
Logic Programs with Equational Type Specifications
(Extended Abstract)

Michael Hanus

Fachbereich Informatik, Universität Dortmund

D-4600 Dortmund 50, W. Germany

e-mail: michael@ls5.informatik.uni-dortmund.de

In Proc. Int. Conference on Algebraic and Logic Programming 1990,

pp. 70–85, Springer LNCS 463

This paper proposes a framework for logic programming with different type systems. In this framework
a typed logic program consists of a type specification and a Horn clause program which is well-typed with
respect to the type specification. The type specification defines all types which can be used in the logic
program. Relations between types are expressed by equations on the level of types. This permits the
specification of many-sorted, order-sorted, polymorphic and polymorphically order-sorted type systems.

We present the declarative semantics of our framework and a resolution procedure for typed logic pro-
grams. Resolution requires a unification procedure for typed terms which is based on a unification procedure
for the type theory. An interesting application is a type system that combines parametric polymorphism
with order-sorted typing and permits higher-order logic programming. Moreover, our framework sheds some
new light on the rôle of types in logic programming.

1 Introduction

During recent years, various attempts have been made to integrate types into logic programming languages.

The inference-based approaches ([Mis84] [XW88] among others) try to deduce the type information from an

untyped logic program. But it has been argued that untyped logic programs do not contain the type infor-

mation expected by the programmer [Nai87]. Therefore we are interested in declaration-based approaches

where type declarations are added to the programs and a type checker verifies the consistence of the program

w.r.t. the type declarations. A simple example for this approach is the type system of Turbo-Prolog which

is comparable to many-sorted Horn logic [Pad88] and has no influence on the operational behaviour of the

programs. A more flexible type system motivated from ML was proposed by Mycroft and O’Keefe [MO84].

It offers parametric polymorphism, and an extension of this type system [Han89a] allows the application of

higher-order programming techniques. In general it is necessary to consider the types at run time, but it

has been shown that for Prolog-like applications of higher-order programming all type information can be

omitted at run time [Han89c]. This type system can also be applied to a language that combines functional

and logic programming [Han90]. Another direction for typing logic programs are order-sorted type systems

where different types may be related by an inclusion relation [SNGM87]. In order-sorted logic programming

types are present at run time, but the type information can be used to avoid unnecessary computations

and reduce the search space [HV87]. Smolka [Smo89] has proposed the combination of parametric poly-

morphism and order-sorted typing for a logic programming language. These different proposals raise the

question: What is the influence of different type systems on the operational semantics of logic programs?

We want to give an answer to this question.

For this purpose we propose a framework for logic programming with different type systems. We adopt

some of the ideas of Poigné [Poi86] who has proposed a two-level approach for algebraic specifications with

higher types. In his approach each level consists of an equational specification where the first-level describes

a type structure and the second level is an equational specification with sort expressions from the first level.

While he has used the approach for the specification of the typed λ-calculus, we will use a similar approach

for a new framework for typed logic programming. In our two-level approach the first level consists of a

1



specification of a type structure. It contains all types which will be used inside the logic program and some

relations between types specified by equations. Hence the first level is an equational specification [EM85].

The second level is based on the specified type structure and consists of a specification of the types of all

variables, constants, functions and predicates occurring in the logic program and a set of Horn clauses which

must be well-typed with respect to the type specification. The operational semantics, which is resolution

with a unification procedure on well-typed terms, ensures that type errors do not occur while executing

well-typed programs. We give some examples to show the basic ideas.

Example 1.1 Parametric polymorphism is used for defining universal data structures which can be applied

to different concrete types. A classical example are polymorphic lists which can be applied to integers giving

lists of integers, to Booleans giving lists of Booleans, etc. The following signature specifies a type structure

for a program which uses the basic types of integers and Booleans and the polymorphic types of lists and

pairs of elements:

TYPEOPS int: → type
bool: → type
list: type → type
pair: type, type → type

This type structure has only a single sort type. Hence all types can be used as arguments for the polymorphic

type constructors list and pair. The set of all types specified by this signature is the set of all well-formed

terms which may contain some type variables. For instance, types w.r.t. the above specification are

int bool list(int) list(α) pair(bool, β) pair(α, list(α)) · · ·

where α and β are type variables. A typed logic program consists of type declarations for variables, functions
and predicates (constants are functions without arguments) and a set of well-typed Horn clauses. The
following program defines the polymorphic predicate member (throughout this paper we use the Prolog
notation for lists [SS86]):

func []: → list(α)
func [..|..]: α, list(α) → list(α)

pred member: α, list(α)

vars L:list(α), E, E1:α

member(E,[E|L]) ←
member(E,[E1|L]) ← member(E,L)

The clauses for member are well-typed in our sense (cf. section 2) w.r.t. the type definitions.

We view subtyping as the possibility of applying a function or predicate to all types which are subtypes

of the declared type of the function or predicate. Hence we specify a type that has some subtypes as a

function which is the identity on the subtypes. A similar approach has been proposed by Conrad and

Furbach [CF88] where sorts are viewed as functions on terms. They realize a sort s as a function s with the

property s(t) = t if t is a term of sort s. Since value functions like + and sort functions are merged in their

approach, they may obtain results which do not correspond to results in order-sorted logic.1 Therefore we

will have a clear distinction between types (sort functions) and value functions and predicates. Our method

will be illustrated by the next example.

Example 1.2 We want to specify a type structure with types nat, zero and posint where zero and posint
are subtypes of nat. Hence we specify nat as a function on types which is the identity on zero and posint:

1E.g., it is possible to derive the equation 0 = 0/0 if the division function is only specified for second arguments with non-zero

values.

2



TYPEOPS zero: → type
posint: → type
nat: type → type

TYPEAXIOMS nat(zero) = zero
nat(posint) = posint

The type axioms state that nat is not a free type constructor like list but it is the identity on the subtypes of
nat. It is possible to apply nat to other types than zero and posint, but our logic programs which are based
on this specification do not contain any ground terms of type nat(τ) where τ 6∈ {zero, posint}. Therefore
the type nat(α) describes the union of zero and posint in the initial model of the following program:

func 0: → zero
func s: nat(α) → posint

pred plus: nat(α), nat(β), nat(γ)

vars N, N1:nat(α), N2:nat(β), N3:nat(γ)

plus(0,N,N) ←
plus(s(N1),N2,s(N3)) ← plus(N1,N2,N3)

The clauses for plus are well-typed in our sense (cf. section 2) w.r.t. the type definitions (note that the type

of the first argument of the clause head is “zero” in the first and “posint” in the second clause). Since the

argument types of plus are defined to be arbitrary naturals, we can apply plus with an arbitrary subtype

of the naturals. It is possible to build nonsensical types like nat(bool) (if the basic type bool is added to

the type structure), but our program does not contain a ground term of this type and therefore such a type

denotes an empty set in the initial model of this program. Moreover, our proof procedure (resolution with

typed unifiers, cf. section 5) ensures that such types do not occur in the computation if they are not present

in the initial goal.

Since order-sorted type structures are polymorphic type specifications with equational axioms which

describe the subsort relationship, it is clear that polymorphic and order-sorted type structures can be

combined in our framework. It is also possible to express subsort relationships between polymorphic types:

Example 1.3 We want to specifiy a type structure for polymorphic lists so that the polymorphic type
list is the union of elist (empty lists) and nelist (non-empty lists). Therefore we have to express the
subtype relationships elist < list(α) and nelist(α) < list(α). As in the previous example, we add an
additional argument to a type constructor having some subtypes and express the subtype relationship by
type equations:

TYPEOPS elist: → type
nelist: type → type
list: type, type → type

TYPEAXIOMS list(α, elist) = elist
list(α, nelist(α)) = nelist(α)

The append-program is specified w.r.t. this type structure as follows:

func []: → elist
func [..|..]: α, list(α, β) → nelist(α)

pred append: list(α, β1), list(α, β2), list(α, β3)

vars R:list(α, β1), L:list(α, β2), RL:list(α, β3), E:α

append([],L,L) ←
append([E|R],L,[E|RL]) ← append(R,L,RL)

3



The type variable α in all argument types of append expresses that append concatenates lists of the same

element type whereas the different type variables β1, β2, β3 show that an arbitrary subtype of an α-list

(empty or non-empty list) can be used in each argument.

The example shows that logic programs with a polymorphically order-sorted type structure are allowed

in our framework. Moreover, in section 6 we will give an example of a logic program with higher-order

predicates which is well-typed in our framework.

In the following we present our framework for typed logic programming in detail. The main topics of

this paper are:

• In our two-level approach to typed logic programming the first level is a specification of the basic

type structure, and the second level contains a well-typed logic program which is based on the given

type structure. The type structure is specified by a many-sorted signature with equational axioms. In

contrast to other approaches to polymorphic type systems for logic programming, we do not restrict

the use of types inside program clauses.

• We present a sound and complete resolution method for typed logic programs. For the soundness of

the resolution method it is necessary to define the unification procedure on well-typed terms which

is based on a unification procedure for the equational type theory. This sheds some new light on the

rôle of types in logic programming since the complexity of the type structure directly influences the

complexity of the unification procedure. A powerful type structure (e.g., polymorphic types combined

with subtypes) implies a complex unification procedure.

• We show that higher-order programming techniques can be applied in our general framework. We give

an example of a typed logic program with higher-order predicates which is ill-typed in the sense of

other polymorphic type systems for logic programming.

• The presented approach is a framework for the definition of different type structures for logic pro-

grams. The type structure influences only the unification procedure for the execution of the program.

Therefore different type structures can be used for different applications where the specification of

the type structure can be compiled into a specific unification procedure. It is not necessary to use a

powerful order-sorted unification procedure for simple applications like those possible in Turbo-Prolog.

This paper is organized as follows. In the next section the basic notions and the syntax of typed logic pro-

grams are defined. Section 3 defines the semantics of typed logic programs which is based on interpretations

in algebraic structures. Section 4 presents a solution to the unification problem of typed terms which is

based on a given unification procedure for the type theory. The unification procedure on typed terms will be

used for the resolution method presented in section 5. Section 6 concludes with an interesting application of

our framework. Detailed definitions and the proofs of all theorems are contained in the full version [Han89b]

of this paper and omitted from this extended abstract.

2 Logic programs with equational type specifications

Since we use (many-sorted) equational logic for the specification of type structures, we assume familiarity

with basic notions from algebraic specifications as to be found in [EM85]. We call T = (Ts, Top, Tax) a

specification of types if T is an equational specification, i.e., Ts is a set of sorts (in our examples we have

only one sort type), Top is a set of operations on these sorts and Tax is a set of equations. Constants from

T are called basic types. By X we denote a set of type variables and TT (X) denotes the set (precisely:

algebra) of all well-formed terms w.r.t. T and X. A type expression or type is a term from TT (X). A

type substitution σ is a T -homomorphism σ:TT (X) → TT (X). Two types τ1, τ2 ∈ TT (X) are called

T -equal, denoted τ1 =T τ2, if τ1 = τ2 is a consequence of the axioms in T .

A polymorphic signature Σ for logic programs is a triple (T ,F ,P) with:

• T is a specification of types with TT ,s 6= ∅ for all s ∈ Ts.

4



Variable:
V ||=x:τ ′

(x:τ ∈ V and τ =T τ ′)

Term:
V ||= t1:τ1, . . . , V ||= tn:τn
V ||= f(t1:τ1, . . . , tn:τn):τ

′

(f :τf ∈ F so that there exists a type substitution σ
with σ(τf ) = τ1, . . . , τn → τ and τ =T τ ′, n ≥ 0)

Atom:
V ||= t1:τ1, . . . , V ||= tn:τn
V ||= p(t1:τ1, . . . , tn:τn)

(p:τp ∈ P so that there exists a type substitution σ
with σ(τp) = τ1, . . . , τn, n ≥ 0)

Goal:
V ||=L1, . . . , V ||=Ln

V ||=L1, . . . , Ln

(each Li is an atom, i.e., has the form p(· · ·),
i = 1, . . . , n)

Clause:
V ||=L, V ||=G

V ||=L← G
(L is an atom and G is a goal)

Figure 1: Typing rules for program clauses

• F is a set of function declarations of the form f :τ1, . . . , τn → τ with τi, τ ∈ TT (X), n ≥ 0.

• P is a set of predicate declarations of the form p:τ1, . . . , τn with τi ∈ TT (X) (n ≥ 0).

The type specifications together with the definitions of function and predicate types in example 1.1, 1.2

and 1.3 are examples for polymorphic signatures. In the rest of this paper we assume that Σ = (T ,F ,P) is a

polymorphic signature for logic programs. Similarly to other typed logics, variables in a typed logic program

are not quantified over all objects, but vary only over objects of a particular type. Thus each variable is

annotated with a type expression: Let V ar be an infinite set of variable names that are distinguishable

from symbols in polymorphic signatures and type variables. Then a set V of elements of the form x:τ where

x ∈ V ar and τ ∈ TT (X) is called a set of typed variables if x:τ, x:τ ′ ∈ V implies τ = τ ′. We only consider

sets of typed variables with unique types so that type errors can be detected at compile time. For instance,

if a variable in a clause occurs in two different contexts so that it has type “int” in one context and type

“list(int)” in the other context, this indicates a type error if all variables in a clause are required to have

unique types. In the rest of this paper we assume that V, V ′, V0, V1, . . . denote sets of typed variables.

We embed types in terms, i.e., each symbol in a term is annotated with an appropriate type expression.

These annotations are useful for the unification of typed terms (see section 4.2). We call L ← G a typed

program clause if there is a set of typed variables V and V ||=L ← G is derivable by the inference rules in

figure 1. The typing rules show that both parametric polymorphism and subtype polymorphism are covered

by our framework: If the declared type of a function or predicate contains type variables, then this function

or predicate can be applied to any type which is the result of replacing the type variables by other types

(parametric polymorphism). If the type specification contains subtype relations as in example 1.2, then a

function or predicate with declared argument type nat(α) can also be applied to the subtypes nat(zero)

(=T zero) and nat(posint) (=T posint).
Note that we have no restrictions on the use of types and type variables in the left-hand side of program

clauses in contrast to [MO84] [Smo89] and similar polymorphic type systems.2 For instance, it is allowed to
add the clause

member(2,[1,2,3]) ←

to the program in example 1.1. By dropping this restriction it is also possible to apply higher-order pro-

gramming techniques in our framework (cf. section 6).

We call variables, constants and composite terms derivable by these inference rules (Σ,X, V )-terms or

well-typed terms. TermΣ(X,V ) denotes the set of all (Σ, X, V )-terms. Well-typed or (Σ, X, V )-atoms,

-goals and -clauses are similarly defined (a goal is a set of atoms, but for convenience we denote it without

2In these type systems the left-hand side of a clause for a polymorphic predicate must have a type which is equivalent to the

declared type of the predicate.

5



curly brackets). A Σ-term (atom, goal, clause) is a (Σ, X, V )-term (atom, goal, clause) for some set of

typed variables V .

In the following, if t is a syntactic construction (type, term, atom, . . .), tvar(t) and var(t) will denote

the set of type variables and typed variables that occur in t, respectively (i.e., var(t) is a set of typed

variables so that t is a (Σ, X, var(t))-term, atom, . . .). For instance, if Tax = {s1(s3) = s3, s2(s3) = s3}

and t = f(X:s1(s3), X:s2(s3)):s3, then both {X:s3} and {X:s1(s3)} satisfy the definition of var(t), but it

is always the case that these different sets are T -equal sets of typed variables. Therefore we can choose one

of these sets as var(t).

A typed logic program or typed Horn clause program P = (Σ, C) consists of a polymorphic

signature Σ and a set C of Σ-clauses.

Corollary 2.1 If t:τ is a well-typed term and τ =T τ ′, then t:τ ′ is also a well-typed term.

Since it is clear form the context, we will omit the type annotations in the clauses of example programs.
Therefore we have written the clauses of the examples in the first chapter without type annotations but we
have defined the types of the variables. For instance, the clause

plus(0,N,N) ←

in example 1.2 denotes the fully typed clause

plus(0:nat(zero),N:nat(α),N:nat(α)) ←

This clause is well-typed because “nat(zero), nat(α), nat(α)” is an instance of the declared type

“nat(α), nat(β), nat(γ)” of the predicate plus and 0:nat(zero) is a well-typed term since nat(zero) =T zero

(where T is the type specification of example 1.2).

3 Semantics of typed logic programs

Typed logic programs are interpreted by algebraic structures similar to [Poi86]. An interpretation of a

typed logic program consists of an algebra that satisfies the type specification and a structure for the

derived polymorphic signature. A structure is an interpretation of types (elements of sort type) as sets,

function symbols as operations on these sets and predicate symbols as relations between these sets. Type

variables vary over all types of the interpretation and typed variables vary over appropriate carrier sets. We

outline the necessary notions.

If T = (Ts, Top, Tax) is a specification of types, a T -algebra A = (TsA, T opA) which satisfies all

equations from Tax is also called T -type algebra. The signature Σ(A) = (TsA,FA,PA) derived from

Σ and A is defined by

FA := {f :σ(τf ) | f :τf ∈ F , σ:X → TsA is a type variable assignment}

PA := {p:σ(τp) | p:τp ∈ P, σ:X → TsA is a type variable assignment}

An interpretation of a polymorphic signature Σ is a T -type algebra A = (TsA, T opA) together with

a Σ(A)-structure (S, δ), which consists of a TsA-sorted set S (the carrier of the interpretation) and a

denotation δ with:

1. If f :τ1, . . . , τn → τ ∈ FA, then δf :τ1,...,τn→τ : Sτ1 × · · · × Sτn → Sτ is a function.

2. If p:τ1, . . . , τn ∈ PA, then δp:τ1,...,τn ⊆ Sτ1 × · · · × Sτn is a relation.

If A and A′ are T -type algebras, then every T -homomorphism σ:A→ A′ induces a signature morphism

σ: Σ(A) → Σ(A′) and a forgetful functor Uσ:CatΣ(A′) → CatΣ(A) from the category of Σ(A′)-structures

into the category of Σ(A)-structures (for details, see [EM85]). Therefore we define a Σ-homomorphism

from a Σ-interpretation (A,S, δ) into another Σ-interpretation (A′, S′, δ′) as a pair (σ, h), where σ:A→ A′ is

a T -homomorphism and h: (S, δ)→ Uσ((S
′, δ′)) is a Σ(A)-homomorphism. The class of all Σ-interpretations

with the composition (σ′, h′) ◦ (σ, h) := (σ′ ◦ σ, Uσ(h
′) ◦ h) of two Σ-homomorphisms is a category.

A homomorphism in our typed framework consists of a mapping between type algebras and a mapping

between appropriate structures. Consequently, a variable assignment in the typed framework maps type

6



variables into types and typed variables into objects of appropriate types: If I = ((TsA, T opA), S, δ) is a

Σ-interpretation, then a variable assignment for (X,V ) in I is a pair of mappings v = (vX , vV ) where

vX :X → TsA is a type variable assignment and vV :V → S′ with (S′, δ′) := UvX ((S, δ)) and vV (x:τ) ∈ S′
τ

(= SvX(τ)) for all x:τ ∈ V .

In many-sorted logic, a canonical interpretation for a signature is the term interpretation where the

carrier sets consist of well-typed terms. In a term interpretation every variable assignment can be uniquely

extended to a homomorphism. In our typed framework the situation is more complicated because a variable

may correspond to syntactically different terms. For instance, if s1 = s2 ∈ Tax, then the variable x:s1 ∈ V

corresponds to the (Σ, X, V )-terms x:s1 and x:s2. In order to identify such syntactically different terms, we

define canonical terms as terms where type annotations are replaced by equivalence classes of types. For this

purpose we define a mapping C which replaces all type annotations in a typed term by equivalence classes

of types ([τ ] denotes the equivalence class of the type τ defined by [τ ] = {τ ′ | τ =T τ ′}):

C(x:τ ′) := x:[τ ] for all x:τ ∈ V and τ ′ =T τ

C(f(t1:τ1, . . . , tn:τn):τ) := f(C(t1:τ1), . . . , C(tn:τn)):[τ ] for all f(t1:τ1, . . . , tn:τn):τ ∈ TermΣ(X,V ) (n ≥ 0)

CTermΣ(X,V ) := {C(t:τ) | t:τ ∈ TermΣ(X,V )} is the set of canonical terms. Now we are able to

define the canonical term interpretation TΣ(X,V ) over X and V : TΣ(X,V ) := (TTax(X), S, δ), where

1. TTax(X) := TT (X)/ ≡Tax is the quotient of the algebra of type expressions by the congruence relation

≡Tax generated by the axioms in the type specification T = (Ts, Top, Tax) (the elements of the

domain of TTax(X) are equivalence classes of types).

2. S[τ ] := {t:[τ ] | t:[τ ] ∈ CTermΣ(X,V )} for all [τ ] ∈ TTax(X),

3. If f :[τ1], . . . , [τn]→ [τ ] ∈ FTTax(X) and ti:[τi] ∈ S[τi] for i = 1, . . . , n, then

δf :[τ1],...,[τn]→[τ ](t1:[τ1], . . . , tn:[τn]) := f(t1:[τ1], . . . , tn:[τn]):[τ ]

4. δp:[τ1],...,[τn] := ∅ for all p:[τ1], . . . , [τn] ∈ PTTax(X).

The mappings δf :[τ1],...,[τn]→[τ ] in the definition are well-defined by corollary 2.1. Now we are able to state

that any variable assignment can be uniquely extended to a homomorphism:

Lemma 3.1 Let (A,S, δ) be a Σ-interpretation and v = (vX , vV ) be an assignment for (X,V ) in (A,S, δ).

There exists a unique Σ-homomorphism (σ, h) from TΣ(X,V ) into (A,S, δ) with σ([α]) = vX(α) for all

α ∈ X and h(x:[τ ]) = vV (x:τ) for all x:τ ∈ V .

This lemma is only valid if TΣ(X,V ) and the T -algebra A satisfies all equations from Tax. If this is not

the case, there exist several different Σ-homomorphisms which extend the variable assignment. For instance,

if s1 = s2 ∈ Tax and A has different interpretations of the sorts s1 and s2, then the terms x:s1 and x:s2
may be mapped into different values by different homomorphisms, provided that x:s1 ∈ V .

As a special case (X = V = ∅) the lemma shows that every ground term without type variables

corresponds to a unique value in a given Σ-interpretation. Generally, any variable assignment v can be

extended to a Σ-homomorphism in a unique way. In the following we denote this Σ-homomorphism again

by v. Since vX and vV are only applied to equivalence classes of type expressions and canonical terms,

respectively, we omit the indices X and V and write v for both vX and vV .

We are not interested in all interpretations of a polymorphic signature but only in those interpretations

that satisfy the clauses of a given typed logic program. In order to formalize that we define the validity of

atoms, goals and clauses relative to a given Σ-interpretation I = (A,S, δ):

• Let v be an assignment for (X,V ) in I.

I, v |= L if L = p(t1:τ1, . . . , tn:τn) is a (Σ, X, V )-atom with (v(C(t1:τ1)), . . . , v(C(tn:τn))) ∈ δ′p:[τ1],...,[τn]
where Uv((S, δ)) = (S′, δ′), i.e., δ′p:[τ1],...,[τn] = δp:v([τ1]),...,v([τn]).

I, v |= G if G is a (Σ, X, V )-goal with I, v |= L for all L ∈ G

7



I, v |= L← G if L← G is a (Σ, X, V )-clause where I, v |= G implies I, v |= L

• I, V |= F if F is a (Σ, X, V )-atom, -goal or -clause with I, v |= F for all variable assignments v for

(X,V ) in I

We say “L is valid in I” if I is a Σ-interpretation with I, var(L) |= L (analogously for goals and clauses).

A Σ-interpretation I = (A,S, δ) is called model for a typed logic program (Σ, C) if all clauses from C are

valid in I. A (Σ, X, V )-goal G is called valid in (Σ, C) relative to V if I, V |= G for every model I of (Σ, C).

We shall write: (Σ,C, V ) |= G.

This notion of validity is the extension of validity in untyped Horn clause logic to the typed case: In

untyped Horn clause logic an atom, goal or clause is said to be true iff it is true for all variable assignments.

In the typed case an atom, goal or clause is said to be true iff it is true for all assignments of type variables

and typed variables. The reason for the definition of validity relative to a set of variables is that carrier sets

in our interpretations may be empty in contrast to untyped Horn logic. This is also the case in many-sorted

logic [GM84]. Validity relative to variables is different from validity in the sense of untyped logic. An

example for such a difference can be found in [Han89a], p. 231. Validity in our sense is equivalent to validity

in the sense of untyped logic if the types of the variables denote non-empty sets in all interpretations. But

a requirement for non-empty carrier sets is not reasonable in the context of polymorphic types. Similarly

to untyped Horn clause logic it can be shown that there exists an initial model for any typed logic program.

The carrier set of this initial model contains all canonical terms without type variables and typed variables.

Example 3.2 The following interpretation is a model for the program of example 1.2. The type specification
is interpreted by the T -type algebra A = (TsA, T opA) where TsA = {nat, zero, posint} and TopA contains
the functions zeroA with zeroA() = zero, posintA with posintA() = posint, and natA with natA(τ) = τ for
all τ ∈ TsA. The carrier sets of the interpretation are:

Szero = {0}
Sposint = { n ∈ Nat | n > 0 }
Snat = Szero ∪ Sposint

The constant 0 and the function s are interpreted as follows:

δ0:→ zero = 0
δs:zero → posint(0) = 1
δs:posint → posint(n) = n+ 1 for all n ∈ Sposint

δs:nat → posint(n) = n+ 1 for all n ∈ Snat

δplus:nat, nat, nat = {(n1, n2, n3) ∈ Nat3 | n1 + n2 = n3}
. . .

The remaining interpretations of plus are the restriction of δplus:nat,nat,nat to appropriate subsets. It is easy

to show that this interpretation is a model.

4 Unification

In order to define the semantics of typed logic programs we have used canonical terms which are annotated

with equivalence classes of types. Since these equivalence classes are sets which may contain an infinite

number of elements, this representation is unsuitable for a proof procedure like resolution. The resolution

procedure should work on well-typed terms which can be easily handled. Therefore we have to define

substitutions on well-typed terms and introduce a relation on well-typed terms that establishes the link to

canonical terms.

4.1 Typed substitutions

Let µ:X → TT (X) be a type variable assignment and val:V → TermΣ(X,V ′) be a mapping from typed

variables into well-typed terms over X and V ′ with val(x:τ) = t:µ(τ) for all x:τ ∈ V , i.e., typed variables of

sort τ are mapped into well-typed terms of type µ(τ). We extend the mappings µ and val to mappings on

types and well-typed terms, respectively, in the following way:

8



• µ(h(τ1, . . . , τn)) = h(µ(τ1), . . . , µ(τn)) for all n-ary operation symbols h in T (n ≥ 0) and all appropri-

ate types τ1, . . . , τn ∈ TT (X).

• val(x:τ ′) = t:µ(τ ′) for all x:τ ∈ V with val(x:τ) = t:µ(τ) and τ ′ =T τ .

• val(f(t1:τ1, . . . , tn:τn):τ) = f(val(t1:τ1), . . . , val(tn:τn)):µ(τ) for all (non-variable) well-typed terms

f(t1:τ1, . . . , tn:τn):τ ∈ TermΣ(X,V ), n ≥ 0.

It is easy to show that val maps well-typed terms into well-typed terms by this definition. The mappings are

similarly extended on atoms, goals and clauses. We call (µ, val) a typed substitution. SubΣ(X,V, V ′)

denotes the class of all typed substitutions from (TT (X), T ermΣ(X,V )) into (TT (X), T ermΣ(X,V ′)). A

typed substitution keeps the set of type variables X but may change the set of typed variables because the

types of the variables influence validity (see section 3). Sometimes we represent typed substitutions by sets.

For instance, the set

σ = {α/nat, x:α/0:nat}

represents a typed substitution that replaces the type variable α by the type nat and the typed variable x:α

by the term 0:nat. Hence the result of applying σ to the atom p(x:α, y:α) is the atom p(0:nat, y:nat).

The following lemma states the relationship between typed substitutions and Σ-homomorphisms on

canonical term interpretations:

Lemma 4.1 Let (µ, val) ∈ SubΣ(X,V, V ′) be a typed substitution. Then there exists a unique Σ-

homomorphism σ from TΣ(X,V ) into TΣ(X,V ′) with

• σ([α]) = [µ(α)] for all α ∈ X

• σ(x:[τ ]) = C(val(x:τ)) for all x:τ ∈ V

We want to relate terms that are “equal w.r.t. the given type structure”. For that purpose we define

an important relation on well-typed terms: Two Σ-terms t and t′ are called T -equal, denoted t =T t′,

if C(t) = C(t′). T -equality on atoms is analogously defined. For instance, if the type specification of

example 1.2 is given, then 0:nat(zero) =T 0:zero and N:posint =T N:nat(posint). The next lemma shows

that T -equal atoms have the same meaning in all interpretations:

Lemma 4.2 Let Σ be a polymorphic signature, V be a set of typed variables, and L1 and L2 be two T -equal

(Σ, X, V )-atoms. If I is a Σ-interpretation, then: I, V |= L1 ⇐⇒ I, V |= L2

4.2 A unification procedure for typed terms

The basic operation in a resolution step is the computation of a unifier for two atoms (see next section). As

in order-sorted logic, the unification problem is not unitary in our general framework and therefore complete

sets of unifiers must be considered. This section defines the unification w.r.t. a type specification T and

presents a non-deterministic algorithm for computing complete sets of unifiers.

Example 4.3 Consider example 1.2. The first clause for plus

plus(0:nat(zero),N:nat(α),N:nat(α)) ←

cannot be applied to prove the goal

plus(N1:nat(posint),N2:nat(β),N3:nat(γ))

since this would cause the binding of variable N1 to 0 which yields the ill-typed term 0:nat(posint). In
order to avoid such bindings, the unification procedure has to take into account that N1 and 0 have the
non-unifiable types nat(posint) and nat(zero). On the other hand, if the clause

p(N:nat(zero)) ← · · ·

is applied to prove the goal

p(N1:nat(α))

then the variable N1 is constrained to type nat(zero) which may avoid some unnecessary search and back-

tracking steps in the subsequent proof. Therefore the unification procedure has to consider the types of the

terms. An untyped unification cannot be applied in our framework.

9



(T) (σ, 〈t1:τ1
.
= t2:τ2, Er〉)

unif
=⇒ (φ ◦ σ, 〈φ(t1:τ1)

.
= φ(t2:τ2), φ(Er)〉)

if φ ∈ CSUT (τ1, τ2)

(E1) (σ, 〈x:τ
.
= t:τ ′, Er〉)

unif
=⇒ (σ′ ◦ σ, σ′(Er))

if τ =T τ ′, x ∈ V ar, x does not occur in t:τ ′ and σ′ = {x:τ/t:τ}

(E2) (σ, 〈t:τ ′
.
= x:τ, Er〉)

unif
=⇒ (σ′ ◦ σ, σ′(Er))

if τ =T τ ′, x ∈ V ar, x does not occur in t:τ ′ and σ′ = {x:τ/t:τ}

(D) (σ, 〈f(t1, . . . , tn):τ
.
= f(t′1, . . . , t

′
n):τ

′, Er〉)
unif
=⇒ (σ, 〈t1

.
= t′1, . . . , tn

.
= t′n, Er〉)

if τ =T τ ′ (n ≥ 0)

Figure 2: Rules for T -unification of well-typed terms. In the first rule (T) the type substitution φ is
extended to a typed substitution by φ(x:τ) := x:φ(τ) for all x:τ ∈ V ′ if σ ∈ SubΣ(X,V, V ′).

We have mentioned that the resolution procedure should manipulate well-typed terms rather than canon-

ical terms. Therefore we have introduced typed substitutions which are mappings on type expressions and

well-typed terms and directly related to Σ-homomorphisms between canonical term interpretations. Hence

we want to define a unifier w.r.t. a type specification T as a distinct typed substitution. Since the com-

position of two typed substitutions is again a typed substitution, we can define the following notions (we

assume that V, V1, V2 are sets of typed variables):

• Let σ, σ′ ∈ SubΣ(X,V, V1) be typed substitutions. We write σ =T σ′ iff σ(α) =T σ′(α) for all α ∈ X

and σ(x:τ) =T σ′(x:τ) for all x:τ ∈ V .

• Let σ ∈ SubΣ(X,V, V1) and σ′ ∈ SubΣ(X,V, V2) be typed substitutions. σ is more general than σ′

w.r.t. T , denoted σ ≤T σ′, iff there exists φ ∈ SubΣ(X,V1, V2) with φ ◦ σ =T σ′.

• The (Σ, X, V )-terms t and t′ are T -unifiable if there exists a typed substitution σ ∈ SubΣ(X,V, V ′)

with σ(t) =T σ(t′) for a set of typed variables V ′. In this case σ is called a T -unifier for t and t′. By

SUT (t, t
′) we denote the set of all T -unifiers for t and t′.

• Let t and t′ be (Σ, X, V )-terms. We call a set of typed substitutions CSUT (t, t
′) a complete set of

T -unifiers for t and t′ if the following conditions hold:

– CSUT (t, t
′) ⊆ SUT (t, t

′)

– For all σ′ ∈ SUT (t, t
′) there exists a typed substitution σ ∈ CSUT (t, t

′) with σ ≤T σ′.

T -unifiers and complete sets of T -unifiers for type expressions are analogously defined as particular (sets

of) type substitutions.

Obviously, the set of all T -unifiers is also a complete set of T -unifiers, but usually we are interested

in algorithms which enumerate a complete set of T -unifiers with some minimality condition. We do not

discuss this in detail here. We assume a given algorithm that enumerates a complete set of T -unifiers for

two arbitrary type expressions and construct an algorithm which enumerates a complete set of T -unifiers for

two arbitrary well-typed terms. We formulate the algorithm as a non-deterministic procedure for computing

a T -unifier for a given list of pairs of well-typed terms.

For this purpose we define a binary relation
unif
=⇒ on pairs of the form (σ,E) where σ is a typed substitution

and E is a list of appropriate equations, i.e., if σ ∈ SubΣ(X,V, V ′) then E is a list of pairs of (Σ, X, V ′)-

terms. We write 〈t
.
= t′, Er〉 for an equation list where the pair (t, t′) is the first equation and Er is the list of

the remaining equations. The relation
unif
=⇒ is defined by the rules in figure 2. In the first rule (T) the result

types of the left-hand side and the right-hand side of the first equation are unified by a T -unifier, i.e., the

result types are T -equal after an application of this rule. T -equality of these result types is a precondition

for the applicability of the other rules. The rules (E1) and (E2) eliminate an equation containing a variable

10



in one side. The typed substitution σ′ in these elimination rules is well-defined since t:τ is well-typed by

τ =T τ ′ and corollary 2.1. The rule (D) decomposes an equation if the left-hand side and the right-hand

side are compound terms with the same main functor and arity.

Let
unif
=⇒

+

be the transitive closure of
unif
=⇒. The result of unifying the (Σ, X, V )-terms t and t′ is the set

Unif(t, t′) := { σ | (id, 〈t
.
= t′〉)

unif
=⇒

+

(σ, 〈〉) }

where id is the identity in SubΣ(X,V, V ) and 〈〉 denotes the empty list of equations.

Note that
unif
=⇒

+

is an extension of Robinson’s unification algorithm [Rob65]: If one term is a variable

which does not occur in the other term, then this variable is bound to the other term. If two composite terms

have to be unified, then all corresponding components of the terms are unified. The only (but essential)

difference is that the types of two terms are T -unified before the terms will be unified.

It is easy two show that any
unif
=⇒-sequence terminates. Moreover, Unif(t, t′) is a complete set of T -unifiers

for t and t′:

Theorem 4.4 (T -unification) Let t and t′ be (Σ, X, V )-terms. Then Unif(t, t′) is a complete set of

T -unifiers.

Example 4.5 Consider the polymorphic signature of example 1.2. The terms 0:zero and N:nat(α) should be

unified by our unification procedure. First, the types of terms zero and nat(α) are T -unified and the result is

the T -unifier {α/zero}. Then N is bound to 0 and the result is the T -unifier {α/zero, N:nat(α)/0:nat(zero)}.

For the unification of the terms s(N1:nat(posint)):posint and s(N2:nat(α)):nat(posint) the following steps

are performed:

• The types posint and nat(posint) are T -unified. The result is the identity on type expressions since

these types are T -equal.

• The terms N1:nat(posint) and N2:nat(α) are unified in the next unification step.

• The types nat(posint) and nat(α) are T -unified. The result is the type substitution {α/posint}.

• N2 is bound to N1 (or vice versa). Thus the complete result of the unification is the typed substitution

{α/posint, N2:nat(α)/N1:nat(posint)}

Example 4.6 Consider the following type specification T :

TYPEOPS s0: → type
s1: type → type
s2: type → type

TYPEAXIOMS s1(s0) = s0
s2(s0) = s0

Thus s0 is a common subtype of s1 and s2. The unification of the typed terms X:s1(α) and Y:s2(β) requires

a T -unifier for the type expressions s1(α) and s2(β) which can be computed by the narrowing procedure

(see remarks at the end of section 5). Hence the type substitution {α/s0, β/s0} is a T -unifier for the type

expressions s1(α) and s2(β) and the typed substitution

{α/s0, β/s0, X:s1(α)/Y:s1(s0)}

is a T -unifier for the terms X:s1(α) and Y:s2(β). Therefore the variables X and Y are constrained to the

common subsort s0 by the unification procedure (note the analogy to order-sorted unification [SNGM87]).

In the next section we will see that resolution is a sound and complete proof procedure for typed logic

programs if the unification procedure used in the resolution steps computes a complete set of T -unifiers.

Therefore the unification procedure presented in this section gives us some information about the rôle of

11



different type systems for logic programming. We have seen that the classical unification algorithm of

Robinson can be adapted to the typed framework if the types of terms are unified before unifying the terms.

Hence different type structures influences the complexity of the unification procedure. For the general case

a complex procedure for the unification of type terms w.r.t. the equational type specification is necessary.

But for simpler type structures a less complex unification procedure may be sufficient:

• If the type structure is many-sorted without overloading, i.e., there are only basic types and no

equations in the type structure and there is exactly one type declaration for each function and predicate

symbol, then all types can be omitted while unifying two terms or atoms since two composite terms

or atoms with the same functor or predicate, respectively, have always the same type.

• If the type structure is polymorphic without equations between types, then the T -unifier for two types

is the unifier of the type expressions in the free type term algebra. Hence there exists a most general

unifier for two unifiable type terms which can be computed by Robinson’s unification algorithm.

This implies the existence of a most general unifier for two T -unifiable typed terms and Robinson’s

unification algorithm can be used as a T -unification procedure on typed terms if type expressions

are represented as first-order terms (cf. [Han89a]). Moreover, if the polymorphic signature and the

typed program satisfy some additional restrictions, it can be shown that such programs are executable

without any type information at run time [Han89c]. The type system of Mycroft and O’Keefe [MO84]

is a special case of a polymorphic type structure.

• If the type structure is order-sorted, i.e., the type specification contains equations between types, then

there does not exist a most general T -unifier for any two type expressions. Hence the T -unification

procedure on typed terms must compute complete sets of T -unifiers. Nevertheless, for practical ap-

plications it is desirable that the complete sets of T -unifiers are finite which depends on the type

specification. Criteria for finitary or unitary order-sorted unification can be found in [Wal89].

• Polymorphically order-sorted type structures require a full unification procedure for the equational

type theory. Nevertheless, Smolka [Smo89] has shown that there are also restricted classes of poly-

morphically order-sorted typed logic programs where more efficient unification procedures exist.

From a conceptual point of view our unification procedure shows up the influence of types in logic pro-

gramming. But for an efficient operational semantics it is necessary to omit type information at run time

whenever it is possible. In [Han89a] and [Han89c] it is shown how this could be done in the polymorphic

case. Similar results for the general case are a topic for further research.

5 Resolution

The resolution principle in untyped Horn logic (see [Rob65]) can be used as a proof procedure for typed Horn

clause programs if the untyped unification is replaced by the T -unification as defined in the last section.

“(Σ, C, V ) ⊢Rσ G” denotes a successful resolution of the start goal G with the typed substitution σ as the

computed answer, where (Σ, C) is the typed logic program, V is the set of typed variables used in the

resolution, and a T -unifier from a complete set of T -unifiers for an atom in the goal and a clause head is

computed in each resolution step. The following theorem states soundness and completeness of resolution

with T -unifiers:

Theorem 5.1 Let (Σ, C) be a typed logic program, V be a finite set of typed variables and G be a

(Σ, X, V )-goal.

1. If there is a successful resolution (Σ, C, V )⊢Rσ G with computed answer σ ∈ SubΣ(X,V, V ′), then

(Σ, C, V ′) |= σ(G).

2. If σ ∈ SubΣ(X,V, V ′) is a typed substitution with (Σ, C, V ′) |= σ(G), then there exist a set of typed

variables V0 and a typed substitution σ0 ∈ SubΣ(X,V0, V1) with (Σ, C, V0)⊢Rσ0 G, and there is a typed

substitution φ ∈ SubΣ(X,V1, V
′) with φ(σ0(G)) =T σ(G).

12



This theorem justifies the implementation of resolution with T -unifiers as a proof method for typed logic

programs. A complete resolution method must enumerate all possible derivations. If we use a backtracking

method like Prolog, the resolution method becomes incomplete because of infinite derivations (in our typed

framework the search tree may have an infinite depth as well as an infinite breadth because CSUT (L,L
′)

may be an infinite set). If we accept this drawback, we can implement the resolution like Prolog with the

difference that the unification is extended to typed terms. In section 4.2 we have shown that the classical

unification algorithm can be used if the types of the terms are unified before unifying the terms. For the

unification of type expressions w.r.t. the type specification a unification procedure for equational theories is

needed. It is known that the narrowing procedure [Fay79] (a combination of unification and term rewriting)

can be used for this purpose if the set of equations is a canonical (i.e., confluent and terminating) term

rewriting system. A set of equations can be transformed into a canonical term rewriting system by the

Knuth-Bendix procedure [KB70] which is successful for our applications. For instance, let T be a type

structure for integer numbers with appropriate subtype relationships, i.e., zero and posint are subtypes of

the natural numbers, and the negative integers and the natural numbers are subtypes of the integer numbers.

Therefore T is the following equational specification:

TYPEOPS zero: → type
posint: → type
nat: type → type
negint: → type
int: type → type

TYPEAXIOMS nat(zero) = zero
nat(posint) = posint
int(negint) = negint
int(nat(α)) = nat(α)

The Knuth-Bendix procedure transforms this specification into the following set of rewrite rules:

nat(zero) ⇒ zero
nat(posint) ⇒ posint
int(negint) ⇒ negint
int(nat(α)) ⇒ nat(α)
int(zero) ⇒ zero
int(posint) ⇒ posint

All equations are oriented from left to right and two additional rewrite rules are created (“zero and posint

are subtypes of the integer numbers”) which corresponds to the computation of the transitive closure of the

subtype relation specified in T . This set of rewrite rules is a canoncial term rewriting system and therefore

the narrowing procedure w.r.t. these rules can be used to compute T -unifiers for two type expressions. Thus

the resolution procedure can be implemented by the following two steps:

1. Transform the given type specification into a canonical term rewriting system. For this purpose the

Knuth-Bendix completion procedure can be applied. It computes the transitive closure of the subtype

relation.

2. The T -unification procedure for typed terms can be implemented like the classical unification proce-

dure with the difference that types are T -unified by the narrowing procedure w.r.t. the rewrite rules

computed in step 1 before unifiying corresponding terms.

Note that the T -unification procedure can be simplified if the type specification does not contain subtype

relations (see remarks at the end of section 4.2). If the type specification contains subtype relations, then

these subtype relations influence success or failure of unification. Therefore type information at run time is

not superfluous in the context of logic programming but may avoid unnecessary computations since variables

can be constraint to values and to types by the T -unification prodedure. Therefore typed logic programs

13



can be executed more efficiently than their untyped equivalents [HV87]. One reason for this efficiency is

the existence of a procedure which decides whether a system of type constraints has a solution. As shown

above, we solve type constraints by a narrowing procedure which is based on the type equations. This is

sufficient to solve type constraints in order-sorted type structures, but in a more general setting narrowing

cannot decide the solvability of constraints but enumerates only a complete set of solutions. Smolka [Smo89]

has shown that type constraints can be solved in his framework. Therefore the development of efficient type

constraint solvers for (restricted classes of) our framework is a topic for further research.

6 Applications

We have mentioned in the introduction that a new application of our proposed framework for typed logic

programming is the possibility of higher-order logic programming with polymorphic and order-sorted type

structures. It is clear that our framework combines polymorphic and order-sorted type structures (take the

union of the type specifications of examples 1.1 and 1.2, or example 1.3). A semantically clean amalgamation

of higher-order objects with logic programming needs a higher-order logic. Miller and Nadathur [MN86] have

proposed a higher-order logic programming language based on the typed lambda calculus. The operational

semantics is based on resolution with a unification procedure for typed lambda expressions which is a complex

and semi-decidable problem. Moreover, the proof procedure is only complete for goals which contain no

type variables.

Warren [War82] has argued that no extension to Horn clause logic is necessary because the usual higher-

order programming techniques can be simulated in first-order Horn clause logic. The general idea is an

explicit definition of a predicate apply which is used for the application of an (at compile time) unknown

predicate to some arguments. It is shown in [Han89c] that Warren’s approach is incompatible with polymor-

phic type systems for logic programming like [MO84] and [Smo89]. Since we have dropped some restrictions

of these type systems, we can use Warren’s approach to integrate higher-order programming techniques in

our framework.

Example 6.1 We give an example for the definition of a predicate map which applies a binary predicate to
corresponding elements of two lists. To define the type of map we must express the type of binary predicates
which are arguments to other predicates. Therefore we introduce a type constructor pred2 that denotes the
type of binary predicates, i.e., the type specification of our example program is:

TYPEOPS int: → type
bool: → type
list: type → type
pred2: type, type → type

For each binary predicate p of type “τ1, τ2” we introduce a corresponding constant λp of type “pred2(τ1, τ2)”.
The relation between each predicate p and the constant λp is defined by clauses for the predicate apply2.
Hence we get the following example program for the predicate map (we omit the definitions of the predicates
inc and bool and the type annotations in program clauses):

func []: → list(α)
func [..|..]: α, list(α), → list(α)
func λnot: → pred2(bool, bool)
func λinc: → pred2(int, int)
. . .
pred not: bool, bool
pred inc: int, int
pred map: pred2(α, β), list(α), list(β)
pred apply2: pred2(α, β), α, β

vars P:pred2(α, β), E1:α, E2:β, L1:list(α), L2:list(β), B1,B2:bool, I1,I2:int

14



map(P,[],[]) ←
map(P,[E1|L1],[E2|L2]) ← apply2(P,E1,E2), map(P,L1,L2)
apply2(λnot,B1,B2) ← not(B1,B2)
apply2(λinc,I1,I2) ← inc(I1,I2)
. . .

The first two clauses constitute the standard definition of the predicate map (cf. [SS86], p. 281), and the

clauses for apply2 relate predicate names to the corresponding binary predicates. Since the semantics of

typed logic programs is based on a typed first-order logic, the predicate symbol map is semantically not

interpreted as a higher-order predicate. The constants λnot and λinc are also interpreted as values and

not as relations. But the clauses for apply2 ensures that in every model of the program the constants λnot

and λinc are related to the binary predicates not and inc, respectively.

This example shows the possibility to deal with higher-order objects in our typed framework. Higher-

order objects are related to predicates by particular clauses for an apply predicate. It is also possible to

permit lambda expressions which can be translated into new identifiers and apply clauses for these identifiers

(see [War82] for more discussion). The translation was explicitly done in our examples, but this is a simple

task and can be automatically done. If the underlying system implements indexing on the clauses, e.g.,

indexing on the first arguments of predicates (as done in most compilers for Prolog, cf. [War83]), then

there is no essential loss of efficiency in our translation scheme for higher-order objects in comparison to

a specific implementation of higher-order objects [War82]. More details about this method of higher-order

logic programming in a polymorphically typed framework can be found in [Han89c].

7 Conclusions

We have presented a general framework for typed logic programming. It consists of a specification of a

type structure and a set of well-typed Horn clauses together with type declarations for the syntactic objects

occurring in the clauses. For the definition of the type structure we have used equational specifications. This

allows the specification of both polymorphic and order-sorted type structures and has the advantage that

there exist well-known unification procedures for a lot of equational theories. We have defined a procedure

to enumerate complete sets of unifiers for typed terms with respect to a type specification which is based

on a unification procedure for the equational type specification. Furthermore, we have outlined a resolution

method where this unification procedure is used to unify an atom with a clause head. This framework

permits polymorphic and order-sorted type structures and the possibility of higher-order programming.

The presented framework yields a new view on the rôle of types in logic programming. A type spec-

ification can be compiled into a suitable unification algorithm which is used in the resolution procedure.

Therefore different type structures imply different unification algorithms. A many-sorted type structure does

not require any type information at run time, in a polymorphic type structure a most general unifier exists

for two unifiable terms and can be computed by Robinson’s unification algorithm, and in order-sorted type

structures there may exist several unifiers which are not comparable, but a complete set of unifiers can be

computed by a procedure which is based on a unification procedure for the type theory.

Further work remains to be done. We have mentioned that the presence of types at run time is not

superfluous but may reduce the search space of the resolution method. Nevertheless, there are a lot of

cases where type annotations can be omitted at run time and the unification remains to be correct. For

polymorphic type structures these cases are analyzed in [Han89a] and [Han89c]. New criteria for omitting

type annotations must be developed in our general typed framework. Another important point is the

automatic inference of types. For practical applications it is tedious to write typed program clauses since

each syntactic element must be given an appropriate type. Therefore it is necessary to deduce the right

types for a clause without type annotations by a type inference algorithm. This is a difficult problem in our

general framework but their are successful approaches to the type inference problem for restricted classes

of type structures. For instance, in the case of polymorphic type structures the type inference algorithm of

ML can be used to infer the types of the variables in a clause if the types of all functions and predicates are

15



explicitly declared [Han89a]. For a restricted class of polymorphically order-sorted type structures Smolka

has found an algorithm which infers the types of variables in most cases [Smo89]. Similar solutions must be

developed for particular instances of our approach.

References

[CF88] T. Conrad and U. Furbach. Sorts are Nothing but Functions. An Equational Approach to Sorts
for Logic Programming. Report FKI-89-88, Techn. Univ. München, 1988.

[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1: Equations and Initial Seman-
tics, volume 6 of EATCS Monographs on Theoretical Computer Science. Springer, 1985.

[Fay79] M.J. Fay. First-Order Unification in an Equational Theory. In Proc. 4th Workshop on Automated
Deduction, pp. 161–167, Austin (Texas), 1979. Academic Press.

[GM84] J.A. Goguen and J. Meseguer. Completeness of Many-Sorted Equational Logic. Report No.
CSLI-84-15, Stanford University, 1984.

[Han89a] M. Hanus. Horn Clause Programs with Polymorphic Types: Semantics and Resolution. In Proc.
of the TAPSOFT ’89, pp. 225–240. Springer LNCS 352, 1989. Extended version to appear in
Theoretical Computer Science.

[Han89b] M. Hanus. Logic Programming with Type Specifications. Technical Report 321, FB Informatik,
Univ. Dortmund, 1989.

[Han89c] M. Hanus. Polymorphic Higher-Order Programming in Prolog. In Proc. Sixth International
Conference on Logic Programming (Lisboa), pp. 382–397. MIT Press, 1989.

[Han90] M. Hanus. A Functional and Logic Language with Polymorphic Types. In Proc. Int. Symposium
on Design and Implementation of Symbolic Computation Systems, pp. 215–224. Springer LNCS
429, 1990.

[HV87] M. Huber and I. Varsek. Extended Prolog with Order-Sorted Resolution. In Proc. 4th IEEE
Internat. Symposium on Logic Programming, pp. 34–43, San Francisco, 1987.

[KB70] D.E. Knuth and P.B. Bendix. Simple Word Problems in Universal Algebras. In J. Leech, editor,
Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press, 1970.

[Mis84] P. Mishra. Towards a theory of types in Prolog. In Proc. IEEE Internat. Symposium on Logic
Programming, pp. 289–298, Atlantic City, 1984.

[MN86] D.A. Miller and G. Nadathur. Higher-Order Logic Programming. In Proc. Third International
Conference on Logic Programming (London), pp. 448–462. Springer LNCS 225, 1986.

[MO84] A. Mycroft and R.A. O’Keefe. A Polymorphic Type System for Prolog. Artificial Intelligence,
Vol. 23, pp. 295–307, 1984.

[Nai87] L. Naish. Specification = Program + Types. In Proc. Foundations of Software Technology and
Theoretical Computer Science, pp. 326–339. Springer LNCS 287, 1987.

[Pad88] P. Padawitz. Computing in Horn Clause Theories, volume 16 of EATCS Monographs on Theo-
retical Computer Science. Springer, 1988.

[Poi86] A. Poigné. On Specifications, Theories, and Models with Higher Types. Information and Con-
trol, Vol. 68, No. 1-3, 1986.

[Rob65] J.A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle. Journal of the
ACM, Vol. 12, No. 1, pp. 23–41, 1965.

[Smo89] G. Smolka. Logic Programming over Polymorphically Order-Sorted Types. Dissertation, FB
Informatik, Univ. Kaiserslautern, 1989.

[SNGM87] G. Smolka, W. Nutt, J.A. Goguen, and J. Meseguer. Order-Sorted Equational Computation.
SEKI Report SR-87-14, FB Informatik, Univ. Kaiserslautern, 1987.

[SS86] L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1986.

[Wal89] U. Waldmann. Unification in Order-Sorted Signatures. Technical Report 298, FB Informatik,
Univ. Dortmund, 1989.

[War82] D.H.D. Warren. Higher-order extensions to PROLOG: are they needed? InMachine Intelligence
10, pp. 441–454, 1982.

[War83] D.H.D. Warren. An Abstract Prolog Instruction Set. Technical Note 309, SRI International,
Stanford, 1983.

[XW88] J. Xu and D.S. Warren. A Type Inference System For Prolog. In Proc. 5th Conference on Logic
Programming & 5th Symposium on Logic Programming (Seattle), pp. 604–619, 1988.

16


