
Towards the Global Optimization of

Funtional Logi Programs

?

Mihael Hanus

Max-Plank-Institut f�ur Informatik

Im Stadtwald, D-66123 Saarbr�uken, Germany.

mihael�mpi-sb.mpg.de

In Pro. 5th International Conferene on Compiler Constrution

Edinburgh, April 1994, Springer LNCS 786, pp. 68{82

Abstrat. Funtional logi languages amalgamate funtional and logi

programming paradigms. They an be eÆiently implemented by extend-

ing tehniques known from logi programming. In this paper we show

how global information about the all modes of funtions an be used to

optimize the ompilation of funtional logi programs. Sine mode infor-

mation has been suessfully used to improve the implementation of pure

logi programs and these tehniques an be applied to implementations of

funtional logi programs as well, we onentrate on optimizations whih

are unique to the operational semantis of funtional logi programs. We

de�ne a suitable notion of modes for funtional logi programs and present

ompile-time tehniques to optimize the normalization proess during the

exeution of funtional logi programs.

1 Introdution

In reent years, a lot of proposals have been made to amalgamate funtional and

logi programming languages [7, 17℄. Funtional logi languages with a sound and

omplete operational semantis are based on narrowing (e.g., [10, 12, 26, 28℄),

a ombination of the redution priniple of funtional languages and the resolu-

tion priniple of logi languages. Narrowing, originally introdued in automated

theorem proving [29℄, is used to solve equations by �nding appropriate values for

variables ourring in arguments of funtions. This is done by unifying (rather

than mathing) an input term with the left-hand side of some rule and then

replaing the instantiated input term by the instantiated right-hand side of the

rule.

Example 1. Consider the following rules de�ning the addition of two natural num-

bers whih are represented by terms built from 0 and s:

0 + N ! N (R

1

)

s(M) + N ! s(M + N) (R

2

)

The equation X+s(0)=s(s(0)) an be solved by a narrowing step with rule R

2

followed by a narrowing step with rule R

1

so that X is instantiated to s(0) and

the instantiated equation is redued to s(s(0))=s(s(0)) whih is trivially true.

Hene we have found the solution X 7!s(0) to the given equation. 2

?

The researh desribed in this paper was supported by the German Ministry for

Researh and Tehnology (BMFT) under grant ITS 9103. The responsibility for the

ontents of this publiation lies with the author.



In order to ensure ompleteness in general, eah rule must be uni�ed with eah

non-variable subterm of the given equation whih yields a huge searh spae.

This situation an be improved by partiular narrowing strategies whih restrit

the possible positions for the appliation of the next narrowing step (see [17℄ for

a detailed survey). In this paper we are interested in an innermost narrowing

strategy where a narrowing step is performed at the leftmost innermost position.

This orresponds to eager evaluation in funtional languages.

However, the restrition to partiular narrowing positions is not suÆient to

avoid a lot of useless derivations sine the unontrolled instantiation of variables

may ause in�nite loops. For instane, onsider the rules in Example 1 and the

equation (X+Y)+Z=0. Applying innermost narrowing to this equation using rule

R

2

produes the following in�nite derivation (the instantiation of variables o-

urring in the equation is reorded at the derivation arrow):

(X+Y)+Z = 0 ;

fX 7!s(X1)g

s(X1+Y)+Z = 0

;

fX1 7!s(X2)g

s(s(X2+Y))+Z = 0

;

fX2 7!s(X3)g

� � �

To avoid suh useless derivations, narrowing an be ombined with simpli�ation

(evaluation of a term): Before a narrowing step is applied, the equation is rewrit-

ten to normal form w.r.t. the given rules [9, 10℄ (thus this strategy is also alled

normalizing narrowing). The in�nite narrowing derivation above is avoided by

rewriting the �rst derived equation to normal form:

s(X1+Y)+Z = 0 ! s((X1+Y)+Z) = 0

The last equation an never be satis�ed sine the terms s((X1+Y)+Z) and 0 are

always di�erent due to the absene of rules for the symbols s and 0. Hene we

an safely terminate the unsuessful narrowing derivation at this point. The

integration of rewriting into narrowing derivations has the following advantages:

1. The searh spae is redued sine useless narrowing derivations an be de-

teted. As a onsequene, funtional logi programs are more eÆiently exe-

utable than equivalent Prolog programs [10, 13, 14℄.

2

2. There is a preferene for deterministi omputations. Sine we assume a on-

uent and terminating set of rules, normal forms are unique and an be

omputed by any simpli�ation strategy. Hene normalization an be deter-

ministially implemented. Sine rewriting is exeuted before eah nondeter-

ministi narrowing step, the goal is omputed in a deterministi way as long

as possible. The preferene of deterministi omputations an save a lot of

time and spae as shown in [13℄.

Therefore we onsider in this paper a normalizing innermost narrowing strategy

where the omputation of the normal form between narrowing steps is performed

by applying rewrite rules from innermost to outermost positions, i.e., a rewrite

rule is applied to a term only if eah of its subterms is in normal form. Suh an

operational semantis an be eÆiently implemented by extending ompilation

tehniques known from logi programming [12, 13℄.

2

It is easy to see that the Prolog program orresponding to the above example would

run into an in�nite loop.

2



The integration of normalization into narrowing derivations has also one dis-

advantage. Sine the entire goal must be redued to normal form after eah nar-

rowing step, the normalization proess may be ostly. Fortunately, it is possible

to normalize the terms in an inremental manner [15℄ sine normalization steps

after a narrowing step an only be performed at positions where some variables

have been instantiated. However, better optimizations ould be performed if the

evaluation modes for funtions are known at ompile time. In this paper we de�ne

the notion of evaluation modes, whih is di�erent from logi programs [35℄, and

show possible ompile-time optimizations using these modes. We are not inter-

ested in low-level ode optimizations to improve primitive uni�ation instrutions

sine suh tehniques, whih have been developed for pure logi programs (e.g.,

[24, 25, 31, 32, 33, 34, 35℄), an be applied to funtional logi programs as well

due to the similarities between WAM-based Prolog implementations and imple-

mentations of funtional logi languages [12, 13, 23℄. We limit our disussion to

optimizations whih are unique to funtional logi programs based on an eager

evaluation strategy like ALF [12, 13℄, LPG [1℄, or SLOG [10℄. The automati

derivation of mode information for funtional logi programs is a di�erent topi

whih will be addressed in a forthoming paper [18℄.

After a preise de�nition of the operational semantis in Setion 2, we de�ne

the notion of modes for funtional logi programs in Setion 3. Setion 4 disusses

the optimization tehniques using partiular mode information. Experimental

results for these optimization tehniques are presented in Setion 5, and some

peuliarities of the automati mode derivation for funtional logi programs are

disussed in Setion 6.

2 Normalizing narrowing

To de�ne the operational semantis onsidered in this paper in a preise way, we

reall basi notions of term rewriting [8℄.

A signature is a set F of funtion symbols. Every f 2 F is assoiated with an

arity n, denoted f=n. Let X be a ountably in�nite set of variables. Then the set

T (F ;X ) of terms built from F and X is the smallest set ontaining X suh that

f(t

1

; : : : ; t

n

) 2 T (F ;X ) whenever f 2 F has arity n and t

1

; : : : ; t

n

2 T (F ;X ).

We write f instead of f() whenever f has arity 0. We denote by T (F ;X )

n

the

set fht

1

; : : : ; t

n

i j t

i

2 T (F ;X ); i = 1; : : : ; ng of n-tuples of terms (n � 0). The

set of variables ourring in a term t is denoted by Var(t). A term t is alled

ground if Var(t) = ?.

Usually, funtional logi programs are onstrutor-based, i.e., a distintion is

made between operation symbols to onstrut data terms, alled onstrutors,

and operation symbols to operate on data terms, alled de�ned funtions or op-

erations (see, for instane, the funtional logi languages ALF [12℄, BABEL [26℄,

K-LEAF [11℄, SLOG [10℄). Hene we assume that the signature F is partitioned

into two sets F = C [ D with C \ D = ?. A onstrutor term t is built from

onstrutors and variables, i.e., t 2 T (C;X ). An innermost term t [10℄ is an

operation applied to onstrutor terms, i.e., t = f(t

1

; : : : ; t

n

) with f 2 D and

t

1

; : : : ; t

n

2 T (C;X ). A funtion all f(t

1

; : : : ; t

n

) is an operation f 2 D applied

to arbitrary terms. Suh a term is also alled f-rooted term.

3



A (rewrite) rule l ! r is a pair of an innermost term l and a term r satisfying

Var(r) � Var(l) where l and r are alled left-hand side and right-hand side,

respetively.

3

A rule is alled a variant of another rule if it is obtained by a

unique replaement of variables by other variables. A term rewriting system R is

a set of rules.

4

In the following we assume a given term rewriting system R.

The exeution of funtional logi programs requires notions like substitution,

uni�er, position et. A substitution � is a mapping from X into T (F ;X ) suh

that the set fx 2 X j �(x) 6= xg is �nite. We frequently identify a substitution

� with the set fx 7! �(x) j �(x) 6= xg. Substitutions are extended to morphisms

on T (F ;X ) by �(f(t

1

; : : : ; t

n

)) = f(�(t

1

); : : : ; �(t

n

)) for every term f(t

1

; : : : ; t

n

).

A uni�er of two terms s and t is a substitution � with �(s) = �(t). A uni�er �

is alled most general (mgu) if for every other uni�er �

0

there is a substitution

� with �

0

= � Æ � (onatenation of � and �). Most general uni�ers are unique

up to variable renaming. By introduing a total ordering on variables we an

uniquely hoose the most general uni�er of two terms. A position p in a term t

is represented by a sequene of natural numbers, tj

p

denotes the subterm of t at

position p, and t[s℄

p

denotes the result of replaing the subterm tj

p

by the term

s (see [8℄ for details).

A rewrite step is an appliation of a rewrite rule to a term, i.e., t!

R

s if there

exist a position p in t, a rewrite rule l ! r and a substitution � with tj

p

= �(l)

and s = t[�(r)℄

p

. In this ase we say t is reduible (at position p). A term t is

alled irreduible or in normal form if there is no term s with t!

R

s.

!

�

R

denotes the transitive-reexive losure of the rewrite relation !

R

. R is

alled terminating if there are no in�nite rewrite sequenes t

1

!

R

t

2

!

R

t

3

!

R

� � �. R is alled onuent if for all terms t, t

1

, t

2

with t!

�

R

t

1

and t!

�

R

t

2

there

exists a term t

3

with t

1

!

�

R

t

3

and t

2

!

�

R

t

3

. A terminating and onuent term

rewriting system R is alled onvergent.

If R is onvergent, we an deide the validity of an equation s =

R

t (where

=

R

denotes validity w.r.t. the equations fl

:

= r j l ! r 2 Rg) by omputing the

normal form of both sides using an arbitrary sequene of rewrite steps. In order

to solve an equation, we have to �nd appropriate instantiations for the variables

in s and t. This an be done by narrowing. A term t is narrowable into a term

t

0

if there exist a non-variable position p in t (i.e., tj

p

62 X ), a variant l ! r of a

rewrite rule and a substitution � suh that � is a most general uni�er of tj

p

and

l and t

0

= �(t[r℄

p

). In this ase we write t;

�

t

0

. If there is a narrowing sequene

t

1

;

�

1

t

2

;

�

2

� � �;

�

n�1

t

n

, we write t

1

;

�

�

t

n

with � = �

n�1

Æ � � � Æ �

2

Æ �

1

.

Narrowing is able to solve equations w.r.t. R. For this purpose we introdue

a new operation symbol = and a new onstrutor true and add the rewrite rule

3

For the sake of simpliity we onsider only unonditional rules, but our results an

easily be extended to onditional rules.

4

We will apply rules in two ways: (a) in rewrite steps to evaluate terms, and (b) in

narrowing steps to solve equations. Therefore we will sometimes distinguish between

rewrite rules and narrowing rules. Usually, the set of rewrite rules and the set of

narrowing rules are idential, but in some languages it is also possible to use some

rules only for rewrite steps or only for narrowing steps (e.g., in ALF [12, 13℄ or SLOG

[10℄).

4



x=x ! true toR. Then the following theorem states soundness and ompleteness

of narrowing.

Theorem1 [20℄. Let R be a onvergent term rewriting system.

1. If s=t;

�

�

true, then �(s) =

R

�(t).

2. If �

0

(s) =

R

�

0

(t), then there exist a narrowing derivation s=t ;

�

�

true and

a substitution � with �(�(x)) =

R

�

0

(x) for all x 2 Var(s) [ Var(t).

Thus to ompute all solutions to an equation s=t, we apply narrowing steps to it

until we obtain an equation s

0

=t

0

where s

0

and t

0

are uni�able. Sine this simple

narrowing proedure (enumerating all narrowing derivations) has a huge searh

spae, several authors have improved it by restriting the admissible narrowing

derivations (see [17℄ for a detailed survey). In the following we onsider normal-

izing innermost narrowing derivations [10℄ where

{ the narrowing step is performed at the leftmost innermost subterm, and

{ the term is simpli�ed to its normal form before a narrowing step is performed

by applying rewrite rules from innermost to outermost positions.

The innermost strategy provides an eÆient implementation [12, 13, 21, 23℄ while

the normalization proess is important sine it prefers deterministi omputa-

tions: rewriting a term to normal form an be done in a deterministi way sine

every rewrite sequene yields the same result (beause R is onvergent) whereas

di�erent narrowing steps may lead to di�erent solutions and therefore all admis-

sible narrowing steps must be onsidered. Hene in a sequential implementation

rewriting an be eÆiently implemented like redutions in funtional languages

whereas narrowing steps need ostly baktraking management as in Prolog. For

instane, if the equation s =

R

t is valid, normalizing narrowing will prove it by

a pure deterministi omputation (reduing s and t to the same normal form)

whereas simple narrowing would ompute the normal form of s and t by ostly

narrowing steps.

Normalizing innermost narrowing is omplete if R is onvergent and all fun-

tions are totally de�ned, i.e., reduible on all appropriate onstrutor terms [10℄.

This is a reasonable lass from the funtional programming point of view. But it

is also possible to extend this strategy to inompletely de�ned operations. In this

ase a so-alled innermost reetion rule must be added whih skips an innermost

funtion all that annot be evaluated [19℄. For the sake of simpliity we assume

in the following that all funtions are totally de�ned, i.e., normalizing innermost

narrowing is suÆient to ompute all solutions.

3 Modes for funtional logi programs

In pure logi programs, the mode for a prediate is a desription of the possible

arguments of a prediate when it is alled [35℄. E.g., the mode p(g;f ;a) spei�es

that the �rst argument is a ground term, the seond argument is a free variable,

and the third argument is an arbitrary term for all alls to prediate p. The

mode information is useful to optimize the ompiled ode, i.e., to speialize the

uni�ation instrutions and indexing sheme for a prediate [24, 25, 32, 34, 35℄.

Sine funtional logi languages are usually based on narrowing whih uses uni�-

ation to apply a funtion to a subterm, mode information ould also be useful to

5



optimize funtional logi programs. However, the notion of \mode" in funtional

logi programs is di�erent from pure logi programs if normalization is inluded

in the narrowing proess beause funtions are evaluated by narrowing as well as

by rewriting. In the following we disuss this problem and de�ne a new notion of

modes for funtional logi programs whih will be used in Setion 4 to optimize

funtional logi programs.

Example 2. In this example we disuss a derivation w.r.t. our narrowing strategy.

Consider the rules of Example 1 together with the following rewrite rules:

double(0) ! 0 (R

3

)

double(s(N)) ! s(s(double(N))) (R

4

)

quad(N) ! (N+N)+double(N) (R

5

)

We want to ompute solutions to the initial equation quad(X)=4 by our strategy,

where 4 denotes the term s(s(s(s(0)))). Before applying any narrowing step,

the equation is redued to its normal form by rewrite steps. Hene we apply rule

R

5

to the subterm quad(X):

quad(X)=4 !

R

(X+X)+double(X)=4

Then the resulting equation is normalized by trying to apply rewrite rules to the

three operation symbols, but no rewrite rule is appliable due to the free variable

X. Hene the equation is already in normal form. Now a narrowing step is applied

at the leftmost innermost position, i.e., the subterm X+X. Both rules R

1

and R

2

are appliable. We hoose rule R

2

so that X is instantiated to s(Y):

(X+X)+double(X)=4 ;

fX 7!s(Y)g

s(Y+s(Y))+double(s(Y))=4

The resulting equation must be redued to its normal form by trying to apply

rewrite steps from innermost to outermost positions. A rewrite rule is not appli-

able to the leftmost innermost subterm Y+s(Y) sine the �rst argument Y is a

free variable. But we an apply rule R

4

to the subterm double(s(Y)) and rule

R

2

to the outer ourrene of +:

s(Y+s(Y))+double(s(Y))=4 !

R

s(Y+s(Y))+s(s(double(Y)))=4

!

R

s((Y+s(Y))+s(s(double(Y))))=4

The latter equation is in normal form. Therefore we apply a narrowing step to the

leftmost innermost subterm Y+s(Y). We hoose rule R

1

so that Y is instantiated

to 0:

s((Y+s(Y))+s(s(double(Y))))=4 ;

fY 7!0g

s(s(0)+s(s(double(0))))=4

We normalize the resulting equation by applying rule R

3

to double(0) and rules

R

2

and R

1

to the remaining ourrene of +:

s(s(0)+s(s(double(0))))=4 !

R

s(s(0)+s(s(0)))=4

!

R

s(s(0+s(s(0))))=4

!

R

s(s(s(s(0))))=4

Thus we have omputed the solution fX 7! s(0)g sine the left- and right-hand

side of the �nal equation are idential. A loser look to the narrowing and rewrite

attempts in this derivation yields the following fats:

1. The operation + is evaluated both by narrowing and rewrite steps.

6



2. If a narrowing step is applied to +, the �rst argument is always free and the

seond argument may be partially instantiated.

3. If a rewrite step is applied to +, both arguments may be partially instantiated.

4. At the time when a narrowing step ould be applied to double (i.e., if all

funtions to the left of double are evaluated), its argument is ground. Hene

double is evaluated by rewriting and not by narrowing.

5. If a rewrite step is applied to double, its argument may be partially instan-

tiated.

6. If a rewrite or narrowing step is applied to quad, its argument is always a

free variable. Hene no rewrite rules an be applied to any funtion all in

the right-hand side of rule R

5

immediately after the appliation of these rule,

i.e., the rewrite attempts for these funtion alls an be skipped.

In order to have a formal representation of these properties, we assign to eah

operation a narrowing mode (+(f,a), double(g), quad(f) in this example)

and a rewrite mode (+(a,a), double(a), quad(f)). Using this kind of mode

information it is possible to avoid unneessary rewrite attempts, ompile rewrite

derivations in a more eÆient way, delete unneessary rewrite or narrowing rules

et. (see Setion 4). 2

In the following we give a preise de�nition of the possible modes for funtional

logi programs w.r.t. a normalizing narrowing semantis. In this de�nition we

onsider a mode as a (possibly in�nite) set of term tuples. Suh a set ontains all

possible parameters whih may our in a funtion all. In subsequent setions

we abstrat suh a set to a �nite representation like g, f or a. Sine there are

also other useful abstrations (e.g., type approximations [4℄), we do not restrit

the general de�nition of modes.

De�nition 2. Let f=n be an operation symbol and N;R � T (F ;X )

n

.

(a) N is alled N-mode (narrowing mode) for f=n whenever ht

1

; : : : ; t

n

i 2 N if a

narrowing step should be applied to the subterm f(t

1

; : : : ; t

n

) during program

exeution.

(b) R is alled R-mode (rewrite mode) for f=n whenever ht

1

; : : : ; t

n

i 2 R if a

rewrite step should be applied to the subterm f(t

1

; : : : ; t

n

) during program

exeution. 2

We have de�ned modes w.r.t. arbitrary program exeutions. However, for the

sake of good program optimizations it is desirable to onsider only exeutions

w.r.t. a given lass of initial goals. In this ase the modes are omputed by a

top-down analysis of the program starting from the initial goals.

4 Optimization of funtional logi programs using modes

As mentioned in the previous setion, we are not interested in the preise term

sets ontained in the modes, but we abstrat these term sets into a �nite number

of abstrat values. For the optimizations tehniques we have in mind the abstrat

values g, f and a are suÆient, where g denotes the set T (F ;?) of ground

terms, f the set X of free variables and a the set T (F ;X ) of all terms. Hene

the N-mode hg;a;fi for the operation f=3 spei�es that the �rst argument is

7



ground and the third argument is a free variable if a narrowing rule should be

applied to this operation. Suh modes an be spei�ed by the programmer, but it

is more reliable to derive the modes automatially from the given program (w.r.t.

a mode for the initial goal). Automati mode inferene has been investigated for

pure logi programming (e.g., [3, 5, 6, 25, 30℄) and similar shemes for funtional

logi programs are under development [18℄. In the following we show possible

optimization tehniques w.r.t. given modes for a funtional logi program.

4.1 Using freeness information

We have seen in Example 2 that rewrite steps annot be applied to funtion alls

if some arguments are not suÆiently instantiated. Hene we an omit all rewrite

attempts to a funtion all if an argument that is required in all rewrite rules has

R-mode f .

We say an operation f requires argument i if t

i

62 X for all rewrite rules

f(t

1

; : : : ; t

n

) ! r, i.e., t

i

has a onstrutor at the top. Our optimization w.r.t.

freeness is based on the following proposition.

Proposition 3. If an operation f has R-mode hm

1

; : : : ;m

n

i with m

i

= f and

requires argument i, then no rewrite step an be applied to an f-rooted term

during exeution.

In this ase all rewrite rules for f an be deleted in the ompiled program and all

attempts to rewrite f -rooted subterms an be immediately skipped. However, in

pratie this ase rarely ours sine rewrite steps are always applied to the entire

goal before eah single narrowing step. Therefore funtion arguments are usually

not de�nitely free for all rewrite attempts but beome more and more instantiated

while narrowing steps are performed. But we an see in Example 2 that there is an

interesting situation where unneessary rewrite attempts our. After applying

a narrowing step with rule l ! r to the leftmost innermost subterm, due to

the eager normalization strategy, appliations of rewrite rules are tried to all

funtions ourring in r. Sine a narrowing step is only applied beause of the

insuÆient instantiation of arguments (otherwise the subterm would be evaluated

by rewriting), it is often the ase that the funtion alls in r are not suÆiently

instantiated to apply rewrite rules. Hene the rewrite attempts immediately after

a narrowing step ould be avoided.

In order to give a preise de�nition of this optimization, we de�ne a speial

kind of rewrite mode whih is valid immediately after a narrowing step.

De�nition 4. Let f(t

1

; : : : ; t

n

) ! r be a narrowing rule and N be a N-mode

for f=n. Let g(s

1

; : : : ; s

m

) be a funtion all in r and R

f

� T (F ;X )

m

. Then

R

f

is alled R=N-mode (w.r.t. to N) (rewrite mode w.r.t. narrowing) for the

funtion all g(s

1

; : : : ; s

m

) i� �(hs

1

; : : : ; s

n

i) 2 R

f

for eah most general uni�er

� of ht

1

; : : : ; t

n

i and some ht

0

1

; : : : ; t

0

n

i 2 N . 2

Note that suitable R=N-modes an be easily derived from a given N-mode of

an operation. Sine Proposition 3 is also valid w.r.t. R=N-modes and the imme-

diate rewrite attempts after a narrowing step, we an use R=N-modes to avoid

unneessary rewrite attempts. For instane, onsider Example 2 and the rule

s(M) + N ! s(M + N) (R

2

)

8



Sine + has N-mode hf ;ai, a suitable R=N-mode of the funtion all M+N in the

right-hand side is hf ;ai. Therefore no rewrite rule is appliable to M+N immedi-

ately after a narrowing step with R

2

beause + requires its �rst argument.

In the ase of nested funtion alls, we an also skip rewrite attempts to

funtion alls whih ontain funtion alls in normal form at a required argument

position. For instane, if (X+Y)+Z ours in the right-hand side of a narrowing rule

and the N-mode implies that X is always a free variable, then rewrite attempts

to both ourrenes of + an be negleted.

The realization of this optimization in a ompiler-based implementation of

normalizing innermost narrowing is easy. In order to avoid a dynami searh in

the urrent goal for the leftmost innermost subterm, it is useful to manage an o-

urrene stak at run time [13℄. This stak ontains referenes to all funtions alls

in a goal in leftmost innermost order, i.e., the top element refers to the leftmost

innermost subterm. If a narrowing rule l ! r is applied, the top element of the

ourrene stak is deleted, referenes to all funtion alls in r are added, and the

appliation of rewrite rules are tried to all subterms referred by the ourrene

stak.

5

The management of the ourrene stak provides an eÆient implemen-

tation and auses nearly no overhead (see [13℄ for benhmarks). Moreover, it

provides a simple realization of the freeness optimization. To skip unneessary

rewrite attempts in the right-hand side of a narrowing rule, the ourrenes of

the orresponding subterms are not pushed onto the ourrene stak. Although

this optimization is simple, it has measurable e�ets on the exeution time if the

portion of narrowing steps in the omputation is not too low (see Setion 5 for

benhmarks). In extreme ases all unneessary rewrite attempts are avoided by

this optimization.

4.2 Using groundness information

An implementation of normalizing narrowing requires the appliation of rewrite

rules to all funtion alls in a goal before a narrowing step is performed. Therefore

funtion alls annot be represented by piees of ode similarly to prediate alls

in the WAM [36℄, but they must be expliitly represented as a term struture. For

instane, if the quad rule R

5

of Example 2 is applied in a narrowing or rewrite

step, the term representation of the right-hand side (N+N)+double(N) is reated

in the heap area (whih ontains all term strutures during program exeution [13,

36℄.)

6

This implementation has the disadvantage that many terms are reated on

the heap whih are garbage after the evaluation of the funtion alls. The situation

an be improved if it is known that some funtions are ompletely evaluable by

rewriting. A suÆient riterion is the groundness of some arguments.

7

5

This explanation is slightly simpli�ed. In the onrete implementation, a seond so-

alled opy ourrene stak is used in the rewrite proess. See [13℄ for more details.

6

It is not neessary to reate a term representation for all funtions alls. Sine the

leftmost innermost funtion all N+N is evaluated in the next step, a representation

of this term is only neessary if no rewrite rule is appliable to it. Therefore the

reation of this term is delayed in [13℄. This results in an implementation similar to

WAM-based Prolog systems.

7

Note that we assume that all narrowing rules are also used for rewriting, otherwise

the proposition does not hold.

9



Proposition 5. If an operation f has R-mode hg; : : : ; gi, then all f-rooted sub-

terms are ompletely evaluated by rewriting during exeution.

This property holds sine a narrowing step is only performed at an innermost

position if some arguments are not suÆiently instantiated, but the latter on-

dition an never be satis�ed if it is a ground funtion all. Consequently, ground

funtion alls an be implemented by a �xed sequene of funtion alls whih do

not require a representation on the heap. For instane, if quad has R-mode hgi,

then the rewrite rule quad(N)!(N+N)+double(N) ould be translated similarly

to funtions in imperative or funtional languages aording to the following ode

sequene:

N := A1 % Register A1 ontains the atual argument of quad

N1 := N+N % all operation +

N2 := double(N) % all operation double

N3 := N1+N2 % all operation +

return(N3) % return the omputed value

The intermediate values ould be stored in an environment on the loal stak

whih an be deleted after the return (or before, if last all optimization is

implemented). Thus, if groundness information is available, we ould optimize

the ode suh that funtion alls need not be represented on the heap and in-

termediate results are stored on the loal stak instead of the heap. This has

the advantage that the used memory spae on the loal stak is automatially

released after deterministi omputations while the heap is leaned up only af-

ter a garbage olletion phase. Some results to this optimization are shown in

Setion 5.

4.3 Code elimination using mode information

Rewrite steps and narrowing steps di�er in the appliation of the left-hand side

to a subterm: while the subterm is mathed with the left-hand side in a rewrite

step, it is uni�ed with the left-hand side in a narrowing step. Due to this dif-

ferent behavior (and some other reasons, f. [13℄), rewrite rules and narrowing

rules are ompiled into separate instrutions. In partiular, if the program rules

de�ning operations are used both as narrowing rules and rewrite rules, eah rule

is ompiled in two ways. This has a positive e�et on the time eÆieny of the

ompiled ode, but it doubles the ode spae. On the other hand, only a few rules

are atually used both for narrowing and rewriting in pratial programs. Some

rules are only used in rewrite steps, while others are exlusively used in narrowing

steps. Information about modes an help to detet these ases at ompile time

so that unneessary ode an be avoided in the target program. The following

onditions are suÆient riteria to omit rules in the target program:

1. If f has R-mode hm

1

; : : : ;m

n

i with m

i

= f , then rewrite rules of the form

f(t

1

; : : : ; t

n

) ! r with t

i

62 X are superuous (by Proposition 3).

2. Narrowing rule f(t

1

; : : : ; t

n

) ! r is superuous if f has N-mode hm

1

; : : : ;m

n

i

and for eah t

i

62 X and eah t

i

2 Var(t

j

) (for some j 6= i) m

i

= g holds

(sine in this ase the rule is always appliable in a preeding rewrite step.)

8

8

Note that the ase t

i

2 Var(t

j

) is neessary sine we allow multiple ourrenes of the

same variable in the left-hand side of a rule. E.g., the rule f(X,X)!X is not appliable

10



Extreme ases of 2 are rules of the form f(X

1

; : : : ; X

n

) ! r where X

1

; : : : ; X

n

are pairwise di�erent variables, or all narrowing rules for a funtion f whih has

N-mode hg; : : : ; gi.

For instane, in Example 2 we an delete R

3

; R

4

; R

5

as narrowing rules. These

rules are only used in rewrite steps, while rules R

1

and R

2

are used both in rewrite

and narrowing steps.

5 Experimental results

In order to obtain results about the pratial usefulness of the optimizations

disussed so far, we have applied these optimizations to some funtional logi

programs. These optimizations were performed with the ALF system [12, 13℄

whih uses normalizing innermost narrowing as the operational semantis. We

have not introdued any new low-level instrutions into the abstrat mahine

A-WAM on whih the ALF system is based. All the optimizations disussed

in Setion 4 are implemented using the standard instrution set of the A-WAM

whih is the simplest, but not the most eÆient way to implement these optimiza-

tions. Therefore it is obvious that better results an be obtained if the A-WAM

would be redesigned aording to the availability of mode information.

Table 1 shows the di�erene of the exeution time between programs om-

piled without and with the optimizations w.r.t. freeness information as disussed

in Setion 4.1. All programs were exeuted on a Spar 1. The programs are

small but typial funtional logi programs in the sense that funtions are alled

with non-ground arguments so that narrowing rules must be applied to evaluate

these funtions. arith is a program that solves the equation X+X=10 on natural

numbers (where natural numbers are represented by terms built from the on-

strutors 0 and s). hamilton omputes a Hamiltonian path in a graph. last

omputes the last element of a given list with 10 elements by solving the equa-

tion append(_,[E℄)=[� � �℄. path omputes a omplete path through a graph.

permsort is the funtional version of the permutation sort program, a typial

generate-and-test program whih demonstrates the advantages of funtional logi

programs ompared to pure logi programs [14℄.

Program Standard Optimized Improvement

arith 2.70 2.42 11.5%

hamilton 1180 980 20.4%

last 5.40 4.80 12.5%

path 1400 1120 25.0%

permsort 1680 1480 13.5%

Table 1. Exeution times (in mse) for optimized programs w.r.t. freeness information

Although freeness information is only used to avoid some unneessary rewrite

attempts for the right-hand side after a narrowing step (and not for other more

to the term f(Y,Z) in a rewrite step, thus this rule must be kept as a narrowing rule.

11



Standard Optimized

Program loal stak heap loal stak heap

fa 104 441168 161380 370104

fib 104 1145148 780 926248

zero 104 655620 636 280

Table 2. Maximum memory usage for optimized programs w.r.t. groundness informa-

tion (in bytes)

primitive optimizations [24, 31, 32, 34, 35℄), the table presents interesting im-

provements in the exeution time. The variations show that it is diÆult to state

a general fator of improvement using freeness information. This fator largely

depends on the number of funtion alls whih an be safely skipped in the nor-

malization proess after the appliation of a narrowing rule.

Table 2 shows the memory usage for unoptimized and optimized programs

w.r.t. groundness information as disussed in Setion 4.2. The programs are re-

ursive funtions on natural numbers where natural numbers are represented by

terms built from the onstrutors 0 and s. fa omputes the fatorial of 8, fib

omputes the 20'th Fibonai number, and zero is a funtion whih maps all

inputs to the onstant 0 but it is reursively de�ned similarly to fib.

Sine we have not hanged the instrution set of the A-WAM, we ould only

simulate the optimizations with the existing instrution set. But we an see in

Table 2 that the heap spae is redued while the loal stak inreases. This is

a desirable property sine the loal stak is automatially leaned up after de-

terministi omputations while the heap spae must be relaimed by a garbage

olletor. In the optimized version, no funtion alls are reated on the heap. The

remaining heap ells are oupied by onstrutor terms reated during exeution

(in these examples: s-terms representing natural numbers). An extreme ase is

the reursive funtion zero whih reates no onstrutor terms. The large heap

spae in the unoptimized version is due to the representation of reursive funtion

alls in the heap.

6 Automati derivation of modes

The main motivation of this paper is to show opportunities to optimize funtional

logi programs. For this purpose we have de�ned a notion of modes whih is suit-

able for the partiular operational semantis. However, the automati derivation

of these modes is another omplex topi whih will be addressed in a forthom-

ing paper [18℄. In this setion we will disuss some peuliarities related to the

automati derivation of modes.

Innermost narrowing without normalization is equivalent to SLD-resolution

if the funtional logi program is transformed into a at program without nested

funtion alls [2℄. For instane, we ould transform the rules of Example 1 into

the at logi program

add(0,N,N).

add(s(M),N,s(Z)) :- add(M,N,Z).

12



where the prediate add orresponds to the funtion + with its result value. The

nested funtion all in the right-hand side of rule R

2

has been replaed by the

new variable Z and the additional ondition add(M,N,Z). Now eah innermost

narrowing derivation w.r.t. rules R

1

and R

2

orresponds to one SLD-derivation

w.r.t. the transformed logi program.

Due to these similarities of narrowing and SLD-resolution, one ould try to

apply abstrat interpretation tehniques developed for logi programming (e.g.,

[3, 22, 27℄) to derive the desired information. E.g., to derive the narrowing mode

of the funtion + w.r.t. to the lass of initial goals x+y=z, where x and y are

always ground and z is a free variable, we ould use an abstrat interpretation

framework for logi programming to infer the all modes of the prediate add

w.r.t. the lass of initial goals add(x,y,z). In this ase we infer that the all

mode is hg; g;fi and the argument z of the initial goal will be bound to a ground

term at the end of a suessful omputation. Hene we ould dedue that hg; gi

is the narrowing mode of the funtion +.

However, normalizing narrowing, whih we have onsidered in this paper, does

not diretly orrespond to SLD-resolution beause of the intermediate normal-

ization proess. These normalization steps between narrowing steps may delete

entire subterms or hange the order of subterms. These subtleties require more

sophistiated analysis tehniques than those developed for pure logi program-

ming. E.g., onsider the rules

f(0,Z) ! 0 g(0) ! 0

and the initial equation f(g(X),g(Y))=0. Using normalizing innermost narrow-

ing, this equation is solved by applying a narrowing step to the innermost subterm

g(X) followed by a rewrite step:

f(g(X),g(Y)) = 0 ;

fX 7!0g

f(0,g(Y)) = 0

!

R

0 = 0

Hene variable Y remains unbound at the end of the omputation. On the other

hand, the attening transformation yields the following orresponding logi pro-

gram:

f(0,Z,0).

g(0,0).

?- g(X,Z1), g(Y,Z2), f(Z1,Z2,0).

But this logi program has another behavior than the funtional logi program

sine the variable Y will be bound by SLD-resolution! Therefore we an apply

abstrat interpretation frameworks for logi programming in our ontext only if

there are no rewrite rules whih may delete or permute arguments. Suh rewrite

rules require a speial treatment in the abstrat interpretation proedure whih

will be desribed in a forthoming paper [18℄. Another approah to abstrat

interpretation of funtional logi programs based on an alternative operational

semantis is desribed in [16℄.

7 Conlusions

In this paper we have shown optimization tehniques in the presene of mode

information whih are unique to the exeution mehanism of funtional logi pro-

13



grams. We have onsidered normalizing innermost narrowing as the operational

semantis sine it has been shown that this strategy is a reasonable improvement

over Prolog's left-to-right resolution strategy [10, 14℄. We have de�ned the notion

of modes for funtional logi programs. These modes an be used to optimize the

normalization proess. On the one hand, the normalization proess is the rea-

son for the operational improvements of funtional logi languages ompared to

pure logi languages. On the other hand, the normalization proess may add un-

neessary work. This an be improved using modes: freeness information avoids

superuous rewrite attempts, and groundness information provides for a better

implementation (in terms of memory onsumption) of the normalization proess.

Moreover, information about modes an also be used to avoid the generation of

ode for rewrite or narrowing rules whih will never be used at run time.

Future work inludes a re�nement of the abstrat mahine for the exeu-

tion of funtional logi programs following the lines presented in [32, 34℄, the

development of appropriate abstrat interpretation frameworks to derive mode

information at ompile time [18℄, and re�ned appliability onditions for rewrite

rules using type information [4℄.

Referenes

1. D. Bert and R. Ehahed. Design and Implementation of a Generi, Logi and Fun-

tional Programming Language. In Pro. ESOP'86, pp. 119{132. Springer LNCS

213, 1986.

2. P.G. Boso, E. Giovannetti, and C. Moiso. Narrowing vs. SLD-Resolution. Theo-

retial Computer Siene 59, pp. 3{23, 1988.

3. M. Bruynooghe. A Pratial Framework for the Abstrat Interpretation of Logi

Programs. Journal of Logi Programming (10), pp. 91{124, 1991.

4. M. Bruynooghe and G. Janssens. An Instane of Abstrat Interpretation Integrat-

ing Type and Mode Inferening. In Pro. 5th Conferene on Logi Programming &

5th Symposium on Logi Programming (Seattle), pp. 669{683, 1988.

5. S.K. Debray. Stati Inferene of Modes and Data Dependenies in Logi Programs.

ACM TOPLAS, Vol. 11, No. 3, pp. 418{450, 1989.

6. S.K. Debray and D.S. Warren. Automati Mode Inferene for Logi Programs.

Journal of Logi Programming (5), pp. 207{229, 1988.

7. D. DeGroot and G. Lindstrom, editors. Logi Programming, Funtions, Relations,

and Equations. Prentie Hall, 1986.

8. N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, editor,

Handbook of Theoretial Computer Siene, Vol. B, pp. 243{320. Elsevier, 1990.

9. M.J. Fay. First-Order Uni�ation in an Equational Theory. In Pro. 4th Workshop

on Automated Dedution, pp. 161{167, Austin (Texas), 1979. Aademi Press.

10. L. Fribourg. SLOG: A Logi Programming Language Interpreter Based on Clausal

Superposition and Rewriting. In Pro. IEEE Int. Symp. on Logi Programming,

pp. 172{184, Boston, 1985.

11. E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel LEAF: A Logi plus

Funtional Language. Journal of Computer and System Sienes, Vol. 42, No. 2,

pp. 139{185, 1991.

12. M. Hanus. Compiling Logi Programs with Equality. In Pro. PLILP'90, pp. 387{

401. Springer LNCS 456, 1990.

13. M. Hanus. EÆient Implementation of Narrowing and Rewriting. In Pro. PDK'91,

pp. 344{365. Springer LNAI 567, 1991.

14



14. M. Hanus. Improving Control of Logi Programs by Using Funtional Logi Lan-

guages. In Pro. PLILP'92, pp. 1{23. Springer LNCS 631, 1992.

15. M. Hanus. Inremental Rewriting in Narrowing Derivations. In Pro. ALP'92, pp.

228{243. Springer LNCS 632, 1992.

16. M. Hanus. On the Completeness of Residuation. In Pro. of the 1992 Joint Int.

Conf. and Symp. on Logi Programming, pp. 192{206. MIT Press, 1992.

17. M. Hanus. The Integration of Funtions into Logi Programming: From Theory to

Pratie. To appear in Journal of Logi Programming, 1994.

18. M. Hanus and F. Zartmann. Automati derivation of modes for funtional logi

programs. Max-Plank-Institut f�ur Informatik, Saarbr�uken (in preparation), 1994.

19. S. H�olldobler. Foundations of Equational Logi Programming. Springer LNCS 353,

1989.

20. J.-M. Hullot. Canonial Forms and Uni�ation. In Pro. 5th Conferene on Auto-

mated Dedution, pp. 318{334. Springer LNCS 87, 1980.

21. H. Kuhen, R. Loogen, J.J. Moreno-Navarro, and M. Rodr��guez-Artalejo. Graph-

based Implementation of a Funtional Logi Language. In Pro. ESOP'90, pp.

271{290. Springer LNCS 432, 1990.

22. B. Le Charlier, K. Musumbu, and P. Van Hentenryk. A Generi Abstrat Inter-

pretation Algorithm and its Complexity Analysis. In Pro. International Confer-

ene on Logi Programming, pp. 64{78. MIT Press, 1991.

23. R. Loogen. Relating the Implementation Tehniques of Funtional and Funtional

Logi Languages. New Generation Computing, Vol. 11, pp. 179{215, 1993.

24. A. Marien, G. Janssens, A. Mulkers, and M. Bruynooghe. The impat of abstrat

interpretation: an experiment in ode generation. In Pro. Sixth International Con-

ferene on Logi Programming (Lisboa), pp. 33{47. MIT Press, 1989.

25. C.S. Mellish. Some Global Optimizations for a Prolog Compiler. Journal of Logi

Programming (1), pp. 43{66, 1985.

26. J.J. Moreno-Navarro and M. Rodr��guez-Artalejo. Logi Programming with Fun-

tions and Prediates: The Language BABEL. Journal of Logi Programming,

Vol. 12, pp. 191{223, 1992.

27. U. Nilsson. Systemati Semanti Approximations of Logi Programs. In Pro.

PLILP'90, pp. 293{306. Springer LNCS 456, 1990.

28. U.S. Reddy. Narrowing as the Operational Semantis of Funtional Languages. In

Pro. IEEE Int. Symp. on Logi Programming, pp. 138{151, Boston, 1985.

29. J.R. Slagle. Automated Theorem-Proving for Theories with Simpli�ers, Commu-

tativity, and Assoiativity. Journal of the ACM, Vol. 21, No. 4, pp. 622{642, 1974.

30. Z. Somogyi. A system of preise modes for logi programs. In Pro. Fourth Int.

Conf. on Logi Programming, pp. 769{787. MIT Press, 1987.

31. A. Taylor. Removal of Dereferening and Trailing in Prolog Compilation. In Pro.

Sixth Int. Conf. on Logi Programming, pp. 48{60. MIT Press, 1989.

32. A. Taylor. LIPS on a MIPS: Results form a Prolog Compiler for a RISC. In Pro.

Seventh Int. Conf. on Logi Programming, pp. 174{185. MIT Press, 1990.

33. P. Van Roy. An Intermediate Language to Support Prolog's Uni�ation. In Pro.

1989 North Amerian Conf. on Logi Programming, pp. 1148{1164. MIT Press,

1989.

34. P.L. Van Roy. Can Logi Programming Exeute as Fast as Imperative Program-

ming? PhD thesis, Univ. of California Berkeley, 1990. Report No. UCB/CSD

90/600.

35. D.H.D. Warren. Implementing PROLOG - Compiling Logi Programs. 1 and 2.

D.A.I. Researh Report No. 39 and 40, University of Edinburgh, 1977.

36. D.H.D. Warren. An Abstrat Prolog Instrution Set. Tehnial Note 309, SRI

International, Stanford, 1983.

15


