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Abstrat

We propose a new omputation model whih ombines the operational priniples

of funtional languages (redution), logi languages (non-deterministi searh for

solutions), and integrated funtional logi languages (residuation and narrowing).

This omputation model ombines eÆient evaluation priniples of funtional lan-

guages with the problem-solving apabilities of logi programming. Sine the model

allows the delay of insuÆiently instantiated funtion alls, it also supports a on-

urrent style of programming. We show that many known evaluation priniples

of delarative languages are partiular instanes of our model. This omputation

model is the basis of Curry, a multi-paradigm language whih ombines funtional,

logi and onurrent programming styles. We onlude with a desription of some

features of Curry.

1 Introdution

Delarative programming is motivated by the fat that a higher programming level using

powerful abstration failities leads to reliable and maintainable software. Thus, de-

larative programming languages are based on mathematial formalisms and ompletely

abstrat from many details of the onrete hardware and the implementation of the pro-

grams on this hardware. For instane, pointers are avoided and replaed by the use of

algebrai data types, and omplex proedures are split into easily omprehensible parts

using pattern mathing and loal de�nitions. Sine delarative programs strongly orres-

pond to formulae of mathematial aluli, they simplify the reasoning (e.g., veri�ation

w.r.t. non-exeutable spei�ations), provide freedom in the implementation (e.g., use

of parallel arhitetures), and redue the program development time in omparison to

lassial imperative languages.

Unfortunately, delarative programming is urrently split into two main �elds based

on di�erent mathematial formalisms, namely funtional programming (lambda alu-

lus) and logi programming (prediate logi). This has negative onsequenes w.r.t. to

teahing (usually, there are di�erent ourses on funtional programming and logi pro-

gramming, and students do not see many similarities between them), researh (eah �eld

has its own ommunity, onferenes, and journals, and sometimes similar solutions are

developed twie), and appliations (eah �eld has its own appliation areas and some

e�ort has been done to show that one paradigm an over appliations of the other

paradigm [37℄ instead of showing the advantages of delarative programming in various

appliation �elds). The separation is mainly due to the di�erent underlying omputa-

tions models|deterministi redution and lazy evaluation in funtional languages, and

non-deterministi searh in logi languages. On the other hand, funtional and logi
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languages have a ommon kernel and an be seen as di�erent faets of a single idea.

For instane, the use of algebrai data types instead of pointers, and the de�nition of

loal omprehensible ases by pattern mathing and loal de�nitions instead of omplex

proedures are emphasized in funtional as well as logi programming. However, these

ommonalities are often hidden by the di�erenes in the omputation models and the

appliation areas of these languages.

In this paper we want to show how to overome this problem. Our approah is the

hoie of a single omputation model whih ombines lazy redution of expressions with

a possibly non-deterministi binding of free variables ourring in expressions. Sine it is

a onservative extension of an optimal evaluation strategy for integrated funtional logi

languages [5℄, it ombines the problem-solving apabilities of logi programming with

optimal redution strategies known from funtional programming for a large lass of pro-

grams. Moreover, in order to avoid unontrolled non-determinism during the evaluation

of partiular expressions and to provide a simple onnetion to externally de�ned fun-

tions, funtion alls may be suspended until the arguments are suÆiently instantiated.

Thus, pure funtional programming, pure logi programming, and onurrent (logi) pro-

gramming are obtained as partiular restritions of this model. Moreover, due to the use

of an integrated funtional logi language, we an hoose the best of the two worlds in

appliation programs. For instane, input/output (implemented in logi languages by

side e�ets) an be handled with the monadi I/O onept [31℄ in a fully delarative

way. Similarly, most of the other impure features of Prolog (e.g., arithmeti, ut) an be

avoided by the use of funtions.

This omputation model is the basis of the multi-paradigm language Curry [16, 17, 19℄.

Apart from this new model, Curry o�ers many other features useful for pratial

programming, like a type and a module system, higher-order funtions, arithmeti,

delarative I/O et. The development of Curry is an international initiative inten-

ded to provide a ommon basis for funtional logi languages and further researh

and developments in this area. More details an be found in the Curry home page:

http://www-i2.informatik.rwth-aahen.de/~hanus/urry/

In the next setion, we introdue some basi notions and motivate the basi omputa-

tion model of Curry. Properties of this model are briey disussed in Setion 3. Setion 4

outlines some features of Curry, and Setion 5 ontains our onlusions.

2 A Uni�ed Computation Model for Delarative

Programming

In this setion we introdue the basi omputation model of Curry, where we use a slightly

di�erent desription than in its original presentation [16℄. We motivate it by a stepwise

extension of a rewrite model to features from logi and onurrent programming. The

omplete formal spei�ation of our omputation model is summarized in Appendix A.

2.1 Term Rewriting

Firstly, we introdue some basi notions of term rewriting [11℄ and funtional logi pro-

gramming [15℄.

As mentioned in the previous setion, a ommon idea of funtional as well as logi

programming is the use of algebrai data types instead pointers. Thus, the omputational
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domain of delarative languages is a set of terms onstruted from onstants and data

onstrutors. Funtions (or prediates in logi programming, but throughout this paper

we onsider prediates as Boolean funtions for the sake of simpliity) operate on terms

and map terms to terms.

Formally, we onsider a signature partitioned into a set C of onstrutors and a set

F of (de�ned) funtions or operations.

1

We write =n 2 C and f=n 2 F for n-ary

onstrutor and funtion symbols, respetively. A onstrutor  with arity 0 is also alled

a onstant.

2

Usually, there are at least the 0-ary Boolean onstrutors true and false.

We denote by X a set of variables (with elements x; y). An expression (data term)

is a variable x 2 X or an appliation '(e

1

; : : : ; e

n

) where '=n 2 C [ F ('=n 2 C) and

e

1

; : : : ; e

n

are expressions (data terms).

3

We denote by T (C [ F ;X ) and T (C;X ) the

set of all expressions and data terms, respetively. Var(e) denotes the set of variables

ourring in an expression e. An expression e is alled ground if Var(e) = ;. A pattern

is an expression of the form f(t

1

; : : : ; t

n

) where eah variable ours only one, f=n 2 F ,

and t

1

; : : : ; t

n

2 T (C;X ). A head normal form is a variable or an expression of the form

(e

1

; : : : ; e

n

) with =n 2 C.

A position p is a sequene of positive integers identifying a subexpression in an ex-

pression. ej

p

denotes the subterm or subexpression of e at position p, and e[e

0

℄

p

denotes

the result of replaing the subterm ej

p

by the expression e

0

(see [11℄ for details).

A substitution is a mapping X ! T (C [ F ;X ), where id denotes the identity substi-

tution. Substitutions are extended to morphisms on expressions by �('(e

1

; : : : ; e

n

)) =

'(�(e

1

); : : : ; �(e

n

)) for every expression '(e

1

; : : : ; e

n

). A substitution � is alled a uni�er

of two expressions e

1

and e

2

if �(e

1

) = �(e

2

).

A (delarative) program P is a set of rules l = r where l is a pattern and Var(r) �

Var(l). l and r are alled left-hand side and right-hand side, respetively.

4

A rule is

alled a variant of another rule if it is obtained by a unique replaement of variables

by other variables. In order to ensure well-de�nedness of funtions, we require that P

ontains only trivial overlaps, i.e., if l

1

=r

1

and l

2

=r

2

are variants of rewrite rules and � is a

uni�er for l

1

and l

2

, then �(r

1

) = �(r

2

) (weak orthogonality). However, it is also possible

to drop this restrition and allow non-deterministi funtions sine suh funtions an be

evaluated by a non-deterministi rewrite priniple [13℄, whih is part of this omputation

model (f. Setion 2.3).

Example 2.1 If natural numbers are data terms built from the onstrutors 0 and s, the

following rules de�ne the addition and the prediate \less than or equal to" for natural

numbers:

0 + y = y 0� x = true

s(x) + y = s(x+y) s(x)� 0 = false

s(x)� s(y) = x�y

Sine the left-hand sides are pairwise non-overlapping, the funtions are well de�ned. 2

1

For the sake of simpliity, we omit the types of the onstrutors and funtions in this setion sine

they are not relevant for the omputation model. Note, however, that Curry is typed language with a

Hindley/Milner-like polymorphi type system (see Setion 4).

2

Note that elementary built-in types like truth values, integers, or haraters an also be onsidered

as sets with (in�nitely) many onstants.

3

We do not onsider partial appliations in this part sine it is not relevant for the omputation

model. Suh higher-order features are disussed in Setion 4.

4

For the sake of simpliity, we �rstly onsider only unonditional rewrite rules. An extension to

onditional rules is desribed in Setion 4.
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From a funtional point of view, we are interested in omputing values of expressions,

where a value does not ontain funtion symbols (i.e., it is a data term) and should

be equivalent (w.r.t. the program rules) to the initial expression. The value an be

omputed by applying rules from left to right. For instane, we an ompute the value

of s(s(0))+s(0) by applying the rules for addition to this expression:

s(s(0))+s(0) ! s(s(0)+s(0)) ! s(s(0+s(0))) ! s(s(s(0)))

Formally, a redution step is an appliation of a rule l=r to the subterm (redex) tj

p

, i.e.,

t ! s if s = t[�(r)℄

p

for some substitution � with �(l) = tj

p

(i.e., the left-hand side l of

the seleted rule must math the subterm tj

p

).

In ontrast to imperative languages, where the algorithmi ontrol is expliitly on-

tained in the programs by the use of various ontrol strutures, delarative languages

abstrat from the ontrol issue sine a program onsists of rules and does not ontain ex-

pliit information about the order to apply the rules. This makes the reasoning about de-

larative programs easier (program analysis, transformation, or veri�ation) and provides

more freedom for the implementor (e.g., transforming all-by-need into all-by-value, im-

plementation on parallel arhitetures). On the other hand, a onrete programming

language must provide a preise model of omputation to the programmer. Thus, we

an distinguish between di�erent lasses of funtional languages. In an eager funtional

language, the seleted redex in a redution step is always an innermost redex, i.e., the

redex is a pattern, where in lazy funtional languages the seleted redex is an outermost

one. Innermost redution may not ompute a value of an expression in the presene of

nonterminating rules, i.e., innermost redution is not normalizing (we all a redution

strategy normalizing i� it always omputes a value of an expression if it exists). Thus,

we onsider in the following outermost redution, sine it allows the omputation with

in�nite data strutures and provides more modularity by separating ontrol aspets [22℄.

2.2 Lazy Evaluation and Pattern Mathing

A subtle point in the de�nition of a lazy evaluation strategy in ombination with pattern

mathing is the seletion of the \right" outermost redex. For instane, onsider the

rules of Example 2.1 together with the rule f = f. Then the expression 0+0�f has two

outermost redexes, namely 0+0 and f. If we selet the �rst one, we ompute the value

true after one further outermost redution step. However, if we selet the redex f, we run

into an in�nite redution sequene instead of omputing the value. Thus, it is important

to know whih outermost redex is seleted. Most lazy funtional languages hoose the

leftmost outermost redex whih is implemented by translating pattern mathing into

ase expressions [38℄. On the other hand, this may not be the best possible hoie sine

leftmost outermost redution is in general not normalizing (e.g., take the last example but

swap the arguments of �). It is well known that we an obtain a normalizing redution

strategy by reduing in eah step a needed redex [21℄. Although the omputation of a

needed redex is undeidable in general, there are relevant sublasses of programs where

needed redexes an be e�etively omputed. For instane, if funtions are indutively

de�ned on the struture of data terms (so-alled indutively sequential funtions [4℄), a

needed redex an be simply omputed by pattern mathing. This is the basis of our

omputation model.

For this purpose, we organize all rules of a funtion in a hierarhial struture alled
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de�nitional tree [4℄.

5

T is a de�nitional tree with pattern � i� the depth of T is �nite

and one of the following ases holds:

T = rule(l = r); where l = r is a variant of a program rule suh that l = �.

T = branh(�; p; T

1

; : : : ; T

k

); where p is a position of a variable in �, 

1

; : : : ; 

k

are dif-

ferent onstrutors (k > 0), and, for all i = 1; : : : ; k, T

i

is a de�nitional tree with

pattern �[

i

(x

1

; : : : ; x

n

)℄

p

, where n is the arity of 

i

and x

1

; : : : ; x

n

are new variables.

A de�nitional tree of an n-ary funtion f is a de�nitional tree T with pattern

f(x

1

; : : : ; x

n

), where x

1

; : : : ; x

n

are distint variables, suh that for eah rule l = r with

l = f(t

1

; : : : ; t

n

) there is a node rule(l

0

= r

0

) in T with l variant of l

0

. In the following, we

write pat(T ) for the pattern of a de�nitional tree T , and DT for the set of all de�nitional

trees. A funtion is alled indutively sequential i� there exists a de�nitional tree for it.

A program is indutively sequential if all de�ned funtions are indutively sequential.

For instane, the prediate � de�ned in Example 2.1 is indutively sequential, and a

de�nitional tree for � is:

branh(x1� x2; 1;rule(0� x2 = true);

branh(s(x)� x2; 2; rule(s(x)� 0 = false);

rule(s(x)� s(y) = x� y )))

Intuitively, a de�nitional tree of a funtion spei�es the strategy to evaluate a all to

this funtion. If the tree is a rule node, we apply the rule. If it is a branh node, it is

neessary to evaluate the subterm at the spei�ed position to head normal form in order

to ommit to one of the branhes. Thus, in order to evaluate the expression 0+0�f w.r.t.

the previous de�nitional tree, the top branh node requires that the �rst subterm 0+0

must be evaluated to head normal form (in this ase: 0) in order to ommit to the �rst

branh.

Formally, if e is an expression with a funtion f at the top

6

and T is a de�nitional

tree for f , then e ! e

0

is a redution step i� e

0

= s(e; T ), where the partial funtion s

(\omputation step") is de�ned as follows:

s(e; rule(l = r)) = �(r) if � is a substitution with �(l) = e

s(e; branh(�; p; T

1

; : : : ; T

k

))

=

(

s(e; T

i

) if ej

p

= (e

1

; : : : ; e

n

) and pat(T

i

)j

p

= (x

1

; : : : ; x

n

)

e[e

0

℄

p

if ej

p

= f

0

(� � �), T

0

is a de�nitional tree of f

0

, and s(ej

p

; T

0

) = e

0

This de�nition of a redution strategy has the following advantages:

1. The strategy is normalizing, i.e., it always omputes a value if it exists.

2. The strategy is independent on the order of rules. Note that pattern mathing

in traditional lazy funtional languages implemented by ase expressions [38℄ is

independent on the order of rules only for uniform programs [38℄ whih is a strit

sublass of indutively sequential programs.

7

5

We ould also introdue our strategy by ompiling all rules of a funtion into a ase expression [38℄.

However, the use of de�nitional trees has the advantage that the struture of rules is not destroyed and

the trees an be easily extended to more general lasses of programs whih beome relevant later.

6

If the expression has a onstrutor at the top, onsider the leftmost outermost subexpression whih

has a funtion at the top.

7

Uniform funtions are those funtions where a de�nitional tree with a strit left-to-right order in

the positions of the branhes exists.
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3. The de�nitional trees an be automatially generated from the left-hand sides of the

rules [16℄ (similarly to the ompilation of pattern mathing into ase expressions),

i.e., there is no need for the programmer to expliitly speify the trees.

4. There is a strong equivalene between redution with de�nitional trees and redu-

tion with ase expressions sine de�nitional trees an be easily translated into ase

expressions (see [18℄ for details). However, redution with de�nitional trees an be

easily extended to more general strategies, as an be seen in the following.

2.3 Overlapping Rules and Non-deterministi Rewriting

Indutively sequential funtions have the property that there is a single argument in the

left-hand sides whih distinguishes the di�erent rules. In partiular, funtions de�ned by

rules with overlapping left-hand sides, like the \parallel-or"

true_ x = true

x_ true = true

false_ false = false

are not indutively sequential. However, it is fairly easy to extend de�nitional trees to

over also suh funtions. For this purpose, we introdue a further kind of nodes: a

de�nitional tree T with pattern � an also have the form or(T

1

; T

2

) where T

1

and T

2

are de�nitional trees with pattern �.

8

It is easy to see that a de�nitional tree with or

nodes an be onstruted for eah de�ned funtion (see [16℄ for a onrete algorithm).

For instane, a de�nitional tree for the parallel-or is

or(branh(x1_x2; 1; rule(true_x2 = true);

branh(false_x2; 2; rule(false_false = false)));

branh(x1_x2; 2; rule(x1_true = true)))

The orresponding extension of the redution strategy is a more subtle point. The fol-

lowing extension of s proesses the branhes of the or nodes in a sequential manner:

s(e; or(T

1

; T

2

)) =

�

s(e; T

1

) if s(e; T

1

) is de�ned

s(e; T

2

) otherwise

This orresponds to the implementation of overlapping rules in most lazy funtional

languages, i.e., rules in suh languages annot be read as equalities between the left- and

right-hand side but must be read as sequenes where the latter rules are disarded if a

rule an be suessfully applied. This has the advantage that some negative onditions

in subsequent rules an be avoided, but it leads to a more operational than delarative

reading of programs (i.e., some kind of modularity is lost sine the rules annot be

understood independently). A further disadvantage is that no value is omputed if the

omputation with the �rst branh does not terminate and only the seond branh leads to

the result. To overome this problem, we ould replae the sequential implementation by

a non-deterministi one, i.e., we assume that s maps expressions into sets of expressions

(s : T (C [ F ;X )�DT ! 2

T (C[F ;X )

) and de�ne

s(e; or(T

1

; T

2

)) = s(e; T

1

) [ s(e; T

2

)

8

For the sake of simpliity, we onsider only binary or nodes. The extension to more than two subtrees

is straightforward.
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By reduing all expressions in parallel, it is ensured that a value will eventually be

omputed if it exists. Another alternative is the parallel redution of independent subex-

pressions whih is a deterministi and normalizing redution strategy [34℄. This an also

be de�ned by a modi�ation of s so that a set of redex positions is omputed by the

use of de�nitional trees and all these redexes are redued in parallel (see [4, 6℄ for more

details). Sine our omputation model must inlude some kind of non-determinism in

order to over logi programming languages, we take the �rst alternative and assume in

the following that s maps expressions into sets of expressions.

2.4 Computing with Non-ground Expressions

Up to now, we have only onsidered funtional omputations where ground expressions

are redued to some value. In logi languages, the initial expression (usually an expres-

sion of Boolean type, alled a goal) may ontain free variables. A logi programming

system should �nd values for these variables suh that the goal is reduible to true.

Fortunately, it requires only a slight extension of the strategy introdued so far to over

non-ground expressions and variable instantiation (whih also shows that the di�erene

between funtional and logi programming is not so large from an operational point of

view). The urrent de�nition of s is unde�ned if we have to branh on a free variable.

Sine the value of this variable is needed in order to proeed the omputation, we non-

deterministially bind the variable to the onstrutor required in the subtrees. Thus, we

ould extend the de�nition of s by the following ase:

9

s(e; branh(�; p; T

1

; : : : ; T

k

)) =

k

[

i=1

s(�

i

(e); T

i

) if ej

p

= x and �

i

= fx 7! pat(T

i

)j

p

g

For instane, if the funtion f is de�ned by the rules

f(a) = a

f(b) = b

(where a and b are onstants), then the expression f(x) with the free variable x is

evaluated by s as follows:

f(x) ! fa,bg

Unfortunately, one of the most important aspets, namely the instantiation of free vari-

ables, is not expliitly shown in this omputation step. Thus, we have to hange our

omputational domain. Due to the presene of free variables in expressions, an expres-

sion may be redued to di�erent values by binding the free variables to di�erent terms.

In funtional programming, one is interested in the omputed value, whereas logi pro-

gramming has the interest in the di�erent bindings (answers). Thus, we de�ne for our

integrated framework an answer expression as a pair � e onsisting of a substitution �

(the answer omputed so far) and an expression e. An answer expression � e is solved

if e is a data term. We sometimes omit the identity substitution in answer expressions,

i.e., we write e instead of id e if it is lear from the ontext.

Sine more than one answer may exist for expressions ontaining free variables, in

general, initial expressions are redued to disjuntions of answer expressions. Thus, a

disjuntive expression is a (multi-)set of answer expressions f�

1

e

1

; : : : ; �

n

e

n

g. The

9

In order to ensure ompleteness, we also have to ensure that the de�nitional tree taken to evaluate

a funtion symbol has always fresh variables.
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set of all disjuntive expressions is denoted by D, whih is the omputational domain of

Curry.

For instane, if we onsider the previous example, the evaluation of f(x) together with

the di�erent bindings for x is reeted by the following non-deterministi omputation

step:

f(x) ! ffx 7! ag a ; fx 7! bg bg

For the sake of readability, we write the latter disjuntive expression in the form

fx=aga | fx=bgb. Similarly, the expression f(b) is redued to b (whih is an abbrevi-

ation for a disjuntive expression with one element and the identity substitution).

A single omputation step performs a redution in exatly one expression of a dis-

juntion (e.g., in the leftmost unsolved expression). This expression is redued (with a

possible variable instantiation) aording to our strategy desribed so far. If the program

is indutively sequential, i.e., the de�nitional trees do not ontain or nodes, then this

strategy is equivalent to the needed narrowing strategy [5℄. Needed narrowing enjoys sev-

eral optimality properties: every redution step is needed, i.e., neessary to ompute the

�nal result, it omputes the shorted possible derivations (if ommon subterms are shared)

and a minimal set of solutions, and it is fully deterministi on ground expressions, i.e., in

the funtional programming ase. If some de�nitional trees ontain or nodes, optimality

is lost (however, it is still optimal on the indutively sequential parts of the program),

but the resulting strategy is sound and omplete in the sense of funtional and logi

programming, i.e., all values and answers are omputed [6℄.

2.5 Equality and Constraints

Funtional logi languages are able to solve equations ontaining de�ned funtions. For

instane, onsider the funtion + de�ned in Example 2.1 and the equation x+0=s(0).

Using the omputation model presented so far, this equation an be solved by evaluating

the left-hand side x+0 to the answer expression fx=s(0)gs(0) (here we omit the other

alternatives in the disjuntion). Sine the resulting equation is trivial, the equation is

valid w.r.t. the omputed answer fx=s(0)g.

Thus, we ould solve an equation by reduing both sides to uni�able terms. However,

it is well known [12, 27℄ that this notion of equality is not reasonable in the presene

of nonterminating funtions. The only sensible notion of equality whih is also used in

funtional languages, is the strit equality, i.e., an equational onstraint e

1

=e

2

is satis�ed

if both sides e

1

and e

2

are reduible to a same data term. As a onsequene, if both sides

are unde�ned (nonterminating), then the strit equality does not hold. Operationally,

an equational onstraint e

1

=e

2

is solved by evaluating e

1

and e

2

to uni�able data terms.

The equational onstraint ould also be solved in an inremental way by an interleaved

lazy evaluation of the expressions and binding of variables to onstrutor terms [25℄.

Equational onstraints are di�erent from standard Boolean funtions sine they are

heked for satis�ability. For instane, the equational onstraint x=s(0) is satis�able if

the variable x is bound to s(0). However, the evaluation of x=s(0) does not deliver a

Boolean value true or false, sine the latter value would require a binding of x to all

values di�erent from s(0) (whih ould be expressed if we use a riher onstraint system

than substitutions, for instane, disequality onstraints [7℄). This is suÆient sine,

similarly to logi programming, onstraints are only used in onditions of equations (f.

Setion 4) whih must be heked for satis�ability.
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If we want to hek the equality of two fully known expressions, we an redue both

sides to ground onstrutor terms and hek their identity. This test equality an be

spei�ed as any other Boolean funtion by the following rules (where == and && are in�x

operators):

 ==  = true 8=0 2 C

(x

1

,...,x

n

) == (y

1

,...,y

n

) = x

1

==y

1

&&...&& x

n

==y

n

8=n 2 C

(x

1

,...,x

n

) == d(y

1

,...,y

m

) = false 8=n; d=m 2 C with =n 6= d=m

true && x = x

false && x = false

For instane, the test \s(0)==s(0)" redues to true, whereas the test \s(0)==0" redues

to false. In order to avoid an in�nite set of solutions for insuÆiently instantiated tests

like x==y, the evaluation of a test equality is suspended if one side is a free variable (i.e.,

== is rigid in both arguments, f. Setion 2.6). Therefore, the test equality an be used

where Boolean values are required (e.g., in the ondition part of if-then-else), whereas

equational onstraints an only be applied in the ondition of a program rule. In terms

of onurrent onstraint programming languages [33℄, == and = orrespond to ask and

tell equality onstraints, respetively. This is also justi�ed by the fat that a test e

1

==e

2

is suspended if one side is a variable, whereas an equational onstraint e

1

=e

2

is heked

for satis�ability and propagates new variable bindings.

Note that the basi kernel of Curry only provides strit equations e

1

=e

2

between

expressions as onstraints. Sine it is oneptually fairly easy to add other onstraint

strutures [26℄, future extensions of Curry will provide riher onstraint systems to sup-

port onstraint logi programming appliations.

2.6 Conurrent Computations

The strategy desribed so far overs funtional logi languages with a sound and omplete

operational semantis (i.e., based on narrowing [15℄). However, it is still too restritive to

over all important aspets of modern delarative languages due to the following reasons:

1. Narrowing and guessing of free variables should not be applied to all funtions,

sine some funtions (de�ned on reursive data strutures) may not terminate if

partiular arguments are unknown.

2. The omputation model requires the expliit de�nition of all funtions by program

rules. It is not lear how to onnet primitive (external, prede�ned) funtions where

the rules are not expliitly given, like arithmeti, I/O et.

3. Modern logi languages provide exible seletion rules (onurrent omputations

based on the synhronization on free variables).

All these features an be easily supported by allowing the delay of funtion alls if a

partiular argument is not instantiated. For this purpose we extend the funtion s so

that the evaluation of some funtion all may suspend, i.e., s has the type

s : T (C [ F ;X )�DT ! D [ fsuspendg :

A funtion all may be suspended if the value of some (needed) argument is unknown.

Thus, we extend the de�nition of branh nodes by an additional ag, i.e, a branh

node has the form branh(�; p; r; T

1

; : : : ; T

k

) with r 2 frigid; f lexg. A rigid annotation
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spei�es that the evaluation of the funtion all is suspended if the branh argument is a

free variable. This is expressed by the following new de�nition of s for the ase of free

variables:

s(e; branh(�; p; r; T

1

; : : : ; T

k

))

=

8

<

:

: : :

suspend if ej

p

= x and r = rigid

S

k

i=1

f�

i

�

i

(e)g if ej

p

= x, r = flex, and �

i

= fx 7! pat(T

i

)j

p

g

Sine funtion alls may suspend, we need a mehanism to speify onurrent omputa-

tions. For this purpose, we introdue a �nal extension of de�nitional trees: a de�nitional

tree T with pattern � an also have the form and(T

1

; T

2

) where the de�nitional trees

T

1

and T

2

have the same pattern � and ontain the same set of rules. An and node

spei�es the neessity to evaluate more than one argument position. The orresponding

operational behavior is to try to evaluate one of these arguments. If this is not possible

sine the funtion alls in this argument are delayed, we proeed by trying to evaluate the

other argument. This generalizes onurrent omputation models for residuating logi

programs [1, 2, 35℄ to funtional logi programs. For instane, the onurrent onjuntion

of onstraints ^ is de�ned by the single rule

10

valid^ valid = valid

together with the de�nitional tree

and(branh(x1^x2; 1; rigid; branh(valid^x2; 2; rigid; rule(valid^valid = valid)));

branh(x1^x2; 2; rigid; branh(x1^valid; 1; rigid; rule(valid^valid = valid))))

Due to the and node in this tree, a onstraint of the form t

1

^ t

2

is evaluated by an

attempt to evaluate t

1

. If the evaluation of t

1

suspends, an evaluation step is applied to

t

2

. If a variable responsible to the suspension of t

1

was bound during the last step, the

left expression will be evaluated in the subsequent step. Thus, we obtain a onurrent

behavior with an interleaving semantis.

This fairly simple model for onurrent omputations is able to over appliations of

Prolog systems with oroutining [29℄. For instane, if gen is a prediate or onstraint

whih instantiates its arguments with potential solutions (i.e., gen is de�ned with exible

branh nodes) and test heks whether the argument is a orret solution (i.e., test is

de�ned with rigid branh nodes), then a onstraint like \gen(X) ^ test(X)" orresponds

to a \generate-and-test" solution whereas \test(X) ^ gen(X)" spei�es a \test-and-

generate" solution where the test is ativated as soon as its argument is suÆiently

instantiated.

It is also interesting to note that this model is able to over reent developments

in parallel funtional omputation models like Eden [9℄ or GoÆn [10℄. For instane, a

onstraint of the form \x=f(t1) ^ y=g(t2) ^ z=h(x,y)" spei�es a potentially on-

urrent omputation of the funtions f, g and h where the funtion h an proeed its

omputation only if the arguments have been bound by evaluating the expressions f(t1)

and g(t2) (provided that h is rigid in all arguments).

The advantage of this omputation model is the lear separation between sequen-

tial and onurrent parts. Sequential omputations, whih ould be onsidered as the

basi units of a program, ould be expressed as usual funtional (logi) programs, and

they an be omposed to onurrent omputation units via onurrent onjuntions of

10

The auxiliary onstrutor valid denotes the result of a solved onstraint. In terms of our omputa-

tion model, the equational onstraint s(x)=s(s(0)) is redued to the answer expression fx=s(0)gvalid.
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onstraints. Sine onstraints ould be passed as arguments or results of funtions (like

any other data objet or funtion), it is possible to speify general operators to reate

exible ommuniation arhitetures similarly to GoÆn [10℄. Thus, the same abstration

failities ould be used for sequential as well as onurrent programming. On the other

hand, the lear separation between sequential and onurrent omputations supports the

use of eÆient and optimal evaluation strategies for the sequential parts, where similar

tehniques for the onurrent parts are not available. This is in ontrast to other, more

�ne-grained onurrent omputation models like AKL [23℄, CCP [33℄, or Oz [35℄.

3 Properties of the Computation Model

Detailed soundness and ompleteness results for the operational model presented in the

previous setion an be found in [16℄. Due to the possible suspension of funtion alls,

we annot expet strong ompleteness results as in logi programming. However, it an

be shown that all omputed answers are orret and no answer is lost during the om-

putation. Moreover, if all de�nitional trees have exible branhes, then a ompleteness

result similar to logi programming holds.

This omputation model subsumes various known evaluation priniples for delarat-

ive programming languages, whih an be seen by partiular restritions of the form of

de�nitional trees (see [16℄ for a more detailed disussion). For instane, if the de�nitional

trees only ontains rule and exible branh nodes, we obtain the optimal needed narrow-

ing strategy [5℄. This shows that the omputation model is a onservative extension of an

optimal evaluation strategy for funtional logi programs. The addition of or nodes sup-

ports funtion de�nitions with overlapping left-hand sides and results in the weakly needed

narrowing strategy [6, 25℄, whih is a widely used strategy in urrent narrowing-based

lazy funtional logi languages. Simple lazy narrowing [27, 32℄ or SLD-resolution an be

obtained by onneting all trees for eah rule by or nodes. The lazy evaluation strategy

of funtional languages like Haskell [20℄ performs pattern mathing from left to right [38℄

and, therefore, it an be implemented by de�nitional trees with \left-to-right"-oriented

branh nodes. The extension of this funtional kernel with equational onstraints leads

to reent omputation models for parallel funtional languages [9, 10℄. Finally, the e�et

of residuation [1, 2℄ is obtained by marking all branhes of prediates as exible, and all

branhes of non-Boolean funtions as rigid.

Figure 1 summarizes the neessary restritions on the form of de�nitional trees in

order to obtain a partiular strategy.

4 Curry: A Multi-Paradigm Delarative Language

Curry [17, 19℄ is a multi-paradigm delarative language aiming to integrate funtional,

logi, and onurrent programming paradigms. Curry's operational semantis is based on

the omputation model motivated and explained in Setion 2. The operational behavior

of eah funtion is spei�ed by its de�nitional tree. Sine it it tedious to speify the

de�nitional trees for all funtions, they are automatially generated from the left-hand

sides of the rewrite rules using a left-to-right pattern mathing algorithm [16℄. Non-

Boolean funtions are annotated with rigid branhes, and prediates (i.e., funtions with

Boolean result type) are annotated with flex branhes (there are ompiler pragmas

to override these defaults; moreover, de�nitional trees an also be expliitly provided

11



Strategy Restritions on de�nitional trees

Needed narrowing [5℄ only rule and exible branh nodes; optimal strategy w.r.t.

length of derivations and number of omputed solutions

Weakly needed narrowing [6, 25℄ only rule, exible branh, and or nodes

Simple lazy narrowing [27, 32℄

and SLD-resolution

partiular de�nitional trees with exible branh nodes (a

branh=rule tree for eah left-hand side, all rules onneted

by or nodes)

Lazy funtional languages [38℄ de�nitional trees with left-to-right pattern mathing; initial

expression has no free variable

Residuation [1, 2, 24, 35℄ rigid branhes for non-Boolean funtions; exible branhes

for prediates

Parallel funtional languages

[9, 10℄

de�nitional trees with left-to-right pattern mathing; paral-

lelism via equational onstraints

Figure 1: Spei�ation of di�erent operational models by de�nitional trees

similarly to type annotations). This has the onsequene that the operational behavior

is nearly idential to lazy funtional languages if the logi programming features are not

used, and idential to logi programming if only prediates are de�ned.

Beyond this omputation model, Curry provides a parametrially polymorphi type

system (the urrent implementation has a type inferene algorithm for a Hindley/Milner-

like type system; the extension to Haskell-like type lasses [39℄ is planned for a future

version), a module system, and a delarative onept for input/output operations based

on the monadi I/O onept from funtional programming [31℄.

Basi arithmeti is provided by onsidering integer values (like \42" or \-10") as on-

stants, and the usual operations on integers as primitive funtions with rigid arguments,

i.e., they are delayed until all arguments are known onstants. For instane, the expres-

sion 3+5 is redued to 8, whereas x+y is delayed until x and y are bound by some other

part of the program. Thus, they an at as passive onstraints [3℄ providing for better

onstraint solvers than in pure logi programming [36℄ (e.g., by transforming \generate-

and-test" into \test-and-generate", f. Setion 2.6). Coneptually, primitive funtions an

be onsidered as de�ned by an in�nite set of rules whih provides a delarative reading

for suh funtions [8℄. In a similar way, any other external (side-e�et free!) funtion an

be onneted to Curry.

Higher-order funtions has been shown to be very useful to struture programs and

write reusable software [22℄. Although the basi omputation model inludes only �rst-

order funtions, Warren [40℄ has shown that the higher-order features of funtional pro-

gramming an be implemented by providing a (�rst-order) de�nition of the appliation

funtion. Curry supports the higher-order features of urrent funtional languages (par-

tial funtion appliations, lambda abstrations) by this tehnique, where the rules for the

appliation funtion are impliitly de�ned. In partiular, funtion appliation is rigid

in the �rst argument, i.e., an appliation is delayed until the funtion to be applied is

known (this avoids the expensive and operationally omplex synthesis of funtions by

higher-order uni�ation [28℄).

Conditional rules, in partiular with extra variables (i.e., variables not ourring in the

left-hand side) in onditions, are one of the essential features to provide the full power of
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logi programming. Although the basi omputation model only supports unonditional

rules, it an be easily extended to onditional rules following the approah taken in Babel

[27℄: onsider a onditional rule

11

\l | fg = r" (where the ondition  is a onstraint) as

syntati sugar for the rule l = () r), where the right-hand side is a guarded expression.

The operational meaning of a guarded expression \ ) r" is de�ned by the prede�ned

rule

(valid ) x) = x .

Thus, a guarded expression is evaluated by an attempt to solve the ondition. If this is

suessful, the guarded expression is replaed by the right-hand side r of the onditional

rule.

Further features of Curry, whih are under development, inlude a ommitted hoie

onstrut, the enapsulation of searh to get more ontrol over the non-deterministi

evaluation, and an interfae to other onstraint solvers.

5 Conlusions

Funtional and logi programming are often onsidered as separate programming

paradigms and so that the ommon idea of delarative programming is sometimes lost.

We have shown in this paper that this need not be the ase if a single programming

language based on a uni�ed omputation model is taken into aount. From this point of

view, the di�erene between funtional and logi programming is the di�erene between

omputation with full and partial information whih also shows up in a di�erene in the

(non-)determinism of programs. Most of the other ideas, like algebrai data strutures,

pattern mathing, lazy evaluation, or loal de�nitions, are similar in both paradigms.

Additionally, some problemati \non-logial" features of Prolog an be avoided in the

integrated language. For instane, I/O operations with side e�ets an be replaed by

monadi I/O operations, and the use of the \ut" operator of Prolog ould be avoided,

sine the pruning of the searh spae an be obtained by using funtions instead of pre-

diates [14℄ or an expliit use of \if-then-else". Moreover, an integrated funtional logi

language leads to a natural amalgamation of programming tehniques, e.g., onditions

in funtion rules ould be solved by non-deterministi searh in the presene of extra

variables, or higher-order programming tehniques an be more often applied in logi

programming by partial appliations of prediates to arguments [30℄.
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A Operational Semantis of Curry

The operational semantis of Curry is spei�ed using the funtions

se : T (C [ F ;X ) ! D [ fsuspendg

s : T (C [ F ;X ) �DT ! D [ fsuspendg :

The funtion se performs a single omputation step on an expression e. It omputes a dis-

juntion of answer expressions or the speial onstant suspend indiating that no redution is

possible in e. As shown in Figure 2, se attempts to apply a redution step to the leftmost

outermost funtion symbol in e by the use of s whih is alled with the appropriate subterm

and the de�nitional tree for the leftmost outermost funtion symbol. s is de�ned by a ase

distintion on the de�nitional tree. If it is a rule node, we apply this rule. If the de�nitional

tree is an and node, we try to evaluate the �rst branh and, if this is not possible due to the
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Computation step for a single (unsolved) expression:

se(x) = suspend for all variables x

se(f(e

1

; : : : ; e

n

)) = s(f(e

1

; : : : ; e

n

);T ) if T is a fresh de�nitional tree for f

se((e

1

; : : : ; e

n

))

=

�

replae((e

1

; : : : ; e

n

); k; se(e

k

)) if se(e

1

) = � � � = se(e

k�1

) = suspend 6= se(e

k

)

suspend if se(e

i

) = suspend, i = 1; : : : ; n

Computation step for an operation-rooted expression e:

s(e; rule(l = r)) = fid �(r)g if � is a substitution with �(l) = e

s(e; and(T

1

;T

2

)) =

�

s(e;T

1

) if s(e;T

1

) 6= suspend

s(e;T

2

) otherwise

s(e; or(T

1

;T

2

)) =

�

s(e;T

1

) [ s(e;T

2

) if s(e;T

1

) 6= suspend 6= s(e;T

2

)

suspend otherwise

s(e; branh(�; p; r;T

1

; : : : ;T

k

))

=

8

>

>

>

>

>

<

>

>

>

>

>

:

s(e;T

i

) if ej

p

= (e

1

; : : : ; e

n

) and pat(T

i

)j

p

= (x

1

; : : : ; x

n

)

; if ej

p

= (e

1

; : : : ; e

n

) and pat(T

i

)j

p

6= (� � �); i = 1; : : : ; k

suspend if ej

p

= x and r = rigid

S

k

i=1

f�

i

�

i

(e)g if ej

p

= x, r = flex, and �

i

= fx 7! pat(T

i

)j

p

g

replae(e; p; se(ej

p

)) if ej

p

= f(e

1

; : : : ; e

n

)

Derivation step for a disjuntive expression:

f� eg [D ! f�

1

Æ � e

1

; : : : ; �

n

Æ � e

n

g [D

if � e is unsolved and se(e) = f�

1

e

1

; : : : ; �

n

e

n

g

Figure 2: Operational semantis of Curry

suspension of all funtion alls, the seond branh.

12

An or node produes a disjuntion. To

ensure ompleteness, we have to suspend the entire disjuntion if one disjunt suspends [16℄.

For a similar reason, we annot ommit to a disjunt whih does not bind variables but we

have to onsider both alternatives (see [6℄ for a ounter-example). The most interesting ase

is a branh node. Here we have to branh on the value of the top-level symbol at the seleted

position. If the symbol is a onstrutor, we proeed with the appropriate de�nitional subtree, if

possible. If it is a funtion symbol, we proeed by evaluating this subterm. If it is a variable, we

either suspend (if the branh is rigid) or instantiate the variable to the di�erent onstrutors.

The auxiliary funtion replae puts a possibly disjuntive expression into a subterm:

replae(e; p; d) =

�

f�

1

�

1

(e)[e

1

℄

p

; : : : ; �

n

�

n

(e)[e

n

℄

p

g if d = f�

1

e

1

; : : : ; �

n

e

n

g

suspend if d = suspend

The overall omputation strategy is a transformation on disjuntive expressions. It takes a

disjunt � e not in solved form and omputes se(e). If se(e) = suspend, then the ompu-

tation of this expression ounders and we annot proeed (i.e., this expression is not solvable).

If se(e) is a disjuntive expression, we substitute it for � e omposed with the old answer

substitution.

12

For the sake of simpliity, we hoose a simple sequential strategy for onurrent omputations.

However, it is also possible to provide a more sophistiated strategy with a fair seletion of threads, e.g.,

as in Oz [35℄.
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