processes can access the com-
plete mailbox (and not only the first message), it is fairly easy to implement
“alarm” processes that immediately react on important messages contained
in the mailbox at any position.

The reaction of a process to the change of its external context (i.e., mail-
box or global state) consists of a sequence of actions. Possible actions are
the change of the global state to a value s (“Set s”), the sending of a mes-
sage m (“Send m”),[7] and the removing of a message m from the mailbox
(“Deq m").[7]

The global state of a component can be accessed and manipulated by all
processes of this component. Thus, it also serves as a facility for process
synchronization. In general, the global state is just a tuple of data items.
Since these items can be of arbitrary type, they can also store dynamically
evolving data structures.

As described above, processes are activated, depending on a particular
condition on the mailbox and global state, and perform an action followed by

the creation of new processes. Thus, the behavior of each process is specified
by

* a condition (on the mailbox and state),

 a sequence of actions (to be performed when the condition is satisfied and
the process is selected for execution), and

e a process term describing the further activities after executing the actions.

In order to structure dynamic system specifications in an appropriate manner,
we allow parameterized processes since this supports the distinction between
local and global state: process parameters are only accessible inside a process

9 For the sake of simplicity, all outgoing messages are sent via the same channel. This is
sufficient for embedded systems where the messages can be interpreted as commands to
control the connected actuators.

10 Note that messages are not automatically removed after reading since there may be several
processes that must react on the same message.

6
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and, therefore, they correspond to the local state of a process, whereas the
global state is visible to all processes inside a component. Changes to the local
state can simply be achieved by recursive process calls with new arguments.
Thus, the language of process terms p is very similar to process algebra [f
and defined by the following grammar:

p = Terminate successful termination
| Proc (p t1...1,) run process p with parameters t;...t,
| p1 >>> Do sequential composition
| p1 <I> po parallel composition
| P1 <+> Py nondeterministic choice
| p1 <h> po nondeterministic choice with priority
| p1 <> po parallel composition with priority

The operators “>>>" “<[|>” and “<+>” are standard in process algebra,
whereas the last two operators are not very common but useful in applica-
tions where a simple nondeterministic choice is not appropriate. The meaning
of “p1 <%> po” is: “If process p; can be executed, execute p; (and remove py),
otherwise execute process py (and remove p), if possible.” The meaning of
“p1 <7> py” is: “Execute processes p; and po in parallel (like “p; <[> po”)
but py is executed only if p; cannot be executed; if p; terminates, then also
p2 terminates.” The latter combinator is useful for idle background processes
like concurrent garbage collectors. For instance, we use it in some of our ap-
plications for a background process that removes unused sensor messages from
the mailbox. A detailed specification of the operational semantics of process
terms can be found in the appendix.

In order to specify processes in Curry following the ideas above, there are
data types to define the structure of actions and processes. The following
data type declaration represents the possible actions, where inmsg, outmsg,
and state are type variables denoting the type of incoming messages, outgoing
messages, and the global state of a concrete application, respectively.

data Action inmsg outmsg state =

Send outmsg -- send message
| Set state -- set global state
| Deq inmsg —-— remove message from mailbox

A similar definition exists for the type “ProcExp inmsg outmsg state” defin-
ing the language of process terms as above. Then the process combinators
(e.g., >>>, <|>) are operations on this data type. Furthermore, we define a
guarded process as a pair of a list of actions and a process term:

data GuardedProc inmsg outmsg state =
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GuardedProc [Action inmsg outmsg statel
(ProcExp inmsg outmsg state)

For the sake of readability, we define an infix operator to construct guarded
processes:

acts |> pexp = GuardedProc acts pexp

In order to exploit the language features of Curry for the specification of
process systems, we consider a process specification as a mapping which assigns
to each mailbox (list of incoming messages) and global state a guarded process
(similarly to Haskell, a type definition introduces a type synonym in Curry):

type Process wnmsg outmsg state =
[inmsg] -> state —-> GuardedProc inmsg outmsg state

This definition has the advantage that one can use standard function defini-
tions by pattern matching for the specification of processes, i.e., one can define
the behavior of a process p with parameters x4, ..., z, in the following form:

P Z1...%, mailbox state
| < condition on x1,...,r,, mailbox, state >
= [actions] |> process term

Hence, the condition is just a (decidable) constraint on the parameters
x1,...,Ty, mailbox, and state so that we need no global variables or aux-
iliary constructs to access the current global state and mailbox. A process
can run in a current system state if its condition is satisfied. In this case,
its sequence of actions is executed from left to right as one atomic operation
(having a sequence of actions instead of one single action is useful to specify
larger critical regions in many applications, e.g., see the dining philosophers
example below) and the process is replaced by the new process term following
the list of actions. If a process is specified with several rules or conditions,
these rules can be considered as combined with the “<¥%>” operator, i.e., the
first alternative with a valid condition is selected for executing this process.

As an example, we show a specification of the classical dining philosophers
example. The global state in this example is a list of forks where each fork
has either the value Avail (“available”) or Used. The entire system consists
of processes thinking and eating that are parameterized by the number of
the philosopher. The behavior of these processes is determined as follows
(“0 114" denotes the i-th element of list [ and “rpl [ ¢ v” denotes the result
of replacing the i-th element of the list [ by v):

data ForkStatus = Avail | Used
n =5 —-- here we have five philosophers

thinking :: Int -> Process [ForkStatus]

8
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thinking i _ forks
| forks!!i == Avail && forks!!((i+1) ‘mod‘n) == Avail
= [Set (rpl (rpl forks i Used) ((i+1) ‘mod‘n) Used)]
|> Proc (eating i)

eating :: Int -> Process [ForkStatus]

eating i _ forks
= [Set (rpl (rpl forks i Avail) ((i+1) ‘mod‘n) Avail)]
|> Proc (thinking i)

The mailbox parameter is not used in this simple example. Thus, we use the
anonymous type variable “_” for the type of incoming and outgoing messages.
Initially, all philosophers are thinking, which corresponds to the initial process
term

Proc (thinking 0) <|> --- <|> Proc (thinking 4)
which can be simply defined by
foldrl (<[>) (map (\i->Proc (thinking i)) [0..n-1])

exploiting the higher-order features of Curry. Furthermore, all forks are avail-
able, which is expressed by the initial state

take n (repeat Avail)

(which evaluates to a list of length n and elements Avail). The above spec-
ification describes the following behavior. If philosopher ¢ is thinking, which
corresponds to the existence of a process (thinking i), and both forks are
available, then he can use both forks and turn into the Eating process. Note
that the change of the global state, i.e., the use of both forks, can only be
performed (in an atomic manner) if both forks are really available. This is
due to the fact that the successful check of the condition and the execution
of the sequence of actions is one atomic unit which cannot be interrupted
by other processes (see also [[l]). Therefore, the classical deadlock situation
is avoided without low-level synchronization (e.g., semaphores) or additional
constructions (e.g., room tickets).

An advantage of this embedding of a process-oriented language into Curry
is the reuse of the abstraction facilities of Curry for process definitions. For
instance, we can extend the language of process terms by an “atomic” process
(i.e., a sequence of actions executed as one atomic operation) by the following
definition:

atomic :: [Action inmsg outmsg statel
-> ProcExp inmsg outmsg state

atomic actions = Proc (\_ _ -> actions |> Terminate)

In the next section we will apply this framework to the programming of au-
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tonomous robots described in Section [II.

4 Programming Autonomous Robots

A difficulty in the programming of reactive systems is the description how and
when they should react to the external environment measured by the available
sensors. Synchronous languages [[[J] are one possible programming model for
this purpose since one can describe with them the immediate reaction to sensor
values. On the other hand, asynchronous programming styles can be easier
integrated in general purpose languages. In order to use our asynchronous
programming model as described in Section [ for the programming of robots,
we propose the separation of the entire programming task into two parts. The
description of the actions to be executed in reaction to some sensor events will
be described in an asynchronous manner as a process system where we assume
that the sensor sends messages whenever some relevant value is measured.
The description of these “relevant events” will be specified in a synchronous
component which always controls the sensor inputs and sends relevant values
as messages to the process system. For instance, for a mobile robot that tries
to avoid obstacles, the only relevant events are signals from the touch sensors
in order to register the bumping against an obstacle. A mobile robot that
tries to follow a black line must only react to the change (of a light sensor)
between dark and bright light values. In order to measure time intervals (e.g.,
time outs, waiting), clock events become relevant. We do not describe the
implementation of this synchronous component (compare for instance [[] for
the combination of a functional logic language with features for synchronous
programming) but assume in the following that such sensor events are sent as
messages to the process system which reacts to them with appropriate actions.

As mentioned in Section [, there are three output ports to connect actua-
tors to the RCX. We describe these ports by

data OutPort = Out_A | Out_B | Out_C

The standard actuators are motors and lamps connected to these ports. The
control of these actuators can be described by the following messages which
are sent by the process system to the robot:

= MotorDir OutPort MotorDirection
| MotorSpeed OutPort Int
| Lamp OutPort Bool -- True=on / False=off

data RobotCmd

data MotorDirection = Fwd | Rev | Off

These messages will change the state of the actuator. For instance, if a mo-
tor is turning forward, it will be turning backwards after receiving the mes-
sage (MotorDir port Rev). A motor is turned off if it receives the message
(MotorDir port 0ff).

10
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Fig. 3. Example of an obstacle avoiding robot

As discussed above, we assume that the robot is informed by a synchronous
component about sensor events. Therefore, we cannot specify the possible
events in general but these depend on the connected sensors, application rel-
evant sensor values etc. We only assume that there always exists a process
(wait n) which terminates n milliseconds after its first activation (in prin-
ciple, this can be described by sending and waiting for appropriate messages
from the synchronous subsystem).

In the following section we show concrete examples to apply this framework
in practice.

5 Examples

As a first example, we want to implement an autonomous robot that moves on
the ground and tries to avoid obstacles that it detects with two touch sensors
mounted at the left and right front of the robot. Fig. B shows an example
of such a robot, which we call “rover” in the following. We assume that
the following messages are sent from the sensors to the robot control system
whenever the rover touches an obstacle with the left or right sensor:

data TouchEvent = TouchLeft | TouchRight

The control system of the rover contains the processes go, waitEvent, and
turn. The initial process go just starts the rover by setting both motors (for
the left and right wheel connected at ports Out_A and Out_C, respectively) into
forward direction (which also starts their engines) and then waits for events
from the touch sensors:

go _ _ =
[Send (MotorDir Out_A Fwd), Send (MotorDir Out_C Fwd)]
|> Proc waitEvent

The waitEvent process is activated on an event from one of the touch sensors.
It reacts by driving back for 2 seconds and turning the rover by setting one of
the motors into forward direction followed by the initial process state go:

waitEvent (touchmsg:_) _ =

[Deq touchmsg] [|> Proc (turn touchmsg)

11
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turn touch _ _ =
[Send (MotorDir Out_A Rev), Send (MotorDir Out_C Rev)] |>
Proc (wait 500) >>>
atomic [Send (MotorDir
(if touch==TouchLeft then Out_A else Out_C) Fwd)] >>>
Proc (wait 500) >>>

Proc go

The second example is a “line follower” rover, i.e., a robot similar to the
previous one but with a light sensor measuring the light on the ground in-
stead of the touch sensors. The task is to locate a black line and then follow
it. We assume that the synchronous sensor subsystem sends messages of the
form (Light ¢) to the control system in regular intervals indicating the cur-
rent value ¢ measured by the light sensor (darkness corresponds to small and
brightness to bigger values). The constant dark_thresh and bright_thresh
are the threshold values separating a black line from a bright ground. Then
the control system can be specified by the following processes (first, the rover
tries to locate a line by moving to a dark region and then it turns whenever
it leaves the dark line):

locateline _ _ =
[Send (MotorDir Out_A Fwd), Send (MotorDir Out_C Fwd)] |>
Proc waitDark

waitDark (Light i:_) _
[Deq (Light 1)] [>
Proc (if i<dark_thresh then go else waitDark)

go _ _ =
[Send (MotorDir Out_A Fwd), Send (MotorDir Out_C Fwd)] |>
Proc waitBright

waitBright (Light i:_) _ =
[Deq (Light i)] [>
Proc (if i>bright_thresh then turn else waitBright)

turn = [Send (MotorDir Out_A Rev)] |> Proc waitDark

These simple examples show only the basic features of our framework to pro-
gram autonomous robots. They do neither show the use of several parallel
processes nor the use of the global state to synchronize them (but we have
also implemented a small production line with a conveyor belt and a robot
arm where these features are important). Nevertheless, it should be clear from
the description in Section ] how to use these features to model more complex
robot control systems (e.g., including planning capabilities, parallel control of
several sensors).

12
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6 Implementation

Our current implementation does not yet include a full compiler to translate
the Curry specifications into binary code that can run on the RCX (this is
under implementation so that our current examples are manually translated).
In order to test the behavior of programs before translating and running them
on the RCX, we have implemented a simulator in Curry for the framework
described above.

Basically, the simulator is an interpreter for the process expressions fol-
lowing the operational semantics of the process algebra [B,[ (see also the
appendix). In order to run a typical robot program as shown in Section [,
the program needs some input from the sensors and has to show the messages
sent to the actuators. For this purpose, the simulator also contains two fur-
ther components, a virtual sensor suite and a command log for logging the
messages sent to the actuators.

The virtual sensor suite is a process that generates sensor messages for
the robot program. This process controls a graphical user interface (GUI)
with buttons and sliders that represent the sensors of the robot. The user
can simulate sensor inputs for the robot through this GUI and can check
how the system will react. Since the only externally observable reactions are
messages sent to the actuators, there is another process, the command log,
for showing all these messages. This process simply waits for messages sent
to the actuators and prints them with a time stamp in a terminal window.

Our current simulator is very simple so that, for every new robot with
different sensors, one has to design a new virtual sensor suite with the appro-
priate buttons and sliders (which corresponds to the implementation of the
synchronous component for controlling sensor events). This task is fairly easy
thanks to the use of the Curry library Tk for high-level GUI programming [[L5].
Nevertheless, one could also write a function that generates such a virtual sen-
sor suite from a specification of the sensors connected to the input ports. In
a similar way, one could also improve the purely text-based command log by
adding a graphical representation of actuators showing the current state of
them (e.g., a symbol for a motor that shows if it is spinning forward, back-
ward, or off). Such a representation could be also generated from a description
of the type of the connected actuators.

Our final goal is the compilation of the Curry programs into code for the
RCX. For doing so, one has to complete the descriptions shown in Section | by
a specification of the synchronous component for controlling the sensors. We
plan to compile these descriptions into C code that can be further compiled
into RCX code by the legOS compiler mentioned in Section [ Due to the
(speed and time) limitations of the RCX, a simple approach, like porting a
Curry implementation to the RCX, will not work (this is in contrast to [[[J
where a functional robot control language is proposed which is executed on top
of Haskell running on a powerful Linux system). In particular, the interpreta-

13
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tion of the process expressions on the RCX causes too much overhead so that
a direct compilation of the processes into more primitive code is necessary.
Fortunately, legOS is a POSIX-like operating system offering an appropriate
infrastructure like multi-threading, semaphores for synchronization etc. Nev-
ertheless, many optimizations are required to map the operational semantics
of Curry into the features available in legOS. We plan to start with a re-
stricted subset of Curry, which is sufficient for our current applications and
can be translated in a simple way, and extend it together with appropriate op-
timization tools. In this way, we will investigate general principles to compile
high-level languages into specialized systems with limited capabilities.

7 Conclusions and Related Work

We have presented a framework to program autonomous robots with a declar-
ative language extended by a process concept. For this purpose, we have
proposed a domain-specific language for process-oriented programming. This
language is based on process algebras and offers parameterized processes (with
priorities) and a global store for the synchronization and exchange of data be-
tween processes. Processes can be activated depending on the arrival of par-
ticular messages and also on the occurrence of values in the global store (set
by other processes). Since this language is embedded in the declarative multi-
paradigm language Curry, we can use the high-level features of declarative
programming for the implementation of embedded systems. A prototypical
implementation has been performed with a simulator. The full implementa-
tion by compiling into directly executable code is currently developed.

Some work related to high-level languages for programming embedded or
process-oriented systems has already been mentioned above. For embedded
system programming, synchronous languages like Esterel [B] or Lustre [ are
often used. Thus, one can also apply such languages to program embedded
systems like the Lego Mindstorms robots. Actually, there already exist com-
pilers for those languages into C[I] so that one can use the legOS compiler to
produce RCX code. The translation of the synchronous languages normally
produces sequential code by synthesizing the control structure of the object
code in the form of an extended finite automaton [[J]. This is a major draw-
back since one does not have much control on the size of the generated C
program. In some cases only slight modifications in a robot specification can
result in a big increase in the size of the generated code. Another drawback
is the state explosion for large programs which could be a problem due to the
limited amount of memory in the Mindstorms robots.

Some future work has already been mentioned in Section [f First, we
will develop a language to specify the synchronous component which controls
the sensors and informs the process system by sending messages. Then, we

Whttp://wuw.emn.fr/x-info/lego/|
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will investigate compilation techniques for producing efficient executable code.
Another interesting topic is the development of a graphical tool to specify the
process structure with visual elements where the corresponding Curry code is
automatically generated. Finally, it would be also interesting to describe the
behavior of several robots in one system and generate the code for the indi-
vidual robots and their communication automatically. This would enable the
implementation of more complex systems with many sensors and actuators.

Acknowledgements. The authors are grateful to Frank Huch for fruitful
discussions and suggestions to improve this paper.
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A Operational Semantics

In this section we define the operational behavior of dynamic systems. To
simplify the presentation, we only describe the behavior of a single component
of a dynamic system. One can derive the operational behavior of a complete
system, consisting of several components, from the transition relation of the
single components extended by the exchange of messages between the message
queues of the components.

We assume that S is a system specification, i.e., a set of process abstrac-
tions as introduced in Section J. We describe the execution of a component
by a transition relation (S,p) — (S’ p’) where p,p’ are process terms and
S, S" are component states. A component state consists of the global state
and the lists of incoming and outgoing messages. Each action manipulates
the component state, i.e., an action is a mapping between component states.
For the sake of simplicity, we do not specify the precise meaning of actions
but denote by a(S) the new component state obtained by applying action a
to component state S.

The transition relation for components is defined by the set of inference
rules in Fig. [A1l To simplify the definition of the transition relation, we
separate the basic transition steps and the simplification of process terms by
introducing a congruence relation on process terms, similarly to [PJ]. This
avoids the introduction of specific transition rules for process simplification
which would have no operational effect. For this purpose, we define = as the
smallest congruence relation satisfying the following laws:[%]

Terminate >>>p = p

Terminate <|>p = p p <|> Terminate = p
Terminate <+> p = Terminate p <+> Terminate = Terminate
Terminate <> p = Terminate p <%> Terminate = Terminate
Terminate <> p = Terminate p <”> Terminate = p

We assume that all inference rules are interpreted w.r.t. the congruence =.
Formally, this can be expressed by extending the basic transition relation —
defined in Fig. [A7]] to a transition relation modulo congruent process terms
“=" defined as follows:

p=p) p2=py (Sp)) — (5 py)
<Sap1> = <S,,p2>

The initial component state and process term is specified by the programmer
(see Section ), and the final configurations are those with a process term

12 Actually, the interpretation of these laws as rewrite rules yields a confluent and termi-
nating rewrite system so that the congruence relation is easily decidable by term rewriting.
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R1

R2

R3

R4

R5

R’

R6

R6’

(S,Proc (p t1...t)) — (an(---(a1(S))--+),0(pi))

pri...xp | 1 = acy |> p;

if : is a variant of a definition in S,

| ¢ = acy |> pg

o={r1—t1,...,x, — t,}, St o(c), S o(c) for all j <1,

and ac; = lay,...,a,]

(S,p1) — (5", p1)
(S, p1 >>>po) — (S, P} >>>po)

(S,p1) — (5", p1) R3 (S,p2) — (5", p3)
(S,p1<1>pa) — (S, P} <I>p2) (S,p1<1>pa) — (S, p1 <I>ph)
(S,p1) — (5", p1) R (S,p2) — (5", p3)
(S,p1<+>pa) — (S',p)) (S,p1<+>pa) — (S',ph)

(S, p1) = (5", p1)

<S7p1 <%>p2> - <S/7p/1>
(S, p2) — (5", p3)
<Sap1 <%>p2> - <Slap/2>

(S, p1) — (5, p1)

if AS”,p} with (S,p1) — (5", p})

(S, p1<™>pa) — (S, P} <7>p2)
<S7p2> - <S,’p/2>
(S, p1<™>pa) — (S, p1 <7>py)

if AS”,p} with (S,p1) — (S”,p})

congruent to Terminate.[”’] Rule R1 describes the application of a process
abstraction to a process, where “S F ¢’ denotes the validity of condition ¢
in component state S (thus, we omit the mailbox and state parameter in the
concrete program rule since they are determined by S). The conditions are
checked in their textual order and the first alternative with a valid condition
is selected, where the sequence of actions in the corresponding guard are exe-

13 Usually, components do not terminate and we are interested in observing the sequence of

Fig. A.1. Operational semantics of process terms

actions performed by a component.
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cuted from left to right in one atomic step. We use variants (i.e., renamings of
variables) of definitions of process abstractions in order to get fresh names for
local variables (which is important for a functional logic base language). To
accomodate also base languages with constraint solving and search facilities,
as in logic programming, we could also allow the instantiation of unbound
variables in guards by requiring “S F ¢(o(g))” and continuing with ¢ o o
instead of o.

The remaining rules are quite standard in process algebra, whereas rules
R5" and R6’ specify the particular priority semantics of the operations <%>
and <™> as informally explained in Section P (for these rules and rule R1 the
decidability of conditions in process abstractions is important).
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