
Programming Autonomous Robots in Curry?

Michael Hanus Klaus Höppner

Institut für Informatik, CAU Kiel, D-24098 Kiel, Germany
{mh,klh}@informatik.uni-kiel.de

In Proc. 11th International Workshop on Functional and (Constraint) Logic
Programming, WFLP 2002 (M. Falaschi, Ed.), Grado (Italy), pp. 89–102, 2002

Abstract. In this paper we present a framework to program au-
tonomous robots in the declarative multi-paradigm language Curry. This
is an experiment to use high-level declarative programming languages
for the programming of embedded systems. Our programming model is
based on a recent proposal to integrate a process-oriented specification
language in Curry. We show the basic ideas of our framework and demon-
strate its application by an example.

1 Motivation

Although the advantage of declarative programming languages (e.g., functional,
logic, or functional logic languages) for a high-level implementation of software
systems is well known, the impact of such languages to many real world applica-
tions is quite limited. One reason for this might be the fact that many real-world
applications have not only a logical (declarative) component but demand also
for an appropriate modeling of the dynamic behavior of a system. For instance,
embedded systems become more important applications in our daily life than
traditional software systems on general purpose computers, but the reactive na-
ture of such systems seems to make it fairly difficult to use declarative languages
for their implementation. We believe that this is only partially true since there
are many approaches to extend declarative languages with features for reactive
programming. In this paper we try to apply one such approach, the extension
of the declarative multi-paradigm language Curry [12, 15] with process-oriented
features [5, 6], to the programming of concrete embedded systems.

The embedded systems we consider in this work are the Lego Mindstorms
robots.1 Although these are toys intended to introduce children to the construc-
tion and programming of robots, they have all the typical characteristics of
embedded systems. They act autonomously, i.e., without any connection to a
powerful host computer, have a limited amount of memory (32 kilobytes for op-
erating system and application programs) and a specialized processor (Hitachi
H8 16 MHz 8-bit microcontroller) which is not powerful compared to current
general purpose computers. In order to understand the examples in this paper,
we shortly survey the structure of these robots.
? This work has been partially supported by the German Research Council (DFG)

under grant Ha 2457/1-2, by the DAAD/NSF under grant INT-9981317, and by the
DAAD under the PROCOPE programme.

1 http://mindstorms.lego.com/ Note that these names are registered trademarks al-
though we do not put trademark symbols at every occurrence of them.



Fig. 1. The RCX, the “heart” of a Mindstorm robot

The Robotics Invention System (RIS) is a kit to build various kinds of robots.
The heart of the RIS kit is the Robotic Command Explorer (RCX, see Fig. 1)
containing a microprocessor, ROM, RAM, connections to sensors and actuators,
etc. To react to the external world, the RCX contains three input ports to
which various kinds of sensors (e.g., touch, light, temperature, rotation) can be
connected. To influence the external world, the RCX has three output ports for
connecting actuators (e.g., motors, lamps), a simple speaker for playing sounds,
and a small LCD display. Furthermore, it has an infrared (IR) interface for
communicating with a host computer (e.g., for downloading programs) or other
RCX bricks. Since the RCX has no keyboard (except for four control buttons)
and only a small one-line display, programs for the RCX are usually developed
on standard host computers (PCs, workstations), cross-compiled into code for
the RCX and then transmitted to the RCX via the IR interface.

The RIS is distributed with a simple visual programming language (RCX
code) to simplify program development for children. This programming lan-
guage is based on colored bricks that are put together in order to yield the
control program for the RCX. The different kinds of bricks include commands
(like actuator on/off, wait, set motor direction, set power, etc), sensor watchers
(code blocks executed in case of sensor events), control and macro blocks. In
comparison to traditional programming languages, the language has interest-
ing extensions (multi-threading, sensor and actuator control, delay and time-out
primitives). However, the language is also quite limited at the same time: no
concept of variables (only a simple counter), no expressions, no parameterized
functions, no arbitrarily nested control structures, no synchronization with pro-
tected resources etc. Therefore, various attempts have been made to replace the
standard program development environment by more advanced systems. On the
one hand, one can find more advanced visual languages (e.g., Robolab2). On
the other hand, there are also imperative languages (e.g., “Not Quite C”3) or
extensions of existing programming languages with compilers for the RCX. A
popular representative of the latter kind is based on replacing the standard RCX
firmware by a new operating system, legOS,4 and writing programs in C with

2 http://www.lego.com/dacta/robolab
3 http://www.enteract.com/˜dbaum/nqc/
4 http://www.legos.sourceforge.net/

2



specific libraries and a variant of the compiler gcc with a special back end for
the RCX controller. The resulting programs are quite efficient (machine code
instead of byte code) and provide full access to the RCX’s capabilities.

In this work we will use a declarative multi-paradigm programming language
(Curry) with synchronization and process-oriented features to program the RCX.
The language Curry [12, 15] can be considered as a general purpose declarative
programming language since it combines in a seamless way functional, logic,
constraint, and concurrent programming paradigms. In order to use it also for
reactive programming tasks, different extensions have been proposed. [13] con-
tains a proposal to extend Curry with a concept of ports (similar concepts exist
also for other languages, like Erlang [2], Oz [18], etc) in order to support the high-
level implementation of distributed systems. These ideas have been applied in [5]
where a domain-specific language for process-oriented programming is proposed.
The target of the latter is the application of Curry for the implementation of re-
active and embedded systems. The example applications shown in that paper are
simulators of artificial systems, e.g., a lift controller. In this paper we will show
the application of this framework to a real embedded system: the Mindstorms
robots described above.

This paper is structured as follows. In the next section we sketch the features
of Curry as necessary for the understanding of this paper. Section 3 surveys the
framework for process-oriented programming in Curry. We apply this framework
to the programming of autonomous robots in Section 4 and show in Section 5
concrete programming examples before we make some remarks about the current
implementation of our framework in Section 6 and conclude in Section 7.

2 Curry

In this section we survey the elements of Curry which are necessary to understand
the examples in this paper. More details about Curry’s computation model and
a complete description of all language features can be found in [12, 15].

Curry is a multi-paradigm declarative language combining in a seamless
way features from functional, logic, and concurrent programming and supports
programming-in-the-large with specific features (types, modules, encapsulated
search). From a syntactic point of view, a Curry program is a functional pro-
gram5 extended by the possible inclusion of free (logical) variables in conditions
and right-hand sides of defining rules. Thus, a Curry program consists of the def-
inition of functions and the data types on which the functions operate. Functions
are evaluated in a lazy manner. To provide the full power of logic programming,
functions can be called with partially instantiated arguments and defined by
conditional equations with constraints in the conditions. The behavior of func-
tion calls with free variables depends on the evaluation annotations of functions
which can be either flexible or rigid. Calls to rigid functions are suspended if a
5 Curry has a Haskell-like syntax [17], i.e., (type) variables and function names usually

start with lowercase letters and the names of type and data constructors start with
an uppercase letter. The application of f to e is denoted by juxtaposition (“f e”).

3



demanded argument, i.e., an argument whose value is necessary to decide the ap-
plicability of a rule, is uninstantiated (“residuation”). Calls to flexible functions
are evaluated by a possibly non-deterministic instantiation of the demanded ar-
guments to the required values in order to apply a rule (“narrowing”).

Example 1. The following Curry program defines the data types of Boolean val-
ues and polymorphic lists (first two lines) and a function to compute the con-
catenation of two lists:

data Bool = True | False
data List a = [] | a : List a

conc :: [a] -> [a] -> [a]
conc eval flex

conc [] ys = ys
conc (x:xs) ys = x : conc xs ys

The data type declarations introduce True and False as constants of type Bool
and [] (empty list) and : (non-empty list) as the constructors for polymorphic
lists (a is a type variable ranging over all types and the type “List a” is usually
written as [a] for conformity with Haskell).

The (optional) type declaration (“::”) of the function conc specifies that
conc takes two lists as input and produces an output list, where all list elements
are of the same (unspecified) type.6 Since conc is explicitly defined as flexible
by “eval flex” (as a default, all functions except for constraints are rigid), an
equation “conc ys [x] =:= xs” can be solved by instantiating the first argu-
ment ys to the list xs without the last argument, i.e., for a given xs, the only
solution to this equation satisfies that x is the last element of xs.

Functions are generally defined by (conditional) rules of the form
“f t1 . . . tn | c = e” where f is a function, t1, . . . , tn are data terms, each variable
occurs only once on the left-hand side, the condition c (which can be omitted)
is a constraint (i.e., an expression of the built-in type Success), and e is a well-
formed expression which may also contain function calls, lambda abstractions
etc. A conditional rule can be applied if its left-hand side matches the current
call and its condition is satisfiable.

The operational semantics of Curry, described in detail in [12, 15], is based
on an optimal evaluation strategy [1] and can be considered as a conservative ex-
tension of lazy functional programming (if no free variables occur in the program
and the initial goal) and (concurrent) logic programming. Concurrent program-
ming is supported by a concurrent conjunction operator “&” on constraints,
i.e., a constraint of the form “c1 & c2” is evaluated by solving both constraints
c1 and c2 concurrently. Furthermore, distributed programming is supported by
ports [13] which allows the sending of arbitrary data terms (also including logic
variables) between different computation units possibly running on different ma-
chines connected via the Internet.
6 Curry uses curried function types where α->β denotes the type of all functions

mapping elements of type α into elements of type β.

4



p1

p4 p5

p2

p3incoming messages outgoing messages

global state

Fig. 2. Component of a dynamic system

3 Specification of Process Systems

In this section we review the framework for process-oriented programming in
Curry as proposed in [5]. The application of this framework to the programming
of autonomous robots will be discussed in the next section.

The motivation for the process-oriented extension of Curry is the fact that
purely declarative languages are often not adequate for the modeling and pro-
gramming of systems where the dynamic (reactive) behavior is important, like
embedded systems. For this purpose, a process-oriented language is proposed
which is embedded into Curry by describing processes as expressions of a dis-
tinct type.

In this framework, a process system consists of a set of processes (p1,p2,. . . ),
a global state (i.e., data visible for all processes inside a component but not vis-
ible from outside), and a mailbox (queue of messages sent to this component),
see Fig. 2.7 For instance, an embedded control system corresponds to a pro-
cess system that reacts on messages received from external sensors by sending
messages to the actuators. The behavior of a process system is defined by the
behavior of each process. A process can be activated depending on conditions
on the global state and the mailbox. If a process is activated (e.g., because a
particular message arrives in the mailbox), it performs actions and may start
other processes (since systems are based on an interleaving semantics, at most
one process can perform actions so that actions are atomic entities). Similarly to
Erlang [2], the mailbox is a finite list of all currently available messages. Since
processes can access the complete mailbox (and not only the first message), it is
fairly easy to implement “alarm” processes that immediately react on important
messages contained in the mailbox at any position.

The reaction of a process to the change of its external context (i.e., mailbox or
global state) consists of a sequence of actions. Possible actions are the change of

7 In the original framework, such a process system is a component of a dynamic system
which consists of several components that cooperate by exchanging messages, see also
[7].

5



the global state to a value s (“Set s”), the sending of a message m (“Send m”),8

and the removing of a message m from the mailbox (“Deq m”).9

The global state of a component can be accessed and manipulated by all
processes of this component. Thus, it also serves as a facility for process syn-
chronization. In general, the global state is just a tuple of data items. Since these
items can be of arbitrary type, they can also store dynamically evolving data
structures.

As described above, processes are activated, depending on a particular con-
dition on the mailbox and global state, and perform an action followed by the
creation of new processes. Thus, the behavior of each process is specified by

– a guard (i.e., a condition on the mailbox and state),
– a sequence of actions (to be performed when the guard is satisfied and the

process is selected for execution), and
– a process term describing the further activities after executing the actions.

In order to structure dynamic system specifications in an appropriate manner, we
allow parameterized processes since this supports the distinction between local
and global state: process parameters are only accessible inside a process and,
therefore, they correspond to the local state of a process, whereas the global
state is visible to all processes inside a component. Changes to the local state
can simply be achieved by recursive process calls with new arguments. Thus, the
language of process terms p is very similar to process algebra [8] and defined by
the following grammar:

p ::= Terminate successful termination
| Atomic [a1,...,an] sequence of actions
| Proc (p t1...tn) run process p with parameters t1. . . tn
| p1 >>> p2 sequential composition
| p1 <|> p2 parallel composition
| p1 <+> p2 nondeterministic choice
| p1 <%> p2 nondeterministic choice with priority
| p1 <~> p2 parallel composition with priority

A sequence of actions is executed from left to right as one atomic operation
(having a sequence of actions instead of one single action is useful to specify
larger critical regions in many applications, e.g., see the dining philosophers ex-
ample below). The operators “>>>”, “<|>”, and “<+>” are standard in process
algebra, whereas the last two operators are not very common but useful in ap-
plications where a simple nondeterministic choice is not appropriate. The mean-
ing of “p1 <%> p2” is: “If process p1 can be executed, execute p1 (and remove
p2), otherwise execute process p2 (and remove p1), if possible.” The meaning

8 For the sake of simplicity, all outgoing messages are sent via the same channel. This is
sufficient for embedded system where the messages can be interpreted as commands
to control the connected actuators.

9 Note that messages are not automatically removed after reading since there may be
several processes that must react on the same message.

6



of “p1 <~> p2” is: “Execute processes p1 and p2 in parallel (like “p1 <|> p2”)
but p2 is executed only if p1 cannot be executed; if p1 terminates, then also p2

terminates.” The latter combinator is useful for idle background processes like
concurrent garbage collectors.

In order to specify processes in Curry following the ideas above, there are data
types to define the structure of actions and processes. The following data type
declaration represents the possible actions, where inmsg, outmsg, and static are
type variables denoting the type of incoming messages, outgoing messages, and
the global state in a concrete application, respectively.

data Action inmsg outmsg static =
Send outmsg -- send message

| Set static -- set global state
| Deq inmsg -- remove message from mailbox

A similar definition exists for the type ProcExp proc inmsg outmsg static
which has the type proc of concrete processes in a system as an additional type
parameter. Then the above process combinators (e.g., >>>, <|>) are operations
on this data type.

In order to exploit the language features of Curry for the specification of
process systems, we consider a system specification as a mapping which assigns to
each process, mailbox (list of incoming messages), and global state a process term
(similarly to Haskell, a type definition introduces a type synonym in Curry):

type Specification proc inmsg outmsg static =
proc -> [inmsg] -> static -> ProcExp proc inmsg outmsg static

This definition has the advantage that one can use standard function definitions
by pattern matching for the specification of systems, i.e., one can define the
behavior of processes in the following form:

spec (p x1...xn) mailbox state
| < condition on x1, . . . , xn, mailbox, state >
= Atomic [actions] >>> process term

Hence, the guard is just a standard constraint on the parameters x1, . . . , xn,
mailbox, and state so that we need no global variables or auxiliary constructs
to access the current global state and mailbox. If a process is specified with
several rules or guards, these rules can be considered as combined with the “<%>”
operator, i.e., the first alternative with a valid guard is selected for executing
this process.

As an example, we show a specification of the classical dining philosophers
example. The global state in this example is a list of forks where each fork
has either the value Avail (“available”) or Used. The entire system consists of
processes Thinking and Eating that are parameterized by the number of the
philosopher. The behavior of these processes is determined by the specification
function phil_spec (“l !! i” denotes the i-th element of list l and “rpl l i v”
denotes the result of replacing the i-th element of the list l by v):

data ForkStatus = Avail | Used

7



data PhiloProc = Eating Int | Thinking Int

n = 5 -- here we have five philosophers

phil_spec (Thinking i) _ forks
| forks!!i == Avail && forks!!((i+1) ‘mod‘ n) == Avail
= Atomic [Set (rpl (rpl forks i Used) ((i+1) ‘mod‘ n) Used)]

>>> Proc (Eating i)

phil_spec (Eating i) _ forks
= Atomic [Set (rpl (rpl forks i Avail) ((i+1) ‘mod‘ n) Avail)]

>>> Proc (Thinking i)

The mailbox parameter is not used in this simple example. Initially, all philoso-
phers are thinking, which corresponds to the initial process term

Proc (Thinking 0) <|> · · · <|> Proc (Thinking 4)

and all forks are available, which is expressed by the initial state

(take n (repeat Avail))

The above specification describes the following behavior. If philosopher i is think-
ing, which corresponds to the existence of a process term (Thinking i), and
both forks are available, then he can use both forks and turn into the Eating
process. Note that the change of the global state, i.e., the use of both forks, can
only be performed (in an atomic manner) if both forks are really available. This
is due to the fact that the successful check of the guard and the first sequence
of actions is one atomic unit which cannot be interrupted by other processes
(see also [5]). Therefore, the classical deadlock situation is avoided without low-
level synchronization (e.g., semaphores) or additional constructions (e.g., room
tickets).

In the next section we will apply this framework to the programming of
autonomous robots described in Section 1.

4 Programming Autonomous Robots

A difficulty in the programming of reactive systems is the description how and
when they should react to the external environment measured by the avail-
able sensors. Synchronous languages [9] are one possible programming model
for this purpose since one can describe with them the immediate reaction to
sensor values. On the other hand, asynchronous programming styles can be eas-
ier integrated in general purpose languages. In order to use our asynchronous
programming model as described in Section 3 for the programming of robots,
we propose the separation of the entire programming task into two parts. The
description of the actions to be executed in reaction to some sensor events will be
described in an asynchronous manner as a process system where we assume that
the sensor sends messages whenever some relevant value is measured. The de-
scription of these “relevant events” will be specified in a synchronous component
which always controls the sensor inputs and sends relevant values as messages to

8



the process system. For instance, for a mobile robot that tries to avoid obstacles,
the only relevant events are signals from the touch sensors in order to register
the bumping against an obstacle. A mobile robot that tries to follow a black line
must only react to the change (of a light sensor) between dark and bright light
values. In order to measure time intervals (e.g., time outs, waiting), clock events
become relevant. We do not describe the implementation of this synchronous
component (compare for instance [4] for the combination of a functional logic
language with features for synchronous programming) but assume in the follow-
ing that such sensor events are sent as messages to the process system which
reacts to them with appropriate actions.

As mentioned in Section 1, there are three output ports to connect actuators
to the RCX. We describe these ports by

data OutPort = Out_A | Out_B | Out_C

The standard actuators are motors and lamps connected to these ports. The
control of these actuators can be described by the following messages which are
sent by the process system to the robot:

data RobotCmd = MotorDir OutPort MotorDirection
| MotorSpeed OutPort Int
| Lamp OutPort Bool -- True = on / False = off

data MotorDirection = Fwd | Rev | Off

These messages will change the state of the actuator. If a motor is turn-
ing forward, it will be turning backwards after receiving the message
(MotorDir port Rev). A motor is turned off if it receives the message
(MotorDir port Off).

As discussed above, we assume that the robot is informed by a synchronous
component about sensor events. Therefore, we cannot specify the possible events
in general but these depend on the connected sensors, application relevant sen-
sor values etc. We only assume that there always exists a process Wait n which
terminates n milliseconds after its first activation (in principle, this can be de-
scribed by sending and waiting for appropriate messages from the synchronous
subsystem).

In the following section we show a concrete example to apply this framework
in practice.

5 Examples

We want to implement an autonomous robot that moves on the ground and tries
to avoid obstacles that it detects with two touch sensors mounted at the left and
right front of the robot. Fig. 3 shows an example of such a robot, which we call
“rover” in the following. We assume that the following messages are sent from
the sensors to the robot control system whenever the rover touches an obstacle
with the left or right sensor:

data TouchEvent = TouchLeft | TouchRight

9



Fig. 3. Example of an obstacle avoiding robot

The control system of the rover contains the following process states:

data RoverProc = Go | WaitEvent | Turn TouchEvent | Wait Int

We describe the rover behavior by the specification function rover of the fol-
lowing type (the global state is not used here and thus of arbitrary type st):

rover :: RoverProc -> [TouchEvent] -> [st]
-> ProcExp RoverProc TouchEvent RobotCmd [st]

The initial process Go just starts the rover by setting both motors (for the left
and right wheel connected at ports Out_A and Out_C, respectively) into forward
direction (which also starts their engines) and then waits for events from the
touch sensors:

rover Go _ _ =
Atomic [Send (MotorDir Out_A Fwd), Send (MotorDir Out_C Fwd)]
>>> Proc WaitEvent

The WaitEvent process is activated on an event from one of the touch sensors.
It reacts by driving back for 2 seconds and turning the rover by setting one of
the motors into forward direction followed by the initial process state Go:

rover WaitEvent (TouchLeft:_) _ =
Atomic [Deq TouchLeft] >>> Proc (Turn TouchLeft)

rover WaitEvent (TouchRight:_) _ =
Atomic [Deq TouchRight] >>> Proc (Turn TouchRight)

rover (Turn touch) _ _ =
Atomic [Send (MotorDir Out_A Rev), Send (MotorDir Out_C Rev)]
>>> Proc (Wait 2000) >>>
Atomic [Send (MotorDir

(if touch==TouchLeft then Out_A else Out_C) Fwd)]
>>> Proc (Wait 2000) >>>
Proc Go

This simple example shows only the basic features of our framework to program
autonomous robots. It does neither show the use of several parallel processes nor
the use of the global state to synchronize them. Nevertheless, it should be clear

10



from the description in Section 3 how to use these features to model more com-
plex robot control systems (e.g., including planning capabilities, parallel control
of several sensors).

6 Implementation

Our current implementation does not yet include a compiler to translate the
Curry specifications into binary code that can run on the RCX. In order to test
the programs, we have implemented a simulator in Curry for the framework
described above.

Basically, the simulator is an interpreter for the process expressions following
the operational semantics of the process algebra [5, 6]. In order to run a typical
robot program as shown in Section 5, the program needs some input from the
sensors and one has to show the messages sent to the actuators. For this purpose,
the simulator also contains two further components, a virtual sensor suite and a
command log for logging the messages sent to the actuators.

The virtual sensor suite is a process that generates sensor messages for the
robot program. This process controls a graphical user interface (GUI) with but-
tons and sliders that represent the sensors of the robot. The user can simulate
sensor inputs for the robot through this GUI and can check how the system will
react. Since the only externally observable reactions are messages sent to the
actuators, there is another process, the command log, for showing all these mes-
sages. This process simply waits for messages sent to the actuators and prints
them with a time stamp in a terminal window.

Currently, the simulator is very primitive. For every new robot with different
sensors, one has to design a new virtual sensor suite with the appropriate but-
tons and sliders (which corresponds to the implementation of the synchronous
component for controlling sensor events). This task is fairly easy thanks to the
use of the Curry library Tk for high-level GUI programming [14]. Nevertheless,
one could also write a function that generates such a virtual sensor suite from a
specification of the sensors connected to the input ports. In a similar way, one
could also improve the purely text-based command log by adding a graphical
representation of actuators showing the current state of them (e.g., a symbol for
a motor that shows if it is spinning forward, backward, or off). Such a represen-
tation could be also generated from a description of the type of the connected
actuators.

Our final goal is the compilation of the Curry programs into code for the
RCX. For doing so, one has to complete the descriptions shown in Section 5 by a
specification of the synchronous component for controlling the sensors. We plan
to compile these descriptions into C code that can be further compiled into RCX
code by the legOS compiler mentioned in Section 1. Due to the (speed and time)
limitations of the RCX, a simple approach, like porting a Curry implementation
to the RCX, will not work (this is in contrast to [16] where a functional robot
control language is proposed which is executed on top of Haskell running on
a powerful Linux system). In particular, the interpretation of the process ex-

11



pressions on the RCX causes too much overhead so that a direct compilation
of the processes into more primitive code is necessary. Fortunately, legOS is a
POSIX-like operating system offering an appropriate infrastructure like multi-
threading, semaphores for synchronization etc. Nevertheless, many optimizations
are required to map the operational semantics of Curry into the features avail-
able in legOS. We plan to start with a restricted subset of Curry, which can
be translated in a straightforward way, and extend it together with appropriate
optimization tools. In this way, we will investigate general principles to compile
high-level languages into specialized systems with limited capabilities.

7 Conclusions and Related Work

We have presented a framework to program autonomous robots with a declara-
tive language extended by a process concept. For this purpose, we have proposed
a domain-specific language for process-oriented programming. This language is
based on process algebras and offers parameterized processes (with priorities)
and a global store for the synchronization and exchange of data between pro-
cesses. Processes can be activated depending on the arrival of particular messages
and also on the occurrence of values in the global store (set by other processes).
Since this language is embedded in the declarative multi-paradigm language
Curry, we can use the high-level features of declarative programming for the
implementation of embedded systems. A prototypical implementation has been
performed with a simulator. The full implementation by compiling into directly
executable code will be the next step.

Some work related to high-level languages for programming embedded or
process-oriented systems has already been mentioned above. For embedded sys-
tem programming, synchronous languages like Esterel [3] or Lustre [10] are often
used. Thus, one can also apply such languages to program embedded systems
like the Lego Mindstorms robots. Actually, there already exist compilers for
those languages into C so that one can use the legOS compiler to produce RCX
code. The translation of the synchronous languages normally produces sequen-
tial code by synthesizing the control structure of the object code in the form of
an extended finite automaton [11]. This is a major drawback since one do not
has much control on the size of the generated C program. In some cases only
slight modifications in a robot specification can result in a big increase in the
size of the generated code. Another drawback is the state explosion for large
programs which could be a problem due to the limited amount of memory in the
Mindstorms robots.

Some future work has already been mentioned in Section 6. First, we will
develop a language to specify the synchronous component which controls the
sensors and informs the process system by sending messages. Then, we will inves-
tigate compilation techniques for producing executable code. Another interesting
topic is the development of a graphical tool to specify the process structure with
visual elements where the corresponding Curry code is automatically generated.
Finally, it would be also interesting to describe the behavior of several robots in

12



one system and generate the code for the individual robots and their commu-
nication automatically. This would enable the implementation of more complex
systems with many sensors and actuators.

References

1. S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. Journal of
the ACM, Vol. 47, No. 4, pp. 776–822, 2000.

2. J. Armstrong, M. Williams, C. Wikstrom, and R. Virding. Concurrent Program-
ming in Erlang. Prentice Hall, 1996.

3. G. Berry and G. Gonthier. The Esterel synchronous programming language: De-
sign, semantics, implementation. Science of Computer Programming, Vol. 19, No. 2,
pp. 87–152, 1992.

4. J. Blanc and R. Echahed. Adding Time to Functional Logic Programs. In Proc.
of the International Workshop on Functional and (Constraint) Logic Programming
(WFLP 2001), pp. 31–44. Report No. 2017, University of Kiel, 2001.

5. B. Braßel, M. Hanus, and F. Steiner. Embedding Processes in a Declarative Pro-
gramming Language. In Proc. Workshop on Programming Languages and Founda-
tions of Programming, pp. 61–73. Aachener Informatik Berichte Nr. AIB-2001-11,
RWTH Aachen, 2001.

6. R. Echahed and W. Serwe. Combining Mobile Processes and Declarative Pro-
gramming. In Proc. of the 1st International Conference on Computation Logic
(CL 2000), pp. 300–314. Springer LNAI 1861, 2000.

7. R. Echahed and W. Serwe. A Component-Based Approach to Concurrent Declar-
ative Programming. In Proc. of the International Workshop on Functional and
(Constraint) Logic Programming (WFLP 2001), pp. 285–298. Report No. 2017,
University of Kiel, 2001.

8. W. Fokkink. Introduction to Process Algebra. Springer, 2000.

9. N. Halbwachs. Synchronous programming of reactive systems. In Tenth Interna-
tional Conference on Computer-Aided Verification (CAV’98), pp. 1–16. Springer
LNCS 1427, 1998.

10. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow
programming language Lustre. Proceedings of the IEEE, Vol. 79, No. 9, pp. 1305–
1320, 1991.

11. N. Halbwachs, P. Raymond, and C. Ratel. Generating Efficient Code From Data-
Flow Programs. In Third International Symposium on Programming Language
Implementation and Logic Programming, pp. 207–218. Springer LNCS 528, 1991.

12. M. Hanus. A Unified Computation Model for Functional and Logic Programming.
In Proc. of the 24th ACM Symposium on Principles of Programming Languages
(Paris), pp. 80–93, 1997.

13. M. Hanus. Distributed Programming in a Multi-Paradigm Declarative Language.
In Proc. of the International Conference on Principles and Practice of Declarative
Programming (PPDP’99), pp. 376–395. Springer LNCS 1702, 1999.

14. M. Hanus. A Functional Logic Programming Approach to Graphical User Inter-
faces. In International Workshop on Practical Aspects of Declarative Languages
(PADL’00), pp. 47–62. Springer LNCS 1753, 2000.

15. M. Hanus (ed.). Curry: An Integrated Functional Logic Language (Vers. 0.7).
Available at http://www.informatik.uni-kiel.de/~curry, 2000.

13



16. J. Peterson, P. Hudak, and C. Elliott. Lambda in Motion: Controlling Robots With
Haskell. In Proc. First International Workshop on Practical Aspects of Declarative
Languages, pp. 91–105. Springer LNCS 1551, 1999.

17. S.L. Peyton Jones and J. Hughes. Haskell 98: A Non-strict, Purely Functional
Language. http://www.haskell.org, 1999.

18. G. Smolka. The Oz Programming Model. In J. van Leeuwen, editor, Computer
Science Today: Recent Trends and Developments, pp. 324–343. Springer LNCS
1000, 1995.

14


