
Chapter 3

Logi Programming with

Type Spei�ations

by Mihael Hanus

1

In Types in Logi Programming (F. Pfenning, ed.), pp. 91{140,

MIT Press, 1992

In this hapter, we propose a framework for logi programming with di�erent type

systems. In this framework a typed logi program onsists of a type spei�ation

and a Horn lause program whih is well-typed with respet to the type spei-

�ation. The type spei�ation de�nes all types whih an be used in the logi

program. Relations between types are expressed by equations on the level of types.

This permits the spei�ation of many-sorted, order-sorted, polymorphi and poly-

morphially order-sorted type systems.

We present the delarative semantis of our framework and two proof proedures

(dedution and resolution) for typed logi programs. An interesting appliation is

a type system that ombines parametri polymorphism with order-sorted typing

and permits higher-order logi programming. Moreover, our framework sheds some

new light on the rôle of types in logi programming.

3.1 Overview and Examples

The absene of types in logi programming languages is a disadvantage for the de-

velopment of large software systems. It have been also argued that logi programs

often make impliit assumptions about types and a logi program only satis�es the

1

An extended abstrat of a previous version of this hapter has appeared in the Proeedings

of the Seond International Conferene on Algebrai and Logi Programming, Nany, Frane,

Otober 1990, Springer Leture Notes in Computer Siene 463, 1990.

1

2 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

intended meaning if type information is added to the program [Nai87℄. Therefore

muh researh has been arried out in order to integrate types into logi pro-

gramming languages. The proposed integrations an be lassi�ed into two groups:

inferene-based and delaration-based approahes.

The inferene-based approahes try to ompute a superset of the suess set of

the program. If this superset is empty (for some goal), then the goal annot sueed

whih is usually a hint for a type error in the program. Examples for inferene-

based approahes an be found in [Mis84℄ [Zob87℄ [XW88b℄ [BG89℄ (among others).

The omputation of the superset of the suess set is guided by term patterns

representing sets of terms. The term patterns are onsidered as types, i.e., types

are interpreted as sets of (ground) terms. The advantage of the inferene-based

approah is simpliity for the programmer sine he need not delare any types: The

type inferene system dedues type information from an untyped logi program.

This information an be used by the ompiler to perform optimizations in the target

program [GZ86℄.

But there are several problems with the inferene-based approah: First, the

semantis of types is only based on Herbrand interpretations, i.e., types are viewed

as sets of ground terms. But Herbrand models are not suÆient for haraterizing

the delarative semantis of a logi program (e.g., if a and b are the only ground

terms in a program and the program onsists of the fats p(a) and p(b), then 8X

p(X) is true in all Herbrand models but not a logial onsequene of the program

[Llo87℄). In order to give types a delarative semantis, types must have a meaning

in all interpretations and not only in Herbrand interpretations, similarly to fun-

tion and prediate symbols. Therefore Barbuti and Giaobazzi [BG89℄ use term

interpretations with variables as the semanti foundation of their type inferene

system.

The main problem of inferene-based approahes is that the inferene of types

from a ompletely untyped program yields only in a few ases the types expeted

by the programmer. For instane, assume list denotes the set of all terms of the

form [℄ or [E|L℄ where L is a term from list. Then the inferred type for the

prediate append de�ned by

append([℄,L,L)

append([E|R℄,L,[E|RL℄) append(R,L,RL)

may be \list� �� � [list� � � list" [XW88a℄, where � and � denote arbitrary

types. But the type expeted by the programmer is \list� list� list" sine append

should be only used to onatenate lists. The problem in this example is the �rst

lause whih de�nes append to be true not only for lists but also for other terms.

E.g., append([℄,2,2) is true but usually onsidered as an ill-typed goal. In order

to obtain the expeted type \list� list� list", append must be de�ned by

append([℄,[℄,[℄)

3.1. OVERVIEW AND EXAMPLES 3

append([℄,[E|R℄,[E|R℄) append([℄,R,R)

append([E|R℄,L,[E|RL℄) append(R,L,RL)

(the exat de�nition depends on the type inferene system).

Another problem of inferene-based approahes is the strong dependene from

the syntati form of the lauses: A type inferene system may dedue di�erent

types for two delaratively equivalent programs if the lauses are syntatially

di�erent. For instane, assume the type system allows polymorphi data strutures

[XW88b℄ and list(�) denotes the set of all terms of the form [℄ or [E|L℄ where E

and L are terms from � and list(�), respetively, and � is an arbitrary type. Then

the type inferred for the prediate member de�ned by

member(E,[E|L℄)

member(E,[F|L℄) member(E,L)

is \� � list(�)", i.e., member an be used on lists of arbitrary types. The literal

member(2,[1,2,3℄) is a logial onsequene of the lauses for member (we assume

that the natural numbers are always ontained in our programs). Hene we an

add this literal as a new fat and obtain the delaratively equivalent program

member(2,[1,2,3℄)

member(E,[E|L℄)

member(E,[F|L℄) member(E,L)

The type inferred by an ML-based inferene system [DM82℄ is \nat � list(nat)"

sine almost all polymorphi type systems for logi programming require that the

left-hand sides of all lauses for a prediate must have equivalent types [MO84℄

[DH88℄ [Smo89℄.

These examples show that in many ases the inferene of types from a om-

pletely untyped program does not yield suÆient results sine an untyped logi

program does not ontain the type information whih has the programmer in mind

(see also [Nai87℄). A type system should allow user delarations for types. These

delarations are not a burden on the programmer but douments the expeted

meaning of prediates and improves the readability of large programs. Another

advantage of extending logi programs by type delarations is the possibility to

give types a true delarative meaning, i.e., types an be interpreted as subsets of

the arrier sets in all interpretations. This will be done in our approah.

The important question whih has to be answered by a delaration-based type

system is: Whih kind of type strutures an be spei�ed? Several answers have

been given in the literature: The type system of Turbo-Prolog is omparable to

many-sorted Horn logi [Pad88℄ and many-sorted logi programs an be exeuted

with the same eÆieny as untyped logi programs, but this type system is too

restrited for a lot of appliations [Han87℄. A more exible type system motivated

from ML was proposed by Myroft and O'Keefe [MO84℄. It o�ers parametri poly-

4 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

morphism [DM82℄, needs no type-heking at run time and enables the writing of

ompat and reusable programs. The restritions of Myroft/O'Keefe's type sys-

tem have been dropped in [Han89a℄: The result is a type system whih allows the

appliation of higher-order programming tehniques. In general it is neessary to

onsider the types at run time, but it has been shown that for Prolog-like applia-

tions of higher-order programming all type information an be omitted at run time

[Han89b℄. This type system an also be applied to a language that ombines fun-

tional and logi programming [Han90℄. Another diretion for typing logi programs

are order-sorted type systems where di�erent types may be related by an inlusion

relation [SNGM89℄. Suh inlusion relations our in Prolog (for instane, the set

of all onstants is the union of the set of numbers and the set of atoms) and there-

fore a lot of inferene-based type systems o�er inlusion polymorphism ([Mis84℄

[Zob87℄ [XW88b℄ among others). In order-sorted logi programming [HV87℄ types

are present at run time, but the type information an be used to avoid unnees-

sary omputations and redue the searh spae [SS85℄ [HV87℄. Smolka [Smo89℄ has

proposed the ombination of parametri polymorphism and order-sorted typing for

a logi programming language. There are several restritions in his type system

so that higher-order programming tehniques annot be used. One partiular in-

stane of the framework proposed in this hapter is a type system that ombines

parametri polymorphism with order-sorted typing and allows the appliation of

higher-order logi programming tehniques.

Type systems with parametri polymorphism have been extensively studied in

the ontext of funtional programming languages [DM82℄ [CW85℄. Therefore sev-

eral proposals for polymorphi type systems for logi programming are based on

these ideas [MO84℄ [DH88℄ [Smo89℄. But we think that logi programming lan-

guages need other type systems than funtional programming languages beause:

1. The data ow is not �xed in logi programs sine there are no \input" and

\output" parameters in ontrast to funtional programs.

2. In funtional languages a unary funtion f is de�ned by an equation of the

form

f(A) = E

(multiple equations for di�erent argument patterns an be seen as syntati

sugar). There is no doubt about the type of f: The argument type is the most

general type of A and the result type is the most general type of E. But in

logi languages the semantis of a prediate is de�ned by several independent

lauses that should be satis�ed by any model for the prediate, i.e., a logi

program is a spei�ation of the prediate's properties. If a unary prediate

p is de�ned by n lauses whih haraterizes di�erent properties of p, i.e.,

3.1. OVERVIEW AND EXAMPLES 5

p(A

1

) � � �

� � �

p(A

n

) � � �

then the type of p is unlear if the arguments A

1

; : : : ; A

n

have di�erent types.

Sine the type system in [MO84℄ is inuened from the ML system, Myroft

and O'Keefe require the argument types in di�erent lause heads to be equiv-

alent (equal up to type variable renaming). But this restrition prevents a

useful logi programming tehnique: Optimization of the resolution proess

by lemma generation. In untyped logi programming it is possible to add a

new fat L to a program without hanging the program semantis if L is a

logial onsequene of the program. The new fat L an be used to obtain

shorter proofs for subsequent goals that inlude L. For instane, the literal

append([1,2℄,[3,4℄,[1,2,3,4℄) is a logial onsequene of the program

append([℄,L,L)

append([E|R℄,L,[E|RL℄) append(R,L,RL)

and therefore it may be added at the beginning of the program. If append

has type \list(�); list(�); list(�)", then the new fat is ill-typed w.r.t. My-

roft/O'Keefe's type system. From a delarative point of view there is no

reason to forbid suh speialized lauses. Therefore our language allows suh

lauses sine any instane of the delared prediate type is allowed in the

left-hand side of the lause.

Summarizing our disussion of various type systems for logi programming we think

that delaration-based type systems are adequate for logi programming beause

in these type systems the types of funtions and prediates are independent of the

syntati form of the lauses and it is possible to give types a pure delarative

meaning. Sine typing all variables, funtions and prediates in a logi program

an be tedious, it should be allowed to omit some of the type delarations in the

program, but suh a program is viewed as a short-hand for a fully typed program.

This point of view simpli�es the semantis of the language sine only well-typed

expressions must have a meaning (see [MH88℄ for a more detailed disussion in the

ontext of ML). In some ases a type inferene proedure an be used to insert the

omitted type delarations (the existene of suh inferene proedures depends on

the restritions of the type system). For instane, in ML [HMM86℄ the programmer

has to delare the argument and result types of data type onstrutors. The types

of all variables and funtions in an ML program are inferred by a type inferene

proedure [DM82℄.

A further requirement to a type system for logi programming is exibility: In

logi programming it is possible to de�ne one prediate whih an be applied to

6 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

arguments of di�erent types (e.g., append an be applied to lists where the elements

have an arbitrary type). Therefore a type system should support some sort of

polymorphism, i.e., a prediate may have several types. Furthermore, the type

system should also support logi programming tehniques like lemma generation

and the use of higher-order prediates.

This hapter proposes a framework for suh exible type systems. We present a

general mehanism for the spei�ation of type systems where partiular instanes

of this framework are order-sorted, polymorphi or polymorphially order-sorted

type systems. Our proposal generalizes previous approahes sine it allows the

appliation of typial logi programming tehniques, i.e., it is inuened but more

general than type systems for funtional languages. Sine all prediates, funtions,

variables and lauses are expliitly typed in our approah, the well-typedness of a

program is deidable. For pratial appliations it should be allowed to omit some

of the type delarations in the program whih should be automatially inserted

by a type inferene proedure. But suh proedures are only known for partiular

instanes of our general framework. The development of more powerful type infer-

ene proedures and neessary restritions to the programs is a topi for further

researh.

The general idea of our framework is to divide typed logi programs into two

parts: a spei�ation of the type struture and a well-typed logi program. Sine

the seond part depends on the �rst part, we may view it as a two-level approah.

In the ontext of algebrai spei�ations, Poign�e [Poi86℄ has proposed a two-level

approah for algebrai spei�ations with higher-types. Eah level onsists of an

equational spei�ation where the �rst-level desribes a type struture and the

seond level is an equational spei�ation with sort expressions from the �rst level.

While he has used the approah for the spei�ation of the typed �-alulus, we

will use a similar approah for our framework for typed logi programming. In our

two-level approah the �rst level onsists of a spei�ation of a type struture for

the logi program and ontains all types whih will be used inside the logi program

and some relations between types spei�ed by equational axioms. Hene the �rst

level is a many-sorted equational spei�ation [EM85℄ and we an use results from

this area for our purposes. The seond level is based on the spei�ed type struture

and onsists of a spei�ation of the types of all variables, onstants, funtions, and

prediates ourring in the logi program and a set of Horn lauses whih must be

well-typed with respet to the type spei�ation. The operational semantis, whih

is resolution with a uni�ation proedure on well-typed terms, ensures that type

errors do not our while exeuting well-typed programs. We give some examples

to show the basi ideas.

Example 3.1 Parametri polymorphism is used for de�ning universal data stru-

tures whih an be applied to di�erent onrete types. A lassial example are poly-

morphi lists whih an be applied to integers giving lists of integers, to Booleans

3.1. OVERVIEW AND EXAMPLES 7

giving lists of Booleans, et. The following signature spei�es a type struture for a

program whih uses the basi types of integers and Booleans and the polymorphi

types of lists and pairs of elements:

TYPEOPS int: ! type

bool: ! type

list: type ! type

pair: type; type ! type

This type struture has only a single sort type. Hene all types an be used as ar-

guments for the polymorphi type onstrutors list and pair. The set of all types

spei�ed by this signature is the set of all well-formed terms whih may ontain

some type variables. For instane, types w.r.t. the above spei�ation are

int bool list(int) list(�) pair(bool; �) pair(�; list(�)) � � �

where � and � are type variables. A typed logi program onsists of type de-

larations for variables, funtions and prediates (onstants are funtions without

arguments) and a set of well-typed Horn lauses. The following program de�nes

two polymorphi prediates on lists (throughout this hapter we use the Prolog

notation for lists [CM87℄):

fun [℄: ! list(�)

fun [..|..℄: �; list(�) ! list(�)

pred append: list(�); list(�); list(�)

pred member: �; list(�)

vars L, R, RL:list(�), E, E1:�

append([℄,L,L)

append([E|R℄,L,[E|RL℄) append(R,L,RL)

member(E,[E|R℄)

member(E,[E1|R℄) member(E,R)

The lauses for append and member are well-typed in our sense (f. Setion 3.2)

w.r.t. the type de�nitions.

We view subtyping as the possibility of applying a funtion or prediate to all

types whih are subtypes of the delared type of the funtion or prediate. Hene

we speify a type that has some subtypes as a funtion whih is the identity on the

subtypes. This will be illustrated by the next example.

8 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

Example 3.2 We want to speify a type struture with types nat, zero and posint

where zero and posint are subtypes of nat. Hene we speify nat as a funtion on

types whih is the identity on zero and posint:

TYPEOPS zero: ! type

posint: ! type

nat: type ! type

TYPEAXIOMS nat(zero) = zero

nat(posint) = posint

The type axioms state that nat is not a free type onstrutor like list but is the

identity on the subtypes of nat. It is possible to apply nat to other types than

zero and posint, but our logi programs whih are based on this spei�ation do

not ontain any ground terms of type nat(�) where � 62 fzero; posintg. Therefore

the type nat(�) desribes the union of zero and posint in the initial model of the

following program:

fun 0: ! zero

fun s: nat(�) ! posint

pred plus: nat(�); nat(�); nat()

vars N, N1:nat(�), N2:nat(�), N3:nat()

plus(0,N,N)

plus(s(N1),N2,s(N3)) plus(N1,N2,N3)

The lauses for plus are well-typed in our sense (f. Setion 3.2) w.r.t. the type

de�nitions (note that the type of the �rst argument of the lause head is \zero"

in the �rst and \posint" in the seond lause). Sine the argument types of plus

are de�ned to be arbitrary naturals, we an apply plus with an arbitrary subtype

of the naturals. It is possible to build nonsensial types like nat(bool) (if the basi

type bool is added to the type struture), but our program ontains no ground term

of this type and therefore suh a type denotes an empty set in the initial model

of this program. Moreover, our proof proedure (resolution with typed uni�ers, f.

Setion 3.6) ensures that suh types do not our in the omputation if they are

not present in the initial goal.

Sine order-sorted type strutures are polymorphi type spei�ations with

equational axioms whih desribe the subsort relationship, it is lear that there

is no problem in the ombination of polymorphi and order-sorted type strutures

in our framework. It is also possible to express subsort relationships between poly-

morphi types:

3.1. OVERVIEW AND EXAMPLES 9

Example 3.3 We want to spei�y a type struture for polymorphi lists so that

the polymorphi type list is the union of elist (empty lists) and nelist (non-empty

lists). Therefore we have to express the subtype relationships elist < list(�) and

nelist(�) < list(�). As in the previous example, we add an additional argument

to a type onstrutor having some subtypes and express the subtype relationship

by type equations:

TYPEOPS elist: ! type

nelist: type ! type

list: type; type ! type

TYPEAXIOMS list(�; elist) = elist

list(�; nelist(�)) = nelist(�)

The append-program is spei�ed w.r.t. this type struture as follows:

fun [℄: ! elist

fun [..|..℄: �; list(�; �) ! nelist(�)

pred append: list(�; �

1

); list(�; �

2

); list(�; �

3

)

vars R:list(�; �

1

), L:list(�; �

2

), RL:list(�; �

3

), E:�

append([℄,L,L)

append([E|R℄,L,[E|RL℄) append(R,L,RL)

The type variable � in all argument types of append expresses that append onate-

nates lists of the same element type, whereas the di�erent type variables �

1

; �

2

; �

3

show that an arbitrary subtype of an �-list (empty or non-empty list) an be used

in eah argument.

The example shows that logi programs with a polymorphially order-sorted

type struture are allowed in our framework. Moreover, in Setion 3.7 we will give

an example of a logi program with higher-order prediates whih is well-typed in

our framework.

Example 3.4 The type spei�ations in the previous examples are single-sorted

spei�ations with only one sort \type". Sine we also allow many-sorted spei�a-

tions, this feature an be used to restrit the quanti�ation of type variables. For

instane, the following type spei�ation may be part of a program for symboli

omputations:

TYPEOPS int: ! ring

polynom: ring ! alg type

10 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

Thus polynom is a type onstrutor where the argument is restrited to be a ring.

The type polynom(int) desribes the polynomials with integer oeÆients. The

type delaration for a generi prediate denoting the addition of two polynomials

is

pred poly add: polynom(�); polynom(�); polynom(�)

Beause of the partiular type struture, the type variable � is not quanti�ed over

all possible types but only over types of sort \ring", e.g., int is a valid instane of

�.

The example shows that the sort of a type an be used to express a property of

a type. It may be also desirable to use order-sorted equational spei�ations for the

type struture whih allows us to express dependenies between type properties,

e.g., \alg type < type" (an algebrai type is also a general type). Though this is a

useful feature for omputer algebra systems (as pointed out in [SLC88℄), we omit

it for the sake of simpliity. But we emphasize that the restrition to many-sorted

type spei�ations will not be used in the proofs of our results.

In the following we present our framework for typed logi programming in detail.

The main topis of this hapter are:

� We present a two-level approah to typed logi programming: The �rst level

is a spei�ation of the basi type struture, and the seond level ontains

a well-typed logi program whih is based on the spei�ed type struture.

The type struture is spei�ed by a many-sorted signature with equational

axioms. In ontrast to other approahes to polymorphi type systems for logi

programming, we do not restrit the use of types inside program lauses.

� Our approah to typed logi programming is delarative: In ontrast to many

other type systems for logi programming where types are viewed as sets of

ground terms (i.e., they are only valid in the initial model), we de�ne de�ne

the semantis of types in a model-theoreti way, i.e., types are subsets of the

arrier sets in all interpretations.

� We present sound and omplete dedution and resolution methods for typed

logi programs. For the soundness of the resolution method it is neessary

to de�ne the uni�ation proedure on well-typed terms whih is based on a

uni�ation proedure for the equational type theory. This sheds some new

light on the rôle of types in logi programming sine the omplexity of the

type struture diretly inuenes the omplexity of the uni�ation proedure.

A powerful type struture (e.g., polymorphi types ombined with subtypes)

implies a omplex uni�ation proedure.

� We show that higher-order programming tehniques an be applied in our

general framework. We give an example of a typed logi program with higher-

3.2. LOGIC PROGRAMS WITH TYPE SPECIFICATIONS 11

order prediates whih is ill-typed in the sense of other polymorphi type

systems for logi programming.

� The presented approah is a framework for the de�nition of di�erent type

strutures for logi programs. The type struture inuenes only the uni�-

ation proedure for the exeution of the program. Therefore di�erent type

strutures an be used for di�erent appliations where the spei�ation of

the type struture an be ompiled into a spei� uni�ation proedure. It is

not neessary to use a powerful order-sorted uni�ation proedure for simple

appliations like those possible in Turbo-Prolog.

This hapter is organized as follows. In the next setion the basi notions and

the syntax of typed logi programs are de�ned. Setion 3.3 de�nes the semantis

of typed logi programs whih is based on interpretations in algebrai strutures.

Setion 3.4 presents a dedution method for typed logi programs. Setion 3.5

presents a solution to the uni�ation problem of typed terms whih is based on a

given uni�ation proedure for the type theory. The uni�ation proedure on typed

terms will be used for the resolution method presented in Setion 3.6. Setion 3.7

onludes with an interesting appliation of our framework.

3.2 Logi Programs with Type Spei�ations

We use many-sorted equational logi for the spei�ation of type strutures. There-

fore we reall some basi notions from algebrai spei�ations [GTW78℄ [EM85℄.

A many-sorted signature � is a pair (S;O), where S is a set of sorts and O

is a family of operator sets of the form O = (O

w;s

jw 2 S

�

; s 2 S). We write

o: s

1

; : : : ; s

n

! s 2 O instead of o 2 O

(s

1

;:::;s

n

);s

. An operator of the form o:! s

is also alled a onstant of sort s. A signature � = (S;O) is interpreted by a

�-algebra A = (S

A

; O

A

) whih onsists of an S-sorted domain S

A

= (S

A;s

js 2 S)

and an operation o

A

:S

A;s

1

; : : : ; S

A;s

n

! S

A;s

2 O

A

for any o: s

1

; : : : ; s

n

! s 2 O.

A set of �-variables is an S-sorted setX = (X

s

js 2 S). The set of �-terms of sort

s with variables from X , denoted T

�;s

(X), is indutively de�ned by x 2 T

�;s

(X)

for all x 2 X

s

, 2 T

�;s

(X) for all :! s 2 O, and o(t

1

; : : : ; t

n

) 2 T

�;s

(X) for

all o: s

1

; : : : ; s

n

! s 2 O (n > 0) and all t

i

2 T

�;s

i

(X). Given a term t, var(t)

denotes the set of all variables ourring in t. We write T

�

(X) for all �-terms with

variables from X and T

�

for the set of ground terms T

�

(;). By T

�

(X) we also

denote the term algebra.

A �-equation is a pair of �-terms (t

1

; t

2

) of the same sort, usually written

t

1

= t

2

. An equational spei�ation is a triple Sp = (S;O;E) where � = (S;O)

is a signature and E is a set of �-equations. In the following we denote by Sp also

the signature (S;O) ontained in Sp, e.g., T

Sp

(X) is the set of (S;O)-terms with

variables from X .

12 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

A variable assignment is a mapping a:X ! S

A

with a(x) 2 S

A;s

for all

variables x 2 X

s

(more preisely, it is a family of mappings (a

s

:X

s

! S

A;s

js 2

S)). A �-homomorphism from a �-algebra A = (S

A

; O

A

) into a �-algebra

B = (S

B

; O

B

) is a mapping (family of mappings) h:S

A

! S

B

with the property

h

s

(o

A

(a

1

; : : : ; a

n

)) = o

B

(h

s

1

(a

1

); : : : ; h

s

n

(a

n

)) for all o: s

1

; : : : ; s

n

! s 2 O (n � 0)

and all a

i

2 S

A;s

i

. A �-ongruene on a �-algebra A = (S

A

; O

A

) is a family of

binary equivalene relations �

s

� S

A;s

� S

A;s

(s 2 S) so that o

A

(a

1

; : : : ; a

n

) �

s

o

A

(b

1

; : : : ; b

n

) for all o: s

1

; : : : ; s

n

! s 2 O (n > 0) and all a

i

; b

i

2 S

A;s

i

with

a

i

�

s

i

b

i

. The following lemma shows an important property of term algebras:

Lemma 3.5 (Free term algebra) Let � be a signature, A = (S

A

; O

A

) be a �-

algebra and a:X ! S

A

be an assignment for variables from X . There exists a

unique �-homomorphism a

�

:T

�

(X)! S

A

with a

�

(x) = a(x) for all x 2 X .

Let Sp = (S;O;E) be an equational spei�ation and A = (S

A

; O

A

) be an

(S;O)-algebra. An Sp-equation t

1

= t

2

is valid in A, denoted A j= t

1

= t

2

, if

a

�

(t

1

) = a

�

(t

2

) holds for all variable assignments a: var(t

1

)[var(t

2

)! S

A

. A is a

model for Sp if every equation from E is valid in A. We write

Sp j= t

1

= t

2

if t

1

= t

2

is valid in all models for Sp. We remark that an initial model for a

spei�ation Sp is T

Sp

= �

E

, the quotient of the ground term algebra T

Sp

by the

ongruene �

E

generated by the equations E.

Lemma 3.6 Let � be a signature, T

Sp

(X)= �

E

be the quotient of the term algebra

T

Sp

(X) by the ongruene �

E

generated by the equations E, A = (S

A

; O

A

) be a

�-algebra and a:X ! S

A

be an assignment for variables from X . There exists a

unique �-homomorphism a

�

:T

Sp

(X)= �

E

! S

A

with a

�

([x℄) = a(x) for all x 2 X

where [x℄ denotes the equivalene lass of x w.r.t. �

E

.

The de�nition of types is based on equational spei�ations: T = (Ts; Top; Tax)

is a spei�ation of types if T is an equational spei�ation. Constants from

T are alled basi types. By X we denote an in�nite set of type variables

(preisely, X = (X

s

js 2 Ts) is a family of in�nite sets of type variables, but

we identify the family of sets with one set sine we assume that the sets X

s

are

disjoint). A type expression or type is a term from T

T

(X).

A type substitution � is a T -homomorphism �:T

T

(X)! T

T

(X). TS(T ; X)

denotes the lass of all type substitutions. Two types �

1

; �

2

2 T

T

(X) are alled

T -equal, denoted �

1

=

T

�

2

, if T j= �

1

= �

2

.

A polymorphi signature � for logi programs is a triple (T ; Fun; Pred)

with:

� T is a spei�ation of types with T

T ;s

(;) 6= ; for all s 2 Ts.

3.2. LOGIC PROGRAMS WITH TYPE SPECIFICATIONS 13

� Fun is a set of funtion delarations of the form f :�

1

; : : : ; �

n

! � with

�

i

; � 2 T

T

(X), n � 0.

� Pred is a set of prediate delarations of the form p:�

1

; : : : ; �

n

with �

i

2

T

T

(X) (n � 0).

Sine we do not deal with the problem of type heking or type inferene in our

framework, we do not forbid overloading in ontrast to [Han89a℄ or [Smo89℄. The

type spei�ations together with the de�nitions of funtion and prediate types

in the examples of Setion 3.1 are polymorphi signatures. In the rest of this

hapter we assume that � = (T ; Fun; P red) is a polymorphi signature for logi

programs. Similarly to other typed logis, the variables in a typed logi program

are not quanti�ed over all objets, but vary only over objets of a partiular type.

Thus eah variable is annotated with a type expression: Let V ar be an in�nite set

of variable names that are distinguishable from symbols in polymorphi signatures

and type variables. Then the set V is alled a set of typed variables if

� eah element of V has the form x:� where x 2 V ar is a variable name and

� 2 T

T

(X) is a type, and

� x:�; x:�

0

2 V implies � = �

0

.

We only onsider sets of typed variables with unique types so that type errors an

be deteted at ompile time. For instane, if a variable in a lause ours in two

di�erent ontexts so that it has type \int" in one ontext and type \list(int)" in

the other ontext, this indiates a type error if all variables in a lause are required

to have unique types. In the rest of this hapter we assume that V; V

0

; V

0

; V

1

; : : :

denote sets of typed variables.

In Churh's formulation of the theory of types [Chu40℄ types are embedded in

terms, i.e., eah symbol in a term is annotated with an appropriate type expression.

These annotations are useful for the uni�ation of typed terms (see Setion 3.5).

We all L G a typed program lause if there is a set of typed variables V and

V jj=L G is derivable by the inferene rules in �gure 3.1. The typing rules show

that both parametri polymorphism and subtype polymorphism are overed by our

framework: If the delared type of a funtion or prediate ontains type variables,

then this funtion or prediate an be applied to any type whih is the result of

replaing the type variables by other types (parametri polymorphism). If the

type spei�ation ontains subtype relations as in example 3.2, then a funtion or

prediate with delared argument type nat(�) an also be applied to the subtypes

nat(zero) (=

T

zero) and nat(posint) (=

T

posint).

Note that we have no restritions on the use of types and type variables in the

left-hand side of program lauses in ontrast to [MO84℄ [DH88℄ [Smo89℄ and similar

14 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

Variable:

V jj= x:�

0

(x:� 2 V and � =

T

�

0

)

Constant:

V jj= :�

0

(:! �

2 Fun so that there is a

� 2 TS(T ; X) with �(�

) =

T

�

0

)

Composite

term:

V jj= t

1

:�

1

; : : : ; V jj= t

n

:�

n

V jj= f(t

1

:�

1

; : : : ; t

n

:�

n

):�

0

(f :�

f

2 Fun so that there exists

� 2 TS(T ; X) with

�(�

f

) = �

1

; : : : ; �

n

! �

and � =

T

�

0

, n > 0)

Atom:

V jj= t

1

:�

1

; : : : ; V jj= t

n

:�

n

V jj= p(t

1

:�

1

; : : : ; t

n

:�

n

)

(p:�

p

2 Pred so that there exists

� 2 TS(T ; X) with

�(�

p

) = �

1

; : : : ; �

n

, n � 0)

Goal:

V jj=L

1

; : : : ; V jj=L

n

V jj=L

1

; : : : ; L

n

(eah L

i

is an atom, i.e.,

has the form p(� � �), i = 1; : : : ; n)

Clause:

V jj=L; V jj=G

V jj=L G

(L is an atom and G is a goal)

Figure 3.1: Typing rules for program lauses

polymorphi type systems.

2

For instane, it is allowed to add the lause

member(2,[1,2,3℄)

to the program in example 3.1. By dropping this restrition it is also possible to

apply higher-order programming tehniques in our framework (f. Setion 3.7).

We all variables, onstants and omposite terms derivable by these inferene

rules (�;X;V)-terms or well-typed terms. Term

�

(X;V) denotes the set of

all (�; X; V)-terms. A ground term is a term from the set Term

�

(X; ;). Well-

typed or (�; X; V)-atoms, -goals and -lauses are similarly de�ned (a goal is a set

of atoms, but for onveniene we denote it without urly brakets). A �-term

(atom, goal, lause) is a (�; X; V)-term (atom, goal, lause) for some set of typed

variables V .

Lemma 3.7 If t:� is a well-typed term and � =

T

�

0

, then t:�

0

is also a well-typed

term.

In the following, if s is a syntati onstrution (type, term, atom, : : :), tvar(s)

2

In these type systems the left-hand side of a lause for a polymorphi prediate must have a

type whih is equivalent to the delared type of the prediate.

3.3. SEMANTICS OF TYPED LOGIC PROGRAMS 15

and var(s) will denote the set of type variables and typed variables that our in s,

respetively (i.e., var(s) is a set of typed variables so that s is a (�; X; var(s))-term,

atom, : : :). For instane, if

Tax = fs

1

(s

3

) = s

3

; s

2

(s

3

) = s

3

g

and s = f(X :s

1

(s

3

); X :s

2

(s

3

)):s

3

, then both fX :s

3

g and fX :s

1

(s

3

)g satisfy the

de�nition of var(s), but it is always the ase that these di�erent sets are T -equal

sets of typed variables. Therefore we an hoose one of these sets as var(s). Fur-

thermore, we de�ne uvar(s) := fx j 9� 2 T

T

(X): x:� 2 var(s)g as the set of

variable names that our in s.

A typed logi program or typed Horn lause program P = (�; C) onsists

of a polymorphi signature � and a set C of �-lauses. If it is lear from the

ontext, we will omit the type annotations in the lauses of example programs.

Therefore we have written the lauses of the examples in the �rst hapter without

type annotations but we have de�ned the types of the variables. For instane, the

lause

member(E,[E|R℄)

in example 3.1 denotes the fully typed lause

member(E:�,[E:�|R:list(�)℄:list(�))

and the lause

plus(0,N,N)

in example 3.2 denotes the fully typed lause

plus(0:nat(zero),N:nat(�),N:nat(�))

This lause is well-typed beause \nat(zero); nat(�); nat(�)" is an instane of the

delared type \nat(�); nat(�); nat()" of the prediate plus and 0:nat(zero) is

a well-typed term sine nat(zero) =

T

zero (where T is the type spei�ation of

example 3.2). The term

[1:nat | [℄:list(nat; elist) ℄:nelist(nat)

is a well-typed term w.r.t. example 3.3 (we assume that 1 is a onstant of type

nat) sine [℄ is a onstant of type elist and list(nat; elist) =

T

elist holds in the

spei�ed type struture.

3.3 Semantis of Typed Logi Programs

Typed logi programs are interpreted by algebrai strutures similar to the ones

introdued in [Poi86℄. An interpretation of a typed logi program onsists of an

16 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

algebra that satis�es the type spei�ation and a struture for the derived poly-

morphi signature. A struture is an interpretation of types (elements of sort type)

as sets, funtion symbols as operations on these sets and prediate symbols as re-

lations between these sets. Type variables vary over all types of the interpretation

and typed variables vary over appropriate arrier sets. The neessary notions are

de�ned in this setion.

If T = (Ts; Top; Tax) is a spei�ation of types, a T -algebra A = (Ts

A

; T op

A

)

whih satis�es all equations from Tax is also alled T -type algebra. The signa-

ture �(A) = (Ts

A

; Fun

A

; P red

A

) derived from � and A is de�ned by

Fun

A

:= ff :�(�

f

) j f :�

f

2 Fun; �:X ! Ts

A

is a type variable assignmentg

Pred

A

:= fp:�(�

p

) j p:�

p

2 Pred; �:X ! Ts

A

is a type variable assignmentg

An interpretation of a polymorphi signature � (or �-interpretation) is a T -

type algebra A = (Ts

A

; T op

A

) together with a �(A)-struture (S; Æ) whih onsists

of a Ts

A

-sorted set S = (S

�

j� 2 Ts

A

) (the arrier of the interpretation) and a

denotation Æ with:

1. If f :�

1

; : : : ; �

n

! � 2 Fun

A

, then Æ

f :�

1

;:::;�

n

!�

: S

�

1

� � � � � S

�

n

! S

�

is a

funtion.

2. If p:�

1

; : : : ; �

n

2 Pred

A

, then Æ

p:�

1

;:::;�

n

� S

�

1

� � � � � S

�

n

is a relation.

Hene (polymorphi) funtions and prediates are interpreted as families of fun-

tions and prediates on the given types. In order to ompare di�erent inter-

pretations, we de�ne homomorphisms between them. At �rst, we de�ne �(A)-

homomorphisms to ompare di�erent �(A)-strutures: Let A = (Ts

A

; T op

A

) be a

T -type algebra and (S; Æ), (S

0

; Æ

0

) be �(A)-strutures. A �(A)-homomorphism

h from (S; Æ) into (S

0

; Æ

0

) is a family of funtions (h

�

j� 2 Ts

A

) with:

1. h

�

:S

�

! S

0

�

2. If f :�

f

2 Fun

A

with �

f

= �

1

; : : : ; �

n

! � (n � 0) and a

i

2 S

�

i

(i =

1; : : : ; n), then:

h

�

(Æ

f :�

f

(a

1

; : : : ; a

n

)) = Æ

0

f :�

f

(h

�

1

(a

1

); : : : ; h

�

n

(a

n

))

3. If p:�

p

2 Pred

A

with �

p

= �

1

; : : : ; �

n

(n � 0) and (a

1

; : : : ; a

n

) 2 Æ

p:�

p

, then:

(h

�

1

(a

1

); : : : ; h

�

n

(a

n

)) 2 Æ

0

p:�

p

If it is lear from the ontext we omit the indies � in the funtions h

�

. Note that

the omposition of two �(A)-homomorphisms is again a �(A)-homomorphism. The

lass of all �(A)-strutures together with the �(A)-homomorphisms is a ategory

[EM85℄. We denote this ategory by Cat

�(A)

.

If A and A

0

are T -type algebras, then every T -homomorphism �:A ! A

0

indues a signature morphism �: �(A) ! �(A

0

) and a forgetful funtor

3.3. SEMANTICS OF TYPED LOGIC PROGRAMS 17

U

�

:Cat

�(A

0

)

! Cat

�(A)

from the ategory of �(A

0

)-strutures into the at-

egory of �(A)-strutures (see [EM85℄ for details). Therefore we de�ne a �-

homomorphism from a �-interpretation (A;S; Æ) into another �-interpretation

(A

0

; S

0

; Æ

0

) as a pair (�; h), where �:A! A

0

is a T -homomorphism and h: (S; Æ)!

U

�

((S

0

; Æ

0

)) is a �(A)-homomorphism. The lass of all �-interpretations with the

omposition

(�

0

; h

0

) Æ (�; h) := (�

0

Æ �; U

�

(h

0

) Æ h)

of two �-homomorphisms is a ategory. Thus we all a �-interpretation (A;S; Æ)

initial in a lass of �-interpretations C i� for all �-interpretations (A

0

; S

0

; Æ

0

) 2 C

there exists a unique �-homomorphism from (A;S; Æ) into (A

0

; S

0

; Æ

0

).

A homomorphism in our typed framework onsists of a mapping between type

algebras and a mapping between appropriate strutures. Consequently, a vari-

able assignment in the typed framework maps type variables into types and typed

variables into objets of appropriate types: If I = ((Ts

A

; T op

A

); S; Æ) is a �-

interpretation, then a variable assignment for (X;V) in I is a pair of mappings

v = (v

X

; v

V

) where v

X

:X ! Ts

A

is a type variable assignment and v

V

:V ! S

0

with (S

0

; Æ

0

) := U

v

X

((S; Æ)) and v

V

(x:�) 2 S

0

�

(= S

v

X

(�)

) for all x:� 2 V .

In many-sorted logi, a anonial interpretation for a signature is the term

interpretation where the arrier sets onsist of well-typed terms. In a term inter-

pretation every variable assignment an be uniquely extended to a homomorphism.

In our typed framework the situation is more ompliated beause a variable may

orrespond to syntatially di�erent terms. For instane, if s

1

= s

2

2 Tax, then

the variable x:s

1

2 V orresponds to the (�; X; V)-terms x:s

1

and x:s

2

. In order

to identify suh syntatially di�erent terms, we de�ne anonial terms as terms

where the type annotations are replaed by equivalene lasses of types. For this

purpose we de�ne a mapping C whih replaes all type annotations in a typed

term by equivalene lasses of types ([� ℄ denotes the equivalene lass of the type

� de�ned by [� ℄ = f�

0

j � =

T

�

0

g):

� C(x:�

0

) := x:[� ℄ for all x:� 2 V and �

0

=

T

�

� C(f(t

1

:�

1

; : : : ; t

n

:�

n

):�) := f(C(t

1

:�

1

); : : : ; C(t

n

:�

n

)):[� ℄ for all

f(t

1

:�

1

; : : : ; t

n

:�

n

):� 2 Term

�

(X;V) (n � 0)

CTerm

�

(X;V) := fC(t:�) j t:� 2 Term

�

(X;V)g is the set of anonial terms.

Now we are able to de�ne the anonial term interpretation T

�

(X;V) over

X and V :

T

�

(X;V) := (T

Tax

(X); S; Æ), where

1. T

Tax

(X) := T

T

(X)= �

Tax

is the quotient of the algebra of type expressions

by the ongruene relation �

Tax

generated by the axioms in the type spe-

i�ation T = (Ts; Top; Tax) (the elements of the domain of T

Tax

(X) are

equivalene lasses of types).

18 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

2. For all [� ℄ 2 T

Tax

(X),

S

[� ℄

:= ft:[� ℄ j t:[� ℄ 2 CTerm

�

(X;V)g

3. If f :[�

1

℄; : : : ; [�

n

℄! [� ℄ 2 Fun

T

Tax

(X)

and t

i

:[�

i

℄ 2 S

[�

i

℄

for i = 1; : : : ; n, then

Æ

f :[�

1

℄;:::;[�

n

℄![� ℄

(t

1

:[�

1

℄; : : : ; t

n

:[�

n

℄) := f(t

1

:[�

1

℄; : : : ; t

n

:[�

n

℄):[� ℄

4. Æ

p:[�

1

℄;:::;[�

n

℄

:= ; for all p:[�

1

℄; : : : ; [�

n

℄ 2 Pred

T

Tax

(X)

.

The mappings Æ

f :[�

1

℄;:::;[�

n

℄![� ℄

in the de�nition are well-de�ned by lemma 3.7. Sim-

ilarly to the notion of \term algebra" in the �eld of algebrai spei�ation [EM85℄, a

term interpretation T

�

(X;V) does not interpret the prediates but supplies a stan-

dard struture with objets built from funtions and typed variables. Therefore

the denotation of prediates are empty sets.

Now we are able to show that any variable assignment an be uniquely extended

to a homomorphism:

Lemma 3.8 (Free term struture) Let (A;S; Æ) be a �-interpretation and v =

(v

X

; v

V

) be an assignment for (X;V) in (A;S; Æ). There exists a unique �-

homomorphism (�; h) from T

�

(X;V) into (A;S; Æ) with �([�℄) = v

X

(�) for all

� 2 X and h(x:[� ℄) = v

V

(x:�) for all x:� 2 V .

Proof: By lemma 3.6, v

X

an be uniquely extended to a T -homomorphism

�:T

Tax

(X) ! A with the property �([�℄) = v

X

(�) for all � 2 X . We de�ne a

�(T

Tax

(X))-homomorphism h from T

�

(X;V) into U

�

((S; Æ)):

1. h(x:[� ℄) := v

V

(x:�) for all x:� 2 V .

2. h(:[� ℄) := Æ

:!�([� ℄)

2 S

�([� ℄)

for all :! � 2 Fun

T

T

(X)

.

3.

h(f(t

1

:[�

1

℄; : : : ; t

n

:[�

n

℄):[� ℄) := Æ

f :�([�

1

℄);:::;�([�

n

℄)!�([� ℄)

(h(t

1

:[�

1

℄); : : : ; h(t

n

:[�

n

℄))

for all f :�

1

; : : : ; �

n

! � 2 Fun

T

T

(X)

and all t

i

:[�

i

℄ 2 CTerm

�

(X;V).

Clearly h is a �(T

Tax

(X))-homomorphism. Hene (�; h) is a �-homomorphism.

To proof uniqueness of this homomorphism, we assume another �-homomorphism

(�

0

; h

0

) from T

�

(X;V) into (A;S; Æ) with �

0

([�℄) = v

X

(�) for all � 2 X and

h

0

(x:[� ℄) = v

V

(x:�) for all x:� 2 V . � = �

0

by lemma 3.6. We show h = h

0

by indution on the term struture:

1. x:� 2 V : h

0

(x:[� ℄) = v

V

(x:�) = h(x:[� ℄).

2. :! � 2 Fun

T

T

(X)

: h

0

(:[� ℄) = Æ

:!�

0

([� ℄)

= Æ

:!�([� ℄)

= h(:[� ℄).

3.3. SEMANTICS OF TYPED LOGIC PROGRAMS 19

3. f(t

1

:[�

1

℄; : : : ; t

n

:[�

n

℄):[� ℄) 2 CTerm

�

(X;V), n > 0:

h

0

(f(t

1

:[�

1

℄; : : : ; t

n

:[�

n

℄):[� ℄)

= Æ

f :�

0

([�

1

℄);:::;�

0

([�

n

℄)!�

0

([� ℄)

(h

0

(t

1

:[�

1

℄); : : : ; h

0

(t

n

:[�

n

℄))

= Æ

f :�([�

1

℄);:::;�([�

n

℄)!�([� ℄)

(h(t

1

:[�

1

℄); : : : ; h(t

n

:[�

n

℄))

= h(f(t

1

:[�

1

℄; : : : ; t

n

:[�

n

℄):[� ℄)

This lemma is only valid if T

�

(X;V) and the T -algebra A satis�es all equations

from Tax. If this is not the ase, there exist several di�erent �-homomorphisms

whih extend the variable assignment. For instane, if s

1

= s

2

2 Tax and A has

di�erent interpretations of the sorts s

1

and s

2

, then the terms x:s

1

and x:s

2

may be

mapped into di�erent values by di�erent homomorphisms, provided that x:s

1

2 V .

As a speial ase (X = V = ;) the lemma shows that every ground term

without type variables orresponds to a unique value in a given �-interpretation.

Generally, any variable assignment v an be extended to a �-homomorphism in a

unique way. In the following we denote that �-homomorphism again by v. Sine

v

X

and v

V

are only applied to equivalene lasses of type expressions and anonial

terms, respetively, we omit the indies X and V and write v for both v

X

and v

V

.

We are not interested in all interpretations of a polymorphi signature but only

in those interpretations that satisfy the lauses of a given typed logi program. In

order to formalize that we de�ne the validity of atoms, goals and lauses relative

to a given �-interpretation I = (A;S; Æ):

� Let v be an assignment for (X;V) in I .

I; v j= L if L = p(t

1

:�

1

; : : : ; t

n

:�

n

) is a (�; X; V)-atom with

(v(C(t

1

:�

1

)); : : : ; v(C(t

n

:�

n

))) 2 Æ

0

p:[�

1

℄;:::;[�

n

℄

where U

v

((S; Æ)) = (S

0

; Æ

0

), i.e., Æ

0

p:[�

1

℄;:::;[�

n

℄

= Æ

p:v([�

1

℄);:::;v([�

n

℄)

.

I; v j= G if G is a (�; X; V)-goal with I; v j= L for all L 2 G

I; v j= L G if L G is a (�; X; V)-lause where I; v j= G implies

I; v j= L

� I; V j= F if F is a (�; X; V)-atom, -goal or -lause with I; v j= F for all

variable assignments v for (X;V) in I

We say \L is valid in I" if I is a �-interpretation with I; var(L) j= L (analogously

for goals and lauses). A �-interpretation I = (A;S; Æ) is alled model for a typed

20 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

logi program (�; C) if I; var(L G) j= L G for all lauses L G 2 C. A

(�; X; V)-goal G is alled valid in (�; C) relative to V if I; V j= G for every model

I of (�; C). We shall write: (�;C; V) j= G.

This notion of validity is the extension of validity in untyped Horn lause logi

to the typed ase: In untyped Horn lause logi an atom, goal or lause is said to

be true i� it is true for all variable assignments. In the typed ase an atom, goal or

lause is said to be true i� it is true for all assignments of type variables and typed

variables. The reason for the de�nition of validity relative to a set of variables

is that arrier sets in our interpretations may be empty in ontrast to untyped

Horn logi. This is also the ase in many-sorted logi [GM84℄. Validity relative

to variables is di�erent from validity in the sense of untyped logi. An example

for suh a di�erene an be found in [Han89a℄, p. 231. Validity in our sense is

equivalent to validity in the sense of untyped logi if the types of the variables

denote non-empty sets in all interpretations. But a requirement for non-empty

arrier sets is not reasonable in the ontext of polymorphi types.

Example 3.9 The following interpretation is a model for the program of ex-

ample 3.2. The type spei�ation is interpreted by the T -type algebra A =

(Ts

A

; T op

A

) where Ts

A

= fnat; zero; posintg and Top

A

ontains the funtions

zero

A

with zero

A

() = zero, posint

A

with posint

A

() = posint, and nat

A

with

nat

A

(�) = � for all � 2 Ts

A

. The arrier sets of the interpretation are:

S

zero

= f0g

S

posint

= fn 2 Nat j n > 0g

S

nat

= S

zero

[S

posint

The onstant 0 and the funtion s are interpreted as follows:

Æ

0:!zero

= 0

Æ

s:zero!posint

(0) = 1

Æ

s:posint!posint

(n) = n+ 1 for all n 2 S

posint

Æ

s:nat!posint

(n) = n+ 1 for all n 2 S

nat

Æ

plus:nat;nat;nat

= f(n

1

; n

2

; n

3

) 2 Nat

3

j n

1

+ n

2

= n

3

g

: : :

The remaining interpretations of plus are the restrition of Æ

plus:nat;nat;nat

to ap-

propriate subsets. It is easy to show that this interpretation is a model.

3.4 Dedution and Initial Models

In order to de�ne the semantis of typed logi programs we have used anonial

terms whih are annotated with equivalene lasses of types. Sine these equiv-

alene lasses are sets whih may ontain an in�nite number of elements, this

3.4. DEDUCTION AND INITIAL MODELS 21

representation is unsuitable for proof proedures like dedution or resolution. Suh

proof proedures should work on well-typed terms whih an be easily handled.

Therefore we have to de�ne substitutions on well-typed terms and introdue a

relation on well-typed terms that establishes the link to anonial terms.

3.4.1 Typed substitutions

Let �:X ! T

T

(X) be a mapping from type variables into type expressions and

val:V ! Term

�

(X;V

0

) be a mapping from typed variables into well-typed terms

over X and V

0

with the following properties:

� � is a type variable assignment.

� val(x:�) = t:�(�) for all x:� 2 V , i.e., typed variables of sort � are mapped

into well-typed terms of type �(�).

We extend the mappings � and val to mappings on types and well-typed terms,

respetively, in the following way:

� �(b) = b for all basi types b in T .

� �(h(�

1

; : : : ; �

n

)) = h(�(�

1

); : : : ; �(�

n

)) for all n-ary operation symbols h in T

(n > 0) and all appropriate types �

1

; : : : ; �

n

2 T

T

(X).

� val(x:�

0

) = t:�(�

0

) for all x:� 2 V with val(x:�) = t:�(�) and �

0

=

T

� .

� val(:�) = :�(�) for all well-typed onstants :� 2 Term

�

(X;V).

� val(f(t

1

:�

1

; : : : ; t

n

:�

n

):�) = f(val(t

1

:�

1

); : : : ; val(t

n

:�

n

)):�(�) for all well-

typed terms

f(t

1

:�

1

; : : : ; t

n

:�

n

):� 2 Term

�

(X;V), n > 0.

The mappings are similarly extended on atoms, goals and lauses. We all (�; val) a

typed substitution. Sub

�

(X;V; V

0

) denotes the lass of all typed substitutions

from (T

T

(X); T erm

�

(X;V)) into (T

T

(X); T erm

�

(X;V

0

)). id

X;V

2 Sub

�

(X;V; V)

denotes the identity in Sub

�

(X;V; V). tdom(�) := f� 2 X j �(�) 6= �g is the

type domain of a typed substitution �. A typed substitution keeps the set of

type variables X but may hange the set of typed variables beause the types of

the variables inuene validity (see Setion 3.3). Sometimes we represent typed

substitutions by sets. For instane, the set

� = f�=nat; x:�=0:natg

represents a typed substitution that replaes the type variable � by the type nat

and the typed variable x:� by the term 0:nat. Hene the result of applying � to

the atom p(x:�; y:�) is the atom p(0:nat; y:nat).

The next lemma shows that val is well-de�ned:

22 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

Lemma 3.10 Let (�; val) de�ned as above. Then val(t:�) = t

0

:�(�) 2

Term

�

(X;V

0

) for all well-typed terms t:� 2 Term

�

(X;V).

Proof: By indution on the struture of all well-typed terms from Term

�

(X;V):

� x:�

0

where x:� 2 V , �

0

=

T

� and val(x:�) = t:�(�): By de�nition, val(x:�

0

) =

t:�(�

0

). t:�(�) 2 Term

�

(X;V

0

) is a well-typed term and �(�) =

T

�(�

0

). By

lemma 3.7, t:�(�

0

) is also a well-typed term.

� :� where : ! �

2 Fun and there exists a type substitution � with

�(�

) =

T

� : � Æ � is a type substitution with �(�(�

)) =

T

�(�). Hene

val(:�) = :�(�) is a well-typed term.

� f(t

1

:�

1

; : : : ; t

n

:�

n

):� where f :�

f

2 Fun and there exists a type substitution

� with �(�

f

) = �

1

; : : : ; �

n

! �

0

and �

0

=

T

� . � Æ � is a type substitu-

tion with �(�(�

f

)) = �(�

1

); : : : ; �(�

n

) ! �(�

0

) and �(�

0

) =

T

�(�). Hene

val(f(t

1

:�

1

; : : : ; t

n

:�

n

):�) = f(val(t

1

:�

1

); : : : ; val(t

n

:�

n

)):�(�) is a well-typed

term sine val(t

i

:�

i

) = t

0

i

:�(�

i

) is well-typed for i = 1; : : : ; n by indution

hypothesis.

The following lemma states the relationship between typed substitutions and

�-homomorphisms on anonial term interpretations:

Lemma 3.11 Let (�; val) 2 Sub

�

(X;V; V

0

) be a typed substitution. Then there

exists a unique �-homomorphism � from T

�

(X;V) into T

�

(X;V

0

) with

� �([�℄) = [�(�)℄ for all � 2 X

� �(x:[� ℄) = C(val(x:�)) for all x:� 2 V

Furthermore,

�([� ℄) = [�(�)℄ for all � 2 T

T

(X) (1)

and

�(C(t:�)) = C(val(t:�)) for all t:� 2 Term

�

(X;V) (2)

Proof: Let �

X

:X ! T

Tax

(X) be de�ned by �

X

(�) := [�(�)℄ for all � 2 X .

By lemma 3.6, there exists a unique T -homomorphism �:T

Tax

(X) ! T

Tax

(X)

with �([�℄) = �

X

(�) for all � 2 X . If �

X

also denotes the unique extension

�

X

:T

T

(X) ! T

Tax

(X) (whih exists by lemma 3.5), then � has the property

�

X

= � Æ nat where nat is the anonial T -homomorphism nat(�) = [� ℄ for all

� 2 T

T

(X) (f. [EM85℄, p. 82). We show (1) by indution on the size of � :

� �([�℄) = �

X

(�) = [�(�)℄ for all � 2 X .

3.4. DEDUCTION AND INITIAL MODELS 23

� �([b℄) = �

X

(b) = [b℄ = [�(b)℄ for all basi types b in T .

� For all n-ary operation symbols h in T and all appropriate types �

1

; : : : ; �

n

2

T

T

(X):

�([h(�

1

; : : : ; �

n

)℄)

= �

X

(h(�

1

; : : : ; �

n

))

= h

0

(�

X

(�

1

); : : : ; �

X

(�

n

)) (h

0

is the interpretation of h in T

Tax

(X))

= h

0

(�([�

1

℄); : : : ; �([�

n

℄))

= h

0

([�(�

1

)℄; : : : ; [�(�

n

)℄) (by indution hypothesis)

= [h(�(�

1

); : : : ; �(�

n

))℄ (by de�nition of h

0

)

= [�(h(�

1

; : : : ; �

n

))℄

Let �

V

:V ! CTerm

�

(X;V

0

) be de�ned by �

V

(x:�) := C(val(x:�)) for x:� 2

V . val(x:�) is a well-typed term of type �(�), hene C(val(x:�)) has the form

t:[�(�)℄ = t:�([� ℄) = t:�

X

(�). Therefore (�

X

; �

V

) is a variable assignment for

(X;V) in T

�

(X;V

0

) whih an be uniquely extended to a �-homomorphism �

from T

�

(X;V) into T

�

(X;V

0

) by lemma 3.8. We prove (2) by indution on the

size of terms:

� For all x:� 2 V with val(x:�) = t:�(�) and �

0

=

T

� : �(C(x:�

0

)) = �(x:[�

0

℄) =

�(x:[� ℄) = �

V

(x:�) = C(val(x:�)) = C(t:�(�)) = C(t:�(�

0

)) = C(val(x:�

0

)).

� �(C(:�)) = �(:[� ℄) = :�([� ℄) = :[�(�)℄ = C(:�(�)) = C(val(:�)) for all

onstants :� 2 Term

�

(X;V).

� For all terms f(t

1

:�

1

; : : : ; t

n

:�

n

):� 2 Term

�

(X;V), n > 0:

�(C(f(t

1

:�

1

; : : : ; t

n

:�

n

):�)) = �(f(C(t

1

:�

1

); : : : ; C(t

n

:�

n

)):[� ℄)

= f(�(C(t

1

:�

1

)); : : : ; �(C(t

n

:�

n

))):�([� ℄)

= f(C(val(t

1

:�

1

)); : : : ; C(val(t

n

:�

n

))):[�(�)℄

= C(f(val(t

1

:�

1

); : : : ; val(t

n

:�

n

)):�(�))

= C(val(f(t

1

:�

1

; : : : ; t

n

:�

n

):�))

Uniqueness an be simply shown by indution on the size of terms.

The above lemma shows that typed substitutions whih are diretly applied to

well-typed terms orrespond to �-homomorphisms between anonial term inter-

pretations in a unique way. Hene �̂ denotes the �-homomorphism from T

�

(X;V)

into T

�

(X;V

0

) orresponding to the typed substitution � 2 Sub

�

(X;V; V

0

). The

following lemma shows a relationship between variable assignments and typed sub-

stitutions w.r.t. validity:

24 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

Lemma 3.12 Let I be a �-interpretation, G be a (�; X; V)-goal, � 2

Sub

�

(X;V; V

0

) and v be a variable assignment for (X;V

0

) in I . Then I; v j= �(G)

i� I; v Æ �̂ j= G.

Proof: Let G, �, v = (v

X

; v

V

) and I = (A;S; Æ) be given. The omposition

v

0

:= v Æ �̂ between �-homomorphisms is de�ned by v

0

= (v

0

X

; v

0

V

) with v

0

X

([�℄) =

v

X

(�̂([�℄)) for all � 2 X and

v

0

V;[� ℄

(x:[� ℄) = (U

�̂

(v

V

) Æ �̂)

[� ℄

(x:[� ℄) = v

V;�̂([� ℄)

(�̂(x:[� ℄))

for all x:� 2 V . Thus v

0

is a variable assignment for (X;V) in I . Let p(: : : t

i

:�

i

: : :) 2

G. Then

I; v j= � (p(: : : t

i

:�

i

: : :))

() I; v j= p(: : : �(t

i

:�

i

) : : :)

() (: : : v

V

(C(�(t

i

:�

i

))) : : :) 2 Æ

p::::v

X

(�̂([�

i

℄)):::

() (: : : v

V

(�̂(C(t

i

:�

i

))) : : :) 2 Æ

p::::v

X

(�̂([�

i

℄)):::

(by lemma 3.11)

() (: : : v

0

V

(C(t

i

:�

i

)) : : :) 2 Æ

p::::v

0

X

([�

i

℄):::

() I; v

0

j= p(: : : t

i

:�

i

: : :)

This proves the lemma.

A term t

0

2 Term

�

(X;V

0

) is alled an instane of a term t 2 Term

�

(X;V)

if a typed substitution � 2 Sub

�

(X;V; V

0

) exists with t

0

= �(t). The de�nition

of instanes an be extended to atoms, goals and lauses. We omit the simple

de�nitions here. The next lemma shows the relationship between the validity of a

lause and the validity of all its instanes:

Lemma 3.13 Let I = (A;S; Æ) be a �-interpretation and L G be a (�; X; V)-

lause. Then:

I; V j= L G () I; V

0

j= �(L) �(G) for all � 2 Sub

�

(X;V; V

0

)

Proof: The diretion \(=" is trivial if we use the identity id

X;V

for the typed

substitution �. Let I; V j= L G and � 2 Sub

�

(X;V; V

0

) be a typed substitution.

We have to show I; V

0

j= �(L) �(G). Let v be a variable assignment for (X;V

0

)

in I with I; v j= �(G) (if there exists no suh variable assignment, I; V

0

j= �(L)

�(G) is trivially true). Lemma 3.12 yields I; v Æ �̂ j= G. This implies I; v Æ �̂ j= L

sine I; V j= L G. Again by lemma 3.12, it follows I; v j= �(L).

Along with a set of �-lauses C we de�ne the set of instantiated lauses

b

C as

follows:

b

C := fL G j L G is an instane of a lause from Cg

3.4. DEDUCTION AND INITIAL MODELS 25

The set

b

C ontains all lauses whih are obtained from lauses in C by substituting

type expressions for type variables and well-typed terms for typed variables.

Corollary 3.14 A �-interpretation is a model for (�; C) i� it is a model for (�;

b

C).

Proof: The theorem follows by de�nition of

b

C and lemma 3.13.

3.4.2 Equality w.r.t. the type struture

Our proof proedures (dedution, resolution) manipulate only well-typed terms

and use typed substitutions. For that purpose we de�ne an important relation

on well-typed terms: Two �-terms t and t

0

are alled T -equal, denoted t =

T

t

0

,

if C(t) = C(t

0

). T -equality on atoms is analogously de�ned. Two �nite sets of

typed variables V

1

and V

2

are alled T -equal if V

1

= fx

1

:�

1

; : : : ; x

m

:�

m

g, V

2

=

fx

1

:�

0

1

; : : : ; x

m

:�

0

m

g and �

i

=

T

�

0

i

for i = 1; : : : ;m.

Example 3.15 If the type spei�ation of example 3.2 is given, then the following

pairs of well-typed terms are T -equal:

0:nat(zero) =

T

0:zero

N:posint =

T

N:nat(posint)

The proof of the following two lemmas is straightforward:

Lemma 3.16 If two �-terms t and t

0

are T -equal, then var(t) and var(t

0

) are

T -equal sets of typed variables.

Lemma 3.17 If two �-terms t and t

0

are T -equal, then all instanes �(t) and �(t

0

)

are T -equal.

The next lemma shows that T -equal atoms have the same meaning in all inter-

pretations:

Lemma 3.18 Let � be a polymorphi signature, V be a set of typed variables,

and L

1

and L

2

be two T -equal (�; X; V)-atoms. If I is a �-interpretation and v is

a variable assignment for V in I , then:

I; v j= L

1

() I; v j= L

2

26 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

Proof: Let I = (A;S; Æ) be a �-interpretation and v be a variable assign-

ment for V in I . Let L

1

and L

2

be two T -equal (�; X; V)-atoms. Hene

L

1

= p(t

1

:�

1

; : : : ; t

k

:�

k

), L

2

= p(t

0

1

:�

0

1

; : : : ; t

0

k

:�

0

k

), and t

i

:�

i

=

T

t

0

i

:�

0

i

for i = 1; : : : ; k.

By de�nition of T -equality, v(C(t

i

:�

i

)) = v(C(t

0

i

:�

0

i

)) for i = 1; : : : ; k. I; v j= L

1

is

equivalent to

(v(C(t

1

:�

1

)); : : : ; v(C(t

k

:�

k

))) 2 Æ

p:v([�

1

℄);:::;v([�

k

℄)

Sine [�

i

℄ = [�

0

i

℄ for i = 1; : : : ; k, we obtain

(v(C(t

0

1

:�

0

1

)); : : : ; v(C(t

0

k

:�

0

k

))) 2 Æ

p:v([�

0

1

℄);:::;v([�

0

k

℄)

whih is equivalent to I; v j= L

2

. The other diretion is symmetri.

3.4.3 The typed Horn lause alulus

This setion presents an inferene system for proving validity in typed logi pro-

grams. In ontrast to the untyped Horn lause alulus it is neessary to ollet all

variables used in a derivation of the inferene system sine validity depends on the

types of variables. Let (�; C) be a typed logi program. We assume that equal-

ity between types (relation =

T

) is deidable. The typed Horn lause alulus

ontains the following inferene rules (remember that goals are �nite sets of atoms

and therefore we use set notations for the modi�ation of goals):

1. Axioms: If V is a set of typed variables and L G 2 C is a (�; X; V)-lause,

then (�; C; V) ` L G.

2. Substitution rule: If (�; C; V) ` L G and � 2 Sub

�

(X;V; V

0

),

then (�; C; V

0

) ` �(L) �(G).

3. Cut rule: If (�; C; V) ` L G

0

[fL

0

g, (�; C; V) ` L

1

 G

1

, and L

0

=

T

L

1

,

then (�; C; V) ` L G

0

[G

1

.

We write (�;C; V) ` L if (�; C; V) ` L ; an be dedued by these inferene

rules.

The soundness of the typed Horn lause alulus an be shown by proving the

soundness of eah inferene rule:

Theorem 3.19 (Soundness of dedution) Let (�; C) be a typed logi pro-

gram, V be a set of typed variables and L be a (�; X; V)-atom. If (�; C; V) ` L,

then (�; C; V) j= L.

Proof: Let M be a model for (�; C). By indution on the length of a dedution we

show that M;V

i

j= L

i

 G

i

for eah element (�; C; V

i

) ` L

i

 G

i

in a dedution

for L ;.

3.4. DEDUCTION AND INITIAL MODELS 27

1. Axioms: If L

i

 G

i

2 C, then M; var(L

i

 G

i

) j= L

i

 G

i

. Let v

be a variable assignment for (X;V

i

) in M (if there exists no suh variable

assignment, then M;V

i

j= L

i

 G

i

is trivially true). Let v

0

be the restrition

of v to (X; var(L

i

 G

i

)). Then M; v

0

j= L

i

 G

i

is true and therefore

M; v j= L

i

 G

i

is also true.

2. Substitution rule: Let � 2 Sub

�

(X;V

i

; V

0

i

) be a typed substitution, �̂ be

the orresponding �-homomorphism (f. lemma 3.11) and v

0

be a variable

assignment for (X;V

0

i

) in M (if there exists no suh variable assignment,

then M;V

0

i

j= �(L

i

) �(G

i

) is trivially true). v := v

0

Æ �̂ is a variable

assignment for (X;V

i

) in M . By indution hypothesis, M; v j= L

i

 G

i

.

Suppose now that M; v

0

j= �(G

i

). Lemma 3.12 yields M; v j= G

i

. This

implies M; v j= L

i

and, again by lemma 3.12, M; v

0

j= �(L

i

). Therefore,

M; v

0

j= �(L

i

) �(G

i

).

3. Cut rule: Let (�; C; V

i

) ` L

i

 G

i

[fL

0

i

g and (�; C; V

j

) ` L

j

 G

j

be

elements of the dedution with V

i

= V

j

and L

0

i

=

T

L

j

. Let v be a variable

assignment for (X;V

i

) in M with M; v j= G

i

[G

j

(if there exists no suh

variable assignment, then M;V

i

j= L

i

 G

i

[G

j

is trivially true). By

indution hypothesis, M; v j= L

i

 G

i

[fL

0

i

g and M; v j= L

j

 G

j

. Sine

M; v j= G

j

, we obtain M; v j= L

j

whih is equivalent to M; v j= L

0

i

by

lemma 3.18. On the other hand, M; v j= G

i

. Hene M; v j= G

i

[fL

0

i

g and

M; v j= L

i

. Therefore, M; v j= L

i

 G

i

[G

j

, as required.

The ompleteness of dedution is proved by the onstrution of a partiular

model that is the extension of a free term interpretation to an interpretation with

partiular prediate denotations.

Let V be a set of typed variables. The dedutive term interpretation

T

�;C

(X;V) of the typed logi program (�; C) is the triple (T

Tax

(X); S; Æ) with:

1. T

Tax

(X) := T

T

(X)= �

Tax

, the quotient of the algebra of type expressions by

the ongruene relation �

Tax

generated by the axioms in the type spei�a-

tion T = (Ts; Top; Tax).

2. For all [� ℄ 2 T

Tax

(X),

S

[� ℄

:= ft:[� ℄ j t:[� ℄ 2 CTerm

�

(X;V)g

3. If f :[�

1

℄; : : : ; [�

n

℄! [� ℄ 2 Fun

T

Tax

(X)

and t

i

:[�

i

℄ 2 S

[�

i

℄

for i = 1; : : : ; n, then

Æ

f :[�

1

℄;:::;[�

n

℄![� ℄

(t

1

:[�

1

℄; : : : ; t

n

:[�

n

℄) := f(t

1

:[�

1

℄; : : : ; t

n

:[�

n

℄):[� ℄

28 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

4. If p:[�

1

℄; : : : ; [�

n

℄ 2 Pred

T

Tax

(X)

, then

Æ

p:[�

1

℄;:::;[�

n

℄

:= f(t

1

:[�

1

℄; : : : ; t

n

:[�

n

℄) j (�; C; V) ` p(t

0

1

:�

0

1

; : : : ; t

0

n

:�

0

n

) and

t

i

:[�

i

℄ = C(t

0

i

:�

0

i

)g

The di�erene between T

�

(X;V) and T

�;C

(X;V) is the denotation of prediate

symbols.

The ompleteness proof of the typed Horn lause alulus is based on the fat

that T

�;C

(X;V) is a model for (�; C). Therefore we need the following lemma:

Lemma 3.20 Let (�; C) be a typed logi program and V be a set of typed vari-

ables. T

�;C

(X;V) is a model for (�; C).

Proof: It is lear by the above de�nition that T

�;C

(X;V) = (T

Tax

(X); S; Æ) is a �-

interpretation. We have to prove that all lauses from C are valid in T

�;C

(X;V).

Let L G be a lause from C and v be a variable assignment for (X;V

) in

T

�;C

(X;V) with T

�;C

(X;V); v j= G, where V

:= var(L G). v(�) 2 T

Tax

(X)

for all � 2 X and v(x:�) 2 S

v(�)

for all x:� 2 V

, i.e., eah variable from X and V

is mapped into an equivalene lass of types and a anonial term, respetively. We

hoose from eah equivalene lass v(�) a representative �

�

with v(�) = [�

�

℄ and

for eah anonial term v(x:�) a well-typed term t

x

:�

x

with v(x:�) = C(t

x

:�

x

). We

de�ne a typed substitution by v

0

(�) = �

�

for all � 2 X and v

0

(x:�) = t

x

:v

0

(�) for

all x:� 2 V

(t

x

:v

0

(�) is a well-typed term by lemma 3.7 sine [�

x

℄ = v(�) = [v

0

(�)℄).

Lemma 3.11 yields v([� ℄) = [v

0

(�)℄ for all � 2 T

T

(X) and v(C(t:�)) = C(v

0

(t:�))

for all t:� 2 Term

�

(X;V

). If G = L

1

; : : : ; L

k

, then T

�;C

(X;V); v j= L

i

, for

i = 1; : : : ; k. If L

i

= p

i

(t

i1

:�

i1

; : : : ; t

in

i

:�

in

i

), we obtain

(v(C(t

i1

:�

i1

)); : : : ; v(C(t

in

i

:�

in

i

))) 2 Æ

p

i

:v([�

i1

℄);:::;v([�

in

i

℄)

and, by lemma 3.11,

(C(v

0

(t

i1

:�

i1

)); : : : ; C(v

0

(t

in

i

:�

in

i

))) 2 Æ

p

i

:[v

0

(�

i1

)℄;:::;[v

0

(�

in

i

)℄

By de�nition of T

�;C

(X;V), there exists a (�; X; V)-atom L

0

i

with

(�; C; V) ` L

0

i

and L

0

i

=

T

p

i

(v

0

(t

i1

:�

i1

); : : : ; v

0

(t

in

i

:�

in

i

))

On the other hand, (�; C; V

) ` L G is true, and therefore (�; C; V) ` v

0

(L)

v

0

(G) by the substitution rule. By the ut rule, we an infer (�; C; V) ` v

0

(L) .

If L = p(t

1

:�

1

; : : : ; t

n

:�

n

), then

(�; C; V) ` p(v

0

(t

1

:�

1

); : : : ; v

0

(t

n

:�

n

))

By de�nition of T

�;C

(X;V),

(C(v

0

(t

1

:�

1

)); : : : ; C(v

0

(t

n

:�

n

))) 2 Æ

p:[v

0

(�

1

)℄;:::;[v

0

(�

n

)℄

3.4. DEDUCTION AND INITIAL MODELS 29

Lemma 3.11 yields

(v(C(t

1

:�

1

)); : : : ; v(C(t

n

:�

n

))) 2 Æ

p:v([�

1

℄);:::;v([�

n

℄)

whih implies T

�;C

(X;V); v j= L.

Now we are prepared to state the ompleteness of the typed Horn lause alu-

lus:

Theorem 3.21 (Completeness of dedution) Let (�; C) be a typed logi pro-

gram, V be a set of typed variables and L be a (�; X; V)-atom with (�; C; V) j= L.

Then there exists a (�; X; V)-atom L

0

with L =

T

L

0

and (�; C; V) ` L

0

.

Proof: Let (�; C; V) j= L and L = p(t

1

:�

1

; : : : ; t

n

:�

n

). By the last lemma,

T

�;C

(X;V) = (T

Tax

(X); S; Æ) is a model for (�; C). This implies T

�;C

(X;V); V j=

L. In partiular we have T

�;C

(X;V); id j= L (where id(�) = [�℄ for all � 2 X and

id(x:�) = x:[� ℄ for all x:� 2 V) whih implies

(C(t

1

:�

1

); : : : ; C(t

n

:�

n

)) 2 Æ

p:[�

1

℄;:::;[�

n

℄

By de�nition of T

�;C

(X;V), there exist t

0

i

:�

0

i

(i = 1; : : : ; n) with (�; C; V) ` L

0

where L

0

= p(t

0

1

:�

0

1

; : : : ; t

0

n

:�

0

n

) and C(t

i

:�

i

) = C(t

0

i

:�

0

i

) for i = 1; : : : ; n. Thus L =

T

L

0

, as required.

The typed Horn lause alulus is only omplete up to T -equality sine T -equal

atoms are only ompared in the ut rule. For instane, if

p(0:zero)

is the only lause for prediate p:� and zero =

T

nat(zero), then (�; C; ;) j=

p(0:nat(zero)) (by lemma 3.18), but (�; C; ;) ` p(0:nat(zero)) is not provable

in the typed Horn lause alulus.

3.4.4 Initial model

This setion shows the existene of an initial model for any typed logi program.

The arrier set of this initial model ontains all anonial terms without type

variables and typed variables. This result is a onsequene of the previous setion

on the typed Horn lause alulus.

Theorem 3.22 (Initial model) Let (�; C) be a typed logi program. Then

T

�;C

:= T

�;C

(;; ;) is initial in the lass of all models for (�; C).

30 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

Proof: Let T

�;C

= (T

Tax

; S

I

; Æ

I

). By lemma 3.20, this is a model for (�; C). Let

I = (A;S; Æ) be another model for (�; C) and T

�

(;; ;) be the term interpretation

with ground terms. By lemma 3.8 (free term struture), there exists a unique

�-homomorphism (�; h) from T

�

(;; ;) into I . In order to show that (�; h) is a

�-homomorphism from T

�;C

into I , we have to prove the following impliation

(t

1

:[�

1

℄; : : : ; t

n

:[�

n

℄) 2 Æ

I;p:[�

1

℄;:::;[�

n

℄

=) (h(t

1

:[�

1

℄); : : : ; h(t

n

:[�

n

℄)) 2 Æ

p:�([�

1

℄);:::;�([�

n

℄)

beause the only di�erene between T

�

(;; ;) and T

�;C

is the denotation of prediate

symbols.

Let p:[�

1

℄; : : : ; [�

n

℄ 2 Pred

T

Tax

and (t

1

:[�

1

℄; : : : ; t

n

:[�

n

℄) 2 Æ

I;p:[�

1

℄;:::;[�

n

℄

. By

de�nition of T

�;C

, there exist t

0

i

:�

0

i

with C(t

0

i

:�

0

i

) = t

i

:[�

i

℄ (i = 1; : : : ; n) and

(�; C; ;) ` p(t

0

1

:�

0

1

; : : : ; t

0

n

:�

0

n

)

Theorem 3.19 implies (�; C; ;) j= p(t

0

1

:�

0

1

; : : : ; t

0

n

:�

0

n

).

=) I; ; j= p(t

0

1

:�

0

1

; : : : ; t

0

n

:�

0

n

)

=) I; (�; h) j= p(t

0

1

:�

0

1

; : : : ; t

0

n

:�

0

n

)

=) (h(C(t

0

1

:�

0

1

)); : : : ; h(C(t

0

n

:�

0

n

))) 2 Æ

p:�([�

0

1

℄);:::;�([�

0

n

℄)

=) (h(t

1

:[�

1

℄); : : : ; h(t

n

:[�

n

℄)) 2 Æ

p:�([�

1

℄);:::;�([�

n

℄)

Therefore (�; h) is a �-homomorphism from T

�;C

into I whih implies the initiality

of T

�;C

.

3.5 Uni�ation

In logi programming we are interested in a systemati method for proving validity

of goals. The typed Horn lause alulus is very ineÆient for this purpose. In

untyped Horn lause logi the resolution priniple [Rob65℄ is the basi proof method

where a most general uni�er of two atoms must be omputed in eah resolution step.

We need a similar operation for the resolution method in our typed framework.

As in order-sorted logi, the uni�ation problem is not unitary in our general

framework and therefore omplete sets of uni�ers must be onsidered. This setion

de�nes the uni�ation w.r.t. a type spei�ation T and presents a non-deterministi

algorithm for omputing omplete sets of uni�ers.

Example 3.23 Consider example 3.2. The �rst lause for plus

plus(0:nat(zero),N:nat(�),N:nat(�))

annot be applied to prove the goal

plus(N1:nat(posint),N2:nat(�),N3:nat())

3.5. UNIFICATION 31

sine this would ause the binding of variable N1 to 0 whih yields the ill-typed

term 0:nat(posint). In order to avoid suh bindings, the uni�ation proedure has

to take into aount that N1 and 0 have the non-uni�able types nat(posint) and

nat(zero). On the other hand, if the lause

p(N:nat(zero)) � � �

is applied to prove the goal

p(N1:nat(�))

then the variable N1 is onstrained to type nat(zero) whih may avoid some un-

neessary searh and baktraking steps in the subsequent proof. Therefore the

uni�ation proedure has to onsider the types of the terms. An untyped uni�a-

tion annot be applied in our framework.

We have mentioned in Setion 3.4 that our proof proedures should manipu-

late well-typed terms rather than anonial terms. Therefore we have introdued

typed substitutions whih are mappings on type expressions and well-typed terms

and diretly related to �-homomorphisms between anonial term interpretations.

Hene we want to de�ne a uni�er w.r.t. a type spei�ation T as a distint typed

substitution. Sine the omposition of two typed substitutions is again a typed

substitution, we an de�ne the following notions (we assume that V; V

1

; V

2

are sets

of typed variables):

� Let �; �

0

2 Sub

�

(X;V; V

1

) be typed substitutions. We write � =

T

�

0

i�

�(�) =

T

�

0

(�) for all � 2 X and �(x:�) =

T

�

0

(x:�) for all x:� 2 V .

� Let � 2 Sub

�

(X;V; V

1

) and �

0

2 Sub

�

(X;V; V

2

) be typed substitutions. � is

more general than �

0

w.r.t. T or �

0

is a T -instane of �, denoted � �

T

�

0

,

i� there exists � 2 Sub

�

(X;V

1

; V

2

) with � Æ � =

T

�

0

.

� Let t and t

0

be (�; X; V)-terms. t and t

0

are T -uni�able if there exists a

typed substitution � 2 Sub

�

(X;V; V

0

) with �(t) =

T

�(t

0

) for a set of typed

variables V

0

. In this ase � is alled a T -uni�er for t and t

0

. By SU

T

(t; t

0

)

we denote the set of all T -uni�ers for t and t

0

.

� Let t and t

0

be (�; X; V)-terms. We all a set of typed substitutions

CSU

T

(t; t

0

) a omplete set of T -uni�ers for t and t

0

if the following

onditions hold:

{ CSU

T

(t; t

0

) � SU

T

(t; t

0

)

{ For all �

0

2 SU

T

(t; t

0

) there exists a typed substitution � 2 CSU

T

(t; t

0

)

with � �

T

�

0

.

32 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

(T) (�; ht

1

:�

1

= t

2

:�

2

; E

r

i)

unif

=) (� Æ �; h�(t

1

:�

1

) = �(t

2

:�

2

); �(E

r

)i)

if � 2 CSU

T

(�

1

; �

2

) and not �

1

=

T

�

2

(E1) (�; hx:� = t:�

0

; E

r

i)

unif

=) (�

0

Æ �; �

0

(E

r

))

if � =

T

�

0

, x 2 V ar, x does not our in t:�

0

and �

0

= fx:�=t:�g

(E2) (�; ht:�

0

= x:�; E

r

i)

unif

=) (�

0

Æ �; �

0

(E

r

))

if � =

T

�

0

, x 2 V ar, x does not our in t:�

0

and �

0

= fx:�=t:�g

(D) (�; hf(t

1

; : : : ; t

n

):� = f(t

0

1

; : : : ; t

0

n

):�

0

; E

r

i)

unif

=) (�; ht

1

= t

0

1

; : : : ; t

n

=

t

0

n

; E

r

i)

if � =

T

�

0

(n � 0)

Figure 3.2: Rules for T -uni�ation of well-typed terms. In the �rst rule (T) the

type substitution � is extended to a typed substitution by �(x:�) := x:�(�) for

all x:� 2 V

0

if � 2 Sub

�

(X;V; V

0

).

T -uni�ers and omplete sets of T -uni�ers for type expressions are analogously

de�ned as partiular (sets of) type substitutions.

Obviously, the set of all T -uni�ers is also a omplete set of T -uni�ers, but

usually we are interested in algorithms whih enumerate a omplete set of T -uni�ers

with some minimality ondition. We do not disuss this in detail here. We assume

a given algorithm that enumerates a omplete set of T -uni�ers for two arbitrary

type expressions and onstrut an algorithm whih enumerates a omplete set of

T -uni�ers for two arbitrary well-typed terms. We formulate the algorithm as a

non-deterministi proedure for omputing a T -uni�er for a given list of pairs of

well-typed terms.

For that purpose we de�ne a binary relation

unif

=) on pairs of the form (�;E)

where � is a typed substitution and E is a list of appropriate equations, i.e.,

if � 2 Sub

�

(X;V; V

0

) then E is a list of pairs of (�; X; V

0

)-terms. We write

ht = t

0

; E

r

i for an equation list where the pair (t; t

0

) is the �rst equation and E

r

is the list of the remaining equations. The relation

unif

=) is de�ned by the rules

in �gure 3.2. In the �rst rule (T) the result types of the left-hand side and the

right-hand side of the �rst equation are uni�ed by a T -uni�er, i.e., the result types

are T -equal after an appliation of this rule. T -equality of these result types is

a preondition for the appliability of the other rules. The rules (E1) and (E2)

eliminate an equation ontaining a variable in one side. The typed substitution

�

0

in these elimination rules is well-de�ned sine t:� is well-typed by � =

T

�

0

and

3.5. UNIFICATION 33

lemma 3.7. The rule (D) deomposes an equation if the left-hand side and the

right-hand side are ompound terms with the same main funtor and arity.

Let

unif

=)

+

be the transitive losure of

unif

=). The result of unifying the (�; X; V)-

terms t and t

0

is the set

Unif(t; t

0

) := f � j (id

X;V

; ht = t

0

i)

unif

=)

+

(�; hi) g

where hi denotes the empty list of equations.

Note that

unif

=)

+

is an extension of Robinson's uni�ation algorithm [Rob65℄

[BC83℄: If one term is a variable whih does not our in the other term, then this

variable is bound to the other term. If two omposite terms have to be uni�ed, then

all orresponding omponents of the terms are uni�ed. The only (but essential)

di�erene is that the types of two terms are T -uni�ed before the terms will be

uni�ed.

We will show that Unif(t; t

0

) is a omplete set of T -uni�ers for t and t

0

. First

we show that there are no in�nite hains in the omputation of Unif(t; t

0

):

Lemma 3.24 Let t and t

0

be (�; X; V)-terms. Then any sequene

(id

X;V

; ht = t

0

i)

unif

=) (�

1

; E

1

)

unif

=) (�

2

; E

2

)

unif

=) � � �

terminates.

Proof: We de�ne the omplexity kt:�k of a term t:� by

� kx:�

0

k := 1 for all variables x:� 2 V

� kf(t

1

:�

1

; : : : ; t

n

:�

n

):�k := kt

1

:�

1

k + � � � + kt

n

:�

n

k + 1 for all terms

f(t

1

:�

1

; : : : ; t

n

:�

n

):� 2 Term

�

(X;V) (n � 0)

and the type di�erene tdi�(t:�; t

0

:�

0

) of two terms by

tdi�(t:�; t

0

:�

0

) :=

n

0 if � =

T

�

0

1 otherwise

The omplexity of a list of equations E = ht

1

= t

0

1

; : : : ; t

k

= t

0

k

i is de�ned to be the

triple

kEk :=

�

�

�

�

�

k

[

i=1

uvar(t

i

) [uvar(t

0

i

)

�

�

�

�

�

;

k

X

i=1

kt

i

k+ kt

0

i

k;

k

X

i=1

tdi�(t

i

; t

0

i

)

!

where j � � � j denotes the ardinality of a set. The lexiographi ordering on tuples

of natural numbers is a noetherian ordering, i.e., there is no in�nite sequene

34 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

he

1

; e

2

; e

3

; : : :i with e

i

> e

i+1

. By de�nition of the relation

unif

=) it is lear that

kEk > kE

0

k if (�;E)

unif

=) (�

0

; E

0

) sine the �rst rule derements only the third

omponent of the omplexity, the rules (E1) and (E2) eliminate a variable whih

redues the �rst omponent of the omplexity, and the last rule dereases the seond

omponent of the omplexity. Therefore any

unif

=)-sequene terminates.

In the proofs of the following lemmas we use the notion of T -uni�ers on lists of

equations: If ht

1

= t

0

1

; : : : ; t

k

= t

0

k

i is a list of equations, then a T -uni�er for this

list is a typed substitution that T -uni�es eah pair t

i

= t

0

i

(i = 1; : : : ; k). The next

lemma shows the soundness of the T -uni�ation proedure:

Lemma 3.25 Let t and t

0

be (�; X; V)-terms and � 2 Unif(t; t

0

). Then � 2

SU

T

(t; t

0

), i.e., � is a T -uni�er for t and t

0

.

Proof: Sine � 2 Unif(t; t

0

), there is a sequene

(�

0

; E

0

)

unif

=) (�

1

; E

1

)

unif

=) � � �

unif

=) (�

k

; hi)

where �

0

= id

X;V

and E

0

= ht = t

0

i. We show by indution on the elements of the

sequene: For eah 0 � i � k there exists a typed substitution �

i

with �

k

= �

i

Æ�

i

and �

i

2 SU

T

(E

i

).

For i = k we hoose �

k

= id

X;V

0

(where �

k

2 Sub

�

(X;V; V

0

)). For the indu-

tion step we assume the existene of a typed substitution �

i

with �

k

= �

i

Æ �

i

and

�

i

2 SU

T

(E

i

). Sine (�

i�1

; E

i�1

)

unif

=) (�

i

; E

i

), there are four possible ases:

1. Rule (T) has been applied in this step. Then E

i�1

= ht

1

:�

1

= t

2

:�

2

; E

r

i and

� 2 CSU

T

(�

1

; �

2

) with �

i

= � Æ �

i�1

and E

i

= h�(t

1

:�

1

) = �(t

2

:�

2

); �(E

r

)i.

Hene �

k

= �

i

Æ�

i

= �

i

Æ�Æ�

i�1

= �

i�1

Æ�

i�1

with �

i�1

:= �

i

Æ�. Moreover,

if l = r ours in E

i�1

, then �(l) = �(r) ours in E

i

and �

i

is a T -uni�er

for �(l) and �(r) whih implies �

i�1

2 SU

T

(E

i�1

).

2. Rule (E1) has been applied in this step. Then E

i�1

= hx:� = t:�

0

; E

r

i with

� =

T

�

0

, x 2 V ar, x 62 uvar(t:�

0

), �

i

= �

0

Æ �

i�1

and E

i

= �

0

(E

r

) where

�

0

= fx:�=t:�g. Hene �

k

= �

i

Æ �

i

= �

i

Æ �

0

Æ �

i�1

= �

i�1

Æ �

i�1

with

�

i�1

:= �

i

Æ �

0

. Moreover,

�

i�1

(x:�) = �

i

Æ �

0

(x:�)

= �

i

(t:�)

=

T

�

i

(t:�

0

) (sine � =

T

�

0

)

= �

i

Æ �

0

(t:�

0

) (sine x 62 uvar(t:�

0

))

= �

i�1

(t:�

0

)

3.5. UNIFICATION 35

If E

r

ontains an equation l = r, then �

0

(l) = �

0

(r) ours in E

i

and �

i

is a T -uni�er for �

0

(l) and �

0

(r), i.e., �

i�1

is a T -uni�er for l and r. Thus

�

i�1

2 SU

T

(E

i�1

).

3. The appliation of rule (E2) is symmetri to the previous ase.

4. Rule (D) has been applied in this step. Then E

i�1

= hf(t

1

; : : : ; t

n

):� =

f(t

0

1

; : : : ; t

0

n

):�

0

; E

r

i with � =

T

�

0

, �

i

= �

i�1

and E

i

= ht

1

= t

0

1

; : : : ; t

n

=

t

0

n

; E

r

i. Hene �

k

= �

i

Æ �

i

= �

i

Æ �

i�1

. Moreover,

�

i

(f(t

1

; : : : ; t

n

):�)

= f(�

i

(t

1

); : : : ; �

i

(t

n

)):�

i

(�)

=

T

f(�

i

(t

1

); : : : ; �

i

(t

n

)):�

i

(�

0

) (sine � =

T

�

0

)

=

T

f(�

i

(t

0

1

); : : : ; �

i

(t

0

n

)):�

i

(�

0

) (�

i

2 SU

T

(E

i

) by ind. hypothesis)

= �

i

(f(t

0

1

; : : : ; t

0

n

):�

0

)

If E

r

ontains an equation l = r, then l = r ours also in E

i

, i.e., �

i

is a

T -uni�er for l and r. Thus �

i

2 SU

T

(E

i�1

).

We obtain for i = 0: �

k

= �

0

Æ �

0

= �

0

and �

k

2 SU

T

(t; t

0

).

The next lemma shows the ompleteness of the T -uni�ation proedure:

Lemma 3.26 Let t and t

0

be (�; X; V)-terms and � 2 SU

T

(t; t

0

). Then there exists

a typed substitution � 2 Unif(t; t

0

) suh that � =

T

� Æ � for a typed substitution

�.

Proof: First we prove the following proposition:

Let � 2 Sub

�

(X;V; V

0

) be a typed substitution, E be a non-empty list

of (�; X; V

0

)-equations, � 2 SU

T

(E). Then there exists a pair (�

0

; E

0

)

with (�;E)

unif

=) (�

0

; E

0

) and �Æ� =

T

�

0

Æ�

0

for some typed substitution

�

0

2 SU

T

(E

0

).

To prove this proposition we assume a T -uni�er � for the non-empty list of equa-

tions E. We distinguish the following ases:

1. E = ht

1

:�

1

= t

2

:�

2

; E

r

i and not �

1

=

T

�

2

. Sine � 2 SU

T

(t

1

:�

1

; t

2

:�

2

), the

restrition of � on T

T

(X) is also a T -uni�er for �

1

and �

2

. Hene there exists

a type substitution � 2 CSU

T

(�

1

; �

2

) with �j

T

T

(X)

=

T

 Æ � for some type

substitution . It is straightforward to extend � and to typed substitutions

suh that � =

T

 Æ�. Thus there is the following uni�ation step by rule (T):

(�;E)

unif

=) (� Æ �; �(E))

36 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

and � Æ� =

T

 Æ� Æ�. To see that 2 SU

T

(�(E)) assume an equation l = r

from E. Then

 (�(l)) =

T

�(l) =

T

�(r) =

T

 (�(l))

sine � is a T -uni�er for E.

2. E = ht

1

:�

1

= t

2

:�

2

; E

r

i and �

1

=

T

�

2

. Then there are the following ases:

(a) t

1

2 V ar: Sine � is a T -uni�er for t

1

:�

1

and t

2

:�

2

, t

1

62 uvar(t

2

:�

2

) and

thus there is the following uni�ation step:

(�;E)

unif

=) (�

0

Æ �; �

0

(E

r

))

where �

0

is the typed substitution ft

1

:�

1

=t

2

:�

1

g. It is easy to show that

�Æ�

0

=

T

� and therefore �Æ� =

T

�Æ�

0

Æ�. To see that � 2 SU

T

(�

0

(E

r

))

assume an equation l = r from E

r

. Then

�(�

0

(l)) =

T

�(l) =

T

�(r) =

T

�(�

0

(l))

sine � is a T -uni�er for E.

(b) t

2

2 V ar: This is symmetri to the previous ase.

() t

1

:�

1

= f(r

1

; : : : ; r

n

):�

1

and t

2

:�

2

is not a typed variable: Sine � is a

T -uni�er for t

1

:�

1

and t

2

:�

2

, it must be t

2

:�

2

= f(r

0

1

; : : : ; r

0

n

):�

2

. Then

there is the following uni�ation step:

(�;E)

unif

=) (�; hr

1

= r

0

1

; : : : ; r

n

= r

0

n

; E

r

i)

� is a T -uni�er for all equations r

i

= r

0

i

and for E

r

sine � is a T -uni�er

for E.

Hene the proposition is true. Let � be a T -uni�er for the (�; X; V)-terms t and

t

0

. By the above proposition, there is a sequene

(id

X;V

; ht = t

0

i)

unif

=) (�

1

; E

1

)

unif

=) (�

2

; E

2

)

unif

=) � � �

with � =

T

� Æ id

X;V

=

T

�

1

Æ �

1

=

T

�

2

Æ �

2

=

T

� � � for some typed substitutions

�

1

; �

2

; : : : Sine all

unif

=)-sequenes are �nite (lemma 3.24), there must be a last

element (�

k

; hi) in the sequene. Thus �

k

2 Unif(t; t

0

) and � =

T

�

k

Æ �

k

.

Theorem 3.27 (T -uni�ation) Let t and t

0

be (�; X; V)-terms. Then

Unif(t; t

0

) is a omplete set of T -uni�ers.

3.5. UNIFICATION 37

Proof: Unif(t; t

0

) � SU

T

(t; t

0

) follows from lemma 3.25 and ompleteness follows

from lemma 3.26.

Example 3.28 Consider the polymorphi signature of example 3.2. The

terms 0:zero and N:nat(�) should be uni�ed by our uni�ation proedure.

First, the types of terms zero and nat(�) are T -uni�ed and the result is

the T -uni�er f�=zerog. Then N is bound to 0 and the result is the T -

uni�er f�=zero; N:nat(�)=0:nat(zero)g. For the uni�ation of the terms

s(N1:nat(posint)):posint and s(N2:nat(�)):nat(posint) the following steps are per-

formed:

� The types posint and nat(posint) are T -equal and need not be uni�ed.

� By the deomposition rule, the terms N1:nat(posint) and N2:nat(�) are uni-

�ed in the next uni�ation step.

� The types nat(posint) and nat(�) are T -uni�ed. The result is the type

substitution f�=posintg.

� N2 is bound to N1 (or vie versa). Thus the omplete result of the uni�ation

is the typed substitution

f�=posint; N2:nat(�)=N1:nat(posint)g

Example 3.29 Consider the following type spei�ation T :

TYPEOPS s

0

: ! type

s

1

: type ! type

s

2

: type ! type

TYPEAXIOMS s

1

(s

0

) = s

0

s

2

(s

0

) = s

0

Thus s

0

is a ommon subtype of s

1

and s

2

. The uni�ation of the typed terms

X:s

1

(�) and Y:s

2

(�) requires a T -uni�er for the type expressions s

1

(�) and s

2

(�)

whih an be omputed by the narrowing proedure (see remarks at the end of

Setion 3.6). Hene the type substitution f�=s

0

; �=s

0

g is a T -uni�er for the type

expressions s

1

(�) and s

2

(�) and the typed substitution

f�=s

0

; �=s

0

; X:s

1

(�)=Y:s

1

(s

0

)g

is a T -uni�er for the terms X:s

1

(�) and Y:s

2

(�). Therefore the variables X and Y

are onstrained to the ommon subsort s

0

by the uni�ation proedure (note the

analogy to order-sorted uni�ation [SNGM89℄).

38 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

In the next setion we will see that resolution is a sound and omplete proof pro-

edure for typed logi programs if the uni�ation proedure used in the resolution

steps omputes a omplete set of T -uni�ers. Therefore the uni�ation proedure

presented in this setion gives us some information about the rôle of di�erent type

systems for logi programming. We have seen that the lassial uni�ation algo-

rithm of Robinson an be adapted to the typed framework if the types of terms

are uni�ed before unifying the terms. Hene our uni�ation proedure shows that

the deidability of the typed uni�ation problem is dependent on the deidability

of the uni�ation problem in the type theory: If it is deidable whether two types

are uni�able w.r.t. the type spei�ation T , then the uni�ation problem for typed

terms w.r.t. T is also deidable beause all

unif

=)-sequenes terminate (lemma 3.24)

and uni�able terms an always be derived to an empty equation list (lemma 3.26).

Moreover, di�erent type strutures inuene the omplexity of the uni�ation pro-

edure. For the general ase a omplex proedure for the uni�ation of type terms

w.r.t. the equational type spei�ation is neessary. But for simpler type strutures

a less omplex uni�ation proedure may be suÆient:

� If the type struture is many-sorted without overloading, i.e., there are only

basi types and no equations in the type struture and there is exatly one

type delaration for eah funtion and prediate symbol, then all types an

be omitted while unifying two terms or atoms sine two omposite terms or

atoms with the same funtor or prediate, respetively, have always the same

type.

� If the type struture is polymorphi without any equations between types,

then the T -uni�er for two types is the uni�er of the type expressions in

the free type term algebra. Hene there exists a most general uni�er for

two uni�able type terms whih an be omputed by Robinson's uni�ation

algorithm. This implies the existene of a most general uni�er for two T -

uni�able typed terms and Robinson's uni�ation algorithm an be used as a

T -uni�ation proedure on typed terms if type expressions are represented

as �rst-order terms (f. [Han89a℄). Moreover, if the polymorphi signature

and the typed program satisfy some additional restritions, it has been shown

that suh programs are exeutable without any type information at run time

[Han89b℄. The type system of Myroft and O'Keefe [MO84℄ is a speial ase

of a polymorphi type struture.

� If the type struture is order-sorted, i.e., the type spei�ation ontains equa-

tions between types, then there does not exist a most general T -uni�er for

any two type expressions. Hene the T -uni�ation proedure on typed terms

must ompute omplete sets of T -uni�ers. Nevertheless, for pratial ap-

pliations it is desirable that the omplete sets of T -uni�ers are �nite whih

depends on the type spei�ation. Criteria for �nitary or unitary order-sorted

3.6. RESOLUTION 39

uni�ation an be found in [Wal89℄. An overview of uni�ation in equational

theories an be found in [SS82℄.

� For polymorphially order-sorted type strutures a full uni�ation proedure

for the equational type theory is neessary. Nevertheless, Smolka [Smo89℄ has

shown that there are also restrited lasses of polymorphially order-sorted

typed logi programs where more eÆient uni�ation proedures exist.

From a oneptual point of view our uni�ation proedure shows up the inuene

of types in logi programming. But for an eÆient operational semantis it is

neessary to omit type information at run time whenever it is possible. In [Han89a℄

and [Han89b℄ it is shown how this ould be done in the polymorphi ase. Similar

results for the general ase are a topi for further researh.

3.6 Resolution

The resolution priniple in untyped Horn logi (see [Rob65℄) an be used as a proof

proedure for typed Horn lause programs if the untyped uni�ation is replaed by

the T -uni�ation as de�ned in the last setion. We all a �-lause a variant of

another �-lause if it is obtained by replaing type variables and typed variables by

other type variables and typed variables, respetively, suh that di�erent variables

are replaed by new di�erent variables. Let (�; C) be a typed logi program.

a) Let G be a (�; X; V)-goal and the (�; X; V)-lause L

0

 G

0

be a variant of a

lause from C with tvar(G) \ tvar(L

0

 G

0

) = ; and uvar(G) \ uvar(L

0

G

0

) = ;. If there exists a T -uni�er � 2 Sub

�

(X;V; V

0

) for an atom L 2 G

and L

0

, then �(G � fLg) [�(G

0

) is said to be derived by T -resolution

from G relative to � and L

0

 G

0

. Notation:

(�; C; V) G `

R

� �(G � fLg) [�(G

0

)

b) Let G

0

be a (�; X; V

0

)-goal. A (�; C; V

0

)-resolution or T -resolution of G

0

is a sequene of the form

(�; C; V

0

) G

0

`

R

�

1

G

1

`

R

�

2

G

2

`

R

� � � `

R

�

n

G

n

where (�; C; V

i

) G

i

`

R

�

i+1

G

i+1

with �

i+1

2 Sub

�

(X;V

i

; V

i+1

) for i =

0; 1; 2; : : : ; n� 1. The (�; C; V

0

)-resolution is alled suessful if G

n

= ;. In

this ase n is alled the length of the (�; C; V

0

)-resolution and � := �

n

Æ� � �Æ�

1

is alled a omputed answer. Notation:

(�; C; V

0

) `

R

� G

0

40 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

If we replae the requirement for a T -uni�er for L and L

0

by the ondition \� 2

CSU

T

(L;L

0

)", then the resolution is alled a CSU

T

-resolution (resolution with

omplete sets of T -uni�ers) and the symbol `

R

is replaed by `

RC

. If we drop the

requirement for disjoint sets of type variables and typed variables in the goal and

the applied lause, we all the resolution unrestrited and replae the symbol `

R

by `

UR

.

The soundness of T -resolution an be diretly proved:

Theorem 3.30 (Soundness of T -resolution) Let (�; C) be a typed logi pro-

gram andG be a (�; X; V)-goal. If there is a suessful T -resolution (�; C; V)`

R

� G

with omputed answer � 2 Sub

�

(X;V; V

0

), then (�; C; V

0

) j= �(G).

Proof: By indution on the length n of a suessful (�; C; V)-resolution:

n = 1: Then there is a (�; C; V)-resolution

(�; C; V) G `

R

� ;

where � 2 Sub

�

(X;V; V

0

), i.e., G is a (�; C; V)-atom. By de�nition of T -resolution,

there exists a variant L

0

 of a lause from C with �(L

0

) =

T

�(G). Hene

there exist V

00

, a (�; X; V

00

)-lause L

00

 from C and �

00

2 Sub

�

(X;V

00

; V) with

�

00

(L

00

) = L

0

. By lemma 3.13, (�; C; V

0

) j= �(L

0

) sine �(L

0

) = � Æ �

00

(L

00

) and

(�; C; V

00

) j= L

0

. Hene (�; C; V

0

) j= �(G) by lemma 3.18.

n > 1: Then there is a (�; C; V)-resolution

(�; C; V) G `

R

�

1

G

1

`

R

�

2

G

2

`

R

� � � `

R

�

n

;

with � = �

n

Æ � � � Æ �

1

2 Sub

�

(X;V; V

0

). By de�nition of T -resolution, there exists

a variant L

0

 G

0

of a lause from C with �

1

(L

0

) =

T

�

1

(L

0

) where G = G

0

[fL

0

g.

Let �

1

2 Sub(X;V; V

1

). Then

(�; C; V

1

) �

1

(G

0

) [�

1

(G

0

) `

R

�

2

G

2

`

R

� � � `

R

�

n

;

is a (�; C; V

1

)-resolution of length n � 1. By indution hypothesis, (�; C; V

0

) j=

�(G

0

) [�(G

0

). Sine L

0

 G

0

is a variant of a lause from C, there exist V

00

, a

(�; X; V

00

)-lause L

00

 G

00

2 C and �

00

2 Sub

�

(X;V

00

; V) with �

00

(L

00

 G

00

) =

L

0

 G

0

. By lemma 3.13, (�; C; V

0

) j= �(L

0

 G

0

). From the fat (�; C; V

0

) j=

�(G

0

) we infer (�; C; V

0

) j= �(L

0

). Lemma 3.17 and lemma 3.18 yield (�; C; V

0

) j=

�(L

0

). Hene we have (�; C; V

0

) j= �(G).

The ompleteness of resolution in untyped Horn logi an be proved by a �xpoint

theorem using a transformation on Herbrand interpretations [vEK76℄ [Llo87℄. In

[Han91℄ this proof method is adapted to polymorphi logi programs. In this

hapter we will show the ompleteness of T -resolution for typed logi programs

3.6. RESOLUTION 41

by simulating eah dedution in the typed Horn lause alulus by T -resolution.

[Pad88℄ has presented suh a proof for many-sorted Horn lause logi with equality,

but he has required that all types are interpreted as non-empty sets. This simpli�es

the proof but is not reasonable in our ontext.

In the rest of this setion we assume that (�; C) is a typed logi program.

A few tehnial lemmas will help to struture the ompleteness proof. The �rst

lemma shows that the substitution rule is not neessary if

b

C (the set of instantiated

lauses) is used in a dedution.

Lemma 3.31 Let (�; C; V) ` L G. Then for any typed substitution � 2

Sub

�

(X;V; V

0

) there exists a dedution for (�;

b

C; V

0

) ` �(L G) where only

axioms and ut rules are applied.

Proof: We prove the lemma by indution on the number n of ut rule appliations

in a shortest dedution of (�; C; V) ` L G. The ase n = 0 is trivial sine

�

0

(L

0

) �

0

(G

0

) 2

b

C for all L

0

 G

0

2 C and all appropriate typed substitutions

�

0

. Otherwise there is a last appliation of the ut rule in the dedution, say

(�; C; V

i

) ` L

i

 G

i

[fL

0

i

g and (�; C; V

i

) ` L

j

 G

j

with L

0

i

=

T

L

j

our in the dedution before the last appliation of the ut rule. Let �

1

2

Sub

�

(X;V

i

; V

0

i

). We have to show that (�;

b

C; V

0

i

) ` �

1

(L

i

) �

1

(G

i

[G

j

)

an be dedued without an appliation of the substitution rule. The number of ut

rule appliations in shortest derivations of

(�; C; V

i

) ` L

i

 G

i

[fL

0

i

g and (�; C; V

i

) ` L

j

 G

j

is less than n. By indution hypothesis,

(�;

b

C; V

0

i

) ` �

1

(L

i

) �

1

(G

i

[fL

0

i

g) and (�;

b

C; V

0

i

) ` �

1

(L

j

) �

1

(G

j

)

an be dedued without an appliation of the substitution rule. Lemma 3.17 yields

�

1

(L

0

i

) =

T

�

1

(L

j

). By an appliation of the ut rule, we obtain

(�;

b

C; V

0

i

) ` �

1

(L

i

) �

1

(G

i

[G

j

)

This proves the lemma.

Lemma 3.32 If (�; C; V) ` L G where only axioms and ut rules are applied,

then (�; C

0

; V)`

UR

id

X;V

L

0

for all (�; X; V)-atoms L

0

=

T

L where C

0

= C [

fP j P 2 Gg, and eah substitution in the T -resolution is equal to id

X;V

.

42 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

Proof: The lemma is proved by indution on the length of the dedution. Let

d

1

; : : : ; d

n

be a dedution for (�; C; V) ` L G where only axioms and ut rules

are applied and L

0

be a (�; X; V)-atom with L

0

=

T

L.

If L G 2 C, then (�; C

0

; V) L

0

`

UR

id

X;V

G is a T -resolution step sine

id

X;V

(L

0

) =

T

id

X;V

(L). If G onsists of k �-atoms, then we ahieve the empty

goal with k further unrestrited T -resolution steps with substitutions id

X;V

.

If L G 62 C, then the lause must be derived by an appliation of the ut

rule, i.e., there are

d

i

= (�; C; V) ` L G

0

[fL

0

g

d

j

= (�; C; V) ` L

1

 G

1

with L

0

=

T

L

1

, G = G

0

[G

1

and i; j < n. By indution hypothesis,

(�; C

0

[fL

0

 g; V) `

UR

id

X;V

L

0

for all L

0

=

T

L (1)

and

(�; C

0

; V) `

UR

id

X;V

L

0

1

for all L

0

1

=

T

L

1

(2)

sine G = G

0

[G

1

. If the lause L

0

 is used in resolution (1), then, by (2),

it is possible to replae the resolution step by a sequene of resolution steps that

derives L

0

to the empty goal using lauses from C

0

. Thus (�; C

0

; V)`

UR

id

X;V

L

0

for all L

0

=

T

L and eah substitution in this T -resolution is equal to id

X;V

.

Now we an prove the ompleteness of T -resolution:

Theorem 3.33 (Completeness of T -resolution for atoms) Let V; V

0

be �-

nite sets of typed variables and A be a (�; X; V)-atom. If � 2 Sub

�

(X;V; V

0

)

is a typed substitution with (�; C; V

0

) j= �(A), then there exists a set of typed

variables V

0

and a typed substitution �

0

2 Sub

�

(X;V

0

; V

0

) with (�; C; V

0

) `

R

�

0

A

and �

0

(A) = �(A).

Proof: W.l.o.g. we assume that � a�ets only a �nite number of type variables

sine V is �nite, i.e., the type domain tdom(�) is �nite. Let (�; C; V

0

) j= �(A). By

theorem 3.21, there exists a (�; X; V)-atom A

0

with A

0

=

T

�(A) and (�; C; V

0

) `

A

0

. By lemma 3.31 and lemma 3.32, there exists a suessful unrestrited T -

resolution of the form

(�;

b

C; V

0

) �(A) `

UR

id

X;V

0

G

1

`

UR

id

X;V

0

� � � `

UR

id

X;V

0

;

In the �rst resolution step there exist L

0

 R

0

2 C, V

0

0

and �

0

2 Sub

�

(X;V

0

0

; V

0

)

with �

0

(L

0

) =

T

�(A) and �

0

(R

0

) = G

1

.

W.l.o.g. we assume (tdom(�) [tvar(A)) \ tvar(L

0

 R

0

) = ; and uvar(V) \

uvar(V

0

0

) = ; (otherwise we hoose an appropriate variant of L

0

 R

0

and an

3.6. RESOLUTION 43

appropriate typed substitution �

0

). We de�ne V

0

:= V [var(L

0

 R

0

) and

ombine � and �

0

into a typed substitution �

1

2 Sub

�

(X;V

0

; V

0

) with

�

1

(�) =

�

�(�) if � 2 tdom(�) [tvar(A)

�

0

(�) otherwise

and

�

1

(x:�) =

�

�(x:�) if x:� 2 V

�

0

(x:�) if x:� 2 var(L

0

 R

0

)

Then �

1

(A) = �(A) =

T

�

0

(L

0

) = �

1

(L

0

) and �

1

(R

0

) = �

0

(R

0

) = G

1

. Therefore

(�; C; V

0

) A `

R

�

1

G

1

is a T -resolution step. If G

1

= ;, then the proof is �nished, otherwise there is a

seond resolution step

(�;

b

C; V

0

) G

1

`

UR

id

X;V

0

G

2

Let L

0

1

 R

0

1

2

b

C be the lause used in this resolution step, i.e., there exist L

1

R

1

2 C, V

0

1

and �

0

1

2 Sub

�

(X;V

0

1

; V

0

) with �

0

1

(L

1

 R

1

) = L

0

1

 R

0

1

. Similarly

to the �rst resolution step, we ombine �

0

1

and id

X;V

0

into a typed substitution

�

2

2 Sub

�

(X;V

1

; V

0

), where V

1

:= V

0

[var(L

1

 R

1

), suh that

(�; C; V

1

) G

1

`

R

�

2

G

2

is a T -resolution step. Sine V

0

� V

1

, we an extend �

1

to a typed substitution

�

1

2 Sub

�

(X;V

0

; V

1

). Hene we obtain the T -resolution

(�; C; V

0

) A `

R

�

1

G

1

`

R

�

2

G

2

with �

2

(�

1

(A)) = �

2

(�(A)) = �(A) and �

2

Æ �

1

2 Sub

�

(X;V

0

; V

0

). If we apply

the transformation of the seond resolution step in the same way to the remaining

resolution steps, we obtain a T -resolution

(�; C; V

0

) A `

R

�

1

G

1

`

R

�

2

� � � `

R

�

n

;

with �

n

Æ � � � Æ �

1

(A) = �(A) and �

n

Æ � � � Æ �

1

2 Sub

�

(X;V

0

; V

0

).

We need the next lemma to prove the ompleteness of T -resolution for general

goals:

Lemma 3.34 Let G be a (�; X; V)-goal with var(G) = fx

1

:�

1

; : : : ; x

n

:�

n

g. Let p

be a new symbol that does not our in �, �

0

:= (H;Fun; P red[fp:�

1

; : : : ; �

n

g),

L := p(x

1

:�

1

; : : : ; x

n

:�

n

) and C

0

:= C [fL Gg. Then

(�; C; V

0

) j= �(G) =) (�

0

; C

0

; V

0

) j= �(L)

for all � 2 Sub

�

0

(X;V; V

0

).

44 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

Proof: Let (�; C; V

0

) j= �(G) and M

0

be a model for (�

0

; C

0

). Then M

0

is also

a model for (�

0

; C) and M

0

; var(L G) j= L G. By lemma 3.13, M

0

; V

0

j=

�(L) �(G). Suppose v is a variable assignment for (X;V

0

) in M

0

. M

0

is also

a model for (�; C) if we omit the interpretation of the prediate symbol p in M

0

.

Therefore M

0

; v j= �(G). M

0

; v j= �(L) �(G) implies M

0

; v j= �(L). Hene we

obtain M

0

; V

0

j= �(L).

Theorem 3.35 (Completeness of T -resolution) Let V be a �nite set of typed

variables and G be a (�; X; V)-goal. If � 2 Sub

�

(X;V; V

0

) is a typed substitution

with (�; C; V

0

) j= �(G), then there exist a set of typed variables V

0

and a typed

substitution �

0

2 Sub

�

(X;V

0

; V

0

) with (�; C; V

0

)`

R

�

0

G and �

0

(G) = �(G).

Proof: Let var(G) = fx

1

:�

1

; : : : ; x

n

:�

n

g and p, L, �

0

and C

0

be de�ned as in the

last lemma. (�; C; V

0

) j= �(G) implies (�

0

; C

0

; V

0

) j= �(L). By theorem 3.33, there

exist V

0

and a typed substitution �

0

2 Sub

�

(X;V

0

; V

0

) with (�

0

; C

0

; V

0

) `

R

�

0

L and

�

0

(L) = �(L). Sine the only lause for the elimination of an atom with prediate

symbol p is L G, there is a resolution

(�; C

0

; V

0

) L `

R

�

1

�

1

(G) `

R

�

2

G

2

� � � `

R

�

n

;

with �

0

= �

n

Æ � � � Æ �

1

. We an ombine the typed substitution �

1

with the typed

substitution �

2

in the seond resolution step and obtain a (�; C; V

0

)-resolution for

G with the same omputed answer.

We need the following lemma to prove ompleteness of CSU

T

-resolution:

Lemma 3.36 (CSU-lemma) If there is a T -resolution

(�; C; V) G `

R

�

1

G

1

`

R

�

2

G

2

`

R

� � � `

R

�

n

;

for the (�; X; V)-goal G, then there exists a CSU

T

-resolution

(�; C; V) G `

RC

�

0

1

G

0

1

`

RC

�

0

2

G

0

2

`

RC

� � � `

RC

�

0

n

;

where �

0

n

Æ� � �Æ�

0

1

2 Sub

�

(X;V; V

0

). Furthermore, there exists a typed substitution

� 2 Sub

�

(X;V

0

; V

00

) with � Æ �

0

n

Æ � � � Æ �

0

1

=

T

�

n

Æ � � � Æ �

1

.

Proof: By indution on the length n of the T -resolution:

If n = 1, then (�; C; V) G `

R

�

1

;. Hene there exists a variant L ; of a lause

from C with �

1

(G) =

T

�

1

(L). By de�nition of omplete sets of T -uni�ers, there

exist a uni�er �

0

1

2 CSU

T

(G;L) with �

0

1

2 Sub

�

(X;V; V

0

) and a typed substitution

� 2 Sub

�

(X;V

0

; V

00

) with � Æ �

0

1

=

T

�

1

. Thus (�; C; V) G `

RC

�

0

1

; is a CSU

T

-

resolution for G.

3.6. RESOLUTION 45

If n > 1, then there is a T -resolution

(�; C; V) G `

R

�

1

G

1

`

R

�

2

G

2

`

R

� � � `

R

�

n

;

Hene there exists a variant L

0

 G

0

of a lause from C with �

1

(L

0

) =

T

�

1

(L) where

G = G

0

[fLg. By de�nition of CSU

T

, there exist a uni�er �

0

1

2 CSU

T

(L

0

; L)

with �

0

1

2 Sub

�

(X;V; V

0

) and a typed substitution � 2 Sub

�

(X;V

0

; V

00

) with

� Æ �

0

1

=

T

�

1

. If G

0

1

:= �

0

1

(G

0

[G

0

), then

(�; C; V) G `

RC

�

0

1

G

0

1

`

R

�

2

Æ � G

00

2

is a T -resolution with G

00

2

=

T

G

2

(w.l.o.g. we assume that � does not alter any

type variables or typed variables from the lause used in the seond resolution

step). Sine

(�; C; V

00

) G

2

`

R

�

3

� � � `

R

�

n

;

is a T -resolution forG

2

andG

2

=

T

G

00

2

, it is lear from the de�nition of T -resolution

that there exists a T -resolution

(�; C; V

00

) G

00

2

`

R

�

3

� � � `

R

�

n

;

for G

00

2

of the same length and with the same T -uni�ers. Hene

(�; C; V

0

) G

0

1

`

R

�

2

Æ � G

00

2

`

R

�

3

� � � `

R

�

n

;

is a T -resolution for G

0

1

of length n � 1. By indution hypothesis, there exists a

CSU

T

-resolution

(�; C; V

0

) G

0

1

`

RC

�

0

2

G

0

2

`

RC

� � � `

RC

�

0

n

;

where �

0

n

Æ � � � Æ �

0

2

2 Sub

�

(X;V

0

; V

1

), and there exists a typed substitution � 2

Sub

�

(X;V

1

; V

2

) with � Æ �

0

n

Æ � � � Æ �

0

2

=

T

�

n

Æ � � � Æ �

2

Æ �. Hene we obtain a

CSU

T

-resolution

(�; C; V) G `

RC

�

0

1

G

0

1

`

RC

�

0

2

G

0

2

`

RC

� � � `

RC

�

0

n

;

where �

0

n

Æ� � �Æ�

0

1

2 Sub

�

(X;V; V

1

), and � 2 Sub

�

(X;V

1

; V

2

) is a typed substitution

with

� Æ �

0

n

Æ � � � Æ �

0

1

=

T

�

n

Æ � � � Æ �

2

Æ � Æ �

0

1

=

T

�

n

Æ � � � Æ �

2

Æ �

1

:

The ompleteness of CSU

T

-resolution follows from ompleteness of T -resolution

and CSU -lemma 3.36:

46 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

Theorem 3.37 (Completeness of CSU

T

-resolution) Let (�; C) be a typed

logi program, V be a �nite set of typed variables and G be a (�; X; V)-goal.

If � 2 Sub

�

(X;V; V

0

) is a typed substitution with (�; C; V

0

) j= �(G), then there

exist a set of typed variables V

0

and a typed substitution �

0

2 Sub

�

(X;V

0

; V

1

)

with (�; C; V

0

)`

RC

�

0

G, and there is a typed substitution � 2 Sub

�

(X;V

1

; V

0

) with

�(�

0

(G)) =

T

�(G).

Proof: By ompleteness theorem 3.35, there exist a set of typed variables V

0

and a

T -resolution of the form

(�; C; V

0

) G `

R

�

1

G

1

`

R

�

2

G

2

`

R

� � � `

R

�

n

;

with �

n

Æ � � � Æ�

1

2 Sub

�

(X;V

0

; V

0

) and �

n

Æ � � � Æ�

1

(G) = �(G). CSU -lemma 3.36

yields a CSU

T

-resolution

(�; C; V

0

) G `

RC

�

0

1

G

0

1

`

RC

�

0

2

G

0

2

� � � `

RC

�

0

n

;

and a typed substitution � 2 Sub

�

(X;V

1

; V

0

) (where �

0

:= �

0

n

Æ � � � Æ �

0

1

2

Sub

�

(X;V

0

; V

1

)) with � Æ �

0

n

Æ � � � Æ �

0

1

(G) =

T

�

n

Æ � � � Æ �

1

(G) = �(G).

Soundness theorem 3.30 and ompleteness theorem 3.37 justify the implemen-

tation of CSU

T

-resolution as a proof method for typed logi programs. A omplete

resolution method must enumerate all possible derivations. If we use a baktraking

method like Prolog, the resolution method beomes inomplete beause of in�nite

derivations (in our typed framework the searh tree may have an in�nite depth

as well as an in�nite breadth beause CSU

T

(L;L

0

) may be an in�nite set). If we

aept this drawbak, we an implement the resolution like Prolog with the dif-

ferene that the uni�ation is extended to typed terms. In Setion 3.5 we have

shown that the lassial uni�ation algorithm an be used if the types of the terms

are uni�ed before unifying the terms. For the uni�ation of type expressions w.r.t.

the type spei�ation a uni�ation proedure for equational theories is needed. It

is known that the narrowing proedure [Sla74℄ [Fay79℄ [Hul80℄ (a ombination of

uni�ation and term rewriting) an be used for this purpose. Narrowing an ex-

pression is applying to it the most general substitution suh that the expression is

reduible and then redue it. But the narrowing proedure omputes a omplete

set of uni�ers w.r.t. an equational theory only if the set of equations is a anon-

ial (i.e., onuent and terminating) term rewriting system. A set of equations

an be transformed into a anonial term rewriting system by the Knuth-Bendix

proedure [KB70℄ whih is suessful for our appliations. For instane, let T be

a type struture for integer numbers with appropriate subtype relationships, i.e.,

zero and posint are subtypes of the natural numbers, and the negative integers

and the natural numbers are subtypes of the integer numbers. Therefore T is the

following equational spei�ation:

3.6. RESOLUTION 47

TYPEOPS zero: ! type

posint: ! type

nat: type ! type

negint: ! type

int: type ! type

TYPEAXIOMS nat(zero) = zero

nat(posint) = posint

int(negint) = negint

int(nat(�)) = nat(�)

The Knuth-Bendix proedure transforms this spei�ation into the following set of

rewrite rules:

nat(zero)) zero

nat(posint)) posint

int(negint)) negint

int(nat(�))) nat(�)

int(zero)) zero

int(posint)) posint

All equations are oriented from left to right and two additional rewrite rules are

generated (\zero and posint are subtypes of the integer numbers") whih orre-

sponds to the omputation of the transitive losure of the subtype relation spei�ed

in T . This set of rewrite rules is a anonial term rewriting system and therefore

the narrowing proedure w.r.t. these rules an be used to ompute T -uni�ers for

two type expressions. Thus the resolution proedure an be implemented by the

following two steps:

1. Transform the given type spei�ation into a anonial term rewriting system.

For this purpose the Knuth-Bendix ompletion proedure an be applied. It

omputes the transitive losure of the subtype relation.

2. The T -uni�ation proedure for typed terms an be implemented like the

lassial uni�ation proedure with the di�erene that types are T -uni�ed by

the narrowing proedure w.r.t. the rewrite rules omputed in step 1 before

uni�ying orresponding terms.

Note that the T -uni�ation proedure an be simpli�ed if the type spei�ation

does not ontain subtype relations (see remarks at the end of Setion 3.5). If the

type spei�ation ontains subtype relations, then these subtype relations have

inuene on the suess or failure of uni�ation. Therefore type information at

48 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

run time is not superuous in the ontext of logi programming but may avoid

unneessary omputations sine variables an be onstraint to values and to types

by the T -uni�ation prodedure. Therefore typed logi programs an be exeuted

more eÆiently than their untyped equivalents [SS85℄ [HV87℄. One reason for

this eÆieny is the existene of a proedure whih deides whether a system of

type onstraints has a solution. As shown above, we solve type onstraints by

a narrowing proedure whih is based on the type equations. This is suÆient

to solve type onstraints in order-sorted type strutures, but in a more general

setting narrowing annot deide the solvability of onstraints but enumerates only

a omplete set of solutions. Narrowing an only be used as a deision proedure

if eah narrowing derivation is �nite. Hullot [Hul80℄ has shown that a terminating

T -uni�ation algorithm an be onstruted by narrowing if any basi narrowing

derivation for the right-hand sides of the rules is �nite. This is the ase in our

simple examples and therefore narrowing on type expressions yields a deidability

uni�ation proedure for our examples. For another polymorphially order-sorted

typed framework, Smolka [Smo89℄ has shown that type onstraints an be eÆiently

solved. Therefore the development of eÆient type onstraint solvers for (restrited

lasses of) our framework is a topi for further researh.

3.7 Appliations

We have mentioned in the introdution that a new appliation of our proposed

framework for typed logi programming is the possibility of higher-order logi pro-

gramming with polymorphi and order-sorted type strutures. It is lear that our

framework ombines polymorphi and order-sorted type strutures (take the union

of the type spei�ations of examples 3.1 and 3.2, or example 3.3). A semanti-

ally lean amalgamation of higher-order objets with logi programming needs

a higher-order logi. Miller and Nadathur [MN86℄ have proposed a higher-order

logi programming language based on the typed lambda alulus. The operational

semantis is based on resolution with a uni�ation proedure for typed lambda

expressions whih is a omplex and semi-deidable problem. Moreover, the proof

proedure is only omplete for goals whih ontain no type variables.

Warren [War82℄ has argued that no extension to Horn lause logi is neessary

beause the usual higher-order programming tehniques an be simulated in �rst-

order Horn lause logi. The general idea is an expliit de�nition of a prediate

apply whih is used for the appliation of an (at ompile time) unknown prediate

to some arguments. It is shown in [Han89b℄ that Warren's approah is inompatible

with polymorphi type systems for logi programming like [MO84℄ and [Smo89℄.

Sine we have dropped some restritions of these type systems, we an use Warren's

approah to integrate higher-order programming tehniques in our framework.

3.7. APPLICATIONS 49

Example 3.38 We give an example for the de�nition of a prediate map whih

applies a binary prediate to orresponding elements of two lists. To de�ne the

type of map we must express the type of binary prediates whih are arguments

to other prediates. Therefore we introdue a type onstrutor pred2 that denotes

the type of binary prediates, i.e., the type spei�ation for our example program

is:

TYPEOPS int: ! type

bool: ! type

list: type ! type

pred2: type; type ! type

For eah binary prediate p of type \�

1

; �

2

" we introdue a orresponding onstant

�p of type \pred2(�

1

; �

2

)". The relation between eah prediate p and the onstant

�p is de�ned by lauses for the prediate apply2. Hene we get the following

example program for the prediate map (we omit the de�nitions of the prediates

in and bool and the type annotations in program lauses):

fun [℄: ! list(�)

fun [..|..℄: �; list(�); ! list(�)

fun �not: ! pred2(bool; bool)

fun �in: ! pred2(int; int)

: : :

pred not: bool; bool

pred in: int; int

pred map: pred2(�; �); list(�); list(�)

pred apply2: pred2(�; �); �; �

vars P:pred2(�; �), E1:�, E2:�, L1:list(�), L2:list(�),

B1,B2:bool, I1,I2:int

map(P,[℄,[℄)

map(P,[E1|L1℄,[E2|L2℄) apply2(P,E1,E2), map(P,L1,L2)

apply2(�not,B1,B2) not(B1,B2)

apply2(�in,I1,I2) in(I1,I2)

: : :

The �rst two lauses onstitute the standard de�nition of the prediate map (f.

[SS86℄, p. 281), and the lauses for apply2 relate the prediate names to the orre-

sponding binary prediates. Sine the semantis of typed logi programs is based on

a typed �rst-order logi, the prediate symbol map is semantially not interpreted

as a higher-order prediate. The onstants �not and �in are also interpreted as

50 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

values and not as relations. But the lauses for apply2 ensures that in every model

of the program the onstants �not and �in are related to the binary prediates

not and in, respetively.

This example shows the possibility to deal with higher-order objets in our

typed framework. Higher-order objets are related to prediates by partiular

lauses for an apply prediate. It is also possible to permit lambda expressions

whih an be translated into new identi�ers and apply lauses for these identi�ers

(see [War82℄ and [CvER90℄ for more disussion). The translation was expliitly

done in our examples, but this is a simple task and an be automatially done. If

the underlying system implements indexing on the lauses, e.g., indexing on the

�rst arguments of prediates (as done in most ompilers for Prolog, f. [War83℄

[Han88℄), then there is no essential loss of eÆieny in our translation sheme for

higher-order objets in omparison to a spei� implementation of higher-order

objets [War82℄.

More details about this method of higher-order logi programming in a poly-

morphially typed framework an be found in [Han89b℄.

3.8 Conlusions

We have presented a general framework for typed logi programming. It onsists

of a spei�ation of a type struture and a set of well-typed Horn lauses together

with type delarations for the syntati objets ourring in the set of Horn lauses.

For the de�nition of the type struture we have used equational spei�ations. This

allows the spei�ation of both polymorphi and order-sorted type strutures and

has the advantage that there exist well-known uni�ation proedures for a lot of

equational theories. We have de�ned a proedure to enumerate omplete sets of

uni�ers for typed terms with respet to a type spei�ation whih is based on a

uni�ation proedure for the equational type spei�ation. Furthermore, we have

shown that resolution is sound and omplete if this uni�ation proedure is used

to unify an atom with a lause head. This framework permits polymorphi and

order-sorted type strutures and the possibility of the appliation of useful logi

programming tehniques like lemma generation and higher-order programming.

The presented framework yields a new view on the rôle of types in logi program-

ming. A type spei�ation an be ompiled into a suitable uni�ation algorithm

whih is used in the resolution proedure. Therefore di�erent type strutures im-

ply di�erent uni�ation algorithms. A many-sorted type struture does not require

any type information at run time, in a polymorphi type struture a most general

uni�er exists for two uni�able terms and an be omputed by Robinson's uni�a-

tion algorithm, and in order-sorted type strutures there may exist several uni�ers

whih are not omparable, but a omplete set of uni�ers an be omputed by a

proedure whih is based on a uni�ation proedure for the type theory.

3.8. CONCLUSIONS 51

Further work remains to be done. We have mentioned that the presene of

types at run time is not superuous but may redue the searh spae of the reso-

lution method. Nevertheless, there are a lot of ases where type annotations an

be omitted at run time and the uni�ation remains to be orret. For polymorphi

type strutures these ases are analyzed in [Han89a℄ and [Han89b℄. New riteria

for omitting type annotations must be developed in our general typed framework.

Another important point is the automati inferene of types. For pratial appli-

ations it is tedious to write typed program lauses sine eah syntati element

must be given an appropriate type. Therefore it is neessary to dedue the right

types for a lause without type annotations by a type inferene algorithm. This is

a diÆult problem in our general framework but their are suessful approahes to

the type inferene problem for restrited lasses of type strutures. For instane, in

the ase of polymorphi type strutures the type inferene algorithm of ML [DM82℄

an be used to infer the types of the variables in a lause if the types of all funtions

and prediates are expliitly delared [Han89a℄. For a restrited lass of polymor-

phially order-sorted type strutures Smolka has found an algorithm whih infers

the types of variables in most ases [Smo89℄. Similar solutions must be developed

for partiular instanes of our approah.

52 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

Bibliography

[BC83℄ M. Bidoit and J. Corbin. A Rehabilitation of Robinson's Uni�ation

Algorithm. In Pro. IFIP '83, pp. 909{914. North-Holland, 1983.

[BG89℄ R. Barbuti and R. Giaobazzi. A Bottom-Up Polymorphi Type Infer-

ene in Logi Programming. Tehnial Report 27/89, Dip. di Informat-

ia, Universit�a di Pisa, 1989.

[Chu40℄ A. Churh. A formulation of the simple theory of types. Journal of

Symboli Logi, Vol. 5, pp. 56{68, 1940.

[CM87℄ W.F. Cloksin and C.S. Mellish. Programming in Prolog. Springer,

third rev. and ext. edition, 1987.

[CvER90℄ M.H.M. Cheng, M.H. van Emden, and B.E. Rihards. On Warren's

Method for Funtional Programming in Logi. In Pro. Seventh Inter-

national Conferene on Logi Programming, pp. 546{560. MIT Press,

1990.

[CW85℄ L. Cardelli and P. Wegner. On Understanding Types, Data Abstra-

tion, and Polymorphism. am omputing surveys, Vol. 17, No. 4, pp.

471{523, 1985.

[DH88℄ R. Dietrih and F. Hagl. A polymorphi type system with subtypes

for Prolog. In Pro. ESOP 88, Nany, pp. 79{93. Springer LNCS 300,

1988.

[DM82℄ L. Damas and R. Milner. Prinipal type-shemes for funtional pro-

grams. In Pro. 9th Annual Symposium on Priniples of Programming

Languages, pp. 207{212, 1982.

[EM85℄ H. Ehrig and B. Mahr. Fundamentals of Algebrai Spei�ation 1:

Equations and Initial Semantis, volume 6 of EATCS Monographs on

Theoretial Computer Siene. Springer, 1985.

53

54 BIBLIOGRAPHY

[Fay79℄ M.J. Fay. First-Order Uni�ation in an Equational Theory. In Pro.

4th Workshop on Automated Dedution, pp. 161{167, Austin (Texas),

1979. Aademi Press.

[GM84℄ J.A. Goguen and J. Meseguer. Completeness of Many-Sorted Equa-

tional Logi. Report No. CSLI-84-15, Stanford University, 1984.

[GTW78℄ J.A. Goguen, J.W. Thather, and E.G. Wagner. An Initial Algebra

Approah to the Spei�ation, Corretness, and Implementation of Ab-

strat Data Types. In R. Yeh, editor, Current Trends in Programming

Methodology, volume 4, pp. 80{149. Prentie Hall, Englewood Cli�s NJ,

1978.

[GZ86℄ Y. Gang and X. Zhiliang. An EÆient Type System for Prolog. In

Pro. IFIP '86, pp. 355{359. North-Holland, 1986.

[Han87℄ W. Hankley. Feature Analysis of Turbo Prolog. SIGPLAN Noties,

Vol. 22, No. 3, pp. 111{118, 1987.

[Han88℄ M. Hanus. Formal Spei�ation of a Prolog Compiler. In Pro. of

the Workshop on Programming Language Implementation and Logi

Programming, pp. 273{282, Orl�eans, 1988. Springer LNCS 348.

[Han89a℄ M. Hanus. Horn Clause Programs with Polymorphi Types: Semantis

and Resolution. In Pro. of the TAPSOFT '89, pp. 225{240. Springer

LNCS 352, 1989. Extended version in [Han91℄.

[Han89b℄ M. Hanus. Polymorphi Higher-Order Programming in Prolog. In

Pro. Sixth International Conferene on Logi Programming (Lisboa),

pp. 382{397. MIT Press, 1989.

[Han90℄ M. Hanus. A Funtional and Logi Language with Polymorphi Types.

In Pro. Int. Symposium on Design and Implementation of Symboli

Computation Systems, pp. 215{224. Springer LNCS 429, 1990.

[Han91℄ M. Hanus. Horn Clause Programs with Polymorphi Types: Semantis

and Resolution. Theoretial Computer Siene, Vol. 89, pp. 63{106,

1991.

[HMM86℄ R. Harper, D.B. MaQueen, and R. Milner. Standard ML. LFCS

Report Series ECS-LFCS-86-2, University of Edinburgh, 1986.

[Hul80℄ J.-M. Hullot. Canonial Forms and Uni�ation. In Pro. 5th Confer-

ene on Automated Dedution, pp. 318{334. Springer LNCS 87, 1980.

BIBLIOGRAPHY 55

[HV87℄ M. Huber and I. Varsek. Extended Prolog with Order-Sorted Resolu-

tion. In Pro. 4th IEEE Internat. Symposium on Logi Programming,

pp. 34{43, San Franiso, 1987.

[KB70℄ D.E. Knuth and P.B. Bendix. Simple Word Problems in Universal

Algebras. In J. Leeh, editor, Computational Problems in Abstrat

Algebra, pp. 263{297. Pergamon Press, 1970.

[Llo87℄ J.W. Lloyd. Foundations of Logi Programming. Springer, seond,

extended edition, 1987.

[MH88℄ J.C. Mithell and R. Harper. The Essene of ML. In Pro. of the 15th

ACM Symposium on Priniples of Programming Languages, pp. 28{46,

San Diego, 1988.

[Mis84℄ P. Mishra. Towards a theory of types in Prolog. In Pro. IEEE In-

ternat. Symposium on Logi Programming, pp. 289{298, Atlanti City,

1984.

[MN86℄ D.A. Miller and G. Nadathur. Higher-Order Logi Programming. In

Pro. Third International Conferene on Logi Programming (London),

pp. 448{462. Springer LNCS 225, 1986.

[MO84℄ A. Myroft and R.A. O'Keefe. A Polymorphi Type System for Prolog.

Arti�ial Intelligene, Vol. 23, pp. 295{307, 1984.

[Nai87℄ L. Naish. Spei�ation = Program + Types. In Pro. Foundations of

Software Tehnology and Theoretial Computer Siene, pp. 326{339.

Springer LNCS 287, 1987.

[Pad88℄ P. Padawitz. Computing in Horn Clause Theories, volume 16 of EATCS

Monographs on Theoretial Computer Siene. Springer, 1988.

[Poi86℄ A. Poign�e. On Spei�ations, Theories, and Models with Higher Types.

Information and Control, Vol. 68, No. 1-3, 1986.

[Rob65℄ J.A. Robinson. A Mahine-Oriented Logi Based on the Resolution

Priniple. Journal of the ACM, Vol. 12, No. 1, pp. 23{41, 1965.

[Sla74℄ J.R. Slagle. Automated Theorem-Proving for Theories with Simpli�ers,

Commutativity, and Assoiativity. Journal of the ACM, Vol. 21, No. 4,

pp. 622{642, 1974.

[SLC88℄ Ph. Shnoebelen, D. Lugiez, and H. Comon. A Semantis for Poly-

morphi Subtypes in Computer Algebra. Tehnial Report RR 711,

Laboratoire d'Informatique Fondamentale et d'Intelligene Arti�elle,

Grenoble, Frane, 1988.

56 BIBLIOGRAPHY

[Smo89℄ G. Smolka. Logi Programming over Polymorphially Order-Sorted

Types. Dissertation, FB Informatik, Univ. Kaiserslautern, 1989.

[SNGM89℄ G. Smolka, W. Nutt, J.A. Goguen, and J. Meseguer. Order-Sorted

Equational Computation. In Hassan A��t-Kai and Maurie Nivat,

editors, Resolution of Equations in Algebrai Strutures, Volume 2,

Rewriting Tehniques, hapter 10, pp. 297{367. Aademi Press, New

York, 1989.

[SS82℄ J. Siekmann and P. Szab�o. Universal Uni�ation and a Classi�ation of

Equational Theories. In Pro. 6th Conferene on Automated Dedution,

pp. 369{389. Springer LNCS 138, 1982.

[SS85℄ M. Shmidt-Shauss. A Many Sorted Calulus with Polymorphi Fun-

tions Based on Resolution and Paramodulation. In Pro. 9th IJCAI.

W. Kaufmann, 1985.

[SS86℄ L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1986.

[vEK76℄ M.H. van Emden and J.A. Kowalski. The Semantis of Prediate Logi

as a Programming Language. Journal of the ACM, Vol. 23, No. 4, pp.

733{742, 1976.

[Wal89℄ U. Waldmann. Uni�ation in Order-Sorted Signatures. Tehnial Re-

port 298, FB Informatik, Univ. Dortmund, 1989.

[War82℄ D.H.D. Warren. Higher-order extensions to PROLOG: are they

needed? In Mahine Intelligene 10, pp. 441{454, 1982.

[War83℄ D.H.D. Warren. An Abstrat Prolog Instrution Set. Tehnial Note

309, SRI International, Stanford, 1983.

[XW88a℄ J. Xu and D.S. Warren. A Theory of Types and Type Inferene in

Logi Programming. Tehnial Report 88/15, SUNY at Stony Brook,

1988.

[XW88b℄ J. Xu and D.S. Warren. A Type Inferene System For Prolog. In

Pro. 5th Conferene on Logi Programming & 5th Symposium on Logi

Programming (Seattle), pp. 604{619, 1988.

[Zob87℄ J. Zobel. Derivation of Polymorphi Types for Prolog Programs. In

Pro. Fourth International Conferene on Logi Programming (Mel-

bourne), pp. 817{838. MIT Press, 1987.

