
Inremental Rewriting in Narrowing Derivations

Mihael Hanus

Max-Plank-Institut f�ur Informatik

Im Stadtwald

W-6600 Saarbr�uken, Germany

e-mail: mihael�mpi-sb.mpg.de

In Pro. 3rd International Conferene on Algebrai and Logi Programming,

pp. 228{243, Springer LNCS 632, 1992

Abstrat. The operational semantis of many proposals for the integration

of funtional and logi programming languages is based on narrowing. In

order to redue the searh spae and to prefer deterministi omputations,

the goal is rewritten to normal form between narrowing steps (normalizing

narrowing). This rewriting proess may be ostly sine the entire goal must

be redued to normal form after eah narrowing step. We propose a useful

optimization of the rewriting proess: sine the goal is in normal form before

the narrowing step is applied and the narrowing step hanges only small parts

of the goal, rewriting an be restrited to a small number of positions in the

narrowed goal in order to ompute a new normal form. This optimization

an speed up the exeution mehanism of programming languages based on

normalizing narrowing like SLOG or ALF.

1 Introdution

During reent years a lot of proposals have been made to amalgamate funtional

and logi programming languages [DL86, BL86℄. A sound and omplete operational

semantis of suh integrated languages is based on narrowing, a ombination of the

redution priniple of funtional languages and the resolution priniple of logi lan-

guages. Narrowing was originally introdued in automated theorem proving [Sla74℄.

In our ontext narrowing is used to solve equations by �nding appropriate values for

variables ourring in arguments of funtions. This is done by unifying (rather than

mathing) an input term with the left-hand side of some rule and then replaing the

instantiated input term by the instantiated right-hand side of the rule. For instane,

onsider the following rules de�ning the addition of two natural numbers whih are

represented by terms built from 0 and s:

0 + N ! N

s(M) + N ! s(M + N)

We an solve the equation X+s(0) = s(s(0)) by a narrowing step with the seond

rule followed by a narrowing step with the �rst rule so that X is instantiated to s(0)

and the instantiated equation is redued to s(s(0)) = s(s(0)) whih is trivially

true. Hene we have found the solution X 7!s(0) to the given equation.

In order to be omplete in general, eah rule must be uni�ed with eah non-

variable subterm of the given equation. This has the onsequene that the narrowing

method has a huge and in�nite spae even for simple programs. For instane, onsider



the previous rules for addition together with the following rules de�ning a sum

funtion on naturals:

sum(0) ! 0

sum(s(N)) ! s(N) + sum(N)

Then the narrowing method applied to the equation sum(X) = s(0) has an in�nite

searh spae due to the following in�nite narrowing derivation (the instantiation of

variables ourring in the equation is reorded at the derivation arrow):

sum(X) = s(0) ;

X 7!s(N1)

s(N1)+sum(N1) = s(0)

;

N1 7!s(N2)

s(s(N2))+(s(N2)+sum(N2)) = s(0)

;

N2 7!s(N3)

� � �

In order to redue the searh spae, narrowing an be ombined with rewriting

(evaluation of a term): Before a narrowing step is applied, the equation is rewritten

to normal form w.r.t. the given rules (thus this strategy is also alled normalizing

narrowing). This an avoid a lot of useless narrowing derivations. E.g., if we rewrite

the seond derived equation in the above example, we an immediately terminate

this narrowing derivation:

s(s(N2))+(s(N2)+sum(N2)) = s(0) !

�

s(s(N2+(s(N2)+sum(N2)))) = s(0)

The last equation annot be satis�ed sine the terms s(N2+(s(N2)+sum(N2))) and

0 are always di�erent beause there are no rules to redue the symbols s and 0.

Hene we an terminate the unsuessful narrowing derivation at this point.

The integration of rewriting into the narrowing proess has at least two advan-

tages:

1. The searh spae is redued sine useless narrowing derivations an be de-

teted. As shown in [Fri85℄, [Han91℄ and [Han92℄ this has the onsequene that

funtional-logi programs are more eÆiently exeutable than the equivalent

Prolog programs.

2. Deterministi omputations are preferred. Sine we assume a onuent and ter-

minating set of rules, normal forms are unique and an be omputed by any

simpli�ation strategy. Therefore rewriting an be implemented as a determin-

isti omputation proess in ontrast to narrowing. Sine rewriting is exeuted

before a narrowing step is performed, the goal is omputed in a deterministi

way as long as possible. The preferene of deterministi omputations an save

a lot of time and spae as shown in [Han91℄.

But the integration of rewriting in narrowing derivations has also one disadvantage.

Sine the entire goal must be redued to normal form after eah narrowing step,

the rewriting proess may be ostly. Hene we propose a useful optimization of

the rewriting proess: sine the goal is in normal form before the narrowing step is

applied and the narrowing step hanges only small parts of the goal, rewriting an be

restrited to a small number of positions in the narrowed goal in order to ompute

a new normal form. This optimization an speed up the exeution mehanism of

2



programming languages based on normalizing narrowing like SLOG [Fri85℄ or ALF

[Han90, Han91℄.

Josephson and Dershowitz [JD89℄ have also presented an implementation of a

narrowing strategy with rewriting. Although their main motivation was a spae sav-

ing implementation by sharing ommon parts of di�erent solutions in narrowing

derivations, they have also presented an interesting tehnique to identify reduible

subterms. Their tehnique is based on demons whih are attahed to subterms and

wait for suÆient instantiation of their arguments. The orretness of their method

is unlear sine it depends on a partiular �ring strategy for the demons. Moreover,

they generate a large number of demons beause a demon is reated for eah poten-

tially appliable rule at eah subterm of the goal. These demons are not deleted even

if the orresponding subterm has no onnetion to the goal (e.g., if the term (X+Y)*0

is simpli�ed to 0, the demons orresponding to the subterm (X+Y) ould be deleted).

On the ontrary, we will present an inremental rewriting algorithm whih exatly

implements a normalizing narrowing strategy. The overhead of this algorithm is

quite small and the algorithm an be integrated in ompiler-based implementations

of funtional-logi languages [Han91, Loo91℄.

In the next setion we reall basi notions and results from term rewriting and

narrowing. Our optimization tehniques together with an inremental rewriting al-

gorithm are presented in Setion 3, and tehniques for an eÆient implementation

of this algorithm are disussed in Setion 4. Two extensions of this algorithm to

non-linear rules and rules with nested funtions on the left-hand side are shown in

Setion 5 and 6, respetively.

2 Preliminaries

In this setion we reall basi notions of term rewriting [DJ90℄.

A signature is a set F of funtion symbols. Every f 2 F is assoiated with

an arity. Let X be a ountably in�nite set of variables. Then the set T (F ;X ) of

terms built from F and X is the smallest set ontaining X suh that f(t

1

; : : : ; t

n

) 2

T (F ;X ) whenever f 2 F has arity n and t

1

; : : : ; t

n

2 T (F ;X ). We write f instead

of f() whenever f has arity 0. We all the terms t

1

; : : : ; t

n

also argument terms of

f(t

1

; : : : ; t

n

). The set of variables ourring in a term t is denoted by Var(t). A term

is alled linear if it does not ontain multiple ourrenes of the same variable. The

funtion symbol heading term t is denoted by Head(t).

The notion of subterm is de�ned through the notion of position. The set O(t) of

positions in a term t is indutively de�ned by

O(t) =

�

f�g if t 2 X

f�g [ fi:� j 1 � i � n and � 2 O(t

i

)g if t = f(t

1

; : : : ; t

n

)

Hene positions are sequenes of natural numbers. For the sake of readability we

omit the last � in nonempty sequenes of natural numbers, i.e., we write 1:2 instead

of 1:2:�. Positions are partially ordered by the pre�x ordering �, i.e., � � �

0

if there

is a sequene � with � Æ � = �

0

. We write � < �

0

if � � �

0

and � 6= �

0

. Disjoint

3



positions �; �

0

are denoted by � k �

0

(i.e., neither � � �

0

nor �

0

� �). We all a

position � maximal (in a set of positions) if there is no position �

0

with � < �

0

.

A position � 2 O(t) denotes the subterm tj

�

of t, i.e.,

tj

�

=

�

t if � = �

t

i

j

�

0

if t = f(t

1

; : : : ; t

n

) and � = i:�

0

If � 2 O(t), then t[s℄

�

denotes the result of replaing the subterm tj

�

by the term s,

i.e.,

t[s℄

�

=

�

s if � = �

f(t

1

; : : : ; t

i

[s℄

�

0

; : : : ; t

n

) if t = f(t

1

; : : : ; t

n

) and � = i:�

0

A substitution � is a mapping from X into T (F ;X ) suh that the set fx 2

X j �(x) 6= xg is �nite. We frequently identify a substitution � with the set

fx 7! �(x) j �(x) 6= xg. Substitutions are extended to morphisms on T (F ;X ) by

�(f(t

1

; : : : ; t

n

)) = f(�(t

1

); : : : ; �(t

n

)) for every term f(t

1

; : : : ; t

n

). A uni�er of two

terms s and t is a substitution � with �(s) = �(t). A uni�er � is alled most general

(mgu) if for every other uni�er �

0

there is a substitution � with �

0

= � Æ� (onate-

nation of � and �). Most general uni�ers are unique up to variable renaming. By

introduing a total ordering on variables we an uniquely hoose the most general

uni�er of two terms.

A rewrite rule l ! r is a pair of terms l; r satisfying l 62 X and Var(r) � Var(l)

where l and r are alled left-hand side and right-hand side, respetively. A rewrite

rule is alled left-linear if the left-hand side is linear, otherwise it is alled non-

linear. The argument terms of a rewrite rule are the argument terms of the left-hand

side. A rewrite rule is alled a variant of another rule if it is obtained by a unique

replaement of variables by other variables. A term rewriting system R is a set of

rewrite rules. In the following we assume a given term rewriting system R.

A rewrite step is an appliation of a rewrite rule to a term, i.e., t !

R

s if there

exist a position � 2 O(t), a rewrite rule l ! r and a substitution � with tj

�

= �(l)

and s = t[�(r)℄

�

. In this ase we say t is reduible (at position �). A term t is alled

irreduible or in normal form if there is no term s with t!

R

s. A substitution � is

alled irreduible or normalized if �(x) is in normal form for all variables x 2 X .

!

�

R

denotes the transitive-reexive losure of the rewrite relation!

R

.R is alled

terminating if there are no in�nite rewriting sequenes t

1

!

R

t

2

!

R

t

3

!

R

� � �. R

is alled onuent if for all terms t, t

1

, t

2

with t !

�

R

t

1

and t !

�

R

t

2

there exists a

term t

3

with t

1

!

�

R

t

3

and t

2

!

�

R

t

3

. A terminating and onuent term rewriting

system R is alled anonial.

If R is anonial, we an deide the validity of an equation s =

R

t (where =

R

denotes validity w.r.t. the equations fl

:

= r j l ! r 2 Rg) by omputing the normal

form of both sides using an arbitrary sequene of rewrite steps. In order to solve

an equation, we have to �nd appropriate instantiations for the variables in s and t.

This an be done by narrowing. A term t is narrowable into a term t

0

if there exist

a non-variable position � 2 O(t) (i.e., tj

�

62 X ), a variant l ! r of a rewrite rule

and a substitution � suh that � is a mgu of tj

�

and l and t

0

= �(t[r℄

�

). In this ase

4



we write t ;

[�;l!r;�℄

t

0

or simply t ;

�

t

0

. For variables x 2 Var(t) with �(x) 6= x

we say x is bound in the narrowing step t ;

�

t

0

. If there is a narrowing sequene

t

1

;

�

1

t

2

;

�

2

� � �;

�

n�1

t

n

, we write t

1

;

�

�

t

n

with � = �

n�1

Æ � � � Æ �

2

Æ �

1

.

Narrowing is able to solve equations w.r.t. R. For this purpose we introdue two

new funtion symbols =

?

and true and add the rewrite rule x =

?

x ! true to R.

The following theorem states soundness and ompleteness of narrowing.

Theorem1 ([Hul80℄). Let R be a anonial term rewriting system.

1. If s =

?

t;

�

�

true, then �(s) =

R

�(t).

2. If �

0

(s) =

R

�

0

(t), then there exist a narrowing derivation s =

?

t;

�

�

true and a

subsitution � with �(�(x)) =

R

�

0

(x) for all x 2 Var(s) [ Var(t).

Sine this simple narrowing proedure (enumerating all narrowing derivations) has

a huge searh spae, several authors have improved it by restriting the admissi-

ble narrowing derivations. For instane, Hullot [Hul80℄ has proved ompleteness of

basi narrowing where a narrowing step in a position introdued by a substitution

is forbidden. Fribourg [Fri85℄ has proposed innermost narrowing where narrowing

is performed from innermost to outermost positions (this is only omplete for to-

tally de�ned funtions), and H�olldobler [H�ol89℄ has ombined innermost and basi

narrowing (whih is omplete also for partially de�ned funtions).

Another improvement of simple narrowing is normalizing narrowing [Fay79℄

where the term is rewritten to normal form before a narrowing step is applied.

This optimization is important sine it prefers deterministi omputations: rewrit-

ing a term to normal form an be done in a deterministi way sine every rewriting

sequene gives the same result (beause R is anonial) whereas di�erent narrowing

steps may lead to di�erent solutions and therefore all admissible narrowing steps

must be onsidered. Hene in a sequential implementation rewriting an be eÆ-

iently implemented like redutions in funtional languages whereas narrowing steps

need ostly baktraking management like in Prolog. For instane, if the equation

s =

R

t is valid, normalizing narrowing will prove it by a pure deterministi ompu-

tation (reduing s and t to the same normal form) whereas simple narrowing would

ompute the normal form of s and t by ostly narrowing steps.

Normalizing narrowing an also be ombined with the other optimizations men-

tioned before. Rety [Ret87℄ has proved ompleteness of normalizing basi narrow-

ing, Fribourg [Fri85℄ has proposed normalizing innermost narrowing and H�olldobler

[H�ol89℄ has ombined innermost basi narrowing with normalization. Beause of

these important advantages, normalizing narrowing is the foundation of several pro-

gramming languages whih ombines funtional and logi programming like SLOG

[Fri85℄ or ALF [Han91℄. However, there is one problem with normalizing narrowing.

Sine the entire term or equation must be normalized before a narrowing step is ap-

plied, the normalization proess may be very ostly espeially if only small parts of

the term are inuened by the previous narrowing step. Therefore we present in the

next setion an inremental rewriting algorithm whih omputes the normal form of

a term after a narrowing step and takes advantage of the fat that the term was in

normal form before the appliation of the last narrowing step.

5



3 The inremental rewriting algorithm

In this setion we will present an algorithm whih omputes the normal form of

a term after a narrowing step and uses the fat that the narrowed term was in

normal form. In the following we assume that the given term rewriting system R is

anonial. Thus we an rewrite a term to normal form using an arbitrary strategy,

and in the following we apply rewrite steps from innermost to outermost positions.

Our method of optimizing the rewriting proess after a narrowing step is based on

two observations:

Starting ondition: If the term t is in normal form and we apply a narrowing step

at position � in t giving t

0

, then, in order to ompute the normal form of t

0

, we

have to rewrite the subterm t

0

j

�

(sine the instantiated right-hand side of the

applied rule may be not in normal form) and all subterms of t

0

where a variable

of t has been bound in the narrowing step. All other subterms of t

0

(exept those

ontaining the subterms mentioned in the previous sentene) are in normal form

sine t was in normal form.

Stopping ondition: Sine we perform rewriting in an innermost manner, we try

to apply a rewrite rule to a subterm after omputing the normal form of its

argument terms. But if no rewrite rule is appliable to any argument term, then

we need not try to apply a rewrite rule to this subterm in order to ompute

the normal form after a narrowing step (this is only true under some additional

onditions, see below).

The following example shows the optimized normalization proess using these two

onditions.

Example 1. The following rewrite rules are given:

f(a) ! b

g(a) ! b

h(a,X,b) ! a

The term h(f(X),g(f(Y)),f(g(X))) is in normal form. If we apply the �rst rule

to the subterm f(X) in a narrowing step, the variable X is bound to a and the

narrowed term is h(b,g(f(Y)),f(g(a))). The starting ondition tells us that we

must rewrite the �rst argument b (the narrowed subterm) and the subterm g(a)

(sine here a variable has been bound). Rewriting g(a) gives h(b,g(f(Y)),f(b)),

but there is no rewrite rule appliable to the subterms b and f(b). Hene, by the

stopping ondition, we an terminate the normalization proess without trying to

apply rewrite rules to the subterms f(Y), g(f(Y)) and h(b,g(f(Y)),f(b)). This

an save a lot of unneessary rewrite attempts if the seond argument is a large term

(instead of g(f(Y))) or the term is embedded in a larger one. 2

The starting ondition is justi�ed by the following lemma.

Lemma2 (Starting lemma). Let t be a term in normal form, x 2 Var(t) and

� = fx 7! t

0

g be a substitution with t

0

in normal form. If �(t) is reduible at position

�, then � 2 O(t) and x 2 Var(tj

�

).

6



Proof. Let �(t) be reduible at position �. Assume � 62 O(t). Sine � 2 O(�(t)) and

�(t) reduible at position �, t

0

must be reduible in ontradition to our assumptions.

Therefore � 2 O(t).

Now assume that x 62 Var(tj

�

). Sine � replaes only variable x, we have tj

�

=

�(t)j

�

, i.e., t is also reduible at position � in ontrast to our assumptions. Therefore

x 2 Var(tj

�

). ut

The lemma an easily be extended to substitutions whih replae more than one

variable. Note that if the substituted term t

0

is not in normal form, then � 2 O(t)

is not implied by the fat that �(t) is reduible at position � sine the redution

may be performed in the substituted term t

0

. But the important onsequene of this

lemma is that rewriting in a subterm is unneessary if this subterm is not inuened

by the narrowing substitution.

The stopping ondition expresses the fat that we an stop the rewriting proess

in one path of the term if no rewrite rule is appliable at a distint position. The

next lemma shows that this is true under additional onditions.

Lemma3 (Stopping lemma). Let t and s be terms in normal form, s 62 X , � 2

O(t) with tj

�

2 X and all rewrite rules be left-linear. If the head symbol Head(s)

does not our in an argument term of any rewrite rule, then t[s℄

�

is in normal form.

Proof. Assume that t

0

= t[s℄

�

is not in normal form. Then there is a rule l ! r,

a position �

0

2 O(t

0

) and a substitution � with t

0

j

�

0

= �(l). We distinguish the

following ases:

1. � � �

0

, i.e., there exists � with �

0

= � Æ �: Then �(l) = t

0

j

�

0

= t

0

j

�Æ�

= sj

�

.

Hene s is reduible whih ontradits our assumption.

2. �

0

< �, i.e., � = �

0

Æ � for some nonempty �: From t

0

j

�

0

= �(l) we an infer

�(l)j

�

= s. Sine the head symbol Head(s) does not our in an argument

of l, s must belong to the substitution �, i.e., there exists y 2 Var(l) with

�(y) = � � � s � � �. Now replae s by the variable tj

�

in �(y) and denote this new

substitution by �

0

. Then tj

�

0

= �

0

(l) sine l is linear. Hene t is reduible in

ontrast to our assumption.

3. � k �

0

: Then tj

�

0

= t

0

j

�

0

= �(l) sine t and t

0

di�er only at position �. Hene t

is reduible in ontrast to our assumption.

Therefore our assumption is wrong and thus t[s℄

�

must be in normal form. ut

This lemma is not true if a rewrite rule is not left-linear. For instane, if there is the

rule

f(Y,Y) ! Y

then f(1,X) and 1 are terms in normal form, but f(1,1) is not in normal form.

Fortunately, most funtional programs are written with the left-linearity ondition,

but we will also disuss a solution for general term rewrite rules in Setion 5.

The relation between the stopping lemma and the stopping ondition will be

lari�ed by the following lemma.

7



Lemma4. Let t be a term in normal form, � 2 O(t), x a variable and all rewrite

rules be left-linear. Then t[x℄

�

is also in normal form.

Proof. Assume that t

0

= t[x℄

�

is not in normal form. Then there is a rule l ! r,

a position �

0

2 O(t

0

) and a substitution � with t

0

j

�

0

= �(l). We distinguish the

following ases:

1. � � �

0

: Then � = �

0

sine t

0

j

�

is a variable. Beause t

0

j

�

0

= x, l must be a

variable whih ontradits our assumptions about rewrite rules (otherwise, if we

allow rewrite rules l ! r with l 2 X , this rule would also be appliable to t at

position �).

2. �

0

< �, i.e., � = �

0

Æ � for some nonempty �: Beause t

0

j

�

= x and l is a linear

term, we an modify � to �

0

suh that �

0

(l) = tj

�

0

(replae one ourrene of x

by tj

�

in the odomain of �). Hene t is reduible in ontrast to our assumption.

3. � k �

0

: Sine t and t

0

di�er only at position �, tj

�

0

= t

0

j

�

0

= �(l). Hene t is

reduible in ontrast to our assumption.

ut

Lemma 3 and Lemma 4 imply the orretness of the stopping ondition: if a sub-

term is in normal form and the term \outside" the subterm is also in normal form,

then the entire term is in normal form provided that all rules are left-linear and

do not ontain the head symbol of the subterm in an argument term. The last re-

strition seems to be very strong for general term rewriting systems. But in most

funtional logi languages (SLOG [Fri85℄, K-LEAF [BGL

+

87℄, BABEL [MR92℄, ALF

[Han90℄ et.) a distintion is made between funtion symbols to onstrut data terms

(alled onstrutors) and funtion symbols to operate on data terms (alled de�ned

funtions). This is also the ase for pure funtional languages like ML [HMM86℄ or

Miranda [Tur85℄. The partition of the set of funtions symbols into onstrutors and

de�ned funtions omes with a restrition on the set of rules:

(*) Eah rule must de�ne a unique funtion, i.e., the left-hand side of the

rule must ontain a de�ned funtion as the head symbol and all argument

terms ontain variables and onstrutors but no de�ned funtion.

1

With this restrition it is lear that a subterm is reduible only if it ontains a

de�ned funtion at the top. Therefore positions with onstrutor symbols need not

be onsidered in the rewriting proess (this is essential for an eÆient implementation

of suh languages [Han91℄). In this situation the ondition on ourrenes of funtion

symbols in argument terms (in the stopping lemma) is no real restrition: sine we

try to apply rewrite rules only to subterms with a de�ned funtion symbol at the

top, the ourrene ondition of Lemma 3 is always satis�ed if the program satis�es

ondition (*).

For the rest of this setion we assume that the set of all funtion symbols is

divided into a set C of onstrutors and a set D of de�ned funtion symbols and all

1

We do not onsider equations between onstrutor terms whih are admissible in some

languages.

8



rewrite rules satisfy ondition (*) (see Setion 6 for a relaxation of this requirement).

The following algorithm desribes the optimized rewriting proess after a narrowing

step. We assume that rewriting is performed using an innermost strategy, but this

is not essential sine we an use any strategy beause of the anoniity of the term

rewriting relation. In the desription we use a set O of positions to desribe the

subterm positions where we have to try to apply a rewrite rule. The set is initialized

in the narrowing step and manipulated during the rewriting proess.

Algorithm: Perform a narrowing step and ompute the normal form

Input: Term t in normal form, narrowing position �

0

and rule l

0

! r

0

suh that

tj

�

0

and l

0

are uni�able with mgu �

0

Output: Normal form of �

0

(t[r

0

℄

�

0

)

1. Compute the mgu �

0

of tj

�

0

and l

0

2. t

0

:= �

0

(t[r

0

℄

�

0

)

3. O := funpos(t

0

; �

0

)

4. if Head(t

0

j

�

0

) 2 C then O := O [ father(t

0

; �

0

)

5. B := f� 2 O(t) j Head(tj

�

) 2 D and tj

�

ontains variables bound by �

0

and � maximal with this propertyg

6. O := O [

[

�2B

funpos(t

0

; �)

7. while O 6= ;

do let � be a maximal position in O

O := O � f�g

if there is a rewrite rule l ! r and substitution � with t

0

j

�

= �(l)

then t

0

:= t

0

[�(r)℄

�

O := O [ funpos(t

0

; �)

if Head(t

0

j

�

) 2 C then O := O [ father(t

0

; �)

where funpos(t; �) = f�

t

2 O(t) j � � �

t

and Head(tj

�

t

) 2 Dg

and father(t; �) =

8

<

:

; if � = �

f�

0

g if � = �

0

:n and Head(tj

�

0

) 2 D

father(t; �

0

) if � = �

0

:n and Head(tj

�

0

) 2 C

The �rst two steps apply the narrowing rule to the given term. Step 3 initializes

the set O with the positions of the instantiated right-hand side of the applied rule.

The addition of the father position in step 4 is neessary sine the rewriting proess

an only be terminated if the normalized subterm has a de�ned funtion symbol

at the top (by ondition (*) and Lemma 3). Step 5 omputes the potential rewrite

positions by Lemma 2, i.e., the subterm positions where a variable has been bound.

Note that only the maximal positions are stored sine the smaller positions (nearer

to the root) are added during rewriting by the funtion father. Step 6 adds all

ourrenes of de�ned funtions in these subterms. This is neessary beause the

uni�er �

0

is not normalized in general. If we use a narrowing strategy whih ensures

9



that the narrowing substitutions are always normalized like the innermost strategy

of SLOG [Fri85℄, then we an simplify step 6 to the assignment

O := O [ B

Step 7 desribes the rewriting proess where rewrite rules are only applied at posi-

tions of the restrited set O. The hoie of a maximal position in the rewriting loop

ensures that rewriting is performed in an innermost manner. If a rewrite rule an

be applied and the instantiated right-hand side has a onstrutor at the top, the

next outermost position is added to O sine in this ase we annot terminate the

rewriting proess by Lemma 3.

The orretness of this algorithm follows from the previous lemmas:

Theorem5. If all rewrite rules are left-linear and satisfy ondition (*), then the

above algorithm is orret, i.e., it omputes the normal form after the narrowing

step.

Proof. Before rewriting is started, the position set O is initialized with the subterm

positions of the instantiated right-hand side of the narrowing rule and the positions

where a variable has been bound. Rewriting is not possible at other positions by

the previous lemmas. Note that not all positions from the root to the subterms are

stored (whih must be orretly done by Lemma 2) but only the maximal positions:

the \father" of a position is only added to O if a rewrite step is possible and yields

a onstrutor symbol at this position. Otherwise, it is not neessary to try rewriting

at the father position by Lemma 3 and Lemma 4. ut

Example 2. We show a omputation of the algorithmw.r.t. the rewrite rules of Exam-

ple 1, i.e., the onstrutors are C = fa; bg and the de�ned funtions areD = ff; g; hg.

The term t = h(g(f(X)),g(f(Y)),f(g(X))) is in normal form w.r.t. these rules.

We perform a narrowing step with rule f(a)!b at position 1:1 (subterm f(X)).

{ The mgu of t=1:1 and f(a) binds X to a.

{ The narrowed term is t

0

= h(g(b),g(f(Y)),f(g(a))).

{ The position set omputed after step 6 is O = f1; 3:1g, i.e., the terms g(b) and

g(a) (sine the arguments of these terms have hanged).

{ No rewrite rule is appliable at position 1: O = f3:1g.

{ Rewrite rule g(a)!b is appliable at position 3:1: t

0

= h(g(b),g(f(Y)),f(b))

and O = f3g

{ No rule is appliable at position 3: O = ;.

Now we have omputed the new normal form h(g(b),g(f(Y)),f(b)). Note that

without our optimizations we would also try to apply all rewrite rules at positions

2:1, 2 and �. 2

We annot state a general result for the eÆieny improvement of our optimizations

beause this strongly depends on the seleted examples. In some ases there is no

improvement (if the binding of variables has the e�et that all de�ned funtion

symbols an be rewritten) where in other ases we may have a dramati improvement

10



(for instane, if Y is replaed by a large term ontaining funtion symbols but not the

variable X). But we want to remark that the overhead introdued by this inremental

rewriting tehnique is quite small (only during variable binding in a narrowing step

we have to store new information in omparison to a omplete innermost rewriting

derivation). For some typial so-alled generate-and-test programs (like permutation

sort [Fri85℄ or generation of mobiles [Han92℄) where narrowing generates a part of

the solution and rewriting tests whether it is a solution we an avoid up to 70% of

unneessary rewriting attempts.

4 Implementation of the inremental rewriting algorithm

The reader may be under the impression that the implementation of our inremental

rewriting algorithm is too omplex for an eÆient exeution in a funtional logi

language. But this depends on the hosen narrowing strategy and therefore we will

give some hints for an eÆient implementation of our algorithm.

First of all the funtion funpos seems to be ostly beause it requires a searh

through instantiated subterms after eah narrowing or rewriting step (in step 3, 6 and

7 in the algorithm). We an avoid this dynami searh by using a narrowing strategy

whih ensures that rewriting inside narrowing substitutions is not performed. For

instane, the innermost strategy of SLOG [Fri85℄ and the innermost basi strategy

[H�ol89℄ of ALF [Han91℄ have this property.

2

In this ase the ompiler an determine

all positions of de�ned funtion symbols in the right-hand side of a rewrite rule

[Han91℄ in step 3 and 7, and step 6 simpli�es to O := O [ B. Hene we an avoid

the dynami searh in the funpos funtion alls.

Seondly, it seems to be disturbing that the algorithm is based on the manage-

ment of an expliit set O of rewriting positions. But this auses no overhead in

pratie sine the implementation of the funtional logi language ALF [Han91℄ is

based on an expliit stak for storing positions. Moreover, this expliit management

of positions is the key for a simple but eÆient implementation based on an extension

of the Warren Abstrat Mahine [War83℄. Hene our inremental rewriting algorithm

an be implemented on the basis of the ALF implementation if the struture of the

position stak is modi�ed suh that the father funtion is eÆiently omputable

(in the urrent implementation there is no path from \son" to \father" nodes in the

term representation).

Hene the only remaining ritial operation is the omputation of positions where

a variable has been bound in the narrowing step (set B in step 5). This operation

is lose to the Prolog-II prediate freeze and therefore we an use a similar im-

plementation tehnique [Boi86℄. The prediate freeze(X,G) delays the exeution of

the goal G until the variable X is bound to a non-variable term. This behaviour an

2

In the innermost basi strategy the narrowing substitutions are not normalized in general.

If the goal is reduible inside a narrowing substitution, we an safely ut this derivation

without loosing ompleteness (Rety's SL-test [Ret87℄). But a narrowing strategy without

this SL-test an be eÆiently implemented in a ompiler-based system [Han90, Han91℄.

Therefore rewriting is never performed inside narrowing substitutions in ALF.

11



be implemented by onneting the variable X to the list of goals G whih should be

exeuted if X is instantiated. The uni�ation proedure must be modi�ed suh that

the goal list assoiated to a frozen variable X is exeuted if X is bound to a non-

variable term [Boi86℄. A similar tehnique an be used to implement step 5 of our

inremental rewriting algorithm. For eah goal variable x we assoiate the position

set

B(x) := f� 2 O(t) j Head(tj

�

) 2 D; x 2 Var(tj

�

); � maximal with this propertyg :

This set an be simply built up during the onstrution of a new term and updated

during rewriting and uni�ation of terms. If a variable x is bound to a term in a

narrowing step, we hange the binding algorithm so that the assoiated positions

B(x) are added to the urrent position set O. This implements steps 5 and 6 of our

algorithm.

Note that this implementation is very similar to Naish's proposal [Nai91℄ for

translating funtion de�nitions into NU-Prolog prediates with partiular \when"

delarations. The \when" delarations ensure that a funtion all is evaluated when

the arguments are suÆiently instantiated. Hene Naish's method implements a

normalization proess for a restrited lass of rewrite rules. Sine Naish does never

instantiate goal variables in an appliation of a rewrite rule (i.e., narrowing is not

inluded in his proposal), his operational semantis is inomplete w.r.t. the standard

delarative semantis for Horn lause logi with equality in ontrast to our approah.

There is one pitfall in our implementation. In ontrast to the usage of freeze

in Prolog-II or when delarations in NU-Prolog, in our ase it is possible that some

part of the goal may be deleted during the normalization proess if a rewrite rule

l ! r with Var(r) 6= Var(l) is applied. For instane, the appliation of the rule

X*0!0 to the term (Y+2)*0 deletes the subterm (Y+2). From an operational point

of view this is a positive e�et in omparison to pure logi languages beause suh

deleting rules redue the searh spae (narrowing the subterm (Y+2) is no longer

neessary). But from an implementational point of view suh deleting rules ause a

ompliation: we must update the set B(x) for eah variable x ourring in a deleted

subterm (otherwise the set O will be inonsistent). Consequently, for deleting rules

the ompiler must generate additional instrutions whih updates the position sets

assoiated to variables ourring in the deleted terms.

5 Non-linear rewrite rules

If one of the rules of the given term rewriting system R has a non-linear left-hand

side, the stopping ondition of Setion 3 annot be applied. In suh a ase we an only

restrit the set of positions where we have to start the rewriting proess (Lemma 2),

but then we have to try all positions up to the root even if the innermost subterms

are in normal form.

Example 3. Consider the following term rewriting system

f(X,X) ! b

12



g(a) ! a

h(b) ! b

and the irreduible term

f(h(h(h(g(Y)))),h(h(h(Y)))) .

We an apply a narrowing step at position 1:1:1:1 using the seond rule. This nar-

rowing step binds variable Y to a and yields the term f(h(h(h(a))),h(h(h(a)))).

Although the subterms a and h(a) are in normal form, we annot terminate the

rewriting proess sine an appliation of the �rst rewrite rule at position � yields

the term b in normal form. 2

In order to avoid suh problems we may restrit ourselves to left-linear rules as done

in other funtional logi languages like K-LEAF [BGL

+

87℄ or BABEL [MR92℄. But

we an also handle non-linear rules by a simple extension of our inremental rewriting

algorithm. Sine the only positions where a rewrite rule is appliable in ontrast to

the stopping ondition are positions with an appliable non-linear rewrite rule (see

proof of Lemma 3), we simply add these \problemati" positions to the set O in

the algorithm. For this purpose we all a funtion symbol f non-linear if there is a

rewrite rule l ! r with Head(l) = f and l is not linear. Now we add after step 6 in

the inremental rewriting algorithm the following extension of the set O:

O := O [ f� 2 O(t

0

) j Head(t

0

j

�

) is a non-linear funtion symbolg

i.e., we simply add the positions with non-linear funtions to O. This has the e�et

that rewriting is also tried at these positions.

Example 4. Consider the term rewriting system of Example 3 and the term

f(h(h(h(g(Y)))),h(h(h(Y)))) .

After the narrowing step at position 1:1:1:1 (giving the term f(h(h(h(a))),

h(h(h(a))))) the set O is initialized to

O = f�; 1:1:1; 2:1:1g

by the modi�ed algorithm. Sine the term is irreduible at positions 1:1:1 and 2:1:1,

a rewrite rule is applied at the remaining position � whih is suessful and yields

the term b. 2

6 Rules with nested funtions symbols

In Setion 3 we have required the distintion between onstrutors and de�ned fun-

tion symbols in order to use the stopping ondition. In the rewrite rules we have

the restrition (*) that argument terms do not ontain de�ned funtion symbols.

Although this restrition seems to be reasonable and is also used in many funtional

logi languages like K-LEAF [BGL

+

87℄, SLOG [Fri85℄ or BABEL [MR92℄, in some

ases it is useful to have general rewrite rules whih are only used to ompute the

13



normal form of a term (therefore the language ALF [Han91℄ allows suh rules). For

instane, Fribourg [Fri85℄ has argued that rewriting with indutive axioms an re-

due the searh spae and is justi�ed if someone is interested in ground-valid answers

(i.e., answers whih are valid for eah ground substitution applied to it). A typial

indutive axiom is rev(rev(L)) = L if rev denotes the funtion whih reverses a

list. If we allow rules whih do not satisfy restrition (*), the stopping ondition

annot be applied as in the inremental rewriting algorithm.

Example 5. Consider the rewrite rule

f(g(a)) ! a

(where f and g are de�ned funtion symbols) and a narrowing step where the rule

h(a)!a is applied to the term k(h(X),f(g(X))) giving the term k(a,f(g(a))).

Suppose that the term g(a) is irreduible. In this ase our inremental rewriting

algorithm will not try to redue the subterm f(g(a)). However, this must be done

in order to ompute the normal form of the entire term. 2

If we want to handle rules with de�ned funtion symbols in argument terms, it is

possible to extend our inremental rewriting algorithm to do this. The essential idea

is to add positions to the set O if the urrent subterm is irreduible but has a head

symbol whih ours in an argument term of a rewrite rule. For this purpose we

de�ne the level of a de�ned funtion symbol f as the set of position depths where f

ours in an argument term of a rule. To be more preise,

level(f) = fdepth(�) j there is a rule l! r and position � 6= � with Head(lj

�

) = fg

where depth(�) =

�

0 if � = �

1 + depth(�

0

) if � = �

0

:n

If a subterm tj

�

of a term is in normal form but there exists i 2 level(Head(tj

�

)),

then the entire term t may be reduible at the i-th anestor of �. Thus we must add

this position to the position set O. Hene we de�ne the i-th anestor of a position �

by

an(i; �) =

(

� if i = 0

an(i� 1; �

0

) if i > 0 and � = �

0

:n

unde�ned if i > 0 and � = �

and add the following else-branh to the �rst if-statement in step 7 in the inremental

rewriting algorithm:

else O := O [ fan(i; �) j i 2 level(Head(t

0

j

�

)) and an(i; �) is de�nedg

Example 6. Consider Example 5 where k(a,f(g(a))) is the term after the narrowing

step and O = f�; 2:1g. Sine this term is irreduible at position 2:1 and level(g) =

f1g, our modi�ed inremental rewriting algorithm extends the position set O by

the position 2 = an(1; 2:1). Thus the next rewriting step is performed at position

2 (subterm f(g(a))) whih is neessary to ompute the normal form of the entire

term. 2

14



7 Conlusions

We have presented a useful optimization for funtional logi languages based on

narrowing with normalization. This optimization is based on the observation that

rewriting an be restrited to a small number of positions after a narrowing step sine

the term was in normal form before the narrowing step has been applied. We have

given two suÆient riteria for the optimization: the starting ondition restrits the

number of term positions where the rewriting proess is initiated, and the stopping

ondition yields a riterion for the early termination of the rewriting proess. Our

presented inremental rewriting algorithm ombines both onditions. We have also

disussed tehniques for an eÆient implementation of the algorithm and extensions

to deal with rewrite rules whih have non-linear left-hand sides and nested funtion

symbols on the left-hand side.

The presented algorithm is not optimal in the sense that it avoids all unneessary

rewriting attempts. For instane, onsider the following term rewriting system

f((X)) ! X

g((a)) ! a

and the narrowing step

h(f(Y),g(Y)) ;

[1; f((X))!X; fY 7!(X)g℄

h(X,g((X))) :

Now our inremental rewriting algorithm attempts to apply a rewrite rule at posi-

tion 2 sine Y has been bound to (X) in the subterm g(Y). But a rewrite rule is

not appliable at this position beause the argument term (X) is not suÆiently

instantiated. To avoid unneessary rewrite attempts of this kind one an implement

rewrite rules as demons waiting for suÆient instantiation of the arguments of a

subterm [JD89℄. In order to redue the number of demons the rules may be trans-

lated into rules with a uniform struture on the left-hand side [MKLR90℄ so that

only one demon is attahed to eah potentially reduible subterm. An integration of

suh tehniques in a ompiler-based implementation of a funtional-logi language

is an interesting topi for future researh.

Aknowledgements. The author is grateful to Mihael Gollner, Rudolf Opalla and

Andreas Werner for interesting disussions and their omments on this paper.

Referenes

[BGL

+

87℄ P.G. Boso, E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. A omplete

semanti haraterization of K-LEAF, a logi language with partial funtions.

In Pro. 4th IEEE Internat. Symposium on Logi Programming, pp. 318{327,

San Franiso, 1987.

[BL86℄ M. Bellia and G. Levi. The Relation between Logi and Funtional Languages:

A Survey. Journal of Logi Programming (3), pp. 217{236, 1986.

[Boi86℄ P. Boizumault. A general model to implement dif and freeze. In Pro. Third In-

ternational Conferene on Logi Programming (London), pp. 585{592. Springer

LNCS 225, 1986.

15



[DJ90℄ N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, ed-

itor, Handbook of Theoretial Computer Siene, Vol. B, pp. 243{320. Elsevier,

1990.

[DL86℄ D. DeGroot and G. Lindstrom, editors. Logi Programming, Funtions, Rela-

tions, and Equations. Prentie Hall, 1986.

[Fay79℄ M.J. Fay. First-Order Uni�ation in an Equational Theory. In Pro. 4th Work-

shop on Automated Dedution, pp. 161{167, Austin (Texas), 1979. Aademi

Press.

[Fri85℄ L. Fribourg. SLOG: A Logi Programming Language Interpreter Based on

Clausal Superposition and Rewriting. In Pro. IEEE Internat. Symposium on

Logi Programming, pp. 172{184, Boston, 1985.

[Han90℄ M. Hanus. Compiling Logi Programs with Equality. In Pro. of the 2nd Int.

Workshop on Programming Language Implementation and Logi Programming,

pp. 387{401. Springer LNCS 456, 1990.

[Han91℄ M. Hanus. EÆient Implementation of Narrowing and Rewriting. In Pro. Int.

Workshop on Proessing Delarative Knowledge, pp. 344{365. Springer LNAI

567, 1991.

[Han92℄ M. Hanus. Improving Control of Logi Programs by Using Funtional Logi

Languages. In Pro. of the 4th International Symposium on Programming Lan-

guage Implementation and Logi Programming. Springer LNCS, 1992.

[HMM86℄ R. Harper, D.B. MaQueen, and R. Milner. Standard ML. LFCS Report Series

ECS-LFCS-86-2, University of Edinburgh, 1986.

[H�ol89℄ S. H�olldobler. Foundations of Equational Logi Programming. Springer LNCS

353, 1989.

[Hul80℄ J.-M. Hullot. Canonial Forms and Uni�ation. In Pro. 5th Conferene on

Automated Dedution, pp. 318{334. Springer LNCS 87, 1980.

[JD89℄ A. Josephson and N. Dershowitz. An Implementation of Narrowing. Journal of

Logi Programming (6), pp. 57{77, 1989.

[Loo91℄ R. Loogen. From Redution Mahines to Narrowing Mahines. In Pro. of the

TAPSOFT '91, pp. 438{457. Springer LNCS 494, 1991.

[MKLR90℄ J.J. Moreno-Navarro, H. Kuhen, R. Loogen, and M. Rodr��guez-Artalejo. Lazy

Narrowing in a Graph Mahine. In Pro. Seond International Conferene on

Algebrai and Logi Programming, pp. 298{317. Springer LNCS 463, 1990.

[MR92℄ J.J. Moreno-Navarro and M. Rodr��guez-Artalejo. Logi Programming with

Funtions and Prediates: The Language BABEL. Journal of Logi Program-

ming, Vol. 12, pp. 191{223, 1992.

[Nai91℄ L. Naish. Adding equations to NU-Prolog. In Pro. of the 3rd Int. Symposium

on Programming Language Implementation and Logi Programming, pp. 15{26.

Springer LNCS 528, 1991.

[Ret87℄ P. Rety. Improving basi narrowing tehniques. In Pro. of the Conferene on

Rewriting Tehniques and Appliations, pp. 228{241. Springer LNCS 256, 1987.

[Sla74℄ J.R. Slagle. Automated Theorem-Proving for Theories with Simpli�ers, Com-

mutativity, and Assoiativity. Journal of the ACM, Vol. 21, No. 4, pp. 622{642,

1974.

[Tur85℄ D. Turner. Miranda: A non-strit funtional language with polymorphi types.

In Conferene on Funtional Programming Languages and Computer Arhite-

ture, Nany, Frane, pp. 1{16. Springer LNCS 201, 1985.

[War83℄ D.H.D. Warren. An Abstrat Prolog Instrution Set. Tehnial Note 309, SRI

International, Stanford, 1983.

16


