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This paper presents a typed language with a precisely defined semantics that integrates functional and
logic programming styles. To detect programming errors at compile time, the language has a polymorphic
type system. The type system restricts the possible use of functions and predicates and ensures that a
function or predicate is only called with appropriate arguments at run time. In contrast to many other
type systems for logic programming, this type system has a model-theoretic semantics (types are subsets of
domains of interpretations) and allows the use of typical logic programming techniques. For instance, it is
possible to add specialized clauses and to apply higher-order programming techniques.

1 Introduction

During recent years, various attempts have been made to amalgamate functional and logic programming

languages (see [DL86] for a collection of proposals). A lot of these integrations are based on Horn clause

logic with equality which consists of predicates and Horn clauses for logic programming and functions and

equations for functional programming. Because of the underlying single-sorted logic, a lot of these languages

are untyped which is a disadvantage from a practical point of view. Modern functional programming

languages, like ML [HMM86], Miranda [Tur85] and HOPE [BMS80], have polymorphic type systems to

detect specific programming errors at compile time. Due to the polymorphism, the restrictions of the type

system are acceptable for practical programming.

The lack of types for logic programming was recognized by several people, and therefore a lot of research

for types in logic programming languages have been done. In contrast to functional languages, where types

have a declarative meaning (e.g., [DM82], but a model-theoretic semantics for types in functional languages

is also an area of ongoing research), many proposals for type systems for logic languages have a notion of a

type that is not directly related to the declarative semantics. For instance, the polymorphic type systems

in [MO84] and [DH88] require declarations for types and predicates but do not define the semantics of such

declarations. Declarations are not required in the proposals [Mis84], [Klu87] and [Zob87] but are inferred

by a type checking algorithm. These and other type systems have only a syntactic notion of a type, i.e.,

types are sets of terms rather than subsets of carrier sets of interpretations. Moreover, the inference of types

from a completely untyped program yields only in a few cases the types expected by the programmer. For

instance, assume list denotes the set of all terms of the form [] or [E|L] where L is a term from list. Then

the inferred type for the predicate append defined by

append([],L,L) ←
append([E|R],L,[E|RL]) ← append(R,L,RL)

may be “list×α×α ∪ list× β × list” [XW88], where α and β denote arbitrary types. The problem is the

first clause which defines append to be true not only for lists but also for other terms. E.g., append([],3,3)

is true but usually considered as an ill-typed goal, i.e., the expected type is “list× list× list”. This example

shows that inferring types from a completely untyped program is generally not acceptable since an untyped

logic program does not contain the type information expected by the programmer (see also [Nai87]). A

type system should allow user declarations for types. Such declarations frequently documents the expected



meaning of predicates and improves the readability of large programs. Therefore the language presented

in this paper is explicitly typed, i.e., each variable, function and predicate has an explicitly given type. A

program where the types of some variables are not declared is viewed as a short-hand for an explicitly typed

program. A type inference procedure can be used to insert the missing type declarations for variables.

Since pure functional and logic languages are declarative languages, an integration of these languages

should be also declarative. Hence each declaration in the language should have a clearly defined model-

theoretic semantics. If such a language is enriched by a type structure, the semantics of the type structure

must be defined. But this have been done only in a few proposals. For instance, Padawitz [Pad88] has

proposed a Horn clause logic with equality with a many-sorted type structure. Each type corresponds to

a non-empty subset of the carrier set of the interpretation. Goguen and Meseguer [GM84] have shown

that the common deduction rules for untyped equational logic become unsound if types denote empty sets.

Hence the definition of the model-theoretic semantics of types is necessary to establish exact soundness and

completeness results.

The simple many-sorted type structure was extended in several directions: Goguen, Meseguer [GM86]

and Smolka [Smo86b] have proposed order-sorted type systems for Horn clause logic with equality where

the ordering of types implies a subset relation on the corresponding sets. Aı̈t-Kaci and Nasr [AN86] have

proposed a logic language with a type system that includes subtypes and inheritance based on a similar

semantics. From an operational point of view the approaches with subtypes need a unification procedure

that considers types, i.e., types are present at run time. Smolka [Smo88b] has proposed an equational

logic language with a polymorphic type system [Smo88a]. Since his language also includes an order-sorted

type system, he has some restrictions on his type system and therefore the application of higher-order

programming techniques, well-known from functional languages, is not possible (see below). A polymorphic

type system for pure logic programming, based on a model-theoretic semantics, has been proposed in

[Han89a]. Since it is rather general, it allows the application of higher-order programming techniques

[Han89b]. Therefore it is the basis of the type system of the language presented in this paper.

Higher-order programming is a useful feature in functional languages. Therefore we are also interested

in the application of higher-order programming techniques in our (first-order) framework. Warren [War82]

has shown that higher-order programming techniques can be simulated in first-order logic if higher-order

predicates are specified by clauses for an apply predicate. For instance, the following clauses define two

binary predicates not and inc and the predicate map which applies a binary predicate to corresponding

elements of two lists:

map(P,[],[]) ←
map(P,[E1|L1],[E2|L2]) ← apply2(P,E1,E2), map(P,L1,L2)

not(true,false) ←
not(false,true) ←
inc(N,s(N)) ←
apply2(not,B1,B2) ← not(B1,B2)

apply2(inc,I1,I2) ← inc(I1,I2)

The following goal shows an application of the map predicate:

?- map(not,[true,false,true],L).

L = [false,true,false]

Since such a specification is first-order, the result is not a higher-order logic, but predicate variables are

universally quantified over all predicates defined in the program. One reason not to leave first-order logic

in contrast to [MN86] is efficiency: The higher-order unification problem is undecidable in general [Gol81]

and a complete unification procedure is a very complex task. But there is still another reason: Higher-order

unification means searching new functions that satisfy a given set of equations. This feature is not available

in functional languages and, in our opinion, not necessary for programming. From a practical point of view

it is sufficient to apply only user-defined functions to appropriate arguments at run time.

Since Warren’s proposal is concerned with Prolog and its untyped logic, it is not type secure and there

is no clear distinction between first-order and higher-order objects (predicate variables). Therefore a type

system is needed. But the proposed polymorphic type systems for logic programming [MO84] [DH88]
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[Smo88a] are not applicable because of the clauses for the apply2 predicate: apply2 has the polymorphic

type “pred2(α, β), α, β” (where pred2(. . . , . . .) denotes the type of binary predicate abstractions), but the

type of apply2 in the clause

apply2(inc,I1,I2) ← inc(I1,I2)

is the specialized type “pred2(nat, nat), nat, nat”. Hence this clause is ill-typed w.r.t. these type systems.1

If we want to avoid any type-checking at run time, then it is not possible to construct a type system that

can type the above program. For instance, consider the following goal (the constant 0 is of type nat):

?- map(P,[N1],[N2]), apply2(P,0,N3)

If the Prolog computation rule is used and no type-checking is made during the resolution process, then P,

N1 and N2 are bound to not, true and false, respectively, and the goal

?- apply2(not,0,N3)

is derived after four resolution steps. The last goal is ill-typed, because the predicate not is defined on

Booleans, but not on naturals. If we use type information at run time, then this resolution can be avoided,

because variable P has type pred2(nat, nat) and may not be bound to not which is of type pred2(bool, bool).

This example shows that the translation of higher-order programs into first-order programs (as proposed

for IDEAL [BG86]) is generally not type secure if the target language does not perform any type-checking

at run time. Since type security is the main purpose of our language proposal, our operational semantics

includes type information whenever it is necessary.

The rest of this paper presents the syntactical part of our language and an outline of the declarative and

operational semantics. Let us summarize the main features of our language:

• The language combines functional programming with equations and logic programming with Horn

clauses in a type secure way. The type system has parametric polymorphism, i.e., types may contain

type variables that are universally quantified over all types [DM82].

• The language has a declarative semantics that is based on Horn clause logic with equality. The types

have a declarative meaning, i.e., types are subsets of carriers sets of interpretations.

• Only well-typed programs have a declarative meaning. Therefore all programs are explicitly typed. A

program with some missing type annotations is viewed as a short-hand for an explicitly typed program

and the missing type annotations have to be inserted by a type inference procedure.

• The operational semantics is based on resolution for predicates and narrowing for functions. Because

of the general type system the unification must be replaced by the typed unification of [Han89a]. The

typed unification procedure is more expensive than the untyped one but may help to reduce the search

space in the resolution process.

• Each variable, function and predicate has a distinct (polymorphic) type. The function and predicate

types must be declared by the programmer and all clauses have to meet the declared type requirements.

Thus our language is explicitly typed. But the implementation of the language has a type inference

system based on [DM82] that deduces the types of variables in the given untyped clauses.

• The type system is rather general and allows the application of higher-order programming techniques

in a type secure way. Some restrictions of the polymorphic type systems in [MO84], [DH88] and

[Smo88a] are dropped.

2 The polymorphic equational logic language

The typing rules of our language are quite simple. We start by defining the language of types which must

be specified for a program. First the programmer has to declare the basic types like int or bool and type

constructors like list which he wants to use in the program. Each type constructor has a fixed arity (e.g.,

list has arity 1, denoted by list/1). Basic types can be seen as type constructors of arity 0. We assume

1In these type systems the left-hand side of a clause must have a type that is equivalent to the declared type of the predicate.
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V ⊢ x:τ
(x:τ ∈ V )

V ⊢ t1:τ1, . . . , V ⊢ tn:τn
V ⊢ f(t1:τ1, . . . , tn:τn):τ

(f :τ1, . . . , τn → τ is a generic instance of a function declaration, n ≥ 0)

V ⊢ t1:τ1, . . . , V ⊢ tn:τn
V ⊢ p(t1:τ1, . . . , tn:τn)

(p:τ1, . . . , τn is a generic instance of a predicate declaration, n ≥ 0)

V ⊢ L0, . . . , V ⊢ Ln

V ⊢ L0 ← L1, . . . , Ln
(each Li has the form p(· · ·), i = 0, . . . , n)

Figure 1: Typing rules for the polymorphic equational logic language

a given infinite set of type variables and we denote members of this set by α and β. A (polymorphic)

type is a term built from basic types, type constructors and type variables (see [HO80] for the notion of

term). A monomorphic type is a type without type variables. For instance, list(int) and list(α) are

types which denote lists of integers and lists of elements of an arbitrary type, respectively.

Next the argument and result types of functions and predicates occurring in the program must be

declared. A function declaration has the form

func f:τ1, . . . , τn → τ

(where τ1, . . . , τn, τ are arbitrary types) and means that the function f takes n arguments of types τ1, . . . , τn
and produces a value of type τ . f is called constant of type τ if n = 0. For simplicity we have no

distinction between constructors for data types and functions defined on data types [HH82], but in practice

this distinction can be made by the form of equations (constructors do not occur as the top symbol of the

left-hand side of an equation). This distinction is unnecessary from a declarative point of view. A predicate

declaration has the form

pred p:τ1, . . . , τn

(where τ1, . . . , τn are arbitrary types) and means that the predicate p has n arguments of types τ1, . . . , τn.

The equality predicate is always defined by

pred ≡:α, α

In order to compute the most general type of a term automatically, we forbid overloading: For each function

and predicate symbol there is only one type declaration.

The type variables in a declaration are universally quantified over all types, i.e., functions and predicates

can be used with an arbitrary substitution of types for type variables in the declaration. Hence we call a

function/predicate declaration a generic instance of another declaration if it can be obtained from the

other declaration by replacing each occurrence of one or more type variables by other types (cf. [DM82]).

For instance, length:list(nat)→ nat is a generic instance of the function declaration

func length:list(α)→ nat

We embed types in terms, i.e., each symbol in a term is annotated with an appropriate type expression.

These annotations are useful for the unification of polymorphic terms (see below). The type annotations

need not be provided by the user because most general type annotations can be computed. We assume a

given infinite set V ar of variable names distinguishable from type variables. A typed variable has the

form x:τ where x ∈ V ar and τ is an arbitrary type. We call V an allowed set of typed variables if V

contains only typed variables and x:τ, x:τ ′ ∈ V implies τ = τ ′. We call L ← G a polymorphic program

clause if there is an allowed set of typed variables V and V ⊢ L ← G is derivable by the inference rules

in figure 1 (analogously for terms, atoms and goals). Note that we have no restrictions on the use of

types and type variables in a clause in contrast to [MO84], [Smo88a] and similar type systems. For instance,

facts with specialized types are allowed in our type system. A polymorphic equational logic program

is a finite set of polymorphic program clauses. If the left-hand side of a clause has the form t1:τ1 ≡ t2:τ2
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(we use the infix notation for ‘≡’), we call the clause conditional equation. Conditional equations define

the semantics of functions, whereas other clauses define the semantics of predicates. Since there are no

restrictions on the use of predicates and functions in clauses, our language is a genuine amalgamation of a

functional and a logic language. The declarative semantics of the language is Horn clause logic with equality,

where types are interpreted as subsets of carrier sets. Before we present more details, we give some examples

for polymorphic equational logic programs in the next section.

3 Examples

For the examples in this section it is sufficient to have an intuitive idea of the semantics of polymorphic

equational logic programs: The equality symbol denotes identity, clauses are implications and type variables

are universally quantified over all types.

The first example defines some operations on lists of any type. The constant [] represents the empty

list, and the function • concatenates an element with a list of the same type. We write [E|L] instead of

•(E,L) (throughout this paper we use the Prolog notation for lists, cf. [CM87]). The function append that

concatenates both argument lists is defined in a functional style by two equations (with empty conditions).

The predicate member is defined in a logic programming style. We omit type annotations in program clauses

because they can be simply produced by an ML-like type checker [DM82] since the types of all functions

and predicates are explicitly given.

type list/1
func []: → list(α)
func • : α, list(α) → list(α)
func append: list(α), list(α) → list(α)
pred member: α, list(α)

clauses:
append([],L) ≡ L ←
append([E|R],L) ≡ [E|append(R,L)] ←
member(E,[E|L]) ←
member(E,[F|L]) ← member(E,L)

Next we show the application of higher-order programming techniques in our framework. As stated above

we do not want to leave first-order logic for the sake of efficiency. But we can apply Warren’s technique

[War82] in our typed framework because we have an unrestricted mechanism of polymorphic types. As

shown in the first chapter and in [Han89b], this is not possible in other polymorphic type systems for logic

programming, e.g., [MO84].

The following example defines the well-known function map. The higher-order function map takes a

function and a list as arguments and applies the function to each element of the list. In order to define the

type of map we introduce a type constructor ‘⇒’ of arity 2 that denotes the types of functional expressions.

The type of map is

func map: (α⇒ β), list(α) → list(β)

(for convenience we use the infix notation for the type constructor ‘⇒’). The symbols ‘⇒’ and ‘→’ have

different meanings: ‘→’ has a fixed interpretation (first-order function, see next section), but ‘⇒’ is a user-

defined type and the meaning of operations on objects of this type must be explicitly specified by program

clauses. Since we want to give ‘⇒’ a similar meaning as ‘→’, we introduce for each function f of type

“τ1 → τ2” a corresponding functional constant λf of type “(τ1 ⇒ τ2)”. The relation between each function

f and the functional constant λf is defined by clauses for the function apply. Hence we get the following

example program for the function map (we assume that the basic type int of integers is predefined with

operation + and the type constructor list is predefined as in the preceding example):

type ⇒/2

func map : (α⇒ β), list(α) → list(β)
func double : int → int
func inc : int → int
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func λdouble: → (int⇒ int)
func λinc : → (int⇒ int)
func apply : (α⇒ β), α → β

clauses:
map(F,[]) ≡ [] ←
map(F,[E|L]) ≡ [apply(F,E)|map(F,L)] ←
double(N) ≡ N + N ←
inc(N) ≡ N + 1 ←
apply(λdouble,N) ≡ double(N) ←
apply(λinc,N) ≡ inc(N) ←

If we run the program with the initial goal

map(λdouble,[1,3,5]) ≡ L

(see below for operational semantics), then we get the answer substitution

L = [2,4,6]

Since our language is a logic language, too, we may ask for functions that map one list into another: For

the goal

map(F,[2,3,4]) ≡ [3,4,5]

we get the only answer substitution

F = λinc

Since our foundation is first-order logic, the function symbol map is semantically not interpreted as a higher-

order function. The constant λinc is also interpreted as a value and not as a function. But the last clause

ensures that in any interpretation which satisfies all program clauses the constant λinc and the function

inc are related together. From an operational point of view the behaviour of our map program is similar to

the behaviour of a corresponding program in a functional language.

A similar solution to logic programming with higher-order functions was proposed by Smolka [Smo86a].

In his language Fresh higher-order functional programming is combined with unification. To avoid the diffi-

culties with higher-order unification, he associates a name with each function and defines equality between

functions as identity of associated names. This is similar to our approach except that Fresh is an untyped

language.

The compilation of higher-order functions into first-order logic was also proposed by Bosco and Giovan-

netti [BG86], but they perform type-checking only for the source program and not for the target program.

Clearly, the target program is not well-typed in the sense of [MO84] because of the clauses for the apply

predicate (see above). As shown in the first section, the untyped target program may deduce ill-typed

goals. Since we have translated higher-order objects into polymorphic equational logic programs, the use of

higher-order objects is type secure in our framework. We have similar typing rules as in functional languages

[DM82], and the operational semantics ensures that a function or predicate is only called with appropriate

arguments at run time (“well-typed programs do not go wrong”).

4 Declarative Semantics

We want to give an outline of the declarative semantics. More details can be found in [Han88]. Polymor-

phic equational logic programs will be interpreted by algebraic structures with a particular sort structure

[Poi86]. If there are no type constructors in a program, i.e., all types are monomorphic, then the notions

of interpretation and validity for polymorphic programs are equivalent to untyped [Llo87] or many-sorted

[GM84] logic.

Variables in untyped logic vary over the carrier set of the interpretation. Consequently, type variables

in polymorphic programs vary over all types of the interpretation and typed variables vary over appropriate

carrier sets. Hence an interpretation of a polymorphic equational logic program consists of a single-sorted

algebra that describes all types in the interpretation and a structure for the derived polymorphic signature.

A structure is an interpretation of types as sets, function symbols as operations on these sets and predicate
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symbols as predicates on these sets where the equality predicate ‘≡’ is always interpreted as identity on

the carrier sets [Pad88]. In the following we will give more precise definitions of these notions. We assume

familiarity with notions from algebraic specifications [EM85].

In order to give a precise definition of “universal quantification over all types”, we view a specification

of basic types and type constructors as a single-sorted signature H (where type is the only sort): Each basic

type is a constant and each type constructor of arity n is an n-ary function in the signature H. If we denote

by X the infinite set of all type variables, the term algebra over H and X, TH(X), contains all polymorphic

type expressions. Hence we can use the notion of an H-algebra for the interpretation of types and the notion

of H-homomorphisms from TH(X) into A to formalize “universal quantification over all types”:

Let Σ = (H,Func, Pred) be the type declarations of a polymorphic equational logic program, where

H is the signature that specifies the basic types and type constructors and Func and Pred are the sets

of function and predicate declarations, respectively. Σ is called a polymorphic signature. Let A be

an H-algebra with carrier set TyA. The polymorphic signature Σ(A) = (TyA, FuncA, P redA) derived

from Σ and A is defined by

FuncA := {f :σ(τf ) | f :τf ∈ Func, σ:X → TyA is an assignment for type variables}

PredA := {p:σ(τp) | p:τp ∈ Pred, σ:X → TyA is an assignment for type variables}

This is well-defined since each assignment for variables from X can be uniquely extended to an H-

homomorphism from TH(X) into A and H-homomorphisms are extended to tuples over TH(X) by compo-

nentwise application. An interpretation of a polymorphic signature Σ is an H-algebra A together with

a Σ(A)-structure (S, δ), which consists of a TyA-sorted set S (the carrier of the interpretation) and a

denotation δ with:

1. If f :τ1, . . . , τn → τ ∈ FuncA, then δf :τ1,...,τn→τ : Sτ1 × · · · × Sτn → Sτ is a function.

2. If p:τ1, . . . , τn ∈ PredA, then δp:τ1,...,τn ⊆ Sτ1 × · · · × Sτn is a relation.

3. If ‘≡’:τ, τ ∈ PredA, then δ≡:τ,τ = {(a, a) | a ∈ Sτ}

If A and A′ are H-algebras, then every H-homomorphism σ:A → A′ induces a signature morphism

σ: Σ(A) → Σ(A′) and a forgetful functor Uσ:CatΣ(A′) → CatΣ(A) from the category of Σ(A′)-structures

into the category of Σ(A)-structures (for details, see [EM85]). Therefore we can define a Σ-homomorphism

from a Σ-interpretation (A,S, δ) into another Σ-interpretation (A′, S′, δ′) as a pair (σ, h), where σ:A→ A′

is an H-homomorphism and h: (S, δ)→ Uσ((S
′, δ′)) is a homomorphism between Σ(A)-structures. The class

of all Σ-interpretations with the composition (σ′, h′) ◦ (σ, h) := (σ′ ◦ σ, Uσ(h
′) ◦ h) of two Σ-homomorphisms

is a category.

In the following we assume that X is the set of all type variables and V is a set of typed variables. The

notion of a term interpretation can be defined as usual, where ‘≡’ denotes the identity relation on terms

and all other predicate symbols denote empty relations. By TΣ(X,V ) we denote the free term interpretation

over X and V where the carrier is the set of all well-typed terms that contain only symbols from Σ, X and V .

A homomorphism in the polymorphic framework consists of a mapping between type algebras and a mapping

between appropriate structures. Consequently, a variable assignment in the polymorphic framework maps

type variables into types and typed variables into objects of appropriate types: If I = (A,S, δ) is a Σ-

interpretation, then a variable assignment for (X,V ) in I is a pair of mappings (µ, val) with µ:X → TyA
and val:V → S′, where (S′, δ′) := Uµ ((S, δ)) and val(x:τ) ∈ S′

τ (= Sµ(τ)) for all x:τ ∈ V . Similarly to the

many-sorted case, any variable assignment can be uniquely extended to a Σ-homomorphism [Poi86]:

Theorem 1 (Free term structure) Let I be a Σ-interpretation and v be an assignment for (X,V ) in I.

There exists a unique Σ-homomorphism from TΣ(X,V ) into I that extends v.

In the following we denote the Σ-homomorphism that extends an assignment v again by v. We are not

interested in all interpretations of a polymorphic signature but only in those interpretations that satisfy all

clauses of a given polymorphic equational logic program. In order to formalize that we define validity of

atoms, goals and clauses relative to a given Σ-interpretation I = (A,S, δ) (we assume that the polymorphic

atoms, goals and clauses contain only type variables from X and typed variables from V ):
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• Let v = (µ, val) be an assignment for (X,V ) in I.

I, v |= L if L = p(t1:τ1, . . . , tn:τn) is a polymorphic atom with (valτ1(t1:τ1), . . . , valτn(tn:τn)) ∈

δ′p:τ1,...,τn where Uµ((S, δ)) = (S′, δ′)

I, v |= G if G is a polymorphic goal with I, v |= L for all L ∈ G

I, v |= L← G if L← G is a polymorphic clause where I, v |= G implies I, v |= L

• I, V |= F if F is a polymorphic atom, goal or clause with I, v |= F for all variable assignments v for

(X,V ) in I

Let C be a set of polymorphic program clauses. A Σ-interpretation I is called model for (Σ, C) if I, V0 |=

L ← G for all clauses L ← G ∈ C, where V0 is the set of all typed variables occurring in L ← G. A

polymorphic goal G is called valid in (Σ, C) relative to V if I, V |= G for every model I of (Σ, C). We shall

write: (Σ,C, V ) |= G.

This notion of validity is the extension of validity in untyped or many-sorted equational Horn clause

logic [Pad88] to the polymorphic case: In untyped or many-sorted logic an atom, goal or clause is said to

be true iff it is true for all variable assignments. In the polymorphic case an atom, goal or clause is said

to be true iff it is true for all assignments of type variables and typed variables. We have defined validity

relative to a set of variables because carrier sets in our interpretations may be empty in contrast to untyped

Horn logic. This is also the case in many-sorted logic [GM84]. Validity relative to variables is different from

validity in the sense of untyped logic. An example for such a difference can be found in [Han89a], p. 231.

Validity in our sense is equivalent to validity in the sense of untyped logic if the types of variables denote

non-empty sets in all interpretations. But a requirement for non-empty carrier sets is not reasonable in our

polymorphic framework.

“Typed substitutions” are a combination of substitutions on types and substitutions on well-typed terms:

If V, V ′ are sets of typed variables, then a typed substitution σ is a Σ-homomorphism σ = (σX , σV ) from

TΣ(X,V ) into TΣ(X,V ′). Since σX and σV are only applied to type expressions and typed terms, respectively,

we omit the indices X and V and write σ for both σX and σV . We extend typed substitutions on Σ-atoms

by: σ(p(t1, . . . , tn)) = p(σ(t1), . . . , σ(tn)).

A polymorphic term t′ with typed variables V ′ is called an instance of a term t with typed variables V

if there is a typed substitution σ from TΣ(X,V ) into TΣ(X,V ′) with t′ = σ(t). The definition of instances

can be extended on atoms, goals and clauses. We omit the simple definitions here.

It can be shown that there exists an initial model for each polymorphic equational logic program. A

particular initial model is the quotient of the term interpretation TΣ(∅, ∅) and the least congruence generated

by the axioms of equality [Han88]. Note that this is a set-theoretic model for logic programs with polymorphic

types. This is not a contradiction to the result of Reynolds [Rey84], because Reynolds has a different

semantic basis. Reynolds’ foundation is the polymorphic typed lambda calculus which allows computations

with higher-order functions. Our basis is not the lambda calculus but we use algebraic interpretations.

All functions in our specifications are first-order and therefore we can construct a set-theoretic model in

contrast to Reynolds. But Reynolds’ result shows that the extension of typed logic programs to higher-order

functions or predicates is a difficult task. Nevertheless we have seen in section 3 that it is possible to simulate

some features of higher-order programming in our framework.

5 Operational semantics

There exists an efficient proof procedure that computes a correct answer if the initial goal is valid w.r.t. the

given program. The proof procedure is similar to other equational logic languages, e.g., EQLOG [GM86]: It is

the combination of resolution for predicates [Llo87] and conditional narrowing [Hus85] for the computation

of functions but with a particular unification procedure for polymorphic terms: In [Han89a] it is shown

that the unification of polymorphic terms can be reduced to common first-order unification [Rob65] if the

annotated types are treated as first-order terms. Type terms are distinguished from other terms by their

position (type terms occur only after a colon ‘:’). For instance, a unifier of the polymorphic terms []:list(α)
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and v:list(int) is the substitution that replaces α by int and v by []. This could also be computed by a

first-order unification algorithm if the symbol ‘:’ is treated as a term constructor of arity 2.

Similarly to [HO80], we denote positions or occurrences in polymorphic terms or goals by sequences of

naturals. If π is an occurrence in a polymorphic goal G, then G[π] denotes the subterm of G at position

π and G[π ← t] denotes the result of replacing the subterm G[π] by t. We specify the basic operational

semantics of our language by describing a computation step from one goal to the next goal. Let L1, . . . , Ln

be a polymorphic goal.

1. (Narrowing rule) If there exist a non-variable occurrence π in L1, a conditional equation v ≡ w ←

R1, . . . , Rm and a most general unifier σ for L1[π] and v, then

σ(R1), . . . , σ(Rm), σ(L1)[π ← σ(w)], σ(L2), . . . , σ(Ln)

is the next goal, otherwise:

2. (Unification rule) If L1 = v ≡ w and there exists a most general unifier σ for v and w, then

σ(L2), . . . , σ(Ln)

is the next goal, otherwise:

3. (Restricted resolution rule) If there exist a program clause L← R1, . . . , Rm which is not a condi-

tional equation and a most general unifier σ for L1 and L, then

σ(R1), . . . , σ(Rm), σ(L2), . . . , σ(Ln)

is the next goal, otherwise: fail.

The soundness and completeness of the operational semantics is proved in [Han88], where the completeness

is only stated under the following assumptions: The polymorphic equational program is Church-Rosser (i.e.,

for each proof with applications of equations in both directions there exists a proof with applications of

equations from left to right), the computed answer is irreducible (i.e., the solutions are in normal form)

and there are no extra-variables in clauses (i.e., the left-hand-side of a conditional equation contains all

variables occurring in the conditional equation). The first two restrictions are standard in equational logic

programming [Pad88], but the last restriction is not acceptable from a logic programmer’s point of view.

Since we are interested in the influence of types into equational logic programming, we have not developed

better results for this problem but we may adopt results from other work done in this area. For instance,

Bertling and Ganzinger [BG89] have investigated the problem of extra-variables in conditions of conditional

equations. They have no restrictions on the variables in conditional equations and give sufficient criteria for

the completeness of the narrowing procedure. In some cases it is possible to transform a given program into

another one which satisfies the completeness criterion. A particular variant of the Knuth-Bendix completion

procedure which considers the particularly chosen rewrite relation is used to transform the programs.

The actual implementation of the language is done in a more efficient way than described above. For

instance, the set of all function symbols are partitioned into a set of constructors and a set of defined

operators [HH82], where constructors are function symbols that do not appear as the top symbol of the

left-hand side in any conditional equation. The operational semantics considers the constructors so that

equations between constructors are flattened and an innermost position is chosen in a narrowing step (this

strategy is only complete under additional restrictions, see [Fri85]).

Since we have an unrestricted type system, the unification procedure has to consider the types of the

polymorphic terms. Hence the polymorphic unification is more complex and less efficient than the unification

in untyped logic languages. But it can be shown [Han88] that it is possible to omit type annotations at run

time if the program satisfies particular syntactic conditions (compare [Han89a] and [Han89b] for the case of

polymorphic logic programs without equality). For instance, if the left-hand sides of all clauses have a most

general type w.r.t. the type declarations, then all types can be omitted at run time. Better optimization

techniques are a topic for future research. On the other hand, type information may be useful to reduce
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the search space in the computation process [HV87]. Therefore the overall goal is not to omit all type

annotations at run time but only those annotations that are unnecessary for correct computation. We have

seen in the introduction that some logic programming techniques cannot be applied in a type secure way if

all type annotations are omitted at run time.

Resolution combined with conditional narrowing is only a complete proof method for validity if all

possible derivations are simultaneously computed. This is very expensive and therefore it is recommendable

to use a backtracking strategy as in Prolog with the consequence that completeness is lost in general. The

interpreter of our language is implemented in Prolog and uses the Prolog backtracking strategy for different

derivations. Polymorphic terms are mapped into Prolog terms and therefore the built-in unification can be

used to unify polymorphic terms. A lot of equational logic programs have been successfully executed by the

interpreter.

6 Conclusions

We have presented an equational logic language with a polymorphic type system. The language integrates

two interesting programming styles in a type secure way: functional and logic programming. In contrast to

other proposals for polymorphically typed logic programming languages, it is possible to apply higher-order

programming techniques in our framework. The language has a well-defined semantics and programs can

be efficiently executed if the same drawbacks as in Prolog (incompleteness because of infinite derivations)

are accepted. The language is explicitly typed, i.e., each syntactic unit is annotated with a type expression,

but the implementation contains a type inference procedure so that the programmer can omit all type

annotations in clauses. Further work remains to be done in the area of run-time optimizations with the aim

to reduce the cases where type information is required for correct unification.
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