
Adding Constraint Handling Rules to Curry?

– Extended Abstract –

Michael Hanus

Institut für Informatik, CAU Kiel, D-24098 Kiel, Germany.
mh@informatik.uni-kiel.de

Abstract. This paper proposes an integration of Constraint Handling Rules (CHR), a rule-
based language to specify application-oriented constraint solvers, into the declarative multi-
paradigm language Curry. This integration provides a convenient way to specify and use
flexible constraint systems in applications implemented in Curry. We propose to represent
CHR as data objects in Curry programs so that the advantages of Curry (static typing,
functional notation) can also be exploited to define CHR. In order to write CHR in a
compact way, we define a set of abstractions that hide the concrete CHR data objects. We
sketch an implementation of this concept in the Prolog-based Curry implementation PAKCS
that compiles CHR data objects into CHR Prolog programs.

1 Motivation

Functional logic languages [7] integrate the most important features of functional and logic lan-
guages in order to provide a variety of programming concepts. For instance, the concepts of
demand-driven evaluation and higher-order functions from functional programming are combined
with logic programming features like computing with partial information (logic variables), unifica-
tion, and nondeterministic search for solutions. This combination, supported by optimal evaluation
strategies [1] and new design patterns [3], leads to better abstractions in application programs such
as implementing graphical user interfaces [9] or programming dynamic web pages [10]. The declar-
ative multi-paradigm language Curry [8, 15] is a functional logic language extended by concurrent
programming concepts and has been used in various applications, like web programming [10, 14],
embedded system programming [13], or database applications [11].

An important application area of declarative, and in particular, logic programming languages is
constraint programming [17, 21]. Since logic programming is a subset of functional logic program-
ming, there exist various attempts to extend functional logic languages with constraint solving
facilities (see [23] for a survey). For instance, Lux [20] describes an implementation of a solver
for real arithmetic constraints for Curry, and the inclusion of finite domain constraints in the
functional logic language TOY [19] is described in [5]. If a functional logic language is compiled
into Prolog (as in TOY [19] or PAKCS [12]), it is fairly easy to provide the functionality of any
constraint solver supported by the underlying Prolog system to the source language via an ap-
propriate interface. For instance, such a technique is described in [2] for the Curry programming
environment PAKCS that compiles Curry programs into Prolog programs.

Constraint Handling Rules (CHR) [6] are a declarative language for specifying application-
oriented constraint systems. They are useful for applications that require specific constraints for
which no standard solvers (like solvers for finite domain or real arithmetic constraints) exist. CHR
define the processing of multisets of constraints by the specification of multi-headed simplification
or propagation rules. Thus, CHR is a high-level language to specify and implement constraint
solvers for various application domains (see [6] for a more detailed survey).

Functional logic languages are intended to cover (constraint) logic programming and adds
abstraction facilities of functional programming (e.g., higher-order functions, types, flexible (lazy)
evaluation strategies). Thus, it is reasonable to integrate CHR also in a functional logic language

? This work was partially supported by the German Research Council (DFG) grant Ha 2457/5-1.



in order to provide the flexible construction of constraint solvers for various application domains.
In this paper we discuss such an approach for the functional logic language Curry.

Due to the fact that functional logic programming extends logic programming, it is natural
that there exist various approaches to implement functional logic languages by compilation into
Prolog (e.g., [2, 5, 18, 19]). In such an implementation, a new CHR-based constraint solver could
be made available as follows:

1. Define a CHR constraint solver in Prolog (note that implementations of CHR are included in
various Prolog implementations, e.g., SICStus or SWI Prolog [16]).

2. Provide the functionality of the solver by defining an interface of the CHR constraints to the
functional logic language (e.g., as described in [2]).

3. Use the CHR constraints via this interface in the application programs.

However, this solution is not satisfactory since the definition of CHR often depends on the appli-
cation so that, for a specific application exploiting CHR, the implementor has to use two different
programming languages: the main functional logic implementation language (like Curry) and the
host language of CHR, e.g., Prolog. This could be a burden for the practical use of CHR in func-
tional logic languages.1 Therefore, we propose in this paper the integration of CHR into the source
language which is, in our case, Curry. This integration reduces the practical difficulties when using
CHR in applications implemented in Curry. Furthermore, it has the advantage that the features
of Curry can be used to define CHR. For instance, the type system of Curry is useful to detect
some inconsistencies of CHR at compile time, or one can generate CHR by user-defined functions.

In order to avoid a language extension to include CHR in Curry (language extensions are
often major design steps with a lot of implementation efforts), we propose in this paper a simpler
approach as a first step to integrate CHR into Curry. We represent CHR as data objects that can be
manipulated and compiled into a CHR program implemented in Prolog. The compilation process
also generates the interface to use CHR constraints in Curry programs so that the programmer can
abstract from the underlying Prolog implementation. In order to write CHR in the usual compact
way, we define a set of abstractions that hide the concrete CHR data objects.

In the next section, we review some concepts of functional logic programming and the language
Curry in order to understand the rest of the paper. Section 3 reviews the basic ideas of CHR.
Section 4 contains our proposal to integrate CHR in Curry. Section 5 sketches the implementation
of this proposal before we conclude in Section 6.

2 Basic Elements of Curry

In this section we review those elements of Curry which are necessary to understand the contents
of this paper. More details about Curry’s computation model and a complete description of all
language features can be found in [8, 15].

Curry is a multi-paradigm declarative language that combines in a seamless way features
from functional, logic, and concurrent programming and supports programming-in-the-large with
specific features (types, modules, encapsulated search). From a syntactic point of view, a Curry
program is a functional program extended by the possibility to include free (logical) variables in
conditions and right-hand sides of defining rules. Curry has a Haskell-like syntax [22], i.e., (type)
variables and function names usually start with lowercase letters and the names of type and data
constructors start with an uppercase letter. Function types are “curried,” i.e., α->β denotes the
type of all functions mapping elements of type α into elements of type β, and the application of
a function f to an argument e is denoted by juxtaposition (“f e”).

A Curry program consists of the definition of functions and data types on which the functions
operate. Functions are evaluated lazily. To provide the full power of logic programming, functions
can be called with partially instantiated arguments and defined by conditional equations with

1 Note that many users of Curry are more familiar with functional languages, which are often taught in
basic courses of a computer science curriculum, than with purely logic languages.



constraints in the conditions. Function calls with free variables are evaluated by a possibly non-
deterministic instantiation of demanded arguments (i.e., arguments whose values are necessary to
decide the applicability of a rule) to the required values in order to apply a rule (this evaluation
mechanism is often called “narrowing”). In order to support concurrent programming (in a style
that is also known as “residuation”), there is a primitive to define general “suspension” combina-
tors for concurrent programming: the predefined operation ensureNotFree returns its argument
evaluated to head normal form but suspends as long as the result is a free variable.

Example 1. The following Curry program defines the data types of Boolean values and polymor-
phic lists and functions for computing the concatenation of lists and the last element of a list:

infixr 5 ++

data Bool = True | False
data List a = [] | a : List a

(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

last :: [a] -> a
last xs | ys ++ [x] =:= xs = x where x,ys free

The data type declarations define True and False as the Boolean constants, and [] (empty list)
and : (non-empty list) as the constructors for polymorphic lists (a is a type variable ranging over
all types and the type “List a” is written as [a] for conformity with Haskell).

The infix operator declaration “infixr 5 ++” declares the symbol “++” as a right-associative
infix operator with precedence 5 so that we can write function applications of this symbol with
the convenient infix notation. The (optional) type declaration (“::”) of the function “++” specifies
that “++” takes two lists as input and produces an output list, where all list elements are of the
same (unspecified) type. Since the function “++” can be called with free variables in arguments,
the equation “ys ++ [x] =:= xs” is solved by instantiating the first argument ys to the list xs
without the last argument, i.e., the only solution to this equation satisfies that x is the last element
of xs.

In general, functions are defined by (conditional) rules of the form

f t1 . . . tn | c = e where vs free

with f being a function, t1, . . . , tn patterns (i.e., expressions without defined functions) without
multiple occurrences of a variable, the condition c is a constraint, e is a well-formed expression
which may also contain function calls, lambda abstractions etc, and vs is the list of free variables
that occur in c and e but not in t1, . . . , tn.2 The condition and the where parts can be omitted if c
and vs are empty, respectively. The where part can also contain further local function definitions
which are only visible in this rule. A conditional rule can be applied if its left-hand side matches
the current call and its condition is satisfiable.

A constraint is any expression of the built-in type Success. For instance, the trivial constraint
success is an expression of type Success that denotes the always satisfiable constraint. “c1 & c2”
denotes the concurrent conjunction of the constraints c1 and c2, i.e., this expression is evaluated by
proving both argument constraints concurrently. Each Curry system provides at least equational
constraints of the form e1 =:= e2 which are satisfiable if both sides e1 and e2 are reducible to unifi-
able patterns. However, specific Curry systems also support more powerful constraint structures,
like arithmetic constraints on real numbers or finite domain constraints, as in the PAKCS imple-
mentation [12]. The purpose of this paper is to provide a mechanism to specify application-oriented
constraint solvers on the level of Curry programs.
2 The explicit declaration of free variables is sometimes redundant (it is not redundant in case of nested

scopes introduced by lambda abstractions or local definitions) but still useful to provide some consistency
checks by the compiler.



The operational semantics of Curry, precisely described in [8, 15], is based on an optimal
evaluation strategy [1] which is a conservative extension of lazy functional programming and
(concurrent) logic programming. Due to its demand-driven behavior, it provides optimal evaluation
(e.g., shortest derivation sequences, minimal solution sets) on well-defined classes of programs (see
[1] for details). Curry also offers the standard features of functional languages, like higher-order
functions or monadic I/O [24].

3 Constraint Handling Rules

In this section we review the basic ideas of Constraint Handling Rules (CHR). More details about
the concept and implementation of CHR can be found in the survey [6] and the CHR web site3.

CHR are rules that describe the processing of a multiset of user-defined constraints (also
called the constraint store) by two kinds of rules. Simplification rules specify the replacement of
several constraints by a multiset of constraints. Propagation rules specify the propagation of new
constraints from several existing constraints, i.e., the new constraints are added to the constraint
store. In order to express conditions for the applicability of rules, the rules can contain guards
that consist of predefined (built-in) primitive constraints. Such primitive constraints can also be
used in the right-hand sides of simplification or propagation rules.

Example 2. The following CHR [6] define the processing of user-defined constraints for a less-than-
or-equal relation leq (in a Prolog-like syntax). true denotes the empty multiset of constraints and
“=” denotes the primitive constraint of syntactic equality.

reflexivity @ leq(X,Y) <=> X=Y | true.
antisymmetry @ leq(X,Y), leq(Y,X) <=> X=Y.
transitivity @ leq(X,Y), leq(Y,Z) ==> leq(X,Z).

Simplification and propagation rules are denoted by “<=>” and “==>”, respectively. The primitive
constraints to the left of the symbol “|” is the guard of a rule. Multiple constraints are separated
by commas which can be interpreted as logical conjunction. The rule reflexivity specifies that
an occurrence of a constraint leq(X,Y) can be eliminated provided that X=Y holds, i.e., both
arguments are syntactically identical. The rule antisymmetry specifies that occurrences of both
leq(X,Y) and leq(Y,X) in the constraint store can be replaced by X=Y that enforces the syntactic
identity of X and Y. Note the different rôles of the primitive constraint X=Y in both rules. This
constraint acts in rule reflexivity as a condition (test) to determine the applicability of the rule,
whereas in rule antisymmetry it enforces the equality by manipulating the constraint store. In
general, the applicability of a rule is tested without modifying the constraint store (in contrast to
predicates in logic programming that are applied by instantiating the actual arguments), i.e., the
left-hand side and the condition must be entailed by the constraint store before the constraints in
the right-hand side are added to the store.

The rule transitivity propagates a new constraint, i.e., leq(X,Z) is added to the con-
straint store if the store already contains the constraints leq(X,Y) and leq(Y,Z). The re-
dundancy in the constraint store caused by propagation is useful to enable the application
of further simplification rules. For instance, if the constraint store consists of the constraints
{leq(X1,X2), leq(X3,X1), leq(X2,X3)}, the application of rule transitivity adds the new
constraint leq(X1,X3) so that the application of rule antisymmetry deletes the constraints
leq(X3,X1) and leq(X1,X3) and enforces the syntactic equality between X1 and X3. As a conse-
quence, the remaining two constraints can be deleted by enforcing the equality between X1 and
X2.

Although simplification and propagation rules form the kernel of CHR (but note that even a
propagation rule can be considered as an abbreviation of simplification rule where the left-hand
side occurs also in the right-hand side), it is sometimes useful to combine a simplification and a

3 http://www.cs.kuleuven.ac.be/~dtai/projects/CHR/



propagation rule into one rule, called simpagation rule, where the left-hand side contains two parts
separated by “\”: the left part is kept like in a propagation rule and the right part is deleted like
in a simplification rule. For instance, the following rule specifies that multiple occurrences of the
same constraint can be deleted:

idempotence @ leq(X,Y) \ leq(X,Y) <=> true.

2

In the next section we show how CHR can be integrated in the language Curry by defining data
types and operators so that rules of CHR become regular Curry expressions.

4 Constraint Handling Rules in Curry

As already mentioned in Section 1, we want to avoid to extend the language Curry in order to deal
with CHR. As an alternative, we intend to express a CHR specification as elements of a Curry
program. In order to support type checking of CHR specifications and a consistent integration of
CHR into the statically typed language Curry, we will represent CHR as data objects in Curry. For
doing so, we start with the following data type that represents the basic structure of a constraint
handling rule:

data CHRule goal = SimpRule goal goal
| PropRule goal goal
| SimpagRule goal goal goal

The data type is parameterized (via the type variable goal) over the type of goals, i.e., conjunctions
of primitive or CHR constraints. Simplification rules (SimpRule) and propagation rules (PropRule)
have two goal arguments (the left- and right-hand side), whereas a simpagation rule (SimpagRule)
has three goal arguments (the two goals of the left-hand side and the right-hand side goal).

Next we have to define the data type of goals. Since a goal can be a conjunction or a single
primitive or CHR constraint which should be represented as data, we need data constructors to
distinguish the different cases. Moreover, there are some primitive constraints that operate on
arguments of an arbitrary type (e.g., “=”) and others that operate on specific types (e.g., relations
between numbers). Therefore, we need also different constructors for different types of constraints
in order to enable a reasonable type checking of a CHR specification by the type system of Curry.
Due to these considerations, we define the structure of goals by the following data type Goal which
is parameterized over the type variable a:

data Goal a = C String
| C_a String a
| C_a_a String a a
...
| C_Int String Int
| C_Int_Int String Int Int
| C_Int_Int_Int String Int Int Int
...
| Conjunction (Goal a) (Goal a)
| GuardedGoal (Goal a) (Goal a)

The constructors C. . . represent (primitive or CHR) constraints of the corresponding type. The
first string argument is always the name of the constraint in the corresponding target code (see
below) and the remaining arguments are the arguments of the corresponding constraint. The
constructors Conjunction and GuardedGoal represent a conjunction of two goals or a goal with
a guard (only used in right-hand sides of the rules), respectively.



Using these data types, a rule like

leq(X,Y) <=> X=Y | true.

can be represented by the following Curry expression:

SimpRule (C_a_a "leq" x y) (GuardedGoal (C_a_a "=" x y) (C "true"))

Since such expressions are not very readable and tedious to write, we introduce some useful
abstractions for the data constructors by the following infix operators:4

infixr 4 /\
infix 3 |>
infix 2 <=>
infix 2 ==>
infix 1 \\

g1 <=> g2 = SimpRule g1 g2

g1 ==> g2 = PropRule g1 g2

g1 \\ (SimpRule g2 g3) = SimpagRule g1 g2 g3

guard |> goal = GuardedGoal guard goal

c1 /\ c2 = Conjunction c1 c2

Furthermore, we define some standard primitive constraints as functions,5 e.g.,

infix 5 .=.
x .=. y = C_a_a "=" x y -- syntactic equality

true = C "true" -- trivial goal

fail = C "fail" -- unsatisfiable goal

Finally, we use a similar definition to denote the CHR constraint in a convenient way:

leq x y = C_a_a "leq" x y

By exploiting these definitions, we can write the above reflexivity rule as follows:

leq x y <=> x .=. y |> true

Thus, we obtain a CHR notation in Curry with almost the same syntax (but in a Curry-oriented
style) as introduced in Section 3. The complete Curry module containing the rules for leq of
Example 2 is as follows (remember that, in contrast to Prolog, all free variables must be declared
in Curry in order to provide some consistency checks by the compiler):6

import CHR

leq x y = C_a_a "leq" x y

reflexivity = leq x y <=> x .=. y |> true where x,y free

4 Note that “|”, “,”, and “\” cannot be used as infix operators in Curry since these symbols are part of
the syntax of Curry. Therefore, we define the infix operators “|>” to represent guards, “/\” to represent
conjunctions, and “\\” to separate goals in simpagation rules in CHR.

5 Note that “=” cannot be defined as an infix operator since this is a symbol for equational definitions in
Curry. Therefore, we define the infix operator “.=.” to represent syntactic equality in CHR.

6 The imported module CHR contains the definitions for representing CHR in Curry as above and the
CHR compiler described in the next section.



antisymmetry = leq x y /\ leq y x <=> x .=. y where x,y free
transitivity = leq x y /\ leq y z ==> leq x z where x,y,z free
idempotence = leq x y \\ leq x y <=> true where x,y free

Note that this CHR specification is a valid Curry program. Thus, we can load this module in a
Curry programming environment like PAKCS in order to check the type-correctness of the spec-
ification. Furthermore, we can compile the CHR specification into executable code by evaluating
the call

compileCHR "Leq" [reflexivity,antisymmetry,transitivity,idempotence]

where compileCHR is the CHR compiler defined in module CHR. This generates a module Leq
containing the definition of a constraint

leq :: a -> a -> Success

whose semantics is defined by the given CHR rules interpreted in the underlying CHR language
(which is, actually, the refined operational semantics of CHR [4]). In our current implementation,
we provide only the functionality of “basic” CHR programs without pragmas and further compiler
options. This could be added in future work. In the next section, we sketch the compilation process
that generates the executable CHR program from our Curry-based definition.

5 Implementation

After having fixed the data structures to represent CHR in Curry, the implementation becomes
straightforward if some CHR implementation in the target language is available. For instance, our
Curry programming environment PAKCS compiles Curry programs into SICStus Prolog programs.
Since SICStus Prolog also contains a CHR implementation, we can use this implementation to
implement Curry CHR specifications. This is done by the operation “compileCHR mod rules”,
where mod is the name of the target Curry module containing the definition of the constraints
defined by the list of rules rules. The operation compileCHR performs the following steps:

1. Evaluate the second argument rules to normal form and translate the resulting rules into an
equivalent CHR Prolog program.

2. Generate an interface to provide access to the CHR constraints (implemented by the CHR
Prolog program) from Curry programs. This is done by the same mechanism as for any other
primitive operation provided by Curry.

3. Generate a Curry module containing definitions of constraints that call the corresponding Pro-
log code of the interface. For instance, the Curry module generated by the call to compileCHR
shown at the end of Section 4 is as follows:

module Leq where

leq :: a -> a -> Success
leq x1 x2 = . . . internal code to call the CHR Prolog code. . .

Thus, any other application program implemented in Curry can import this module and use
the CHR constraint leq.

The types of the CHR constraints in the generated Curry module depend on the structure of the
rules and they are inferred by our CHR compiler. For instance, consider the following rule defining
the behavior of the CHR constraint leq in the case that both arguments are integer numbers (the
predefined constraint “.<=.” is the comparison on integer numbers):

leqint = leq x y <=> x .<=. y |> true where x,y free



Note that this rule is of type CHRule (Goal Int). If we add this rule to the compilation of the
above leq rules, the resulting type of the CHR constraint leq is restricted to integer arguments
since an application of the rule leqint to arguments that are not integers would lead to ill-typed
run-time calls. Thus, our compiler generates the type definition

leq :: Int -> Int -> Success

in the Curry module Leq when we also compile the rule leqint. This ensures that application
programs use the CHR constraint leq only with integer arguments.

Since the concrete implementation of our compiler based on this concept is rather technical,
we omit a more detailed description here. The complete implementation is freely available from
the author.

Note that the final structure of the rules is evaluated in the first step of our CHR compiler by
the standard evaluation process of Curry. Thus, it is not important in which concrete syntactic
way the rules are defined. For instance, in Section 4 we have defined each rule by a separate
constant operation so that the list of all these operations is passed to compileCHR. This method is
useful to test CHR specifications with different set of rules. As an alternative, we can also directly
write all rules for each CHR constraint as a single list. For instance, consider a CHR specification
of a solver for Boolean constraints. Then, the rules that define a CHR constraint and (Boolean
conjunction) can be specified as follows:

andRules = [and x y z <=> x .=. 0 |> z .=. 0,
and x y z <=> y .=. 0 |> z .=. 0,
and x y z <=> x .=. 1 |> y .=. z,
and x y z <=> y .=. 1 |> x .=. z,
and x y z <=> z .=. 1 |> x .=. 1 /\ y .=. 1,
and x y z <=> x .=. y |> y .=. z]

where x,y,z free

If we do this for every Boolean CHR constraint (e.g., and, or, neg, xor, imp), we can finally
compile the complete solver by

compileCHR "Bool" (andRules++orRules++negRules++xorRules++impRules)

If the rules have a regular structure that can be generated from some input data, we can also
define functions that generate the rules from these inputs.

6 Conclusion

In this paper we presented the integration of CHR into the declarative multi-paradigm language
Curry. In order to avoid a CHR-specific language extension of Curry which might be difficult to
implement in different Curry systems, we proposed a representation of CHR as data objects in
Curry programs that supports a notation of CHR rules in Curry similarly to the standard CHR
notation. This representation has the advantage that CHR specifications are checked for well-
typedness by the standard Curry type checker and CHR constraints can be used as any other
constraint in source programs in a type-safe way. Furthermore, the rules can be defined in various
ways using the functional notation provided by Curry. We also sketched an implementation of this
concept in the Curry programming environment PAKCS that compiles Curry programs and our
CHR specifications into SICStus Prolog. All examples presented in this paper have been tested
with this implementation.

For future work, it might be interesting to investigate a direct implementation of CHR in Curry.
This might have the advantage that, similarly to the usual Prolog implementations of CHR, we
can use arbitrary user-defined Curry operations in the rules instead of a fixed set of primitive
constraints as in our current approach.



Acknowledgements

The author is grateful to the anonymous referees for helpful comments and suggestions to improve
this paper.

References

1. S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. Journal of the ACM, Vol. 47,
No. 4, pp. 776–822, 2000.

2. S. Antoy and M. Hanus. Compiling Multi-Paradigm Declarative Programs into Prolog. In Proc.
International Workshop on Frontiers of Combining Systems (FroCoS’2000), pp. 171–185. Springer
LNCS 1794, 2000.

3. S. Antoy and M. Hanus. Functional Logic Design Patterns. In Proc. of the 6th International Symposium
on Functional and Logic Programming (FLOPS 2002), pp. 67–87. Springer LNCS 2441, 2002.

4. G.J. Duck, M. Garcia de la Banda, P.J. Stuckey, and C. Holzbaur. The Refined Operational Se-
mantics of Constraint Handling Rules. In Proceedings of the 20th International Conference on Logic
Programming (ICLP 2004), pp. 90–104. Springer LNCS 3132, 2004.

5. A.J. Fernández, M.T. Hortalá-González, and F. Sáenz-Pérez. Solving Combinatorial Problems with
a Constraint Functional Logic Language. In Proc. of the 5th International Symposium on Practical
Aspects of Declarative Languages (PADL 2003), pp. 320–338. Springer LNCS 2562, 2003.

6. T. Frühwirth. Theory and Practice of Constraint Handling Rules. Journal of Logic Programming,
Vol. 37, No. 1-3, pp. 95–138, 1998.

7. M. Hanus. The Integration of Functions into Logic Programming: From Theory to Practice. Journal
of Logic Programming, Vol. 19&20, pp. 583–628, 1994.

8. M. Hanus. A Unified Computation Model for Functional and Logic Programming. In Proc. of the
24th ACM Symposium on Principles of Programming Languages (Paris), pp. 80–93, 1997.

9. M. Hanus. A Functional Logic Programming Approach to Graphical User Interfaces. In International
Workshop on Practical Aspects of Declarative Languages (PADL’00), pp. 47–62. Springer LNCS 1753,
2000.

10. M. Hanus. High-Level Server Side Web Scripting in Curry. In Proc. of the Third International
Symposium on Practical Aspects of Declarative Languages (PADL’01), pp. 76–92. Springer LNCS
1990, 2001.

11. M. Hanus. Dynamic Predicates in Functional Logic Programs. Journal of Functional and Logic
Programming, Vol. 2004, No. 5, 2004.

12. M. Hanus, S. Antoy, M. Engelke, K. Höppner, J. Koj, P. Niederau, R. Sadre,
and F. Steiner. PAKCS: The Portland Aachen Kiel Curry System. Available at
http://www.informatik.uni-kiel.de/~pakcs/, 2005.

13. M. Hanus, K. Höppner, and F. Huch. Towards Translating Embedded Curry to C. Electronic Notes
in Theoretical Computer Science, Vol. 86, No. 3, 2003.

14. M. Hanus and F. Huch. An Open System to Support Web-based Learning. In Proc. 12th International
Workshop on Functional and (Constraint) Logic Programming (WFLP 2003), pp. 269–282. Technical
Report DSIC-II/13/03, Universidad Politécnica de Valencia, 2003.

15. M. Hanus (ed.). Curry: An Integrated Functional Logic Language (Vers. 0.8). Available at
http://www.informatik.uni-kiel.de/~curry, 2003.

16. C. Holzbaur and T. Frühwirth. Compiling Constraint Handling Rules into Prolog with Attributed
Variables. In Proc. of the International Conference on Principles and Practice of Declarative Pro-
gramming (PPDP’99), pp. 117–133. Springer LNCS 1702, 1999.

17. J. Jaffar and J.-L. Lassez. Constraint Logic Programming. In Proc. of the 14th ACM Symposium on
Principles of Programming Languages, pp. 111–119, Munich, 1987.

18. R. Loogen, F. Lopez Fraguas, and M. Rodŕıguez Artalejo. A Demand Driven Computation Strat-
egy for Lazy Narrowing. In Proc. of the 5th International Symposium on Programming Language
Implementation and Logic Programming, pp. 184–200. Springer LNCS 714, 1993.

19. F. López-Fraguas and J. Sánchez-Hernández. TOY: A Multiparadigm Declarative System. In Proc.
of RTA’99, pp. 244–247. Springer LNCS 1631, 1999.

20. W. Lux. Adding Linear Constraints over Real Numbers to Curry. In Proc. of the 5th International
Symposium on Functional and Logic Programming (FLOPS 2001), pp. 185–200. Springer LNCS 2024,
2001.

21. K. Marriott and P.J. Stuckey. Programming with Constraints. MIT Press, 1998.



22. S.L. Peyton Jones and J. Hughes. Haskell 98: A Non-strict, Purely Functional Language.
http://www.haskell.org, 1999.

23. M. Rodŕıguez-Artalejo. Functional and Constraint Logic Programming. In Constraints in Computa-
tional Logics: Theory and Applications (CCL’99), pp. 202–270. Springer LNCS 2002, 2001.

24. P. Wadler. How to Declare an Imperative. ACM Computing Surveys, Vol. 29, No. 3, pp. 240–263,
1997.


