
To appear in Theory and Practice of Logic Programming (TPLP) 1

An ER-based Framework for
Declarative Web Programming

MICHAEL HANUS and SVEN KOSCHNICKE∗
Institut für Informatik, CAU Kiel, D-24098 Kiel, Germany

(e-mail: mh@informatik.uni-kiel.de sven@koschnicke.de)

submitted 16 June 2010; revised 18 October 2010; accepted 31 July 2012

Abstract

We describe a framework to support the implementation of web-based systems intended to
manipulate data stored in relational databases. Since the conceptual model of a relational
database is often specified as an entity-relationship (ER) model, we propose to use the ER
model to generate a complete implementation in the declarative programming language
Curry. This implementation contains operations to create and manipulate entities of the
data model, supports authentication, authorization, session handling, and the composition
of individual operations to user processes. Furthermore, the implementation ensures the
consistency of the database w.r.t. the data dependencies specified in the ER model, i.e.,
updates initiated by the user cannot lead to an inconsistent state of the database. In
order to generate a high-level declarative implementation that can be easily adapted to
individual customer requirements, the framework exploits previous works on declarative
database programming and web user interface construction in Curry.

KEYWORDS: Web programming, functional logic programming, databases, entity-
relationship models

1 Introduction

Many web applications are in essence interfaces on top of standard web browsers to

work with data stored in databases. Typically, clients can access or modify existing

data as well as insert new data. The use of standard web browsers demands for

access control, e.g., users must be authenticated, the authentication must be stored

in a session across various web pages, the access to various parts of the data must be

authorized, etc. These requirements make the implementation of such applications

a non-trivial and often error-prone task (Huseby 2003). In order to support the pro-

grammer in the design and implementation of such web-based applications, various

web frameworks had been developed for different implementation languages. For

instance, the popular Ruby on Rails framework1 supports the implementation of

web applications in the object-oriented language Ruby. An interesting idea of this

∗ This work was partially supported by the German Research Council (DFG) under grant Ha
2457/5-2.

1 http://www.rubyonrails.org/

2 M. Hanus and S. Koschnicke

framework to enable the quick construction of an initial system, which can be step-

wise modified or extended, is scaffolding, i.e., the code of an initial implementation

is generated from the data model. This initial code gives the programmer a good

idea how to structure and organize the code of the system under development.

This paper is based on a similar idea but exploits declarative programming to

obtain a compact implementation that can be easily adapted and provides reliabil-

ity in various aspects (type safety, database consistency, etc). For this purpose, we

use the declarative multi-paradigm language Curry (Hanus 1997; Hanus (ed.) 2012)

as an implementation language and exploit previous works on declarative database

programming (Braßel et al. 2008) and declarative construction of web user inter-

faces (Hanus 2006; Hanus 2007b). Although some features of Curry, such as logic

variables or narrowing, are not directly used here, we remark that these features

are essential in the previous works to enable high-level interfaces for database and

web programming that are the basis of the work presented in this paper.

Our framework and tool, called “Spicey”, supports the following features:

ER-based: The framework is based on a specification of the data model as an

entity-relationship (ER) model. Thus, the complete source code of an initial sys-

tem is generated from an ER model.
Web-based: The generated system is web-based, i.e., all data can be manipulated

(i.e., created, shown, modified, deleted) via standard web browsers. The initial

system provides operations to insert new entities, show entities, modify or delete

existing entities as specified in the ER model. Relations between entities are

manipulated together with the corresponding entities. For instance, if there is a

one-to-many relation between E and E′, an instance of E′ can be created only if

a corresponding instance of E is selected.
Typed: The source code is statically typed so that many programming errors are

detected at compile time (in contrast to applications implemented in Perl, PHP,

Ruby, etc). Moreover, the data types specified in the ER model are also respected,

i.e., it is not possible to submit web forms containing ill-typed data so that the

integrity of the stored data might be destroyed.
Sessions: Since HTTP is a stateless protocol, our framework provides a session

concept so that any kind of data (e.g., the contents of a virtual shopping basket)

can be stored in a user session. Sessions are also used to store login information

or navigate the user through a sequence of interactions.
Authentication: The generated application contains an initial structure for au-

thentication, i.e., login/logout operations. Since the concrete authentication

methods usually depend on the application (e.g., kind of login names, passwords),

this initial structure must be extended by the programmer.
Authorization: The generated application has methods for authorization, i.e.,

each controller that is responsible for showing or modifying data is authorized

before execution. A central authorization module is generated where the program-

mer can easily specify authorization rules based on login or similar information.
User processes: Individual operations provided by the framework can be com-

posed to user processes that can be selected to initiate longer interaction se-

quences. For instance, if it is necessary to create various entities in a database,

An ER-based Framework for Declarative Web Programming 3

the individual “create” operations can be connected to a complex user process.

A user process can be considered as a wizard-like dialog spanning over multiple

pages. Such processes are specified as graphs using functional logic programming

techniques.

Routing: As often found in complex web-based systems, the routes (i.e., URLs to

call some functionality of the system) are decoupled from the physical structure

of the source code. This enables simple URLs and bookmarking of URLs that

persist restructurings of the implementation. Therefore, our framework generates

applications that contain a specification of a mapping from URLs into controllers

of the application.

In the remainder of the paper, we present the main features of our framework and

show how declarative programming is useful to get a compact and maintainable

implementation of web-based applications. In the next section, we briefly survey

Curry and its features for web programming as required in this paper. Section 3

reviews the use of entity-relationship models for database programming in Curry.

The generation of the basic structure of a web application from an ER model

is discussed in Section 4. The remaining sections discuss the implementation of

sessions, authentication, authorization, and user processes before we conclude in

Section 9 with a discussion of related work.

2 Web Programming with Curry

We briefly survey the basic concepts of Curry and their use for high-level web

programming as required to understand the main part of this paper. More details

of Curry can be found in recent surveys on functional logic programming (Antoy

and Hanus 2010; Hanus 2007a) and in the definition of Curry (Hanus (ed.) 2012).

The design of the declarative multi-paradigm language Curry is an attempt to

integrate the most important features of functional and logic languages in a seam-

less way to provide a variety of programming concepts to the programmer. Con-

ceptually, Curry combines demand-driven evaluation, parametric polymorphism,

and higher-order functions from functional programming with logic programming

features like computing with partial information (logic variables), unification, and

non-deterministic search for solutions. As shown in previous works on database pro-

gramming (Braßel et al. 2008; Fischer 2005) and web programming (Hanus 2001;

Hanus 2006; Hanus 2007b), this combination enables better abstractions in appli-

cation programs. Curry has a Haskell-like syntax2 (Peyton Jones 2003) extended

by the possible inclusion of free (logic) variables in conditions and right-hand sides

of defining rules. The operational semantics of Curry, described in detail in (Hanus

1997; Hanus (ed.) 2012), is based on an optimal evaluation strategy (Antoy et al.

2000) which is a conservative extension of lazy functional programming and (con-

current) logic programming. Curry also offers standard features of functional lan-

2 Variables and function names usually start with lowercase letters and the names of type and data
constructors start with an uppercase letter. The application of f to e is denoted by juxtaposition
(“f e”).

4 M. Hanus and S. Koschnicke

guages, like modules or monadic I/O which is identical to Haskell’s I/O concept

(Wadler 1997). Thus, “IO α” denotes the type of an I/O action that returns values

of type α.

As a simple example for a Curry program, consider the following data declara-

tions. The first declaration introduces a data type “Maybe a” of possible values (of

an arbitrary type a), where “Nothing” is a constructor denoting the absent of a

value and the constructor “Just” decorates a given value. The second declaration

introduces a type HtmlExp to represent HTML structures:

data Maybe a = Nothing | Just a

data HtmlExp = HtmlText String

| HtmlStruct String [(String,String)] [HtmlExp]

Thus, an HTML expression is either a plain string (HtmlText) or a structure

(HtmlStruct) consisting of a tag (e.g., “b”, “em”, “h1”, “h2”,. . .), a list of at-

tributes (name/value pairs), and a list of HTML expressions contained in this

structure. Since it is tedious to write HTML documents in this form, we define

various functions as useful abbreviations, like

htxt s = HtmlText (htmlQuote s)

par hexps = HtmlStruct "p" [] hexps

italic hexps = HtmlStruct "i" [] hexps

...

Then we can write HTML expressions like

par [htxt "This is an ", italic [htxt "example"]]

As an example for an operation on HTML expressions, we define a function textOf

that extracts the textual contents of an HTML structure based on the predefined

list processing operations concat (to concatenate a list of lists) and map (to apply

an operation to every element of a list):

textOf :: HtmlExp -> String

textOf (HtmlText s) = s

textOf (HtmlStruct t as hs) = concat (map textOf hs)

A dynamic web page is an HTML document (with header information) that is

computed by a program at the time when the page is requested by a client (e.g.,

a web browser). Dynamic web pages usually process user inputs, placed in various

input elements (e.g., text fields, text areas, check boxes) of an HTML form, in order

to generate a user-specific result. For this purpose, the HTML library of Curry

(Hanus 2001) provides an abstract programming model that can be characterized

as programming with call-back functions. A web page with user input and buttons

for submitting the input to a web server is modeled by attaching an event handler

to each submit button that is responsible for computing the answer document. For

instance, the HTML library defines an operation to represent submit buttons in an

HTML page:

button :: String -> HtmlHandler -> HtmlExp

An ER-based Framework for Declarative Web Programming 5

In order to access the user input, the event handler (of type HtmlHandler) has

an environment containing the actual user input as a parameter and computes a

new web page. We omit further details here, which can be found in (Hanus 2001),

since our framework is mainly based on a more abstract layer to construct web user

interfaces (WUI s) (Hanus 2006). Such WUIs are constructed in a type-oriented

manner, i.e., for each type in the application program one can construct a WUI

that is an implementation of a web-based interface to manipulate values of this

type. Thus, the (tedious) code for checking the validity of values in the input fields

and providing appropriate error messages is automatically derived from the WUI

specification. For instance, the corresponding WUI library (Hanus 2006) contains

predefined WUIs to manipulate strings (wString) or to select a value (wSelect)

from a given list of values (where the first argument shows a value as a string):

wString :: WuiSpec String

wSelect :: (a -> String) -> [a] -> WuiSpec a

Here, “WuiSpec a” denotes the type of a WUI to modify values of type a. To con-

struct WUIs for complex data types, there are WUI combinators that are mappings

from simpler WUIs to WUIs for structured types. For instance, there is a family of

WUI combinators for tuple types:

wPair :: WuiSpec a -> WuiSpec b -> WuiSpec (a,b)

wTriple :: WuiSpec a -> WuiSpec b -> WuiSpec c -> WuiSpec (a,b,c)

w4Tuple :: WuiSpec a -> WuiSpec b -> WuiSpec c -> WuiSpec d

-> WuiSpec (a,b,c,d)

...

Hence,

wPair wString (wSelect show [1..100])

defines a WUI to manipulate a pair of a string and a number between 1 and 100.

An important feature of WUIs is their easy adaptation to specific requirements. For

instance, there is an operator withCondition that combines a WUI and a predicate

on values so that the resulting WUI accepts only values satisfying this predicate.

Thus,

wRequiredString = wString ‘withCondition‘ (not . null)

defines a WUI that accepts only non-empty strings. Similarly, there are combina-

tors to change the default rendering of WUIs (withRendering) or to change the

default error messages. These features allow a compact and declarative description

of complex user interfaces.

We want to remark that the functional as well as logic features of Curry are

exploited to implement this high-level abstraction: event handlers and environments

are functions attached to data structures representing HTML documents, and input

elements in a document have logic variables as references. Moreover, static type

checking is exploited to ensure type-safe web forms.

6 M. Hanus and S. Koschnicke

Fig. 1. An ER diagram of a web log

3 Entity-Relationship Models and Database Programming

The entity-relationship model (Chen 1976) is an established framework to specify

the structure and specific constraints of data stored in a database. It is often used

with a graphical notation, called entity-relationship diagrams (ERDs), to visualize

the conceptual model. The ER framework proposes to model the part of the world

that is interesting for the application by entities that have attributes and relation-

ships between the entities. The relationships have cardinality constraints that must

be satisfied in each valid state of the database, e.g., after each transaction.

Braßel et al. (2008) developed a technique to generate high-level and safe database

operations (i.e., the cardinality constraints of the ER model hold after database

updates) from a given ERD. In order to be largely independent of a specific ER

modeling tool, Braßel et al. (2008) defined a representation of ERDs in Curry so

that graphical modeling tools can be connected by implementing a translator from

the tool format into the Curry representation. Since this representation is also the

starting point of our framework, we briefly describe it in the following.

If the structure of possible ERDs is fixed (unfortunately, there is no standard

definition of ERDs), the representation of ERDs as data types in Curry is straight-

forward. Here we assume that an ERD consists of a name (that is later used as the

module name containing the generated database operations) and lists of entities

and relationships:

data ERD = ERD String [Entity] [Relationship]

Instead of showing the detailed definition of all ER data types, which can be found

in (Braßel et al. 2008), we show the ER specification of an example which we use

throughout this paper: a web log. The structure of our “blog” is visualized as an

ERD in Fig. 1. A blog consists of Entry articles having title, text, author, and date

as attributes, and Comments to each entry. Furthermore, there are a number of Tags

to classify Entry articles. One can translate this ERD into the following data term

which specifies the details of the blog structure:

ERD "Blog"

[Entity "Entry"

[Attribute "Title" (StringDom Nothing) Unique False,

An ER-based Framework for Declarative Web Programming 7

Attribute "Text" (StringDom Nothing) NoKey False,

Attribute "Author" (StringDom Nothing) NoKey False,

Attribute "Date" (DateDom Nothing) NoKey False],

Entity "Comment"

[Attribute "Text" (StringDom Nothing) NoKey False,

Attribute "Author" (StringDom Nothing) NoKey False,

Attribute "Date" (DateDom Nothing) NoKey False],

Entity "Tag"

[Attribute "Name" (StringDom Nothing) Unique False]]

[Relationship "Commenting"

[REnd "Entry" "commentsOn" (Exactly 1),

REnd "Comment" "isCommentedBy" (Between 0 Infinite)],

Relationship "Tagging"

[REnd "Entry" "tags" (Between 0 Infinite),

REnd "Tag" "tagged" (Between 0 Infinite)]]

Each attribute specification consists of the attribute name, the domain type of

the attribute values together with a possible default value, and specifications of

the key and null value property. For instance, the Title attribute of the entity

Entry is a string without a default value, specified by “(StringDom Nothing)”,

that is unique in each valid state of the database, and null values are not al-

lowed for this attribute. Furthermore, Commenting is a one-to-many relationship

between Entry and Comment entities (“(Exactly 1)” denotes the interval [1..1]

and “(Between 0 Infinite)” denotes the interval [1..∞]). Hence, each Entry ar-

ticle has an arbitrary number of comments and each Comment belongs to exactly

one Entry. Finally, Tagging is a many-to-many relationship between Entry and

Tag entities.

As mentioned above, Braßel et al. (2008) proposed a method to generate database

operations from an ERD specification that ensures the integrity of the database

(w.r.t. the constraints present in the ERD) after performing update operations. For

instance, there is an operation of type

newEntry :: String -> String -> String -> CalendarTime

-> Transaction Entry

that takes values of the Entry attributes and inserts a new Entry entity into the

database. The return type is a transaction (see (Braßel et al. 2008)), i.e., the inser-

tion might fail (without changing the database state but returning some informative

error message) if the value of the title attribute is not unique. Similarly, there is a

generated operation of type

newCommentWithEntryCommentingKey

:: String -> String -> CalendarTime -> EntryKey

-> Transaction Comment

that takes values of the attributes of a new Comment entry and a key of an existing

Entry entity since each comment is related to a unique Entry entity, as specified

by the Commenting relation.

8 M. Hanus and S. Koschnicke

The main idea of our tool Spicey, described in the following sections, is the

generation of a maintainable and adaptable web application that implements a

user-friendly interface to these database operations.

It should be noted that the underlying database library is based on logic pro-

gramming techniques where the logic features of the language Curry are exploited

to embed a declarative query language into Curry, as shown in (Braßel et al. 2008;

Fischer 2005). For this purpose, each database entity is represented as a predicate

between its database key and the corresponding entity instance and each relation-

ship of the ERD is represented as a predicate between the corresponding database

keys. For instance, “comment ckey cmt” is satisfied if cmt is a Comment instance

with key ckey, and “commenting ekey ckey” is satisfied if the Entry instance with

key ekey is related to the Comment instance with key ckey w.r.t. the relationship

Commenting. Thus, we can join these predicates to obtain a query that returns all

comments belonging to a given entry key:

queryCommentsOfEntry :: EntryKey -> Query [Comment]

queryCommentsOfEntry ek =

queryAll (\c -> let ck free in comment ck c <> commenting ek ck)

Here, “<>” denotes the join of two predicates, the free variable ck denotes an arbi-

trary Comment key, and queryAll is a query that returns all solutions to a predicate

abstraction. More details can be found in (Braßel et al. 2008).

The advantages of the integration of database querying into the programming

language instead of using a decoupled abstraction like SQL are type-safety, the

possibility to use all language features the programmer is used to, and the pre-

vention of security risks that might be introduced by a string-based SQL interface

(Huseby 2003). Thus, the use of a logic-oriented implementation language is es-

sential to obtain our design, described below, although the application of the logic

features are hidden by the database abstractions sketched in this section.

4 Scaffolding

In this section, we present the basic scaffolding of Spicey, i.e., the generation of

an initial executable system that provides access to the data via standard web

browsers. In order to make the generated system maintainable, it is important

that the program code has a comprehensible structure. Therefore, Spicey uses a

well-established code structure (also called pattern) for interactive systems: the

model-view-controller (MVC) structure (Krasner and Pope 1988). This is based on

the idea to distribute the entire functionality of an interactive system into three

parts: the model which represents the application data and contains all operations

to manipulate these data, the view that is responsible to represent the model to

the user, and the controller that reacts to user requests and initiates changes in

the model (and, thus, in the view). Due to the diversity of data represented by the

various entities, Spicey generates various views and controllers from a given ER

model. Before presenting more details of this scaffolding process, we discuss some

design decisions.

An ER-based Framework for Declarative Web Programming 9

Fig. 2. The web interface of the blog application generated by Spicey

4.1 Structure of Generated Applications

As an example, consider the ER description of the blog presented in the previous

section. From this description, Spicey automatically generates the Curry source

code of an application that implements the interface shown in Fig. 2. As illustrated,

the interface has buttons to create new entities and list existing ones, as well as

buttons to show, edit, or delete any existing entity.

However, generating a standard interface is not sufficient for real applications

since there are many requirements that are not present in the ER description. For

instance, one might want to choose a different table layout or show only the first

30 characters of the Text attribute in the list of entries. One could extend the ER

descriptions to add specifications of these requirements, but there are so many of

these requirements in real applications so that this leads to a complex specification

structure that is difficult to manage. As an alternative, we propose to use the high

abstraction level of declarative programming for this purpose. Instead of adding all

possible customer requirement to the specification language of the data model, we

generate high-level declarative code from the ER descriptions. Thanks to the works

on high-level database programming and web user interface construction sketched

above, the generated source code is compact and comprehensible so that it can be

easily adapted to individual customer requirements, as demonstrated below.

As mentioned above, the scaffolding of Spicey is based on the model-view-

controller structure for the generated source code. The MVC structure is reflected

in the module structure of the code. Thus, if we execute Spicey to generate a web

application from an ER description, the following directories and modules are cre-

ated:

10 M. Hanus and S. Koschnicke

models/ This directory contains the implementation of the data model, i.e., it

contains the Curry module implementing the access to the database which is

generated from the ER description as sketched in Section 3 and described in

detail in (Braßel et al. 2008). In particular, this module contains, for each entity

of the ER model, a definition of an (abstract) data type representing such entities.

In our blog example, these are the data types Entry, Comment, and Tag. If one

wants to add more complex integrity constraints on update operations for these

entities, one could extend the Curry code in this module.

controllers/ This directory contains the implementation of the various con-

trollers that are responsible to react on user interactions. Some if these con-

trollers can be directly called, e.g., from the main menu shown at the top of

Fig. 2, whereas other controllers (e.g., for editing or deleting entities) are called

as continuations from particular views. The general type of a controller in Spicey

is simply

type Controller = IO [HtmlExp]

Thus, a controller is an I/O action that returns an HTML document, the result

shown to the user, which is embedded into the standard page layout by the

scheduler. For each entity of the ER model, Spicey generates a corresponding

controller module containing the controllers to list, create, edit, and delete such

entities. For instance, the controller to edit a given Comment entity is defined with

the type

editCommentController :: Comment -> Controller

views/ This directory contains the implementation of the views of the different

entities, i.e., a view module is generated for entity of the ER model. These views

are called from the corresponding controllers. For instance, there are views to

show, insert, or edit an entity, as well as a view to list all entities.

config/ This directory contains modules to configure the overall access to the func-

tionality provided by the system. For instance, it contains information about the

routes, i.e., the URLs supported by the system and their mapping to individual

controllers, and the definition of available user processes (see Section 7).

Furthermore, there are directories containing global modules for session manage-

ment, authentication etc (system/), scripts to compile and install the system

(scripts/), and collections of images and style files used by the system (public/).

In the following, we explain some parts of the generated source code in more detail

(where we omit some minor aspects compared to the concrete code in order to

simplify the discussion).

4.2 Views

To obtain a compact and maintainable source code, the views that create or update

entities exploit WUIs (see Section 2) to implement type-safe web forms in a high-

level declarative manner. Thus, Spicey generates for each entity a WUI specification

of a web form to manipulate the attributes of this entity (e.g., see Fig. 3). However,

An ER-based Framework for Declarative Web Programming 11

Fig. 3. An edit form for blog comments generated by Spicey

the internal primary database keys of an entity should not be changed and, thus,

they are not part of the WUI specification. Moreover, if an entity is related to

other entities, this relation should be modifiable in the web form. For instance,

each comment in our blog example is related to a unique Entry entity. Hence, a

single Entry entity must be selected in the form to insert or change a comment

(see the lower selection box in Fig. 3). As a consequence, we have to pass related

entities to the web form in order to enable their selection. In the generated code, we

do not pass all associated entities (e.g., it is not reasonable to select the associated

comments when editing an Entry entity) but only the uniquely related entities from

one-to-many relationships and “one side” of many-to-many relationships.

To be more precise, assume that E is an entity with attributes

A1, . . . , An, (E1, E), . . . , (Ek, E) are all one-to-many relationships (to E) and

(E,E′
1), . . . , (E,E′

l) are all many-to-many relationships (with E as the first compo-

nent). Then the form generated by Spicey to edit an E entity (as shown in Fig. 3

for a Comment entity) contains the following components:

1. Input fields for editing the attributes A1, . . . , An

2. Selection fields to select the uniquely related entities E1, . . . , Ek

3. Multiple selection fields to select the related entities E′
1, . . . , E

′
l

Thus, one could select in our blog example an Entry entity in a form to edit a

Comment (due to the one-to-many relationship Commenting) and a set of Tag entities

in a form to edit an Entry (due to the many-to-many relationship Tagging).

Due to these considerations, Spicey generates from the Blog ERD the following

WUI specification for Comment entities:

12 M. Hanus and S. Koschnicke

wComment :: [Entry] -> WuiSpec (String,String,CalendarTime,Entry)

wComment entries =

(w4Tuple wRequiredString wRequiredString wDateType

(wSelect entryToShortView entries))

‘withRendering‘ (renderLabels commentLabelList)

Thus, wComment takes a list of available entries and returns a web form to manip-

ulate the three attributes of a Comment entity together with the uniquely associ-

ated Entry entity. The available entries are shown in a selection box (wSelect)

where each entry is shown as a short string by the transformation function

entryToShortView. As a default, the first unique attribute is used for this pur-

pose (if present), i.e., in case of an Entry entity, the title of the corresponding entry

is shown.

We want to remark that this and other defaults used in the standard web form

created by this WUI specification (see Fig. 3) can be easily adapted by changing

this declaration. For instance, one can use another interface for manipulating dates

by replacing wDateType with another WUI for dates, or if the name of the author is

not required (i.e., if comments are accepted with an empty Author string), one can

replace the second wRequiredString by wString. Moreover, the complete default

rendering can be changed by using another rendering function than renderLabels

(see (Hanus 2006) for more details about the rendering).

The WUI operation wComment is used to implement the views to insert or update

a Comment entity. For instance, for editing comments, Spicey generates an operation

editCommentView

:: Comment -> Entry -> [Entry] -> (Comment -> Controller)

-> [HtmlExp]

that takes the current comment, the Entry entity related to this comment, a list

of available Entry entities, and a controller to update the modified comment in the

database as arguments. Note that the Comment data type contains the foreign key

of the associated Entry entity so that it need not be explicitly passed to the update

operation, see also (Braßel et al. 2008).

The main view to browse and manipulate entities is the list view as shown in Fig 2.

Since the list view contains buttons (show/edit/delete) associated to individual

entities, the controllers implementing the functionality of these buttons are passed

as arguments to the view. For instance, the implementation of the generated list

view for Comment entities is quite simple by the use of the HTML library:

listCommentView :: [Comment]

-> (Comment -> Controller)

-> (Comment -> Controller)

-> (Comment -> Controller) -> [HtmlExp]

listCommentView comments showctrl editctrl deletectrl =

[h1 [htxt "Comment list"],

table ([take 3 commentLabelList] ++

map listComment (sort leqComment comments))]

An ER-based Framework for Declarative Web Programming 13

where listComment cmt = commentToListView cmt ++

[[button "show" (nextController (showctrl cmt)),

button "edit" (nextController (editctrl cmt)),

button "delete" (nextController (deletectrl cmt))]]

The list view has the list of comments and the necessary controllers (showctrl,

editctrl, deletectrl) as arguments and creates a table of comments and but-

tons having the controllers as continuations. nextController is a global operation

which wraps the output of a controller with the standard layout of the application.

The comments are sorted w.r.t. the ordering leqComment, an operation generated

by Spicey. Thus, the generated default ordering (a lexicographic ordering on the

attributes of the entity) can be easily changed.

To influence the information shown in the list view, one has to adapt the definition

of the generated operation commentToListView which maps a Comment entity into

a row of the table. The initial definition is simply the text of all attributes. Spicey

generates the definition of the various entity representations used in the application,

like short views, list views, or views containing all details, in single module (named

BlogEntitiesToHtml). Thus, one needs to adapt only this module to change the

default layout of the entities. This module also contains the definition of the labels

corresponding to the attribute names, like the constant commentLabelList used in

the list view and the edit form.

4.3 Controllers

Following the MVC paradigm, controllers are responsible to react to user requests

and call the corresponding views supplied with data contained in the model. For

instance, the list controller for comments retrieves all comments from the model

(i.e., the database) and calls the operation listCommentView with these comments

and the controllers to process individual comments:

listCommentController :: Controller

listCommentController = do

comments <- runQ (queryAll (\c->let key free in comment key c))

return (listCommentView comments

showCommentController

editCommentController

deleteCommentController)

In order to implement the listing of a restricted set of comments (e.g., all comments

of a particular author), one can use in the controller’s code the operation

getControllerParams :: IO [String]

that returns the parameters passed with the controller’s URL. For instance, one

can easily define a controller for comments that lists only the comments be-

longing to a given entity (instead of listing all comments) by using the query

queryCommentsOfEntry shown in Section 3.

The other controllers are similarly defined. However, note that controllers to

14 M. Hanus and S. Koschnicke

create or modify entities require a second controller, passed to the view (e.g., see

editCommentView above), that is responsible to perform the actual modification of

the model. All controllers for an entity generated by Spicey are put into a module,

e.g., the module CommentController contains the various controllers associated to

Comment entities.

4.4 Routing

As shown in Fig. 2, some controllers (like new or list) can be directly called by

specific URLs in the application. In order to decouple the structure of URLs from

the structure of the implementation (which is reasonable to hide its details), Spicey

generates an initial module containing the names of the available controllers and

their URLs. An indirection in this generation is necessary due to potential cyclic

module dependencies which are not allowed in Curry. Controller modules depend on

view modules since controllers call view operations. If one wants to put in some view

also URL references to controllers, we obtain a cyclic dependency. Therefore, Spicey

generates a data type that enumerates all “top-level” controllers, i.e., controllers

that can be activated by URLs:

data ControllerReference = ListEntryController

| NewEntryController

| ListCommentController

| ...

The mapping of these controller references to the actual controller operations is

defined in a top-level module that is used only by the main module of the application

(this avoids the cyclic dependency).

The routing, i.e., the association of URLs and controllers, is defined by an opera-

tion getRoutes that is initially defined as follows (we omit the processes and login

controllers since they are later discussed):

getRoutes =

return [("new Entry", Exact "newEntry", NewEntryController),

("list Entry",Exact "listEntry",ListEntryController),

...

("default", Always, ListEntryController)]

The first argument of each route element is the name as shown in the top menu

of the application (see Fig. 2), the second argument specifies the matching of a

route name as used in the URL (where Exact defines an exact matching, Always

defines an always successful matching, and there is also an option to define arbitrary

matching functions), and the third argument is the controller reference associated to

the matched URL. In the default configuration, the top-level menu of the application

is dynamically generated from the Exact matchings defined in getRoutes.

Altogether, a Spicey application performs a request for a web page as follows.

First, the path component of the URL is extracted. Then, a dispatcher matches

this path against the list of alternatives defined by getRoutes and the controller

An ER-based Framework for Declarative Web Programming 15

reference of the first matching alternative (or an error message controller if there

is no matching alternative) is returned. Finally, the top-level module executes the

code associated to this controller reference and decorates the computed HTML

contents with the standard layout of the application.

Note that getRoutes is an I/O operation rather than a constant. This allows a

dynamic routing depending on some state of the system. For instance, the available

routes can be restricted for users that are not logged in, or different routes can

be supported depending on the login status. The implementation of these features

requires the management of sessions which is discussed in the next section.

5 Sessions

In a web-based application, one needs a concept of a session in order to pass

information between different web pages. For instance, the login name of a user

or the contents of a virtual shopping basket should be stored across several web

pages. Therefore, Spicey supports a general concept to store arbitrary information

in a user session.

Typically, sessions are implemented in web-based systems via cookies stored in

the client’s browser. For security and performance reasons, these cookies should not

contain the information stored in the session but only a unique session identifier that

is passed to the web server in any interaction. Therefore, a Spicey application im-

plements sessions by managing a session identifier of the abstract type SessionID

in each web page. If a session identifier does not exist (i.e., the browser did not send

a corresponding cookie), a fresh session identifier is created and stored in a cookie

sent with any subsequent web page. This access to the current session identifier is

implemented in an operation

getSessionId :: IO SessionId

However, the application programmer must not use this internal operation to store

session information. Instead, Spicey provides the following operations to manipu-

late session information (where the type variable a denotes the type of the session

information):

getSessionData :: Global (SessionStore a) -> IO (Maybe a)

putSessionData :: a -> Global (SessionStore a) -> IO ()

removeSessionData :: Global (SessionStore a) -> IO ()

getSessionData retrieves information of the current session (and returns Nothing

if there is no information stored), putSessionData stores information in the current

session, and removeSessionData removes such information. “SessionStore a” is

an abstract type to represent session information containing data of type a. This

interface is based on the concept of “globals” (available through the Curry library

Global3) that implements objects having a globally declared name in some module

of the program. The values associated to the name can be modified by I/O actions.

3 http://www.informatik.uni-kiel.de/~pakcs/lib/CDOC/Global.html

16 M. Hanus and S. Koschnicke

It is also possible to declare global entities as persistent so that their values are

kept across different program executions, but this is not required here since there

is one process on the server side serving all requests of a user session.

For instance, consider the implementation of “page messages” that are shown in

the next page (e.g., error messages, status information), like the “Logged in as”

message shown in Fig. 2. In order to enable the setting of such messages in any part

of a Spicey application, we define the page message as session data by the following

definition of a global entity:

pageMessage :: Global (SessionStore String)

pageMessage = global emptySessionStore Temporary

“global v Temporary” denotes a global entity with initial value v that is not

persistently stored. The value emptySessionStore denotes a session store that

does not contain any information.

Using the session operations above, we can define an operation to set the page

message in any part of a Spicey application:

setPageMessage :: String -> IO ()

setPageMessage msg = putSessionData msg pageMessage

The current page message is retrieved and then removed by the following operation:

getPageMessage :: IO String

getPageMessage = do

msg <- getSessionData pageMessage

removeSessionData pageMessage

return (maybe "" id msg)

This operation can be used by the main operation that wraps a view output with

the standard layout containing the page message, global menu etc.

As one can see, the management of sessions using cookies and session identifiers

is completely hidden for the application programmer. The implementation of the

operations to manipulate session data is quite easy using session identifiers and

appropriate data structures. For instance, the type SessionStore is implemented

as a list

data SessionStore a = SStore [(SessionId, ClockTime, a)]

where each element consists of a session identifier, a clock time value (used to

clean up the store from old data), and the associated session data. Then, the im-

plementation of the operation getSessionData amounts to a lookup of the infor-

mation associated to the current session identifier in the global session store, or

putSessionData simply adds or updates this information.

Due to this general session concept, one can easily attach any number of in-

formation entities to a session. For instance, one can store the history of selected

controllers (to implement a history list or a “back” button) or the login name in

order to support authentication, which is discussed next.

An ER-based Framework for Declarative Web Programming 17

6 Authentication and Authorization

The basic support for user authentication is quite simple. One can define some

session data to store a login name:

sessionLogin :: Global (SessionStore String)

sessionLogin = global emptySessionStore Temporary

and use the session data operations to set, retrieve, or delete a login name. These

operations can be used in specific web pages to login or logout. Since authentication

is required in almost any web-based system keeping some data, Spicey provides an

initial implementation (compare Fig. 2) that is intended for extension during the

adaption of the system. Although the initial authentication system is incomplete

(since it is not specified where to store passwords, login names etc), its implemen-

tation provides a reasonable structure that can be extended by the application

programmer. Moreover, the generated Spicey application also contains some useful

operations to generate random passwords, compute hash strings for passwords and

login names (note that, for security reasons, one should not hash passwords alone

(Huseby 2003)), etc.

An equally important aspect of web-based systems is authorization, i.e., the

checking whether a user is allowed to call a distinct functionality, like showing or

updating particular entities. In our framework, this check can be performed before

starting a controller. In order to avoid the distribution of these checks over the en-

tire implementation and keep the authorization rules at a centralized place, Spicey

decorates the generated code of each controller with a call to some authorization

code. For this purpose, there is a data type

data AccessResult = AccessGranted | AccessDenied String

and an operation

checkAuthorization :: IO AccessResult -> Controller -> Controller

which takes an I/O operation for authorization checking (returning an

AccessResult) and a controller as arguments. If the authorization returns

AccessGranted, the controller is executed, otherwise an error message is displayed.

In order to define concrete authorization rules for the various controllers, Spicey

generates a data type to classify the controllers:

data AccessType a = NewEntity | ListEntities | ShowEntity a

| UpdateEntity a | DeleteEntity a

Now, the execution of each controller is protected by adding an authorization check

to the controller’s code. For instance, the generated code of the controller to list all

Comment entities (see Section 4.3) is extended as follows:

listCommentController =

checkAuthorization (commentOperationAllowed ListEntities)

(do comments <- runQ ...

...)

18 M. Hanus and S. Koschnicke

Thus, the actual authorization rules are collected in a single module containing the

definition of all operations used in the calls to checkAuthorization. For instance,

the default definition of commentOperationAllowed is

commentOperationAllowed :: AccessType Comment -> IO AccessResult

commentOperationAllowed _ = return AccessGranted

authorizing all Comment operations. By refining this definition, one can specify re-

strictions on the controllers depending on the various operations, specific entities,

or login information of the user. For instance, a generic policy that disallows delete

operations can be expressed as follows:

disallowDelete at = case at of

DeleteEntity _ -> return (AccessDenied "Delete not allowed!")

_ -> return AccessGranted

Note that the logic programming features of Curry can be quite useful here to

specify authorization policies in a rule-oriented manner.

7 Processes

Web-based applications generated by Spicey support individual interactions to in-

sert, show, and change any entity. If the data model is complex and consists of

many entity types, it might be necessary to combine single interactions to longer

interaction sequences. For instance, if one wants to insert new data where different

entities are involved, it is reasonable to define an interaction sequence where the

controllers to insert the various new entities are sequentially activated. Thus, one

wants to offer user processes (which can be also considered as parts of complex

business processes) that are structured compositions of elementary interactions.

In order to support the implementation of processes, a Spicey application has

an infrastructure to define and execute such processes. From an abstract point of

view, a process is a sequence of calls to controllers. Therefore, processes can be

weaved into the default structure of controllers. For this purpose, each controller

which terminates an individual interaction has a “continuation” controller that is

called in the next step. For instance, a controller responsible for creating a new

entity calls the list controller of the same entity type, as in the controller which

adds a new Tag entity:

createTagController name = runT (newTag name) >>=

either (_ -> nextInProcessOr listTagController Nothing)

(\error -> displayError ...)

Thus, the execution (runT) of the transaction (newTag name), that should insert

a new Tag name into the database, calls, if successful, the listTagController, or

displays an error message if the transaction fails (e.g., since the new name already

exists). However, the next controller is not directly called but indirectly through the

operation nextInProcessOr. This operation checks whether the system executes a

user process. If no process is active, the given controller is called, otherwise the

An ER-based Framework for Declarative Web Programming 19

controller specified in the next process state is executed. In order to make the

selection of the next process state dependent on some information provided by the

previous controller (this is useful to implement loops or branches in processes), the

second argument of nextInProcessOr might contain such information. Thus, the

application programmer can replace the default value Nothing by some information

available in the previous controller.

The concrete structure of processes is defined in a distinguished module

UserProcesses as data of the following type:

data Processes st = ProcSpec [(String,st)]

(st -> ControllerReference)

(st -> Maybe ControllerResult -> st)

The type parameter st is the type of the states of a process, which could be a

number or some more informative enumeration type. Hence, a process specification

consists of a list of start states together with a textual description (these start states

can be selected in the process menu), a mapping of each state into a corresponding

controller to be executed in this state, and a state transition function that maps a

state into a new state depending on some optional result provided by the previous

controller (the type of these results is ControllerResult, which is identical to

String in the default case).

We can use all features available in Curry to define processes. For instance, one

can compute the next state in a process based on solving constraints w.r.t. the data

in the model. In general, the state transition function is partial, i.e., if a process

state has no successor, the process will be terminated. If a state has more than one

successor, the first one is selected (multiple successor states can occur in situations

like the insertion of several entities in an arbitrary order).

As a concrete example, consider a simple process to insert a new tag followed by

the creation of a new Entry entity and terminated with showing the list of all tags.

If we use numbers as state identifiers, we can specify this process as follows:

let controllerOf 0 = NewTagController

controllerOf 1 = NewEntryController

controllerOf 2 = ListTagController

next 0 _ = 1

next 1 _ = 2

in ProcSpec [("Insert new tag and entry",0)] controllerOf next

Since the next process state is always fixed and does not depend on some data

from the previous controller in this simple example, the second argument of the

state transition function next is not relevant and, hence, ignored in the definition

of next. If this specification is contained in the module UserProcesses, the process

can be selected and stepwise executed in the web application.

20 M. Hanus and S. Koschnicke

8 Related Work

Although Spicey is the first web programming framework for a declarative language

based on ER models and with support for typical requirements in the area (e.g.,

safe transactions, sessions, authentication, authorization, processes), there are many

related approaches. In the following, we discuss the relation of Spicey to some other

approaches.

In contrast to other systems implemented in scripting languages like Perl, PHP, or

Ruby, our implementation is statically typed so that many programming errors that

easily occur in such complex systems are detected at compile time. For instance, all

input fields in the views (web pages) are statically typed similarly to the attributes

and access operations for the underlying database. Thus, programming errors that

confuses this data can be detected at compile time. Compared to Ruby on Rails,

a framework with similar objectives, Spicey can be considered as an approach to

show that declarative programming allows the compact construction of web-based

systems with static type checking (thus, supporting programming safety) without

the need for (unreliable) dynamic meta-programming techniques. Spicey also uses

a functional logic abstraction to databases which allows the formulation of queries

as typed expressions of the language Curry. In contrast to our approach, Ruby on

Rails uses the Active Record Query Interface as an abstraction for SQL which is

still mostly string-based and, therefore, introduces security risks. In order to obtain

these advantages of Spicey, some design difficulties had to be solved, like avoiding

mutual module dependencies by passing continuation controllers to views, routing,

etc.

The Web Application Maker4 (WAM) is a framework with similar goals to those

of Spicey. The WAM generates a web interface from the meta-data of a relational

database, allowing the interface to be adapted to specific user requirements. In

contrast to WAM, Spicey uses ER models, which usually contain more structural

information, to generate the database schema and the corresponding web interface.

The iData toolkit (Plasmeijer and Achten 2006) is a framework, implemented

with generic programming techniques in the functional language Clean, to construct

type-safe web interfaces to data that can be persistently stored. In contrast to our

framework, the construction of an application is done by the programmer who

defines the various iData elements, where we generate the necessary code from an

ER description. Hence, integrity constraints expressed in the ER description are

automatically checked in contrast to the iData toolkit.

Turbinado5 is a web framework for Haskell. It is based on similar ideas as Ruby

on Rails but exploits static type checking for more reliable programming, similarly

to Spicey. In contrast to our framework, Turbinado supports scaffolding only to

implement an object-relational mapping of the models, and it is not based on an

ER specification to ensure integrity constraints in the application.

Seam (Yuan et al. 2009) is a complex framework for developing enterprise ap-

4 http://www.declarativa.com/wam/
5 http://www.turbinado.org/

An ER-based Framework for Declarative Web Programming 21

plications in Java. It integrates many other projects to support a wide range of

technologies. The database abstraction is provided by an Enterprise Java Beans

3.0 implementation, Hibernate by default, which enables the programmer to gen-

erate the database schema directly from the model classes. In contrast to the ERD

library used by Spicey, there is no graphical way to create the models of the ap-

plication. Another disadvantage of Seam is the absence of a single place to define

consistency rules for data. There are three places where consistency and validation

rules may be defined. The first two are the code of the models and the generated

database schema. Some, but not all, rules which are defined in the models through

annotations are put into the database schema, but often the programmer has to

assure database consistency by himself. Seam supports the definition of the stan-

dard relationship types one-to-one, one-to-many, many-to-one and many-to-many

but provides no good way to enforce ranges for the multiplicity of those relation-

ships as Spicey does. For example, a one-to-one relationship does not ensure that

there is always an entity on the other side of the relation but that there may be

an entity or null. As a consequence, a programmer in Seam has to check for the

presence of an entity by himself. Hibernate provides an annotation for that, but it

is not fully integrated into Seam yet. The third place to define validation rules are

the views, for which Seam uses Java Server Faces. Rules defined in the model are

not automatically reflected in the views, simple validation rules like required fields

have to be defined again in the view, which leads to inconsistency if those rules

for a model are defined differently in different views. Seam integrates the jBPM6

project for modeling business processes. jBPM defines the process in XML format

where a graphical editor exists. Similarly to Spicey, the coupling of the process with

the code is achieved by connecting controller methods with the process. For autho-

rization another tool may be used in Seam, namely JBoss Rules7, which provides a

logical language for defining authorization rules. This aspect is directly integrated

into Spicey by the logic programming features of Curry.

The web framework Seaside8 is based on the object-oriented language Smalltalk.

Seaside is one of the few frameworks that use the Transform-View pattern for

views. This enables the compiler to check the integrity of the views because they

are defined as program code instead of HTML templates. Spicey uses the same

approach but provides for stronger code checks due to the static type system of

Curry. Seaside supports process modeling by providing a stateful environment over

multiple requests and enable the programmer to span a controller method over

more than one page. In contrast to Spicey, processes are not decoupled from the

controller logic so that a high abstraction level of processes as in Spicey is not

obtained.

Django9 is a popular web framework for the language Python which has features

very similar to Ruby on Rails. The implementation of routes for Spicey was inspired

6 http://www.jboss.com/products/jbpm/
7 http://www.jboss.com/products/rules/
8 http://www.seaside.st/
9 http://www.djangoproject.com/

22 M. Hanus and S. Koschnicke

by the way Django handles routes. While Django offers only regular expressions for

matching URLs, Spicey generalizes this concept and supports arbitrary computable

functions for determining the controllers associated to URLs.

9 Conclusions

We have presented the tool Spicey to generate web applications for data models

that are specified as entity-relationship models. Spicey enables the generation of a

fully functional system from an ER description in a few seconds. The usefulness of

this initial system goes beyond the evaluation of the feasibility of the data model.

Due to the use of a declarative target language, the generated code is compact

and comprehensible so that it can be easily extended and adapted to specific cus-

tomer requirements. This has been also achieved by the use of previous works on

declarative database and web programming that supports a compact executable

description of web interfaces. Furthermore, the system generated by Spicey has

an infrastructure for many aspects related to web-based systems, like transactions

that are safe w.r.t. the ER constraints, sessions, authentication, authorization, user-

oriented processes, or routing.

To get an idea of the size of the generated source code that might be inspected

by the application programmer to adapt the initial system, we counted the lines of

code of the application generated for the Blog data model shown in Section 3. The

generated views contain 300 lines of code, the generated controllers contain 200 lines

of code, and the configuration files (e.g., routing, default authorization) contain 65

lines of code. Of course, the complete executable has much more code, like system

libraries, specific Spicey libraries, generated database code etc. However, this code

is usually irrelevant when adapting the system to specific layout requirements. As

usual in current web-based systems, many layout details are specified in a global

style sheet file so that the views generate only the basic structure of each web page.

Spicey is completely implemented in Curry. The implementation is freely avail-

able.10 Apart from some example applications, Spicey has been used to provide

web-based interfaces to existing databases by the definition of appropriate ER de-

scriptions and to implement a system to manage module descriptions and study

programs for university curricula. The latter system is in daily use at the university

of Kiel and the ER-based generation of the high-level declarative code was quite

useful to adapt the system to ongoing user requirements.

For future work, it would be interesting to develop a concept for migration, i.e.,

to support changes in the ER model that might entail changes in the generated and

possibly adapted application code. Furthermore, it would be useful to implement a

tool that allows to mix Curry code with HTML code fragments, e.g., as shown with

the Haskell Server Pages (Meijer and van Velzen 2000), in order to allow an easier

integration of layouts developed by HTML designers into the application programs.

10 http://www.informatik.uni-kiel.de/~pakcs/spicey/

An ER-based Framework for Declarative Web Programming 23

Acknowledgements. The authors are grateful to the anonymous referees for helpful

comments and suggestions.

References

Antoy, S., Echahed, R., and Hanus, M. 2000. A needed narrowing strategy. Journal
of the ACM 47, 4, 776–822.

Antoy, S. and Hanus, M. 2010. Functional logic programming. Communications of the
ACM 53, 4, 74–85.

Braßel, B., Hanus, M., and Müller, M. 2008. High-level database programming in
Curry. In Proc. of the Tenth International Symposium on Practical Aspects of Declar-
ative Languages (PADL’08). Springer LNCS 4902, 316–332.

Chen, P. P.-S. 1976. The entity-relationship model—toward a unified view of data. ACM
Transactions on Database Systems 1, 1, 9–36.

Fischer, S. 2005. A functional logic database library. In Proc. of the ACM SIGPLAN
2005 Workshop on Curry and Functional Logic Programming (WCFLP 2005). ACM
Press, 54–59.

Hanus, M. 1997. A unified computation model for functional and logic programming. In
Proc. of the 24th ACM Symposium on Principles of Programming Languages (Paris).
ACM Press, 80–93.

Hanus, M. 2001. High-level server side web scripting in Curry. In Proc. of the Third
International Symposium on Practical Aspects of Declarative Languages (PADL’01).
Springer LNCS 1990, 76–92.

Hanus, M. 2006. Type-oriented construction of web user interfaces. In Proceedings of the
8th ACM SIGPLAN International Conference on Principles and Practice of Declarative
Programming (PPDP’06). ACM Press, 27–38.

Hanus, M. 2007a. Multi-paradigm declarative languages. In Proceedings of the Interna-
tional Conference on Logic Programming (ICLP 2007). Springer LNCS 4670, 45–75.

Hanus, M. 2007b. Putting declarative programming into the web: Translating Curry
to JavaScript. In Proceedings of the 9th ACM SIGPLAN International Conference on
Principles and Practice of Declarative Programming (PPDP’07). ACM Press, 155–166.

Hanus (ed.), M. 2012. Curry: An integrated functional logic language (vers. 0.8.3).
Available at http://www.curry-language.org.

Huseby, S. 2003. Innocent Code: A Security Wake-Up Call for Web Programmers. Wiley.

Krasner, G. and Pope, S. 1988. A cookbook for using the model-view-controller user
interface in Smalltalk-80. Journal of Object-Oriented Programming 1, 3, 26–49.

Meijer, E. and van Velzen, D. 2000. Haskell server pages: Functional programming
and the battle for the middle tier. In Proc. ACM SIGPLAN Haskell Workshop. ACM
Press, Montreal.

Peyton Jones, S., Ed. 2003. Haskell 98 Language and Libraries—The Revised Report.
Cambridge University Press.

Plasmeijer, R. and Achten, P. 2006. iData for the world wide web - programming
interconnected web forms. In Proc. of the 8th International Symposium on Functional
and Logic Programming (FLOPS 2006). Springer LNCS 3945, 242–258.

Wadler, P. 1997. How to declare an imperative. ACM Computing Surveys 29, 3, 240–263.

Yuan, M., Orshalick, J., and Heute, T. 2009. Seam Framework: Experience the Evo-
lution of Java EE , 2nd ed. Prentice Hall.

