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Abstract. We present a tool to develop functional logic programs from their
specifications. Specifications of functional logic languages, i.e., contracts in the
form of pre- and postconditions, are written in the same language as the final
programs. Thus, contracts serve either as initial prototypical implementations or
as assertions to check the expected behavior of more efficient implementations.
We describe a tool that supports this software development process. Our tool
can either instrument ordinary programs with run-time assertions obtained from
declarative contracts or can transform declarative contracts into prototypical im-
plementations.

1 Introduction

Ideally, software development follows a rigorous specification. In practice, the situation
is quite different. Specifications often are non existent, incomplete, informal and/or
unintended because:

– Specifications cannot be easily mechanically processed. Hence their adequacy and
consequences are not fully understood.

– Specifications are a laborious step of the development process which may not be
profitable without a significant commitment.

– Specifications could support proofs of program correctness for more reliable pro-
grams, but these proofs are difficult and seldom successful.

Some methodologies and tools to improve this situation had some success in specific ar-
eas such as embedded systems. For instance, wide-spectrum languages, such as CIP-L
[4], aim at developing an efficient program from a formal specification by means of
well-defined transformation steps so that a program is correct by construction. How-
ever, this approach may prevent skilled programmers from developing superior software
since the code must be obtained throughout a fixed set of transformation rules.

Specifications that are written in a declarative programming language are naturally
executable. This greatly extends their uses and makes them more profitable because
they can be exploited in different forms:
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– Executable specifications serve as initial prototypical implementations.
– Executability allows experimentation which promotes understanding and increases

the confidence that a specification captures the intent.
– When an implementation directly obtained from a specification is too inefficient,

the specification can be executed to check, via run-time assertions, that a more
efficient implementation behaves as intended.

The possibilities sketched above become practical through tools together with a lan-
guage and conventions to formulate specifications and connect them to the code they
specify.

As we will demonstrate in some examples, functional logic languages [3] are quite
appropriate for this purpose. The logic side, in particular nondeterminism, allows high-
level specifications of operations without concern for their efficient implementation.
The functional side allows implementing efficient algorithms [16]. This combination
produces a wide-spectrum language [4]. The tight integration of specification and code
opens wide possibilities with simple tools. In particular, we present a transformation
tool for functional logic programs that uses specifications in either of two ways. Specifi-
cations without a corresponding implementation serve as prototypical implementations.
Specifications with a corresponding implementation serve as run-time assertions.

The language for our presentation is the multi-paradigm declarative language Curry
[13]. We assume familiarity with the general concepts of functional logic programming
[3, 10, 11]. In the next section we review some notions crucial for this paper.

2 Functional Logic Programming and Curry

The multi-paradigm language Curry [13] amalgamates important features from func-
tional programming (demand-driven evaluation, parametric polymorphism, higher-
order functions) and logic programming (computing with partial information, unifica-
tion, constraints) in a single language. Curry has a Haskell-like syntax3 [17] extended
by the possible inclusion of free (logic) variables in conditions and right-hand sides
of defining rules. The operational semantics is based on an optimal evaluation strategy
[1] which is a conservative extension of lazy functional programming and (concurrent)
logic programming.

Expressions in Curry programs contain operations (defined functions), constructors
(introduced in data type declarations), and variables (arguments of operations or free
variables). The goal of a computation is to obtain a value of some expression, where
a value is an expression that does not contain any operation. Note that in a functional
logic language expressions might have more than one value due to nondeterministically
defined operations. For instance, Curry contains a choice operation defined by:

x ? _ = x
_ ? y = y

3 Variables and function names usually start with lowercase letters and the names of type and
data constructors start with an uppercase letter. The application of f to e is denoted by juxta-
position (“f e”).



Thus, the expression “0 ? 1” has two values: 0 and 1. If expressions have more than
one value, one wants to select intended values according to some constraints, typically
in conditions of program rules. A rule has the form “f t1 . . . tn | c = e” where
c is a constraint, i.e., an expression of the built-in type Success. For instance, the
trivial constraint success is a value of type Success that denotes the always sat-
isfiable constraint. Thus, we say that a constraint c is satisfied if it can be evaluated
to success. An equational constraint e1 =:= e2 is satisfiable if both sides e1 and
e2 are reducible to unifiable values. Furthermore, if c1 and c2 are constraints, c1 & c2
denotes their concurrent conjunction (i.e., both argument constraints are concurrently
evaluated) and c1 &> c2 denotes their sequential conjunction (i.e., c2 is evaluated after
the successful evaluation of c1).

With nondeterministic programming, it is sometimes useful to examine the set of
all the values of some expression. A “set-of-values” operation applied to an arbitrary
argument might depend on the degree of evaluation of the argument, which is difficult
to grasp in a non-strict language. Hence, set functions [2] have been proposed to en-
capsulate nondeterministic computations in non-strict functional logic languages. For
each defined function f , fS denotes the corresponding set function. In order to be in-
dependent of the evaluation order, fS encapsulates only the nondeterminism caused
by evaluating f except for the nondeterminism caused by evaluating the arguments to
which f is applied. For instance, consider the operation decOrInc defined by:

decOrInc x = (x-1) ? (x+1)

Then “decOrIncS 3” evaluates to (an abstract representation of) the set {2,4},
i.e., the nondeterminism caused by decOrInc is encapsulated into a set. However,
“decOrIncS (2?5)” evaluates to two different sets {1,3} and {4,6} due to its
nondeterministic argument, i.e., the nondeterminism caused by the argument is not
encapsulated. In this paper we use set functions to check the (non) satisfiability of
constraints by testing the emptiness of the result sets with the predefined operation
isEmpty.

3 Contracts and Assertions

A specification consists of a pre- and postcondition, also called a contract, for an oper-
ation. Contracts have been introduced in the context of imperative and object-oriented
programming languages [15] to improve the quality of software. The precondition is an
obligation for the arguments of an operation application. The postcondition is an obli-
gation for both the arguments of an operation application and the result of the operation
application to those arguments. Intuitively, the application or call to each operation must
satisfy its precondition, and, if the precondition is satisfied and the operation returns a
result, this result must satisfy the postcondition. When a contract is checked at run-time,
the pre- and postcondition are called assertions.

In general, contracts can specify arbitrary properties of operations. For instance,
a type restriction on arguments and results can be considered as a contract which is
checked at compile time in statically typed languages. However, contracts can also be
used to specify the desired functionality of an operation in a precise manner. When a



pair of pre- and postcondition specifies all and only the intended arguments and the
intended results of an operation, respectively, the contract is called a specification.

Since functional logic languages encompass logic programming principles, they are
equipped to generate values satisfying the constraints of a given program. We can ex-
ploit this property to execute a specification by generating values satisfying the post-
condition of an operation. Obviously, this requires that the postcondition is expressed
as a functional logic program. This is not a serious restriction due to the expressiveness
of functional logic languages, in particular, nondeterminism and existentially quanti-
fied variables. Thus, our tool is based on source-to-source transformations of functional
logic programs.

We formalize contracts as follows. Let f be an operation of type τ1 → · · · →
τn → τ (n ≥ 0). A precondition for f is a constraint fpre of type τ1 → · · · → τn →
Success. A postcondition for f is a constraint fpost of type τ1 → · · · → τn → τ →
Success. An example follows.

Suppose that the problem is to develop an operation, sort, to sort a list of integers.
The type of sort is:

sort :: [Int] → [Int]

The contract is shown below. Our tool assumes that the pre- and postcondition of an
operation f are called f’pre and f’post, respectively.

sort’pre :: [Int] → Success
sort’pre _ = success

sort’post :: [Int] → [Int] → Success
sort’post x y = (y =:= permute x) & sorted y

The precondition is trivially satisfied. The postcondition states that the result of sort
is a permutation in ascending order of its input. These concepts are easily formalized:

permute [] = []
permute (x:xs) = ndinsert x (permute xs)
where
ndinsert x ys = x : ys
ndinsert x (y:ys) = y : ndinsert x ys

sorted [] = success
sorted [_] = success
sorted (x:y:ys) = (x<=y)=:= True & sorted (y:ys)

Assume that this code is in a module called Sort.curry. DSDCurry, the tool de-
scribed in Sect. 4, transforms it into a new module called SortC.curry in which
pre- and postconditions provide a first implementation of sort. This is triggered by
the fact that sort has not (yet) been coded. Hence, we are already able to sort a list.

> dsdcurry -r Sort
. . .
SortC> sort [5,1,2,6,3]
Result: [1,2,3,5,6]



Now, for more efficient sorting, we code sort using the well-known quicksort algo-
rithm. We extend module Sort.curry with the following definition:

sort :: [Int] → [Int]
sort [] = []
sort (x:xs) = sort (filter (<x) xs) ++ [x] ++

sort (filter (>x) xs)

DSDCurry applied to the extended module behaves differently. The pre- and postcon-
dition provide run-time assertions to check the behavior of the now implemented sort
operation. The first test goes without a hitch.

> dsdcurry -r Sort
. . .
SortC> sort [5,1,2,6,3]
Result: [1,2,3,5,6]

However, a further test shows a non-intended behavior:

SortC> sort [5,1,2,6,5,3]
ERROR: Postcondition of operation ’sort’ failed for:
[5,1,2,6,5,3] → [1,2,3,5,6]

After looking at (and maybe debugging) our implementation, we spot the error: we
forgot the elements equal to the pivot. Thus, we correct the last rule defining sort:

sort (x:xs) = sort (filter (<x) xs) ++ [x] ++
sort (filter (>=x) xs)

and transform and execute the resulting program again:

SortC> sort [5,1,2,6,5,3]
Result: [1,2,3,5,5,6]

Other approaches that define assertions for functional (logic) programs (e.g., [7, 8, 12])
use Boolean functions as assertions. Constraints, instead, fit more naturally into func-
tional logic programming. In particular, they are intended to generate values whereas
Boolean functions are used to check properties of given values.

As our example shows, a contract provides either an implementation of a yet to be
coded operation, or an assertion for an already coded operation. The assertion checks
at run-time that an operation meets its obligations. The first case is implemented in a
functional logic language by applying the postcondition to an uninstantiated variable,
as the following snippet shows (although the precondition is trivially satisfied and could
be omitted, we keep it around to show the general scheme):

sort xs | sort’pre xs &> sort’post xs ys = ys
where ys free

The result argument of the postcondition is declared as a free variable, ys, so that the
evaluation of the postcondition instantiates it with values that satisfy the postcondition.
The soundness and completeness of the functional logic computation ensure that all and
only the intended results of sort are computed.



When the specification-based prototype is not efficient enough for the problem (in
our sorting example because the number of permutations of a long list is too large),
the program is developed as usual by the programmer. In this case, a contract is used
to check whether the implementation produces the expected output. This requires to
answer the following questions:

1. Which result values should be taken into account?
2. How should the assertion check be operationally treated?

For the first question, remember that operations of a functional logic language might
have more than one result value. For instance, the operation zero (the name, somewhat
misleading, is suggested by the postcondition) defined by:

zero = 0 ? 1

has 0 or 1 as results. The postcondition:

zero’post x = x =:= 0

states that the result of any application of zero should be equal to 0. Thus, it is not suf-
ficient that some result of zero satisfies the postcondition—any computed result must
satisfy it. On the other hand, the postcondition might accept more values than actu-
ally computed because postconditions may state weak requirements rather than precise
specifications. For instance, a postcondition of the factorial function may state that the
result should be a positive number without intending that all positive numbers should
be produced by the factorial function.

Altogether, we check the pre- and postconditions for a unary operation f as follows
(the generalization to multiple arguments is straightforward):

1. If f is called with some argument value x, the constraint fpre xmust be satisfiable.
2. If fpre x is satisfiable and f x returns some value y, the constraint fpost x y must

be satisfiable.

Thus, assertions will be implemented by exploring the computation spaces of fpre x
and fpost x y, for each call to f during run time. Whenever one of these computation
spaces is finite but does not contain any solution, an assertion violation is reported (and
the program terminates). As we will see, set functions are quite handy to implement this
check.

A subtlety of laziness is that a function call might have arguments and/or produce
results that are not fully evaluated. An approach is to evaluate the arguments of pre-
and postconditions as much as needed to check an assertion. In this case, the pre- and
postconditions are treated as strict assertions, i.e., they are evaluated when the corre-
sponding operation is evaluated. This has the advantage that assertions are checked as
soon as they could detect a violation. However, this evaluation might influence the op-
erational behavior of a program. For instance, consider an operation “insert n xs”
that inserts an integer n into a supposedly ascending list of integers xs. The following
(weak) contract states that the input and output lists should be ordered:

insert’pre _ xs = sorted xs
insert’post _ _ zs = sorted zs



Now consider the expression e = head (insert 3 [1,2..]). The standard
(lazy) strategy evaluates e to 1. If we check the assertions of insert in a strict man-
ner, the program will not terminate due to the evaluation of the infinite list [1,2..].
Moreover, assertion violations might be reported by strict assertions, whereas the stan-
dard lazy evaluation of the program does not violate these assertions (see [12] for an
example).

To prevent assertions from influencing the behavior of a program, Chitil et al. [7]
proposed lazy assertions that do not enforce argument evaluation but are checked when
the argument expression has been evaluated by the application program so far that the
assertion can be evaluated without further evaluation of its argument. Thus, as long as
every assertion is satisfied, program executions with or without lazy assertion checking
deliver the same results.

A disadvantage of lazy assertions is that if the assertion arguments are not suffi-
ciently evaluated the assertion itself is not evaluated and consequently a violation is not
detected. For instance, “head (insert 3 [5,1])” returns 3 without any asser-
tion violation if the contract is lazily checked, although the programmer could assume
that the result is the minimal element of the inputs. Thus, it is debatable whether full
assertion checking should be avoided in order to keep the behavior of programs [8,
12]. Lazy assertions do not modify the behavior, but a lazily computed result cannot
be trusted as long as some assertion has not been checked. As a compromise between
these conflicting goals, [12] proposed enforceable assertions (also called “faithful as-
sertions” in [12]). These assertions behave like lazy assertions, but they can also be
checked upon an explicit request of the programmer, e.g., at the end of a program run
or at key intermediate execution points, e.g., before some irrevocable action (deleting a
file, launching a rocket, etc) takes place.

Since there seems to be no silver bullet for assertion checking in lazy languages, our
tool supports strict, lazy, and enforceable assertions so that the programmer can select
the most appropriate method for a particular application.

4 The Tool

In this section, we discuss a transformation tool, DSDCurry4, for the software devel-
opment approach sketched earlier. Basically, DSDCurry takes as input a Curry module
M containing contracts for some operations and produces a new Curry module MC
that extends M in the following ways. MC implements operations that are undefined,
but have a contract, in M . MC implements assertion checking for operations that in
M both are implemented and have a contract. Trivial preconditions can be omitted, i.e.,
if the postcondition f’post is defined, but the precondition f’pre is missing, the
trivial precondition:

f’pre _ = success

is assumed (for the sake of simplicity, we consider only unary operations in this section).

4 The tool together with more examples is available at:
http://www.informatik.uni-kiel.de/˜pakcs/dsdcurry/.



If a contract for an operation f is given, but the operation f is not defined or defined
by the rule “f = unknown”, which is necessary if f is referenced in the definition of
other operations in M , DSDCurry inserts the following definition of f in MC:

f x | checkPre "f" (f’preS x) &> f’post x y = y
where y free

DSDCurry uses the postcondition to generate values satisfying the specification and the
precondition to check violations of arguments. To detect and report a failure, our tool
computes the set of all the values of (f’pre x) using the corresponding set function
f’preS . This set is passed together with the name of the operation to the generic
precondition checker, checkPre, which is defined by:

checkPre fname valset =
if isEmpty valset
then error

("Precondition of operation ’"++fname++"’ failed!")
else success

The postcondition checker, checkPost, is similarly defined. It is used when the con-
tract acts as an assertion, i.e., if the module M contains a contract as well as an imple-
mentation of f , DSDCurry replaces this implementation with:

f x | checkPre "f" (f’preS x) &> checkPost "f" (f’postS x y)
= y

where y = f’ x
f’ . . .

in which “f ′ . . .” contains the original definition of f with every occurrence of f re-
placed by f ′. Thus, the original interface of any function is preserved by DSDCurry.
The use of set functions is quite useful here to distinguish the nondeterminism orig-
inating from the evaluation of the operation (i.e., the different values of y) from the
nondeterminism originating from the evaluation of the postcondition: only the latter
should be encapsulated (by the set function f’postS ) to detect a possible assertion
violation.

The transformation scheme presented above supports only strict assertions: if an
operation f is applied to some argument, the pre- and postcondition are checked before
any result is returned. To implement lazy (and also enforceable) assertions, we use a
variant of the implementation of lazy and enforceable assertions in Curry proposed in
[12] which we sketch in the following. The desired kind of assertions is selected in
DSDCurry by a flag.

To implement lazy assertions, we need two operations for each type τ :

wait :: τ → τ
ddunif :: τ → τ → τ

The evaluation of “wait x” suspends as long as the value of x is unknown (i.e., an un-
bound variable) and returns the value when it is known. “ddunif x e” is a demand-
driven unification of x (which is usually a free variable) and the expression e and returns
the unified value. “Demand-driven” means that the unification is performed to the de-
gree requested by other operations that refer to the result of “ddunif x e”. These



operations can be mechanically generated for each concrete data type by a case distinc-
tion on data constructors. For lack of space, we refer to [12] for the details.

These two type-specific operations can be encapsulated into a single type, Assert,
defined as:

data Assert a = Assert (a → a) (a → a → a)

DSDCurry automatically generates the necessary definitions for all types used in the
contracts, i.e., if τ is a type used in some contract, there is an expression aτ of type
Assert τ encapsulating the lazy assertion operations for this type.

Based on these definitions, DSDCurry translates an implementation of operation f
of type τ0 → τ1 into the following definition, if the contract should be lazily checked:

f x = withLazyContract aτ1 aτ2 "f" f’preS f’postS f ′ x
where f’ . . .

Again, f ′ is the renamed original definition of f , and the new implementation of f calls
a generic operation withLazyContract that decorates the evaluation with a lazy
checking of pre- and postconditions as follows:

withLazyContract (Assert wta unifa) (Assert wtb unifb)
fname presetfun postsetfun fun arg =

spawnConstraint
(checkPre fname (presetfun (wta x))
& checkPost fname (postsetfun (wta x) (wtb fx)))
(unifb fx (fun (unifa x arg)))

where x,fx free

The operation “spawnConstraint c e”, introduced in [5] for observation debug-
ging, evaluates the constraint c concurrently with the expression e, i.e., the declarative
semantics is identical to “c &> e”, but the suspension of c does not hamper the eval-
uation of e. Thus, withLazyContract spawns two concurrent constraints to check
the pre- and postcondition. However, they are not eagerly checked, but the checking is
suspended (by the “wait” operations wta and wtb) until the required values are known.
This is done by the demand-driven unifications (unifa, unifb) that instantiate their
first argument whenever the evaluation of the second argument is demanded. Hence,
this implementation ensures that the assertion checking does not change the evaluation
order of the original program. Since spawned constraints are evaluated with high prior-
ity, a violated contract is reported immediately if the argument values are available.

The implementation of enforceable contracts is similar to that of lazy contracts ex-
cept for the following modification. In addition to spawning the constraints for lazy
assertion checking as in withLazyContract, the constraints for strictly checking
pre- and postconditions are registered for evaluation at some later time. These con-
straints are suspended until a global “control variable” becomes instantiated. Thus, the
evaluation of these constraints can be enforced by instantiating the control variable.
In order to avoid the double evaluation of enforced constraints that have already been
lazily evaluated, one can connect both constraints with an individual flag (i.e., a free
variable) that is set when the lazy assertion has been evaluated so that this flag can be
checked before the corresponding constraint is enforced.



This implementation scheme uses only standard Curry features and libraries. Thus,
DSDCurry was implemented as a source-level program transformation without chang-
ing the run-time system of the underlying Curry implementation.

5 Conclusions and Related Work

We have presented a tool towards the development of reliable declarative programs. Our
tool uses contracts for two purposes: rapid prototyping, in which the particular features
of functional logic programming allows us to compute the result of an undefined oper-
ation from its postcondition, and assertion checking, in which pre- and postconditions
are evaluated at run-time to ensure that the operation is called as expected and produces
expected results.

In contrast to a wide-spectrum language like CIP-L [4] that supports the develop-
ment of correct programs by applying a stepwise transformation process to specifica-
tions, we support more flexibility. As a consequence, we can not ensure that the devel-
oped programs satisfy the specification. This property is only checked in each concrete
program execution. Assertion checking has been proposed for many programming lan-
guages and paradigms. The use of assertions in languages with an eager evaluation
strategy, like imperative, logic, or strict functional languages, is easier than in our case.
For instance, [18] proposes an assertion language for (constraint) logic programming
that is combined in [14] with a static verification framework. [9] considered a strict
language with side effects and proposed the evaluation of assertions in parallel to the
application program to exploit the power of multi-core computers.

As already discussed in Section 3, the treatment of assertions in non-strict languages
is more subtle. Since eager assertion checking might influence the outcome of an execu-
tion, lazy assertions are proposed in [7] as a meaning preserving alternative. Since lazy
assertions might not report some violations, Chitil and Huch [6] improved the situation
by introducing “prompt” assertions that deliver more results but are still meaning pre-
serving. Degen et al. [8] discussed the different approaches and put this into the slogan
“faithfulness is better than laziness.” Therefore, [12] proposed a further option: enforce-
able assertions are lazy but can also be eagerly checked when faith is required. Since
it is not obvious which alternative is the most appropriate in a non-strict language, our
tool allows the programmer to select the evaluation mode of assertions, namely strict,
lazy, or enforceable.

Future work will investigate support for proving the correctness of an operation
w.r.t. its contract. Proofs are very challenging for realistic programs, but in contrast to
assertions they incur no run-time cost, and guarantee the behavior of a program stati-
cally rather than for a particular execution.
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