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This paper proposes a type system for logi programming where types are strutured in two ways.

Firstly, funtions and prediates may be delared with types ontaining type parameters whih are

universally quanti�ed over all types. In this ase eah instane of the type delaration an be used

in the logi program. Seondly, types are related by subset inlusions. In this ase a funtion or

prediate an be applied to all subtypes of its delared type. While previous proposals for suh type

systems have strong restritions on the subtype relation, we assume that the subtype order is spei�ed

by Horn lauses for the subtype relation �. This allows the delaration of a lot of interesting type

strutures, e.g., type onstrutors whih are monotoni as well as anti-monotoni in their arguments.

For instane, parametri order-sorted type strutures for logi programs with higher-order prediates

an be spei�ed in our framework.

This paper presents the delarative and operational semantis of the typed logi language. The

operational semantis requires a uni�ation proedure on well-typed terms. This uni�ation proe-

dure is desribed by a set of transformation rules whih generate a set of type onstraints from a

given uni�ation problem. The solvability of these type onstraints is deidable for partiular type

strutures.

1 Introdution

Types are important for programming languages beause typed programs are easier to read and

a lot of programming errors an be deteted at ompile time. Moreover, ompilers an generate

more eÆient ode if type information is available. Therefore various attempts have been made to

integrate types into the lassially untyped world of logi programming. These proposals an be

divided into two groups. In the inferene-based approahes [Mis84℄ [Zob87℄ [XW88℄ [BG89℄ (among

others) types are not part of the program but are onsidered as logial onsequenes of the program.

These approahes onsider the type of a prediate as a superset of the suess set of the prediate

whih is omputed by abstrat interpretation tehniques. If the type of a prediate is empty, then

this prediate annot sueed and hene it is interpreted as a programming error. But in many

ases the inferene of types from a ompletely untyped logi program does not yield suÆient results

beause an untyped logi program does not ontain the type information expeted by the programmer

[Nai87℄.

The delaration-based approahes try to overome this problem by permitting the addition of

type delarations to the logi program. A type heker ompares the appliation of a funtion or

prediate in a program lause with the programmer's delaration and reports an error if it is used in



a wrong ontext. In these approahes the type delarations are a part of the program's semantis and

may inuene the exeution of the program. For instane, the polymorphi type system of Myroft

and O'Keefe [MO84℄ is motivated from ML and the type information is only used for ompile-time

heks, i.e., the types are not visible at run time (but to ensure this property more restritions on the

programs are neessary than desribed in their paper). An extension of their type system [Han89a℄

allows the appliation of higher-order programming tehniques [Han89b℄ but needs type information

at run time to ensure that \well-typed programs do not go wrong". This is also true for order-sorted

type systems where types may be related by an inlusion relation [SNGM89℄. But it has been shown

that type information at run time is not superuous but may avoid unneessary omputations and

redue the searh spae [SS85℄ [HV87℄.

Smolka [Smo89℄ and Hill and Topor [HT90℄ have proposed delarative type systems for logi

programming whih integrate parametri and order-sorted polymorphism. Both approahes have

several restritions on the ombination of parametri and order-sorted types. For instane, they

require that type onstrutors like list and pair must be monotoni in their arguments, i.e., list(�

1

)

is a subtype of list(�

2

) if �

1

is a subtype of �

2

. But this restrition is a severe limitation if we want to

use higher-order programming tehniques: Warren [War82℄ has shown how to simulate higher-order

programming in �rst-order logi, and the adaptation of this tehnique to a polymorphially typed

logi language is shown in [Han89b℄. In this ase there is a type onstrutor pred1 denoting the type

of unary prediates. But pred1 is not monotoni: pred1(int) is a subtype of pred1(nat) beause all

unary prediates de�ned on integers an be used if a unary prediate de�ned on naturals is required

provided that nat is a subtype of int (f. [CW85℄).

In order to solve this problem, we present a generalized delaration-based type system. We allow

the spei�ation of a subtype order by arbitrary Horn lauses for the subtype relation �. Hene

the user an delare type onstrutors whih are monotoni or anti-monotoni in their arguments.

Figure 1 shows an example of a typed logi program in our framework. It ontains the basi types

zero, posint and nat, where zero and posint are subtypes of nat, and the type onstrutors list

and pred1 of arity 1 whih are monotoni and anti-monotoni in their arguments, respetively. The

subtype order spei�ed by this program is the least quasi-ordering on the type expressions whih

satis�es all subtype axioms. Another example showing the appliation of higher-order programming

tehniques will be presented in setion 7.

Similarly to order-sorted logi, the spei�ed type struture inuenes the operational semantis

of the program, i.e., the uni�ation proedure must onsider the types of the terms to be uni�ed.

For instane, if we have to prove the literal

?- plus(X,Y,Z)

and we know that variable X has type posint, i.e., it is only allowed to bind X to positive numbers

(beause of its usage in another literal), then the �rst lause for plus must not be applied to this

literal sine 0 has type zero whih is inompatible with posint. Thus a typed uni�ation may avoid

unneessary omputations. The main result of this paper is a uni�ation proedure whih takes two

well-typed literals as input and produes a solvable set of type onstraints i� the literals are uni�able.

The solvability of these type onstraints is deidable for partiular type strutures. This uni�ation

proedure an be used for a sound and omplete resolution proedure for typed logi programs.

This paper is organized as follows. The next two setions de�ne the syntax and the delarative
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type zero, posint, nat, list/1, pred1/1

subtype zero � nat

posint � nat

� � � ) list(�) � list(�)

� � � ) pred1(�) � pred1(�)

fun 0: ! zero

fun s: nat ! posint

fun [℄ : ! list(�)

fun [..|..℄: �; list(�) ! list(�)

pred plus : nat; nat; nat

pred member: �; list(�)

plus(0,N,N)  

plus(s(N1),N2,s(N3))  plus(N1,N2,N3)

member(E,[E|L℄)  

member(E,[F|L℄)  member(E,L)

Figure 1: A logi program with parametri and order-sorted types

semantis of typed logi programs. Sine our approah is delaration-based, types are not only sets

of terms but they are present in all interpretations of the program similarly to [Smo89℄ or [HT90℄.

Setion 4 de�nes the typed Horn lause alulus whih is a sound and omplete method to prove

valid atoms. Setion 5 presents the uni�ation proedure on typed terms whih an be used for

the resolution method for typed logi programs presented in setion 6. A new appliation of our

framework is presented in setion 7. The proofs of the theorems are omitted from this paper. They

an be found in [Han91℄.

2 The typed logi language

For the de�nition of types we assume familiarity with basi notions from algebrai spei�ations as

to be found in [EM85℄. A type signature is a single-sorted signature H. Constants in H are alled

basi types and n-ary funtions in H are alled type onstrutors of arity n. For instane, the

�rst line in �gure 1 spei�es a type signature with zero, posint, nat as basi types and two type

onstrutors list and pred1 or arity 1.

By X we denote an in�nite set of type parameters

1

. T

H

(X ) denotes the term algebra over H

and X , i.e., the set of all well-formed type expressions with type parameters from X .

A type substitution � is an H-homomorphism �:T

H

(X ) ! T

H

(X ) where �(�) 6= � only for

�nitely many � 2 X . A type substitution replaes type parameters by other type expressions. We

use the following notation for the lass of all type substitutions:

TS(H;X ) := f�:T

H

(X )! T

H

(X ) j � is a type substitutiong

1

In order to avoid onfusion with variables ourring in lauses of logi programs, we use the notion \type param-

eters" for variables whih are quanti�ed over types.
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Inlusion relations between types are spei�ed by Horn lauses for the binary prediate�. A subtype

delaration is a formula

�

1

� �

0

1

; : : : ; �

n

� �

0

n

) �

0

� �

0

0

where �

i

; �

0

i

are type expressions from T

H

(X ) (i = 0; : : : ; n). If S is a set of subtype delarations, �

S

denotes the least quasi-ordering generated by S, i.e., � �

S

�

0

is true i� � � �

0

is a logial onsequene

of the Horn lause program

S [ f() � � �); (� � �; � �  ) � � )g

where �, � and  are di�erent type parameters from X .

A type spei�ation is a pair (H;S) where H is a type signature and S is a set of subtype

delarations. For instane, the parts preeded by the keywords \type" and \subtype" in �gure 1 are

a type spei�ation.

� = (H;S; Fun; Pred) is alled a polymorphi signature for logi programs if

� (H;S) is a type spei�ation with T

H

(;) 6= ;

� Fun is a set of funtion delarations of the form f :�

1

; : : : ; �

n

! � with �

i

; � 2 T

H

(X )

(n � 0)

� Pred is a set of prediate delarations of the form p:�

1

; : : : ; �

n

with �

i

2 T

H

(X ) (n � 0)

In addition, we assume that � ontains at most one type delaration for eah funtion and prediate

symbol, i.e., we exlude overloading similarly to [Smo89℄ and [HT90℄. However, this restrition does

not imply that a funtion or prediate an only be applied to arguments of a �xed type: if the delared

type ontains type parameters, then eah instane of this type (replaement of type parameters by

other type expressions) is a valid type for the funtion or prediate (parametri polymorphism), and

if some argument types have subtypes, then the funtion or prediate an also be applied to these

subtypes (inlusion polymorphism).

In the following we �x a set X of type parameters and a polymorphi signature � =

(H;S; Fun; Pred). Let V ar be a set of variable names di�erent from symbols in � and X . A

set V with elements of the form x:� where x 2 V ar and � 2 T

H

(X ) is alled a set of typed vari-

ables if � = �

0

whenever x:�; x:�

0

2 V . If � 2 TS(H;X ) is a type substitution and V a set of typed

variables, then the appliation of � to V yields a new set of typed variables de�ned by

�(V ) := fx:�(�) j x:� 2 V g

The set Term

�

(V ) of terms of type � with variables from V is the least set satisfying the

following onditions:

� x 2 Term

�

(V ) if x:�

x

2 V and �

x

�

S

�

� f(t

1

; : : : ; t

n

) 2 Term

�

(V ) if f :�

1

; : : : ; �

n

! �

0

2 Fun (n � 0), � 2 TS(H;X ), t

i

2

Term

�(�

i

)

(V ) (i = 1; : : : ; n) and �(�

0

) �

S

�
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Term(V ) denotes the set of all (well-typed) terms with variables from V , i.e., Term(V ) :=

S

�2T

H

(X )

Term

�

(V ). Elements of Term(V ) are also alled (�; V )-terms.

The de�nition of the other syntati elements of typed logi programs is straightforward: A (�; V )-

atom has the form p(t

1

; : : : ; t

n

) where p:�

1

; : : : ; �

n

2 Pred, � 2 TS(H;X ) and t

i

2 Term

�(�

i

)

(V )

(i = 1; : : : ; n). A (�; V )-goal is a �nite set of (�; V )-atoms. A (�; V )-lause is a pair P  G where

the head P is a (�; V )-atom and the body G is a (�; V )-goal. A �-term (atom, goal, lause) is a

(�; V )-term (atom, goal, lause) for some set of typed variables V . If s is a term, atom, goal et.,

then var(s) denotes the set of all typed variables ourring in s.

A typed logi program (�;P) is a polymorphi signature � together with a set of �-lauses

P. Figure 1 ontains an example of a typed logi program where the variables have the following

types:

V = fN:nat; N1:nat; N2:nat; N3:nat; E:�; F:�; L:list(�)g

3 Delarative semantis

Similarly to [Poi86℄ and [Han89a℄, we use a two-level approah for the delarative semantis of typed

logi programs. The �rst level interprets the type spei�ation (H;S) by a H-algebra and a quasi-

ordering satisfying �

S

. Type parameters vary over all elements of this H-algebra. From suh an

interpretation and the given polymorphi signature we derive a dependent order-sorted signature

whih will be interpreted as usual [SNGM89℄. Hene models for typed logi programs onsists of

two parts: a model for the spei�ed type struture and a model for the derived order-sorted logi

program. In the following we present the detailed de�nitions.

A (H;S)-type struture A (interpretation of a type spei�ation (H;S)) onsists of a set of sort

symbols S

A

, a mapping A

k

: (S

A

)

n

! S

A

for eah n-ary funtion symbol k in H (n � 0) and a quasi-

ordering �

A

� S

A

� S

A

satisfying all axioms from S. If � = (H;S; Fun; Pred) is a polymorphi

signature, then a (H;S)-type struture A determines the following sets of funtion and prediate

types:

Fun

A

:= ff :�(�

f

) j f :�

f

2 Fun; �:X ! S

A

is a type parameter assignmentg

Pred

A

:= fp:�(�

p

) j p:�

p

2 Pred; �:X ! S

A

is a type parameter assignmentg

(where �(�

f

) and �(�

p

) denotes the omponentwise appliation of � to �

f

and �

p

, respetively).

A (H;S)-type struture A an be extended to a �-interpretation by interpreting the order-sorted

signature (S

A

;�

A

; Fun

A

; P red

A

) as usual [Smo86℄ [SNGM89℄: A �-interpretation A onsists of

a (H;S)-type struture, a family of sets fA

�

j � 2 S

A

g, a mapping A

f

:D

A

f

! C

A

for eah funtion

symbol f in � and a relation A

p

� D

A

p

for eah prediate symbol p in �, where the following

onditions hold:

� C

A

: =

S

�2S

A

A

�

is alled the arrier of A

� A

�

� A

�

0

if � �

A

�

0

� D

A

f

� (C

A

)

n

if f has arity n

� D

A

p

� (C

A

)

n

if p has arity n
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� If f :�

1

; : : : ; �

n

! � 2 Fun

A

, then A

�

1

� � � � � A

�

n

� D

A

f

and A

f

(A

�

1

� � � � � A

�

n

) � A

�

� If p:�

1

; : : : ; �

n

2 Pred

A

, then A

�

1

� � � � � A

�

n

� D

A

p

In order to ompare di�erent interpretations, we de�ne homomorphisms between them. If A and B

are two �-interpretations, a �-homomorphism h from A into B is a mapping h:S

A

[C

A

! S

B

[C

B

with

� h(S

A

) � S

B

and h(C

A

) � C

B

� h(A

k

(�

1

; : : : ; �

n

)) = B

k

(h(�

1

); : : : ; h(�

n

)) for all n-ary type onstrutors k and all �

1

; : : : ; �

n

2 S

A

� h(A

�

) � B

h(�)

for all � 2 S

A

� h(D

A

f

) � D

B

f

and h(A

f

(a

1

; : : : ; a

n

)) = B

f

(h(a

1

); : : : ; h(a

n

)) for all (a

1

; : : : ; a

n

) 2 D

A

f

� h(D

A

p

) � D

B

p

and (h(a

1

); : : : ; h(a

n

)) 2 B

p

for all (a

1

; : : : ; a

n

) 2 A

p

Note that if A and B have idential type strutures and h is the identity on S

A

, then h is an order-

sorted homomorphism in the sense of [Smo86℄ and [SNGM89℄. It is easy to prove that the lass of

all �-interpretations together with the �-homomorphisms is a ategory.

A homomorphism in our typed framework onsists of a mapping between type strutures and a

mapping between appropriate order-sorted strutures. Consequently, a variable assignment in the

typed framework maps type parameters into types and typed variables into objets of appropriate

types: If A is a �-interpretation, then an assignment for (X ; V ) in A is a mapping Æ:X [ V !

S

A

[C

A

where Æ(�) 2 S

A

for all type parameters � 2 X and Æ(x) 2 A

^

Æ(�)

for all x:� 2 V (

^

Æ denotes

the extension of Æ to T

H

(X ) whih uniquely exists [EM85℄).

T is alled the free term interpretation over X and V if the following onditions hold:

1. S

T

= T

H

(X ), T

k

(�

1

; : : : ; �

n

) = k(�

1

; : : : ; �

n

) for all n-ary type onstrutors k and all type

expressions �

1

; : : : ; �

n

2 T

H

(X ), and �

T

=�

S

, i.e., the type struture of T is the initial term

model (least Herbrand model) of the type spei�ation (H;S)

2. T

�

:= Term

�

(V ) for all � 2 T

H

(X ), i.e., the arrier of T is the set of all well-typed terms with

variables from V

3. D

T

f

:=

S

f :�

1

;:::;�

n

!�2Fun

T

T

�

1

� � � � T

�

n

4. T

f

(t

1

; : : : ; t

n

) := f(t

1

; : : : ; t

n

) for all n-ary funtion symbols f and (t

1

; : : : ; t

n

) 2 D

T

f

5. D

T

p

:=

S

p:�

1

;:::;�

n

2Pred

T

T

�

1

� � � � T

�

n

6. T

p

:= ; for all n-ary prediate symbols p

It is easy to show that T is a �-interpretation. We denote this �-interpretation by T

�

(X ; V ).

Lemma 3.1 (Free term interpretation) Let A be a �-interpretation and Æ be an assignment for

(X ; V ) in A. There exists a unique �-homomorphism h from T

�

(X ; V ) into A with h(�) = Æ(�) for

all � 2 X and h(x) = Æ(x) for all x:� 2 V .
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The lemma shows that any variable assignment Æ an be extended to a �-homomorphism in a unique

way. In the following we denote this �-homomorphism again by Æ.

We are not interested in all interpretations of a polymorphi signature but only in those interpre-

tations that satisfy the lauses of a given typed logi program. In order to formalize that we de�ne

validity of atoms, goals and lauses relative to a given �-interpretation A:

� Let Æ be an assignment for (X ; V ) in A.

A; Æ j= L if L = p(t

1

; : : : ; t

n

) is a (�; V )-atom with (Æ(t

1

); : : : ; Æ(t

n

)) 2 A

p

A; Æ j= G if G is a (�; V )-goal with A; Æ j= L for all L 2 G

A; Æ j= L G if L G is a (�; V )-lause where A; Æ j= G implies A; Æ j= L

� A; V j= F if F is a (�; V )-atom, -goal or -lause with A; Æ j= F for all assignments Æ for

(X ; V ) in A

We say \L is valid in A" if A is a �-interpretation with A; var(L) j= L (analogously for goals and

lauses). A �-interpretation A is alledmodel for a typed logi program (�;P) if all lauses from P

are valid in A. A (�; V )-goal G is alled valid in (�;P) relative to V if A; V j= G for every model

A of (�;P). We shall write: (�;P; V ) j= G. Validity of atoms and lauses in (�;P) is analogously

de�ned.

This notion of validity extends validity in untyped Horn lause logi to the typed ase: In untyped

Horn lause logi an atom, goal or lause is said to be true i� it is true for all variable assignments.

In the typed ase an atom, goal or lause is said to be true i� it is true for all assignments of type

parameters and typed variables. The reason for the de�nition of validity relative to a set of variables

is that arrier sets in our interpretations may be empty in ontrast to untyped Horn logi. This is

also the ase in many-sorted logi [GM84℄. Validity relative to variables is di�erent from validity

in the sense of untyped logi. An example for suh a di�erene an be found in [Han89a℄, p. 231.

Validity in our sense is equivalent to validity in the sense of untyped logi if the types of the variables

denote non-empty sets in all interpretations. But a requirement for non-empty arrier sets is not

reasonable in the ontext of polymorphi types.

Furthermore, note that due to our two-level semantis �-interpretations may ontain more types

than spei�ed in �. For instane, if the typed logi program (�;P) ontains only one type int,

the prediate delaration p:� and the (�; fi:intg)-lause p(i)  , then (�;P; fx:�g) j= p(x) does

not hold. But the (�; fx:�g)-atom p(x) is valid in the initial model of (�;P). This is similarly

to untyped logi programming where 8xp(x) is true in the least Herbrand model of the program

fp(a) g but 8xp(x) is not a logial onsequene of fp(a) g.

Let V; V

0

be sets of typed variables. A typed substitution � is a �-homomorphism � from

T

�

(X ; V ) into T

�

(X ; V

0

) where �(�) 6= � and �(x) 6= x only for �nitely many � 2 X and x:� 2

V . Therefore a typed substitution is a ombination of a substitution on type expressions and a

substitution whih replaes typed variables by well-typed terms. A typed substitution keeps the set

of type parameters X but may hange the set of typed variables beause the types of the variables

inuene validity. We extend typed substitutions on �-atoms by:

�(p(t

1

; : : : ; t

n

)) = p(�(t

1

); : : : ; �(t

n

))
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Furthermore we de�ne:

Sub

�

(X ; V; V

0

) := f� j � is a typed substitution from T

�

(X ; V ) into T

�

(X ; V

0

)g

�

1

=

V

�

2

if �

1

2 Sub

�

(X ; V

1

; V

0

), �

2

2 Sub

�

(X ; V

2

; V

0

) with V � V

1

\ V

2

and �

1

(x) = �

2

(x)

for all x:� 2 V and �

1

(�) = �

2

(�) for all type parameters � ourring in V

By lemma 3.1, typed substitutions are determined by their behaviour on type parameters and typed

variables. Therefore we represent a typed substitution � by the following set:

f�=�(�) j �(�) 6= �; � 2 Xg [ fx=�(x) j �(x) 6= x; x:� 2 V g

For instane, the appliation of the typed substitution

� = f�=nat; E=0g

to the (�; fE:�; L:list(�)g)-atom member(E,L) yields the (�; fL:list(nat)g)-atom member(0,L).

4 The typed Horn lause alulus

This setion presents an inferene system for proving validity in typed logi programs. In ontrast

to the untyped Horn lause alulus it is neessary to ollet all variables used in a derivation

sine validity depends on the types of variables. Let (�;P) be a typed logi program. The typed

Horn lause alulus onsists of the inferene rules in �gure 2. We write (�;P; V ) ` L if

(�;P; V ) ` L ; an be dedued by these inferene rules. The following theorem states soundness

and ompleteness of the typed Horn lause alulus:

Theorem 4.1 Let (�;P) be a typed logi program, V be a set of typed variables and L be a

(�; V )-atom. Then: (�;P; V ) ` L () (�;P; V ) j= L

Axioms:

(�;P; V ) ` L G

if L G 2 P

is a (�; V )-lause

Substitution rule:

(�;P; V ) ` L G

(�;P; V

0

) ` �(L) �(G)

if � 2 Sub

�

(X ; V; V

0

)

Cut rule:

(�;P; V ) ` L G [ fL

0

g; (�;P; V ) ` L

0

 G

0

(�;P; V ) ` L G [G

0

Figure 2: The typed Horn lause alulus

5 Typed uni�ation

The SLD-resolution proedure [AvE82℄ is an eÆient method to prove validity of goals and therefore

it is used as the operational semantis of programming languages based on Horn lause logi. The

basi operation in a resolution step is the omputation of a uni�er for two atoms, i.e., a substitution

whih makes the atoms idential. Unfortunately, the lassial uni�ation proedure [Rob65℄ annot

be applied in our typed framework beause the omputed substitutions may be ill-typed.

8



Example 5.1 Consider the type struture de�ned in �gure 1 and the two atoms

plus(0; N; N) plus(X; Y; Z)

w.r.t. the typed variables fN:nat; X:posint; Y:posint; Z:posintg. The substitution omputed by the

lassial (untyped) uni�ation proedure would bind variable X to 0. But this is not a typed substi-

tution beause a variable whih is onstrained to be a positive integer must not be bound to a term

of type zero. In this example there is no typed substitution whih makes the atoms idential and

therefore the uni�ation proedure should fail.

From a pratial point of view it is important that the uni�ation proedure may fail beause of

inompatible types sine in this ase the searh spae an be redued. Thus the integration of types

into the omputation proess yields a more eÆient program exeution beause variables an be

onstrained to types and to values in a typed uni�ation proedure [SS85℄ [HV87℄.

In this setion we will present a uni�ation proedure for our typed logi. The uni�ation proe-

dure takes two well-typed atoms or terms as input and omputes a solvable set of type onstraints

(subtype relations) i� the atoms or terms are uni�able. In order to use the improved omputational

power of typed logi programs (redution of the searh tree), it is neessary to deide the solvability

of a set of type onstraints. Depending on the type struture, suh deision proedures may not

exist. But there exist deision proedures for restrited and interesting lasses of type strutures

whih an be used in our typed framework.

For a pratial uni�ation algorithm it is essential that the uni�ability of two variables an be

deided only by their types. We want to avoid situations where two terms have inompatible types

but may have instanes whih are idential. Therefore we will require that no term has two types

whih are inompatible. Formally, we all � a polymorphi signature with least types if there

exists a type �

0

with �

0

�

S

� , �

0

�

S

�

0

and t 2 Term

�

0

(V ) whenever t 2 Term

�

(V ) \ Term

�

0

(V ).

Our typed uni�ation algorithm is only omplete for polymorphi signatures with least types. We

will disuss this requirement later.

We desribe the typed uni�ation by a set of transformation rules whih generate a set of type

onstraints from a set of equations between well-typed terms. In the following we denote by E or E

0

an equation system w.r.t. V whih is a �nite multiset of elements of the form

t:�

:

= t

0

:�

0

or x:�

:

= t

where x; t; t

0

are (�; V )-terms, x is a variable and �; �

0

are type expressions. By C or C

0

we denote

a type onstraint system w.r.t. V whih is a �nite multiset of elements of the form

� � �

0

or t:�

where �; �

0

are type expressions and t is a (�; V )-term. We omit V if it is lear from the ontext.

We all a typed substitution � 2 Sub

�

(X ; V; V

0

) a solution of an equation system E and a type

onstraint system C w.r.t. V if it is a solution of eah element in E and C, where � is a solution of

� t:�

:

= t

0

:�

0

if �(t) = �(t

0

) and �(t) 2 Term

�(�)

(V

0

) \ Term

�(�

0

)

(V

0

),

� x:�

:

= t if �(x) = �(t) and �(x) 2 Term

�(�)

(V

0

),

9



Uni�ation of types

C; fx:�

x

:

= t:�g [ E

tu

�! C [ f� � �

x

; � � �g; fx:�

:

= t:�g [ E

if � is a new type parameter and �

x

6= �

Deomposition of equations

C; ff(t

1

; : : : ; t

n

):�

:

= f(t

0

1

; : : : ; t

0

n

):�

0

g [ E

tu

�! C [ f�

0

� �; �

0

� �

0

g; ft

i

:�

i

:

= t

0

i

:�

i

g

i=1;:::;n

[ E

if f :�

1

; : : : ; �

n

! �

0

is a new variant of the type delaration for f in �

Isolation of variables

C; fx:�

:

= t:�g [ E

tu

�! C; fx:�

:

= t:�g [ fx=tg(E)

if x ours in E but not in t

Commutation of variable equations

C; ft:�

:

= x:�

0

g [ E

tu

�! C; fx:�

0

:

= t:�g [ E

if t is not a variable

Deletion of equations

C; fx:�

:

= x:�g [ E

tu

�! C [ fx:�g;E

Figure 3: Transformation rules for typed uni�ation

� � � �

0

if �(�) �

S

�(�

0

),

� t:� if �(t) 2 Term

�(�)

(V

0

).

We all the pair C;E solvable if there is a solution of C;E.

Initially, E ontains only equations of the form t:�

:

= t

0

:�

0

and C ontains the type onstraints

for the variables in V (e.g., if we want to unify two terms t; t

0

2 Term(V ), then C = V and

E = ft:�

:

= t

0

:�g where � and � are new type parameters). First we transform the pair C;E by

the rules in �gure 3. In the �rst rule for typed uni�ation a new type parameter is generated whih

represents the ommon subtype of �

x

and � . In order to relate solutions of the original type onstraint

and equation system with solutions of the transformed one, we need the notion of the \extension"

of a typed substitution. Let �; �

0

2 Sub

�

(X ; V; V

0

) be typed substitutions. If the only di�erene

between � and �

0

is the behaviour on some type parameters � where �(�) = �, then �

0

is alled

extension of �.

Example 5.2 Consider the type struture de�ned in �gure 1 and the type onstraint and equation

system

fN:natg ; f0:zero

:

= N:natg (1)

whih will be transformed into the system

fN:nat; � � zero; � � natg ; fN:�

:

= 0:�g (2)

by the rules in �gure 3. The typed substitution � = fN=0g is a solution of (1) and not of (2). But �

an be extended to the typed substitution �

0

= f�=zero; N=0g whih is a solution of (2).
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Deletion of type onstraints for variables

C [ fx:�

0

g; fx:�

x

:

= t:�g [ E

s

�! C [ f� � �

x

; � � �

0

g; fx:�

:

= t:�g [ E

if � is a new type parameter

Deletion of type onstraints in equations

C; fx:�

x

:

= t:�g [ E

s

�! C [ ft:�

x

g; fx:�

x

:

= tg [ E

if x does not our in C

Deomposition of term type onstraints

C [ ff(t

1

; : : : ; t

n

):�g;E

s

�! C [ ft

1

:�

1

; : : : ; t

n

:�

n

; �

0

� �g;E

if f :�

1

; : : : ; �

n

! �

0

is a new variant of the type delaration for f in �

Deletion of multiple variable type onstraints

C [ fx:�; x:�

0

g;E

s

�! C [ fx:�; � � �; � � �

0

g;E

if � is a new type parameter

Figure 4: Transformation rules for simplifying type onstraints on terms

The following theorem states some important properties of the transformation rules for typed

uni�ation.

Theorem 5.3 (Typed Uni�ation) Let � be a polymorphi signature with least types and

tu

�!

�

be the reexive and transitive losure of the relation de�ned in �gure 3.

1. If C;E

tu

�!

�

C

0

;E

0

, then eah solution of C

0

;E

0

is a solution of C;E and eah solution of C;E

an be extended to a solution of C

0

;E

0

.

2. Eah derivation w.r.t.

tu

�! terminates.

3. Let C;E be solvable and C;E

tu

�!

�

C

0

;E

0

where C

0

;E

0

is irreduible, i.e., no rule is appliable

to C

0

;E

0

. Then E

0

has the form fx

1

:�

1

:

= t

1

:�

1

; : : : ; x

k

:�

k

:

= t

k

:�

k

g where x

1

; : : : ; x

k

are pairwise

distint variables whih do not our in t

1

; : : : ; t

k

. We all a pair C

0

;E

0

with this property in

normal form.

The normal form of a type onstraint and equation system C;E may ontain omplex type

onstraints on strutured terms whih an be easily simpli�ed. Therefore we apply the transformation

rules in �gure 4 to systems in normal form in order to obtain a type onstraint and equation system

whih has a very simple form. The next theorem states important properties of these simpli�ation

rules:

Theorem 5.4 (Simpli�ation) Let � be a polymorphi signature with least types,

s

�!

�

be the

reexive and transitive losure of the relation de�ned in �gure 4 and C;E be in normal form.

1. If C;E

s

�!

�

C

0

;E

0

, then eah solution of C

0

;E

0

is a solution of C;E and eah solution of C;E

an be extended to a solution of C

0

;E

0

.

2. Eah derivation w.r.t.

s

�! terminates.

11



3. Let C;E be solvable and C;E

s

�!

�

C

0

;E

0

where C

0

;E

0

is irreduible, i.e., no rule from �gure 4

is appliable to C

0

;E

0

. Then E

0

has the form fx

1

:�

1

:

= t

1

; : : : ; x

k

:�

k

:

= t

k

g where x

1

; : : : ; x

k

are

pairwise distint variables whih do not our in t

1

; : : : ; t

k

, and C has the form

f�

1

� �

0

1

; : : : ; �

l

� �

0

l

g [ fy

1

:�

y

1

; : : : ; y

m

:�

y

m

g

where y

1

; : : : ; y

m

are pairwise distint variables di�erent from x

1

; : : : ; x

k

. We all a pair C

0

;E

0

with this property in solved form.

Example 5.5 Consider the following polymorphi signature:

type s

0

, s

1

, s

2

subtype s

0

� s

1

s

0

� s

2

fun a0: ! s

0

fun f : s

1

; s

2

! s

0

and the type onstraint and equation system

fX:�; Y:�g ; ff(X; Y):s

0

:

= f(Y; a0):s

0

g

We obtain the following system in normal form after applying the rules in �gure 3 (we omit multiple

ourrenes of the same onstraint):

fX:�; Y:�; s

0

� s

0

g ; fX:s

1

:

= a0:s

1

; Y:s

2

:

= a0:s

2

g

The appliation of the simpli�ation rules in �gure 4 yields the following system in solved form:

fs

0

� s

0

;  � �;  � s

1

; Æ � �; Æ � s

2

; s

0

� ; s

0

� Æg ; fX:

:

= a0; Y:Æ

:

= a0g

The type onstraints in this system are solvable and f=s

0

; �=s

0

; Æ=s

0

; �=s

0

; X=a0; Y=a0g is a solution

of this system and f�=s

0

; �=s

0

; X=a0; Y=a0g is a solution of the original system.

Now we are in the following position. In order to unify two typed terms, we transform the type

onstraints of the variables together with an equation between the two terms into a redued type

onstraint and equation system by the rules for typed uni�ation in �gure 3 and simpli�ation in

�gure 4. If the redued system is not in solved form, then the two terms are not uni�able by

theorems 5.3 and 5.4. Otherwise the system has the solved form

f�

1

� �

0

1

; : : : ; �

l

� �

0

l

g [ fy

1

:�

y

1

; : : : ; y

m

:�

y

m

g ; fx

1

:�

1

:

= t

1

; : : : ; x

k

:�

k

:

= t

k

g

whih is solvable i� the subtype onstraints for the relation � are solvable. Hene to deide the

uni�ability of two typed terms, we must deide the solvability of a type onstraint system of the

form

CS = f� � �

0

j �; �

0

2 T

H

(X )g

Generally, we allow arbitrary Horn lauses for the de�nition of � and therefore this problem is

undeidable. Fortunately, there are restrited but interesting type strutures for whih positive

results are known:
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1. Smolka [Smo89℄ allows subtype relations between arbitrary type onstrutors (e.g., between ba-

si types and polymorphi types), but he requires that all type onstrutors must be monotoni

in their arguments and he has some further requirements on the type struture (see [Smo89℄

for details). Under these onditions the solvability of CS is deidable if CS does not ontain

type parameters. If CS ontains type parameters, the solvability is an open problem in his

framework.

2. Hill and Topor [HT90℄ also require the monotoniity of all type onstrutors and they allow

only subtype relations between type onstrutors of the same arity. The solvability of CS is

deidable under these restritions.

3. Fuh and Mishra [FM88℄ have worked on the problem of polymorphi type inferene for a

funtional language whih inludes subtypes. In their approah they have also treated the

problem of �nding a solution of a set of subtype onstraints. They have developed a solving

algorithm for the ase where there are only subtype relations between basi types and all

type onstrutors (like \!" for funtion spae and pair for produts) are monotoni or anti-

monotoni in their arguments. Their algorithm is divided into three parts:

(a) math is the �rst part whih transforms the subtype onstraints into subtype onstraints

where the left-hand side and the right-hand side have the same shape (e.g., � � list(nat)

is transformed into list(�) � list(nat) by substituting � by list(�)).

(b) simplify redues the subtype onstraints into a set of subtype onstraints between basi

types and type parameters by onsidering the (anti-) monotoniity property of the type

onstrutors (e.g., list(�) � list(nat) is redued to � � nat).

() onsistent heks whether there exists a substitution for the type parameters suh that all

basi subtype onstraints are satis�ed.

Hene we an use their algorithm to deide the uni�ability of terms in our typed framework if

there are only subtype relations between basi types and all type onstrutors are monotoni

or anti-monotoni in their arguments, i.e., if all subtype delarations have the form

� � �

0

where � and �

0

are basi types

or

�

1

� �

1

; : : : ; �

n

� �

n

) h(�

1

; : : : ; �

n

) � h(�

1

; : : : ; �

n

)

or

�

1

� �

1

; : : : ; �

n

� �

n

) h(�

1

; : : : ; �

n

) � h(�

1

; : : : ; �

n

)

(or mixtures of the last two ases). Thus we have found a uni�ation algorithm for the important

ase of logi programs with higher-order programming tehniques and a parametri order-sorted

type system (see also setion 7).

Sine we are mainly interested in type systems with these restritions, we will disuss the

restrition to \polymorphi signatures with least types" w.r.t. suh type strutures. Sine all

subtype relations between types are onsequenes of inlusions between basi types, we assume

that the set of basi types with its subtype relation an be extended to a lattie by augmenting

13



bottom and top elements ? and > whih are onsidered as type errors (sine there are no

terms of this type). Unfortunately, this is not suÆient for least types. For example, onsider

a polymorphi onstant like

fun [℄: ! list(�)

Then the term [℄ has types list(zero) and list(posint) but there is no valid ommon subtype

of these two types. Hene the signature of �gure 1 does not have least types. Smolka [Smo89℄

solves this problem by introduing a bottom type ? whih is a subtype of any type, i.e., list(?)

is the least type of [℄. But this auses the problem that there are subtype relations between

basi types and type onstrutors whih we want to avoid in order to apply Fuh and Mishra's

algorithm. Another solution an be found in Reynolds' polymorphi typed lambda alulus

[Rey74℄ where a type must be spei�ed if a polymorphi funtion should be applied, i.e., the

�rst argument of a polymorphi funtion is always a type. Although we an not deal with types

at the objet level in our framework, we an simulate this idea by hanging the delaration of

the empty list into

fun [℄: � ! list(�)

Now the argument of [℄ indiates the type instantiation of the polymorphi onstant, i.e., the

term [℄(X) has type list(posint) if variable X has type posint. Therefore the least type of the

term [℄(: : :) an be omputed from the least type of the argument.

Thus in order to satisfy the ondition for least types, we transform typed logi programs in the

following way. For eah funtion originally delared by f :�

1

; : : : ; �

n

! � where f�

1

; : : : ; �

k

g

(k > 0) are the type parameters ourring in � but not in �

1

; : : : ; �

n

, we do the following:

Change the delaration of f into

f :�

1

; : : : ; �

k

; �

1

; : : : ; �

n

! �

and add k new variables of appropriate types (the urrent instanes of the �

i

) as new arguments

in eah ourrene of f in the program lauses. Sine this transformation an automatially

be done, we omit it in the examples of this paper.

We will use the typed uni�ation proedure presented in this setion to unify an atom in a goal with

a head of a lause. In order to apply the typed uni�ation proedure for this ase we introdue a

new basi type bool and delare eah prediate symbol of type

p: �

1

; : : : ; �

n

as a funtion symbol of type

p: �

1

; : : : ; �

n

! bool

Then we an unify two (�; V )-atoms A

1

and A

2

as follows: Transform the pair

V ; fA

1

:bool

:

= A

2

:boolg

by applying the rules for typed uni�ation and, if a normal form is obtained, the rules for simpli�-

ation. If the result of this transformation is a pair C;E in solved form, we write

V ; fA

1

:bool

:

= A

2

:boolg

u

�! V

0

;C

0

;E

14



where V

0

= fy

1

:�

y

1

; : : : ; y

m

:�

y

m

g, C

0

= f�

1

� �

0

1

; : : : ; �

l

� �

0

l

g and V

0

[ C

0

= C. The set of equations

E an be interpreted as an expliit representation of a typed uni�er if the orresponding set of type

onstraints is solvable. Therefore we de�ne the solutions of the type onstraint system C

0

by

Sol(C

0

) := f� 2 TS(H;X ) j � is a solution of all onstraints in C

0

g

If � 2 Sol(C

0

) and E = fx

1

:�

1

:

= t

1

; : : : ; x

k

:�

k

:

= t

k

g, then

�

�

E

:= f�=�(�) j �(�) 6= �; � 2 Xg [ fx

1

=t

1

; : : : ; x

k

=t

k

g 2 Sub

�

(X ; V; �(V

0

))

is alled the typed substition orresponding to � and E. The following lemma shows that �

�

E

is indeed a well-de�ned typed substition:

Lemma 5.6 Let V ; fA

1

:bool

:

= A

2

:boolg

u

�! V

0

;C

0

;E and � 2 Sol(C

0

) be a solution of C

0

. Then

�

�

E

is a typed substition from Sub

�

(X ; V; �(V

0

)) with �

�

E

(A

1

) = �

�

E

(A

2

).

The next lemma shows that the typed uni�ation algorithm omputes a omplete set of uni�ers:

Lemma 5.7 Let � be a polymorphi signature with least types, A and A

0

be (�; V )-atoms and

� 2 Sub

�

(X ; V; V

0

) be a typed substitution with �(A) = �(A

0

). Then there is a derivation

V ; fA:bool

:

= A

0

:boolg

u

�! V

0

;C

0

;E

and � 2 Sol(C

0

) and � 2 Sub

�

(X ; �(V

0

); V

0

) with � Æ �

�

E

=

V

�.

6 Resolution

The resolution method in untyped Horn logi (see [Llo87℄) is an eÆient proedure to prove validity

of goals w.r.t. Horn lause programs. It is the basi operational priniple of logi programming

languages like Prolog. Therefore we want to adopt this method for typed logi programs. Sine

types inuene validity or, from an operational point of view, types restrit the set of appliable

lauses in a resolution step, it is neessary to modify the resolution method from untyped Horn logi.

In our framework we have to replae the untyped uni�ation proedure in a resolution step by a

typed one. In the last setion we have presented a uni�ation proedure for typed terms: it takes a

set of onstraints (initially the type delarations for variables) and a set of equations and produes

a new set of type onstraints and a new set of equations in solved form (if a uni�er exists).

We all a �-lause a variant of another �-lause if it is obtained by replaing type parameters

and typed variables by other type parameters and typed variables, respetively, suh that di�erent

variables are replaed by new di�erent variables. Let (�;P) be a typed logi program, V be a set

of typed variables, and G [ fLg be a (�; V )-goal. Then a resolution step is de�ned by the ternary

relation

V ;G [ fLg

r

�!

�;P

�

�

E

�(V

0

); �(G [G

0

)

where L

0

 G

0

is a (�; V )-lause whih is a variant of a lause from P and has no variables in ommon

with G [ fLg, and there exists a uni�ation V ; fL:bool

:

= L

0

:boolg

u

�! V

0

;C

0

;E with � 2 Sol(C

0

).

Note that �

�

E

is a typed substitution from Sub

�

(X ; V; �(V

0

)) by lemma 5.6.
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A resolution is a sequene of the form

V

0

;G

0

r

�!

�;P

�

1

V

1

;G

1

r

�!

�;P

�

2

� � �

r

�!

�;P

�

n

V

n

;G

n

where V

i

is a set of typed variables and G

i

is a (�; V

i

)-goal (for i = 0; : : : ; n). This resolution will be

also denoted by

V

0

;G

0

r

�!

�;P

n

� V

n

;G

n

where � := �

n

Æ � � � Æ �

1

. The resolution is alled suessful if G

n

= ;. In this ase n is alled the

length of the resolution, and � is alled a omputed answer. We replae

r

�!

�;P

n

by

r

�!

�;P

�

if the

preise value of n is not needed.

Theorem 6.1 (Soundness of resolution) Let (�;P) be a typed logi program, V be a set of

typed variables and G be a (�; V )-goal. If there is a suessful resolution V ;G

r

�!

�;P

�

� V

0

; ;, then

(�;P; V

0

) j= �(G).

Similarly to the untyped ase, resolution is only omplete in the sense that every orret answer

is an instane of a omputed answer:

Theorem 6.2 (Completeness of resolution) Let � be a polymorphi signature with least types,

(�;P) be a typed logi program, V be a �nite set of typed variables and G be a (�; V )-goal. If

� 2 Sub

�

(X ; V; V

0

) is a typed substitution with (�;P; V

0

) j= �(G), then there exist a set of typed

variables V

0

� V and a resolution V

0

;G

r

�!

�;P

�

�

0

V

1

; ;. Furthermore, there is a typed substitution

� 2 Sub

�

(X ; V

1

; V

0

) with � Æ �

0

=

V

�.

These two theorems justify the implementation of resolution with our typed uni�ation proedure

as a proof method for logi programs with parametri and order-sorted types. For the omputation of

a typed uni�er in eah resolution step our method presented in setion 5 an be used. This uni�ation

proedure transforms the uni�ation problem into a set of type onstraints. In the desription of

the resolution method we have assumed that a solution of these type onstraints is immediately

omputed in eah resolution step. But it is also possible to ollet all generated type onstraints in

the resolution proess and solve this onstraints after deriving the goal to the empty goal. Suh a

method is similar to \onstraint logi programming" [JL87℄ and may save unneessary baktraking

steps over di�erent solutions of the type onstraints. However, it must be heked whether the type

onstraints are solvable in eah resolution step. Otherwise we lose the advantage of reduing the

searh tree by integrating types into the resolution proess.

7 Appliations: Higher-order programming

Higher-order programming is an important programming tehnique used in funtional programming

languages beause it leads to smaller and more readable programs. Many researhers have also tried

to integrate higher-order features into logi programming languages. A semantially lean integra-

tion of suh features into logi programming needs a uni�ation proedure on lambda expressions.

A logi language with suh a feature has been proposed by Miller and Nadathur [MN86℄. Sine

higher-order uni�ation is a omplex task and undeidable in general, it has been argued that it is
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type zero, posint, nat, list/1, pred1/1

subtype zero � nat

posint � nat

� � � ) list(�) � list(�)

� � � ) pred1(�) � pred1(�)

fun 0: ! zero

fun s: nat ! posint

fun [℄ : ! list(�)

fun [..|..℄: �; list(�) ! list(�)

fun �even : ! pred1(nat)

pred has property: list(�); pred1(�)

pred apply1: pred1(�); �

pred even : nat

even(0)  

even(s(s(N)))  even(N)

has property([℄,P)  

has property([E|L℄,P)  apply1(P,E), has property(L,P)

apply1(�even,N)  even(N)

Figure 5: A typed logi program with higher-order prediates

suÆient to simulate higher-order programming tehniques by a �rst-order spei�ation of an apply

prediate [War82℄ sine there is a systemati and eÆient method to translate lambda expressions

into Prolog [CvER89℄. Although this method has been used to implement a polymorphially typed

funtional-logi language with higher-order objets [BG86℄, it has been shown in [Han89b℄ that this

approah is inompatible with polymorphi type systems for logi programming like [MO84℄ and

[Smo89℄. Sine some restritions of these type systems are dropped in our framework and we do not

require the monotoniity of type onstrutors, we an use Warren's method to integrate higher-order

programming tehniques into a logi language with a parametri order-sorted type system.

We demonstrate Warren's idea by a simple example. For this purpose we want to de�ne a binary

prediate has property whih is satis�ed if all elements of a list (�st argument) have a ertain

property (seond argument). The property is desribed as a unary prediate (f. [SS86℄, p. 281).

In order to treat unary prediates as objets, we de�ne for eah unary prediate p of type \�" a

orresponding onstant �p of type \pred1(�)". pred1 is a type onstrutor whih denotes the type

of unary prediates and is anti-monotoni in its argument beause all unary prediates de�ned on a

type � an be used if a unary prediate de�ned on a subtype is required. The relation between eah

unary prediate p and its funtional abstration �p is spei�ed by Horn lauses for the prediate

apply1. Figure 5 ontains the omplete typed logi program for this example. Note that the lause

for apply1 is not well-typed in the sense of [MO84℄ and [Smo89℄ beause in the head of this lause

apply1 is used with an instane of its delared type whih is forbidden in these type systems.

In order to show an appliation of our typed uni�ation proedure we de�ne an additional pred-
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iate whih is satis�ed if a �xed list of positive integers satis�es a ertain property:

pred listprop: pred1(posint)

listprop(P)  has property([s(s(0)), s(s(s(s(0)))), s(s(0))℄, P)

If we want to prove the goal

listprop(�even)

this atom has to be uni�ed with the head of the lause, i.e., the typed uni�ation proedure is started

with the following type onstraint and equation system:

fP:pred1(posint)g ; flistprop(�even):bool

:

= listprop(P):boolg

The appliation of the rules for typed uni�ation and simpli�ation in �gures 3 and 4 yields the

following system in solved form:

fbool � bool; pred1(nat) � �; � � pred1(posint)g ; fP:�

:

= �eveng

The type substitution f�=pred1(posint)g is a solution of the last type onstraint system sine

pred1(nat) � pred1(posint) is a logial onsequene of the spei�ation for � in �gure 5. This

solution an be omputed by the algorithm in [FM88℄.

This example shows that it is possible to treat higher-order objets in our typed framework.

Generally, it is possible to translate arbitrary lambda expressions into lauses for an apply prediate

[CvER89℄. More details about this method of higher-order logi programming in a polymorphially

typed framework an be found in [Han89b℄.

8 Conlusions and related work

We have presented a delarative type system for logi programs whih ombines parametri and

inlusion polymorphism. In order to drop limitations of other type systems with a similar goal,

we have assumed that the inlusion order is spei�ed by Horn lauses for the subtype relation �.

This allows the delaration of type strutures where the type onstrutors are not required to be

monotoni. Therefore logi programs with a parametri order-sorted type struture inluding higher-

order prediates an be spei�ed in our framework.

We have de�ned the semantis of our type system in a model-theoreti way. Parametri types

are interpreted as a universal quanti�ation over all types, and order-sorted type strutures are

interpreted as order-sorted algebras [SNGM89℄. On the operational side we have shown that the

well-known resolution priniple an be used to prove goals if the untyped uni�ation is replaed by a

uni�ation proedure whih onsiders the types of the terms. We have presented suh a uni�ation

proedure for our typed framework. It takes a pair of terms together with the variable types as input

and produes a set of subtype onstraints as the result if the terms are uni�able. The satis�ability of

suh subtype onstraints is deidable for partiular lasses of type strutures, e.g., where only basi

types are related by subtype inlusion and all type onstrutors are monotoni or anti-monotoni in

their arguments. This inludes the lass of typed logi programs with higher-order objets.
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Smolka [Smo89℄ and Hill and Topor [HT90℄ have also proposed typed logi languages with para-

metri and order-sorted types. In their framework the heads of lauses de�ning polymorphi predi-

ates must be of the most general type and all type onstrutors must be monotoni in their argu-

ments. This exludes an important programming tehnique as shown in setion 7. Our framework

drops the �rst restrition and assumes that the subtype relation is delared by Horn lauses. There-

fore we only require that the subtype relation is a quasi-ordering (whih an be spei�ed by Horn

lauses) and not a partial order as required in [Smo89℄ and [HT90℄. This auses no problems in the

semantis sine quasi-orderings are suÆient for order-sorted logi [Smo86℄.

Another approah to polymorphi type systems with subsorts for logi programming has been

presented in [Han90℄ where subsort relationships are desribed by equations. This has the advantage

that well-known equation solving tehniques an be used for the typed uni�ation proedure but the

disadvantage that the ombination of polymorphism and subtyping is more restrited. Moreover,

the semantis of our presented framework is a diret extension of order-sorted logi (\subsorts are

subsets") in ontrast to [Han90℄.

There are a lot of diretions for further work. For instane, we have ited the deidability

results of Fuh and Mishra [FM88℄ whih are restrited to type strutures where all type onstrutors

are monotoni or anti-monotoni in their arguments and no other subtype relations between type

onstrutors exists. But it seems possible to extend this algorithm to the ase where subtype relations

between type onstrutors of the same arity are allowed, sine Hill and Topor have developed positive

results for similar type strutures (with monotoni type onstrutors). Another researh diretion is

the improvement of the type heks in the uni�ation proedure. For a lot of ases it seems that the

type heks an be simpli�ed (e.g., for monomorphi goals [Smo89℄) or ompletely omitted (for type

strutures without subtypes and with restritions on the use of polymorphi prediates [Han89b℄).

The development of suh optimizations is important for an eÆient implementation of our typed

logi language.
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