
Mode Analysis of Fun
tional Logi
 Programs

?

Mi
hael Hanus Frank Zartmann

Max-Plan
k-Institut f�ur Informatik

Im Stadtwald, D-66123 Saarbr�u
ken, Germany

mi
hael,frank�mpi-sb.mpg.de

In Pro
. 1st International Stati
 Analysis Symposium, Namur (Belgium),

pp. 26{42, Springer LNCS 864, 1994

Abstra
t. Fun
tional logi
 languages amalgamate fun
tional and logi

programming paradigms. They
an be eÆ
iently implemented by extend-

ing te
hniques known from logi
 programming. Su
h implementations
an

be largely improved if information about the run-time behavior, in par-

ti
ular the modes of fun
tion
alls, is available at
ompile time. In this

paper we present a framework to derive su
h global information. The

on
rete operational semanti
s
onsidered in this paper is normalizing

innermost narrowing, whi
h
ombines the deterministi
 redu
tion prin-

iple of fun
tional languages with the nondeterministi
 sear
h prin
iple

of logi
 languages. Due to the normalization pro
ess between narrowing

steps, standard analysis frameworks for logi
 programming
annot be ap-

plied. Therefore we develop new te
hniques to
orre
tly approximate the

e�e
t of the intermediate normalization pro
ess.

1 Introdu
tion

A lot of proposals have been made to amalgamate fun
tional and logi
 pro-

gramming languages (see [15℄ for a re
ent survey). Fun
tional logi
 languages

with a sound and
omplete operational semanti
s are based on narrowing (e.g.,

[9, 11, 25, 27℄), a
ombination of the redu
tion prin
iple of fun
tional languages

and the resolution prin
iple of logi
 languages. Narrowing solves equations by

�nding appropriate values for variables o

urring in goal equations. This is done

by unifying an input term with the left-hand side of some rule and then repla
ing

the instantiated input term by the instantiated right-hand side of the rule.

Example 1. The following rules de�ne the addition of two natural numbers whi
h

are represented by terms built from 0 and s:

0 + N ! N (R

1

)

s(M) + N ! s(M + N) (R

2

)

To solve the equation X+s(0)=s(s(0)), we apply a narrowing step with rule

R

2

. This instantiates X to s(M). The resulting left-hand side s(M+s(0)) is nar-

rowed with rule R

1

so that M is instantiated to 0. Sin
e the resulting equation,

s(s(0))=s(s(0)), is trivially true, we have
omputed the solution X 7!s(0) to

the initial equation. 2

?

The resear
h des
ribed in this paper was supported in part by the German Ministry

for Resear
h and Te
hnology (BMFT) under grant ITS 9103. The responsibility for

the
ontents of this publi
ation lies with the authors.

In order to ensure
ompleteness in general, ea
h rule must be uni�ed with ea
h

non-variable subterm of the given equation whi
h yields a huge sear
h spa
e.

This situation
an be improved by parti
ular narrowing strategies whi
h restri
t

the possible positions for the appli
ation of the next narrowing step (see [15℄ for

a detailed survey). In this paper we are interested in an innermost narrowing

strategy where a narrowing step is performed at the leftmost innermost position.

This
orresponds to eager evaluation in fun
tional languages.

However, the restri
tion to parti
ular narrowing positions is not suÆ
ient to

avoid a lot of useless derivations sin
e the un
ontrolled instantiation of variables

may
ause in�nite loops. For instan
e,
onsider the rules in Example 1 and the

equation (X+Y)+Z=0. Applying innermost narrowing to this equation using rule

R

2

produ
es the following in�nite derivation (the instantiation of variables o
-

urring in the equation is re
orded at the derivation arrow):

(X+Y)+Z=0;

X 7!s(X1)

s(X1+Y)+Z=0;

X17!s(X2)

s(s(X2+Y))+Z=0;

X27!s(X3)

� � �

To avoid su
h useless derivations, narrowing
an be
ombined with simpli�
ation

(evaluation of a term): Before a narrowing step is applied, the equation is rewrit-

ten to normal form w.r.t. the given rules [8, 9℄ (thus this strategy is also
alled

normalizing narrowing). The in�nite narrowing derivation above is avoided by

rewriting the �rst derived equation to normal form:

s(X1+Y)+Z=0 ! s((X1+Y)+Z)=0

The last equation
an never be satis�ed sin
e the terms s((X1+Y)+Z) and 0 are

always di�erent due to the absen
e of rules for the symbols s and 0. Hen
e we

an safely terminate the unsu

essful narrowing derivation at this point.

Generally, the integration of rewriting into narrowing derivations yields a

better
ontrol strategy than Prolog's SLD-resolution due to the redu
tion of the

sear
h spa
e and the preferen
e for deterministi

omputations (see [9, 12, 13℄

for more details).

2

Therefore we
onsider in this paper a normalizing innermost

narrowing strategy where the
omputation of the normal form between narrow-

ing steps is performed by applying rewrite rules from innermost to outermost

positions, i.e., a rewrite rule is applied to a term only if ea
h of its subterms is

in normal form. Su
h an operational semanti
s
an be eÆ
iently implemented by

extending
ompilation te
hniques known from logi
 programming [11, 12℄.

In logi
 programming it has been shown that the eÆ
ien
y of programs
an be

largely improved if information about parti
ular run-time properties is available

at
ompile time (e.g., [22, 24, 28, 29, 30, 31, 32℄). Moreover, in [16℄ it has been

shown that there are useful optimizations whi
h are unique to fun
tional logi

programs based on a normalizing narrowing strategy like ALF [11, 12℄, LPG [2℄,

or SLOG [9℄. Thus we need methods to derive the ne
essary information about

the run-time behavior at
ompile time. The following example demonstrates that

standard methods for the analysis of logi
 programs
annot be used.

2

Note that the normalization of terms between narrowing steps is a deterministi

pro
ess due to the uniqueness of normal forms.

2

Example 2. Consider the rules of Example 1 and the following additional rule:

0*N ! 0 (R

3

)

We are interested in the instantiation state of the variables after evaluating the

goal 0*(X+Y)=Z. From a logi
 programming point of view, where all subgoals are

ompletely evaluated to prove the entire goal, we
ould infer that the evaluation

of the innermost subterm X+Y binds X to a ground term before the outermost

fun
tion * is evaluated. However, this is wrong if normalization is taken into

a

ount. Sin
e the entire goal is normalized before a narrowing step is applied,

the goal is redu
ed to 0=Z by a rewrite step with rule R

3

. Hen
e X remains

unbound sin
e the subterm X+Y is deleted during the normalization pro
ess. The

deletion of subgoals has no
orresponden
e in logi
 programming and therefore

analysis methods for logi
 programming do not apply. 2

This example shows that the analysis of normalizing narrowing requires a safe

approximation of the e�e
t of the normalization pro
ess before ea
h narrowing

step. After a pre
ise de�nition of the operational semanti
s in Se
tion 2, we re-

view the notion of modes for fun
tional logi
 programs in Se
tion 3. We dis
uss

problems related to the automati
 derivation of modes in Se
tion 4. In Se
tion 5

we present our method to approximate modes at
ompile time. Due to la
k of

spa
e, some details and the
orre
tness proofs of the framework are omitted.

They
an be found in [33℄.

2 Normalizing Innermost Narrowing

In this se
tion, we re
all basi
 notions of term rewriting [7℄ in order to de�ne the

operational semanti
s
onsidered in this paper.

A signature is a set F of fun
tion symbols together with their arity. If X is

a
ountably in�nite set of variables disjoint from F , then T (F ;X) denotes the

set of terms built from F and X . The set of variables o

urring in a term t is

denoted by Var(t). A term t is
alled ground if Var(t) = ;.

Usually, fun
tional logi
 programs are
onstru
tor-based, i.e., a distin
tion is

made between operation symbols to
onstru
t data terms,
alled
onstru
tors,

and operation symbols to operate on data terms,
alled de�ned fun
tions or op-

erations (see, for instan
e, the fun
tional logi
 languages ALF [11℄, BABEL [25℄,

K-LEAF [10℄, SLOG [9℄). Hen
e we assume that the signature F is partitioned

into two sets F = C [D with C \ D = ;. A
onstru
tor term t is built from

onstru
tors and variables, i.e., t 2 T (C;X). An innermost term t [9℄ is an op-

eration applied to
onstru
tor terms, i.e., t = f(t

1

; : : : ; t

n

) with f 2 D and

t

1

; : : : ; t

n

2 T (C;X). A fun
tion
all f(t

1

; : : : ; t

n

) is an operation f 2 D applied

to arbitrary terms.

A (rewrite) rule l! r is a pair of an innermost term l and a term r satisfying

Var(r) � Var(l) where l and r are
alled left-hand side and right-hand side,

respe
tively. A rule is
alled a variant of another rule if it is obtained by a unique

repla
ement of variables by other variables. A term rewriting system R is a set

3

of rules.

3

In the following we assume a given term rewriting system R.

Substitutions and most general uni�ers (mgu) are de�ned as usual. A position

p in a term t is represented by a sequen
e of natural numbers, tj

p

denotes the

subterm of t at position p, and t[s℄

p

denotes the result of repla
ing the subterm

tj

p

by the term s (see [7℄ for details). Pos(t) denotes the set of all positions in a

term t and NPos(t) denotes the set of positions p of the term t with the property

that rj

p

2 X or rj

p

= f(�s); f 2 D. The binary relation < on Pos(t) is the union

of the relations f(p; q) j q is a proper pre�x of pg and f(p; q) j p = �:i:p

0

; q =

�:j:q

0

and i < jg. It re
e
ts the leftmost innermost ordering.

A rewrite step is an appli
ation of a rewrite rule to a term, i.e., t!

R

s if there

exist a position p in t, a rewrite rule l ! r and a substitution � with tj

p

= �(l)

and s = t[�(r)℄

p

. In this
ase we say t is redu
ible. A term t is
alled irredu
ible

or in normal form if there is no term s with t!

R

s.

!

�

R

denotes the transitive-re
exive
losure of the rewrite relation !

R

. R is

alled terminating if there are no in�nite rewrite sequen
es t

1

!

R

t

2

!

R

� � �. R

is
alled
on
uent if for all terms t, t

1

, t

2

with t!

�

R

t

1

and t!

�

R

t

2

there exists

a term t

3

with t

1

!

�

R

t

3

and t

2

!

�

R

t

3

.

IfR is
on
uent and terminating, we
an de
ide the validity of an equation s=t

by
omputing the normal form of both sides using an arbitrary sequen
e of rewrite

steps. In order to solve an equation, we have to �nd appropriate instantiations for

the variables in s and t. This
an be done by narrowing. A term t is narrowable

into a term t

0

if there exist a non-variable position p in t (i.e., tj

p

62 X), a

variant l ! r of a rewrite rule and a substitution � su
h that � is a most

general uni�er of tj

p

and l and t

0

= �(t[r℄

p

). In this
ase we write t ;

�

t

0

.

In order to solve an equation s=t, we
onsider = as a new
onstru
tor symbol

and apply narrowing steps until we obtain an equation s

0

=t

0

where s

0

and t

0

are uni�able. The
omposition of all uni�ers in the derivation restri
ted to the

variables of the initial equation is the
omputed solution (
f. Example 1). Sin
e

this simple narrowing pro
edure (enumerating all narrowing derivations) has a

huge sear
h spa
e, several authors have improved it by restri
ting the admissible

narrowing derivations (see [15℄ for a detailed survey). In the following we
onsider

normalizing innermost narrowing derivations [9℄ where

{ the narrowing step is performed at the leftmost innermost subterm, and

{ the term is simpli�ed to its normal form before a narrowing step is performed

by applying rewrite rules from innermost to outermost positions.

The innermost strategy provides an eÆ
ient implementation [11, 12, 19, 21℄,

whereas the normalization pro
ess is important sin
e it prefers deterministi

om-

putations: rewriting a term to normal form
an be done in a deterministi
 way

3

We will apply rules in two ways: (a) in rewrite steps to evaluate terms, and (b) in

narrowing steps to solve equations. Therefore we will sometimes distinguish between

rewrite rules and narrowing rules. Usually, the set of rewrite rules and the set of

narrowing rules are identi
al, but in some languages it is also possible to use some

rules only for rewrite steps or only for narrowing steps (e.g., in ALF [11, 12℄ or SLOG

[9℄).

4

sin
e every rewrite sequen
e yields the same result (be
ause R is
on
uent and

terminating), whereas di�erent narrowing steps may lead to di�erent solutions

and therefore all admissible narrowing steps must be
onsidered. Soundness and

ompleteness results for this strategy
an be found in [9℄.

3 Modes for Fun
tional Logi
 Programs

It has been shown that mode information is useful to optimize the
ompiled
ode

of pure logi
 programs [22, 24, 29, 31, 32℄. A mode for a predi
ate is a des
ription

of the possible arguments of a predi
ate when it is
alled [32℄. E.g., the mode

p(g; f; a) spe
i�es that the �rst argument is a ground term, the se
ond argument

is a free variable, and the third argument is an arbitrary term for all
alls to

predi
ate p. The notion of a \mode" in fun
tional logi
 programs is di�erent from

pure logi
 programs be
ause fun
tions are evaluated by narrowing as well as by

rewriting. In order to provide a better understanding of the subsequent se
tions,

we review the notion of modes for fun
tional logi
 programs as introdu
ed in [16℄.

Example 3. In this example we dis
uss a derivation w.r.t. the normalizing in-

nermost narrowing strategy. Consider the rules of Example 1 and the goal

X+(X+X)=s(s(s(0))). To
ompute a solution to this equation, we iterate the

redu
tion to normal form with a subsequent narrowing step at the leftmost in-

nermost subterm. Hen
e the left-hand side X+(X+X) is evaluated as follows (the

rule applied in ea
h step is listed in the rightmost
olumn):

X+(X+X);

X 7!s(M)

s(M)+s(M+s(M)) R

2

!

R

s(M+s(M+s(M))) R

2

;

M 7!0

s(0+s(s(0))) R

1

!

R

s(s(s(0))) R

1

Sin
e the term is already in normal form, the �rst step is a narrowing step at

the inner subterm X+X. To normalize the resulting term, a rewrite step with rule

R

2

is applied to the outermost o

urren
e of +. It follows a narrowing step at

the inner subterm M+s(M) and a rewrite step at the remaining o

urren
e of +.

Thus fX 7! s(0)g is the
omputed solution. This derivation has the following

interesting properties:

1. The operation + is evaluated both by narrowing and rewrite steps.

2. If a narrowing step is applied to +, the �rst argument is always an unbound

variable.

3. If a rewrite step is applied to +, the �rst argument is partially instantiated.

2

Therefore we distinguish between a narrowing mode and a rewrite mode for ea
h

fun
tion. The narrowing mode des
ribes the instantiation state of a fun
tion
all

if a narrowing step is applied to it (+(f; a) in the previous example) and the

rewrite mode des
ribes the instantiation state if a rewrite step is applied (+(a; a)

in the previous example). Sin
e narrowing and rewrite rules are usually
ompiled

into di�erent
ode sequen
es [11, 12℄, this distin
tion is ne
essary to optimize the

5

ompiled
ode, i.e., to spe
ialize the uni�
ation/mat
hing instru
tions and the

indexing s
heme (as done in pure logi
 programs). Moreover, using this kind of

mode information it is possible to avoid unne
essary rewrite attempts,
ompile

rewrite derivations in a more eÆ
ient way, delete unne
essary rewrite or nar-

rowing rules et
. (see [16℄ for more details). However, a safe approximation of

these modes is more
ompli
ated than in the pure logi
 programming
ase due to

some global e�e
ts of the normalization pro
ess (
f. Example 2). In the following

se
tion we dis
uss these problems and potential solutions.

4 Automati
 Derivation of Modes: Problems

Bos
o et al. [3℄ have shown that innermost narrowing without normalization is

equivalent to SLD-resolution if the fun
tional logi
 program is transformed into

a
at program without nested fun
tion
alls. For instan
e, we
ould transform

the rules of Examples 1 and 2 into the
at logi
 program

add(0,N,N).

add(s(M),N,s(Z)) :- add(M,N,Z).

mult(0,N,0).

where add and mult
orrespond to the fun
tions + and * with their result values.

The nested fun
tion
all in the right-hand side of rule R

2

has been repla
ed by

the new variable Z and the additional
ondition add(M,N,Z). There is a strong

orresponden
e between innermost narrowing derivations w.r.t. rules R

1

, R

2

and

R

3

and SLD-derivations w.r.t. the transformed logi
 program.

Due to these similarities of narrowing and SLD-resolution, one
ould try to

apply abstra
t interpretation te
hniques developed for logi
 programming (e.g.,

[5, 20, 26℄) to derive the desired information. E.g., to derive the narrowing mode

of the fun
tion + w.r.t. the
lass of initial goals x+y=z, where x and y are always

ground and z is a free variable, we
ould use an abstra
t interpretation framework

for logi
 programming to infer the
all modes of the predi
ate add w.r.t. the
lass

of initial goals add(x,y,z). In this
ase we infer that the
all mode is add(g; g; f)

and the argument z of the initial goal will be bound to a ground term at the end

of a su

essful
omputation. Hen
e we
ould dedu
e that +(g; g) is the narrowing

mode of the fun
tion +.

However, we have shown in Example 2 that normalizing innermost narrowing

does not dire
tly
orrespond to SLD-resolution be
ause of the intermediate nor-

malization pro
ess. For instan
e, the
at form of the equation 0*(X+Y)=Z is the

goal

add(X,Y,R), mult(0,R,Z).

The exe
ution of the latter goal by SLD-resolution binds variable X to a ground

term, whereas the exe
ution of the original goal 0*(X+Y)=Z by normalizing nar-

rowing does not bind variable X. Therefore the analysis of the
attened logi

program would yield an in
orre
t result.

This dis
ussion shows that we
annot use a framework for the analysis of

logi
 programs in our
ase. It is ne
essary to develop a new framework whi
h

6

takes into a

ount the e�e
t of normalization between narrowing steps. Sin
e the

a

urate approximation of the normalization pro
ess is a
hallenging task, we will

use the ideas of logi
 program analysis as long as possible, and we will introdu
e

new analysis te
hniques only if it is unavoidable. This is a reasonable method

sin
e there are many fun
tional logi
 programs where the \unpleasant" e�e
ts of

normalization (from an analysis point of view) do not o

ur. Therefore we will

distinguish between \pleasant" and \unpleasant" situations.

Di�erent frameworks for the analysis of logi
 programs with a �xed left-to-

right
omputation rule have been proposed in re
ent years (e.g., [5, 20, 26℄).

A
ommon
hara
teristi
 of these frameworks is the lo
ality of the analysis: in

order to derive information about the run-time behavior of the entire program,

ea
h
lause is separately analyzed. The
onne
tion between the
lauses and the

goal literals a
tivating the
lauses is
ontrolled by well-de�ned interfa
es. For

instan
e, from an analysis point of view a literal or predi
ate
all L is
onsidered

as a fun
tion from
all patterns into return patterns.

4

To
ompute or approximate

this fun
tion, we take a
lause L

0

 L

1

; : : : ; L

n

,
ompute the mgu of L and L

0

and restri
t the uni�er to the variables o

urring in this
lause. The restri
ted

uni�er applied to L

1

yields the
all pattern of the �rst literal in this
lause and we

pro
eed the analysis of the
lause body where the return pattern of L

i

is identi
al

to the
all pattern of L

i+1

(i = 1; : : : ; n�1). The return pattern of the last literal

L

n

will be applied to L

0

and then uni�ed with L. If we omit the information

about the
lause variables in this result, we obtain the result pattern of L. Sin
e

there is usually more than one appli
able
lause, we also analyze all other
lauses

in this way and
ompute the least upper bound of all result patterns.

Lo
ality in this analysis means that during the analysis of the
lause body

L

1

; : : : ; L

n

we do not
onsider the environment of L (i.e., the goal or
lause

body in whi
h L o

urs). This is justi�ed sin
e in a
on
rete
omputation the

environment has no in
uen
e to the
omputation in the body. However, this is

di�erent in the
ase of fun
tional logi
 programs due to the normalization pro
ess:

Example 4. Consider the following rules:

f(
(a,Z)) ! a (R

1

)

g(X,Y) !
(h(X),h(Y)) (R

2

)

h(a) ! a (R

3

)

We want to
ompute the result pattern (here: modes) of the goal f(g(X,Y)).

For this purpose, we analyze the right-hand side
(h(X),h(Y)) of the rule for

g. A lo
al analysis would mean that we analyze the patterns for the fun
tion

alls h(X) and h(Y), and then infer the result pattern of the fun
tion
all g(X,Y)

(in this
ase: both arguments are bound to a ground term). However, we would

obtain an in
orre
t result sin
e the environment of this fun
tion
all in
uen
e the

evaluation of the right-hand side. This
an be seen in the
on
rete derivation:

f(g(X,Y)) !

R

f(
(h(X),h(Y))) ;

X 7!a

f(
(a,h(Y))) !

R

a

4

A pattern is an abstra
t des
ription of a set of
on
rete substitutions. For instan
e,

the mode pattern add(g; g; f) of a literal add(X,Y,Z) des
ribes all substitutions whi
h

maps X and Y into ground terms and Z into a free variable.

7

Hen
e the variable Y remains free after the entire evaluation. Therefore we
annot

analyze the rule for g without
onsidering the environment. A more
omplex

analysis method is ne
essary. 2

Fortunately, this unpleasant
ase is rare and we often have the following situation:

If s is a subterm of t, then the de�ned fun
tion symbols above s do not in
uen
e

the evaluation of s, i.e., the ordering of narrowing steps inside s is not
hanged and

s is
ompletely evaluated before a narrowing step is applied outside s. Instead

of giving a pre
ise de�nition, we provide a suÆ
ient and
omputable
riterion

to ensure that the
ontext of s does not in
uen
e the evaluation of s. We say

a subterm s at position p in t is lo
al i� all de�ned fun
tion symbols above s

preserve lo
ality. The set of de�ned fun
tion symbols whi
h preserve lo
ality is the

least set satisfying the following
onditions. A de�ned fun
tion symbol preserves

lo
ality i� for all rules f(�u)! r for f , where (X

1

; : : : ; X

n

) is the list of variables

of �u in leftmost innermost order, the following
onditions are satis�ed:

1. For all j 2 f1; : : : ; ng there is a position p 2 NPos(r) with rj

p

= X

j

and

frj

q

j q 2 NPos(r); q < pg = fX

1

; : : : ; X

j�1

g.

2. All de�ned fun
tion symbols in r preserve lo
ality.

The �rst
ondition demands that the rule does not delete subterms and ensures

that the order of variables is preserved up to repetitions (this allows the rule

f(X,Y)!
(X,X,Y,X) but ex
ludes f(X,Y)!
(Y,X)). In the se
ond
ondition

we
ontinue our demands on the de�ned fun
tions in r. We denote by LOC(r)

the set of positions of lo
al subterms in a term r.

If a subterm is not lo
al in a term, we have to take into a

ount the e�e
t

of normalization during the analysis. Sin
e the pre
ise in
uen
e of normalization

an only be approximated by the analysis, we obtain less a

urate results in this

ase. In order to improve the a

ura
y of the analysis, we distinguish a
lass of

subterms whi
h allow a better analysis than in the general
ase. In many
ases,

fun
tions with a nonlo
al behavior on argument terms (like multipli
ation in

Example 2) do not
hange the order of narrowing steps but simply deletes some

possible narrowing steps (i.e., \possible" if normalization is not in
luded). Sin
e

this allows a better analysis than in the general
ase, we want to
hara
terize

subterms s where the de�ned fun
tions above s do not in
uen
e the ordering of

narrowing steps in the derivation of s. Again, we provide a suÆ
ient
riterion for

this property. We say a subterm s at position p in t is weakly lo
al i� all de�ned

fun
tion symbols above s preserve weak lo
ality. The set of de�ned fun
tions

preserving weak lo
ality is the least set satisfying the following
onditions. A

de�ned fun
tion symbol f preserves weak lo
ality i� for all rules f(�u) ! r for

f , where (X

1

; : : : ; X

n

) is the list of variables in f(�u) in innermost order, the

following
onditions are satis�ed:

1. If X

j

2 var(r), then there exists p 2 NPos(r) with rj

p

= X

j

and

frj

q

j q 2 NPos(r); q < pg = fX

1

; : : : ; X

j�1

g.

2. The de�ned fun
tion symbols in r preserve weak lo
ality.

8

This de�nition is similar to the de�nition of de�ned fun
tion symbols preserving

lo
ality, but we do not require that all variables o

urring in the left-hand side

must also o

ur in the right-hand side. For instan
e, the fun
tion de�ned by

0*N!0 preserves weak lo
ality but not lo
ality. We denote by WLOC(r) the set

of positions of weakly lo
al subterms in a term r. Note that LOC(r) �WLOC(r).

The notions of lo
ality and weak lo
ality are suÆ
ient to provide an a

u-

rate analysis for most pra
ti
al programs. Therefore we give an overview of our

analysis method in the next se
tion.

5 Abstra
t Interpretation of Fun
tional Logi
 Programs

Abstra
t interpretation is a systemati
 methodology to develop stati
 program

analysis methods [6℄. The design of an abstra
t interpretation
onsists in de�ning

an abstra
t domain AD whi
h expresses relevant run-time information of pro-

grams. We assume that this abstra
t domain is a �nite
omplete latti
e.

5

Ea
h

element of an abstra
t domain represents a set of
on
rete elements, e.g., sets

of substitutions. This relation is given by a
on
retization fun
tion
. It maps

an element of the abstra
t domain into the powerset of the
on
rete domain

D. We assume that
 is an ordering morphism between the abstra
t domain

and the powerset of the
on
rete domain endowed with the in
lusion ordering:

8a; b 2 AD : a � b)
(a) �
(b). The image of the bottom element ? 2 AD

should be the empty set and the image of the top element should be D. a t b

denotes the least upper bound of two elements a; b 2 AD. We say that a 2 AD

approximates d 2 D, written a / d i� d 2
(a). Further essential
omponents

of an abstra
t interpretation are operations on AD approximating the
on
rete

operations on D. We assume familiarity with basi

on
epts of abstra
t interpre-

tation.

5.1 Abstra
t Domains and Operations

We are interested in a general framework for the analysis of fun
tional logi
 pro-

grams. Therefore we do not restri
t ourselves to a parti
ular abstra
t domain. We

only assume that the abstra
t domain
ontains elements to des
ribe substitutions

over a �xed �nite set V of variables. We denote the set of all these des
riptions

by AS

V

. We abbreviate the abstra
t substitution best approximating the iden-

tity substitution by Id. In order to present examples for the analysis of modes in

fun
tional logi
 programs, we use in subsequent examples the produ
t of the two

domains Mode

V

and S

V

, i.e., AS

V

=Mode

V

� S

V

. The �rst domain Mode

V

is

a mapping of ea
h variable in V into one of the four modes g; f; a;?. Ea
h mode

represents a set of
onstru
tor terms:
(?) = ;,
(a) = T (C;X),
(g) = T (C; ;)

and
(f) = X . The
on
retization fun
tion onMode

V

is de�ned in the following

way: � 2
(fx

1

7! m

1

; : : : ; x

n

7! m

n

g) i� �(x

j

) 2
(m

j

) 8j 2 f1; : : : ; ng. A
or-

re
t analysis of freeness is not possible without
onsidering the possible sharing

5

It is possible to weaken this
ondition, but for the sake of simpli
ity we require a

�nite
omplete latti
e.

9

between variables. Thus the se
ond domain is the sharing domain S

V

= P(P(V))

(sets of sets of variables from V) of Ja
obs and Langen [17℄ with the following

on
retization fun
tion: � 2
(S) i� for all X 2 Var(�(v)) for some v 2 V

fy j X 2 Var(�(y))g � A for some A 2 S. We de�ne
 on the entire domain

by
((M;S)) =
(M) \
(S). Sin
e Mode

V

and S

V

are
omplete latti
es, the

produ
t Mode

V

� S

V

is also a
omplete latti
e.

In our analysis we have to approximate the evaluation of fun
tions by nor-

malizing narrowing. Thus we
onsider the derivation of �(r), where r is the

right-hand side of a narrowing rule R : f(�u) ! r or a part of a goal and � is a

onstru
tor substitution. In Se
tion 2 we have seen that the
on
rete
omputa-

tion is performed by applying narrowing steps with intermediate
omputations

of the normal form, i.e., the
on
rete
omputation has the form

�(r) !

�

R

r

0

;

�

1

r

1

!

�

R

r

0

1

;

�

2

r

2

!

�

R

r

0

2

� � � ;

�

n

r

n

!

�

R

r

0

n

As already dis
ussed in Se
tion 4, the potential problem in this derivation is the

possibility that the normalization pro
ess
hanges the order of fun
tion
alls. In

parti
ular, the leftmost innermost position in r

0

i

may be quite di�erent from r

i

.

In order to obtain a
orre
t approximation of su
h derivations, we will
ompute

for ea
h right-hand side r a sequen
e of states whi
h approximates the sequen
e

of narrowing steps in the derivation above. For this purpose we de�ne the set of

omputation states of a narrowing rule R : f(�u)! r as

CS(R) = AS

V

� (WLOC(r) [f?g)

where V = Var(R). The �rst
omponent A of a
omputation state (A; p) 2

CS(R) des
ribes the instantiation of the rule variables, whereas the se
ond
om-

ponent p des
ribes the last narrowing position in r (or ? at the beginning of the

derivation of r).

6

In order to approximate the next narrowing position of the
on
rete
omputa-

tion, we have to analyze the behavior of the normalization pro
ess. For this pur-

pose we use an extension of type graphs, a data stru
ture introdu
ed by Janssens

and Bruynooghe [18℄ to des
ribe sets of
onstru
tor terms. Our extended type

graphs in
lude additional information about the possible next narrowing posi-

tion. We
all these extended type graphs term des
riptions and denote the set

by TD(R). Due to la
k of spa
e we
annot dis
uss the pre
ise stru
ture of term

des
riptions and the analysis of the normalization pro
ess (see [33℄ for more de-

tails). We only summarize those operations on TD(R) whi
h are ne
essary to

understand the algorithm in Se
tion 5.2.

The analysis of the normalization pro
ess is des
ribed as a family of fun
tions

norm

R

: AS

V

! TD(R)

6

The sequen
e of
omputation states
orresponds in some sense to the sequen
e of

abstra
tions
omputed during the analysis of a
lause body in abstra
t interpretation

frameworks for logi
 programming [5℄. However, the analysis of a
lause body follows

the left-to-right evaluation order of Prolog, whereas the sequen
e of
omputation

states of a narrowing rule may not re
e
t the left-to-right innermost order in r sin
e

the normalization may restru
ture the subterms in r at run time.

10

(one for ea
h narrowing rule R : f(�u)! r with V = Var(R)). A fun
tion norm

R

takes an approximation of the instantiation of the variables o

urring in R and

yields a des
ription of the right-hand side after the normalization pro
ess. Due to

the innermost normalization strategy, arguments are normalized before applying

a rewrite rule to a fun
tion
all. Thus the de�nition of norm

R

omputes also the

normalization of inner subterms whi
h will be denoted by the fun
tion

norm args

R

: AS

V

�Pos(r)! AS

V

0

� T (C; V

0

)

The fun
tion norm args

R

takes a des
ription of the rule variables and a position

in the right-hand side and yields a des
ription of the normalized arguments of

the fun
tion
all at this position. For instan
e, if the subterm f(g(X),Y) o

urs

in r at position 1 and the abstra
tion A implies that X is ground and Y free, then

norm args

R

(A; 1) = (A

0

; (Z,Y)) where Z is a new variable representing the result

of g(X) and A

0

implies that Z is ground (provided that the fun
tion g evaluates

to a ground term if its argument is ground). Thus arguments
ontaining de�ned

fun
tions are repla
ed by new variables des
ribing the result of the argument

evaluation, i.e., V

0

� V . In our analysis the new variables are only used to

des
ribe the e�e
t of applying a narrowing rule at this position. Thus we omit

these new variables after the rule appli
ation. For this purpose we need a restri
t

fun
tion Aj

V

whi
h maps an abstra
tion A 2 AS

V

0

into an abstra
tion A

0

2 AS

V

by forgetting the information about variables in V

0

� V .

The remaining auxiliary fun
tions used in the analysis of a narrowing rule

R : f(�u)! r with V = Var(R) are summarized in the following table:

Auxiliary fun
tions for the analysis of fun
tional logi
 programs

lub : P(AS

V

)! AS

V

ons : TD(R) ! Bool

fun
 : TD(R) ! Bool

leftmost : TD(R) ! P(WLOC(r) [f(g(�v); A) j g 2 D; A 2 AS

V [Var(�v)

g)

The fun
tion lub (least upper bound) takes a set of abstra
tions fA

1

; : : : ; A

n

g

and
onstru
ts a single abstra
tion whi
h is the least upper bound A

1

t � � � tA

n

of these abstra
tions. The predi
ate
ons(td) is satis�ed if the denotation of

a term des
ription td may
ontain
onstru
tor terms. The predi
ate fun
 is

satis�ed if the denotation may
ontain a term with de�ned fun
tion symbols.

The fun
tion leftmost yields the set of possible fun
tion
alls at the leftmost

innermost position. Note that the leftmost innermost fun
tion
annot be uniquely

determined in the analysis. Thus leftmost returns a set of possible narrowing

andidates. This set
onsists of weakly lo
al subterms of r (i.e., fun
tion
alls in

the right-hand side of the rule) and new fun
tion
alls possibly introdu
ed during

normalization in a subterm whi
h is not weakly lo
al. For instan
e,
onsider rule

R

2

of Example 4. If the abstra
tion A des
ribes X and Y as a (any possible term),

the fun
tion leftmost applied to norm

R

2

(A) yields the weakly lo
al positions 1

and 2 of the subterms h(X) and h(Y). This is a
orre
t approximation sin
e the

on
rete normalization depends on the exa
t instantiation of X and Y.

Finally, we use in our framework two operations unify-aa : AS

V

�T (C; V)�

AS

W

� T (C;W) ! AS

W

and unify-a
 : AS

V

� T (C; V) � T (C;W) ! AS

V

11

approximating uni�
ation.

7

If we assume that the abstra
t substitutions A and

B des
ribe substitutions � and ' over disjoint sets V and W of variables, then

unify-aa(A;

�

t; B; �s) des
ribes the resulting substitution mgu(�(

�

t); '(�s)) Æ '. In

ontrast unify-a
(A;

�

t; �s) approximates mgu(�(

�

t); �s) Æ �, i.e., it des
ribes the

e�e
t of unifying �(

�

t) with �s on the variables in

�

t.

5.2 The Analysis Algorithm for Fun
tional Logi
 Programs

We want to analyze a rule R : f(�u) ! r.

8

As usual, the analysis of fun
tional

logi
 programs is a re
ursive pro
ess, and we des
ribe the analysis as the least

�xpoint of a system of re
ursive fun
tions. For this purpose we de�ne a narrowing

denotation as a fun
tion

Æ : Rules�AS

X

� T (C;X)! AS

X

�AS

X

whi
h maps a narrowing rule (Rules denotes the set of all narrowing rules in

the program, where we assume that rules
ontain fresh variables if they are used

in the analysis), a des
ription and a list of
urrent arguments into two other

des
riptions of the variables of the
urrent arguments. Intuitively, if Æ(f(�u) !

r; A;

�

t) = (A

1

; A

2

), then A

1

des
ribes the possible instantiations of the variables

in

�

t during the derivation of the right-hand side r if this rule is applied to f(

�

t),

whereas A

2

des
ribes the instantiations after a su

essful derivation of f(

�

t). This

distin
tion is ne
essary sin
e it is suÆ
ient to
onsider the
omplete result of the

derivation only for lo
al fun
tions, whereas for weakly lo
al fun
tions it is also

ne
essary to
onsider the intermediate states (sin
e weakly lo
al fun
tions
an

be partially deleted,
f. Se
tion 4).

If NDen denotes all narrowing denotations, we de�ne our analysis as
om-

puting the least �xpoint of the operator
 : NDen! NDen with

(Æ)(R;A;

�

t) = analyze

R

(Æ; A;

�

t) :

The family of fun
tions analyze

R

approximates the behavior of a
omputation

with narrowing rule R by generating all
omputation states for the right-hand

side after the head uni�
ation (for
onvenien
e, we des
ribe the fun
tions of our

algorithm with a free syntax, but it should be
lear how to translate it into a

pure fun
tional language):

fun
tion analyze

R

(Æ 2 NDen;A 2 AS

X

;

�

t 2 T (C;X)) : AS

X

�AS

X

begin

0

= (unify-aa(A;

�

t; Id; �u);?) % �rst state
ontains initial instantiations

(�;) = generate states

R

(Æ;

0

) % generate subsequent states

return(ba
k unify

R

(�; 	;A;

�

t)) % give the results ba
k

end

The fun
tions generate states

R

ompute the transitive
losure of the
omputa-

tion states of the right-hand side of ea
h narrowing rule. Moreover, they
olle
t

7

For the sake of simpli
ity we
onsider an n-tuple of
onstru
tor terms also as a

onstru
tor term. This is always possible by introdu
ing a pairing
onstru
tor symbol.

8

W.l.o.g. we assume that the initial goal is also represented as a rewrite rule.

12

the intermediate patterns of lo
al
omputations in the �rst
omponent of the

result. This is ne
essary to
orre
tly approximate the intermediate states of sur-

rounding weakly lo
al fun
tions (see ba
k unify

R

below).

fun
tion generate states

R

(Æ 2 NDen;

0

2 CS(R)) : P(AS

X

)�P(CS(R))

begin % R = f(�u)! r

	 = f

0

g ; � = ;

repeat % main loop: add new states to 	 :

for all (A; �) 2 	 do

for all l 2 leftmost(norm

R

(A)) do %
onsider narrowing
andidates

if l 2WLOC(r) then %
andidate is weakly lo
al fun
tion

if l 6= � then %
andidate not
onsidered before

let h(�s) = rj

l

and (A

0

;

�

t) = norm args

R

(A; l) in

for all h(�w)! s 2 Rules do

(I; F) = Æ(h(�w)! s; A

0

;

�

t)j

Var(R)

% analyze rules for h

	 = 	 [f(F; l)g % add �nal state of the rule

if l 2 LOC(r) then � = � [fIg

else 	 = 	 [f(I; l)g � % add intermediate states

od % for nonlo
al fun
tions

�

else % global fun
tions (i.e., not weakly lo
al):
ompute e�e
t of

let (h(

�

t); A

0

) = l in % head uni�
ation with these fun
tions

	 = 	 [f(unify-a
(A

0

;

�

t; �w)j

Var(R)

;?) j h(�w)! s 2 Rulesg

�

od

od

until hno new states are added to 	i

return(�;)

end

The fun
tions ba
k unify

R

ompute upper bounds of all intermediate states and

all �nal states of a narrowing rule:

fun
tion ba
k unify

R

(� 2 P(AS

X

); 	 2 P(CS(R)); A 2 AS

X

;

�

t 2 T (C;X)) :

AS

X

�AS

X

begin % R = f(�u)! r

(I; F) = (;; ;)

for all (A

0

; p) 2 	 do

td = norm

R

(A

0

)

% add abstra
tion to I if rhs of R still
ontains fun
tion
alls:

if fun
(td) then I = I [funify-aa(A

0

; �u;A;

�

t)g �

% add abstra
tion to F if the right-hand side of R is totally evaluated:

if
ons(td) then F = F [funify-aa(A

0

; �u;A;

�

t)g �

od

I = I [funify-aa(B; �u;A;

�

t) j B 2 �g

return(lub(I), lub(F))

end

13

5.3 Derivation of Narrowing and Rewrite Modes

The main motivation of this work is the derivation of narrowing and rewrite

modes for fun
tional logi
 programs sin
e they
an be used to optimize the
om-

piled programs in various ways (see Se
tion 3 and [16℄). The analysis presented so

far does not derive these modes but approximates the instantiation of variables

after a su

essful appli
ation of a narrowing rule. This is the most diÆ
ult task

in the analysis due to the problems dis
ussed in Se
tion 4. Therefore it is easy to

derive the narrowing and rewrite modes from our analysis. The narrowing modes

an be inferred by
olle
ting the initial modes of all narrowing rules
omputed in

the fun
tions analyze

R

and in unify-a
-
alls. The
omputation of rewrite modes

an be integrated in the fun
tions generate states

R

and norm

R

by
olle
ting all

abstra
tions o

urring during the normalization pro
ess.

5.4 Examples

In the following example we sket
h the
omputed results of our algorithm. Sin
e

we are mainly interested in the mode
omponent Mode

V

of the abstra
tions, we

omit the sharing
omponent in the example (although it is ne
essary to
orre
tly

derive freeness information).

Example 5. We dis
uss the analysis of a re
ursively de�ned fun
tion. We want to

derive the modes of Example 3. For this purpose we represent the term of the

initial goal as the right-hand side of a new rule:

0 + U ! U (R

1

) three(X) ! X+(X+X) (R

3

)

s(V) + W ! s(V + W) (R

2

)

Sin
e all fun
tions are lo
al, it is not ne
essary to
onsider the intermediate modes

of narrowing rules. Hen
e we ignore these in the following dis
ussion. The analysis

starts by analyzing
lause R

3

with the initial abstra
tion A

0

= fX 7! fg. Nor-

malization of the right-hand side yields leftmost(norm

R

3

(A

0

)) = f2g, i.e., the

subterm X+X is the next narrowing position. The analysis of rule R

1

is performed

by analyze

R

1

(?; A

0

; (X,X)) = (: : : ; fX 7! gg) (note that we start a �xpoint
om-

putation with the unde�ned narrowing denotation?). To analyze the se
ond rule,

we
ompute the initial abstra
tion A

1

= fV 7! f; W 7! ag of the right-hand side.

The next narrowing position is the subterm V+W: leftmost(norm

R

2

(A

1

)) = f1g.

The result of this re
ursive fun
tion
all is approximated by the following
hain

of �xpoint iterations (note that we do not show the sharing
omponent, but it is

ne
essary to derive these results):

analyze

R

1

(?; A

1

; (V;W)) = (: : : ; fV 7! g;W 7! gg)

analyze

R

2

(?; A

1

; (V;W)) = (: : : ; fV 7! ?;W 7! ?g)

analyze

R

1

(
(?); A

1

; (V;W)) = (: : : ; fV 7! g;W 7! gg)

analyze

R

2

(
(?); A

1

; (V;W)) = (: : : ; fV 7! g;W 7! gg)

A further iteration does not
hange the narrowing denotations. Thus the analysis

of R

2

w.r.t. A

0

yields the �nal result fX 7! gg, and we have rea
hed a stable

situation after one �xpoint iteration.

14

The narrowing modes for +
an be derived by
olle
ting all initial modes for

the analysis of R

1

and R

2

, i.e., +(f; a) is the narrowing mode. Similarly, +(a; a)

is the derived rewrite mode. 2

Due to la
k of spa
e we
annot dis
uss the analysis of Example 4 in detail.

Our analysis yields as su

ess substitution for f(g(X,Y)) the abstra
t value fX 7!

a; Y 7! ag. The
omputed approximation is the worst possible one be
ause of the

presen
e of nonlo
al fun
tion symbols. However, it is
orre
t in
ontrast to an

analysis of the
orresponding
attened logi
 program.

6 Con
lusions

In this paper we have presented a framework to approximate the run-time behav-

ior of fun
tional logi
 programs. The
onsidered
on
rete operational semanti
s

is normalizing narrowing, a
ombination of redu
tion, as used in pure fun
tional

languages, and nondeterministi
 narrowing steps, whi
h are
omparable to resolu-

tion steps in pure logi
 languages. This
ombination is very useful sin
e it redu
es

the sear
h spa
e by the preferen
e of deterministi
 evaluations and the deletion

of
omplete subgoals during normalization. However, these useful e�e
ts makes

an a

urate approximation very diÆ
ult sin
e the intermediate normalization

pro
ess during narrowing steps may delete or restru
ture the order of subsequent

narrowing steps. In order to
at
h this behavior at the abstra
t level, we have

des
ribed the evolving
omputation of the right-hand side of ea
h narrowing rule

by a sequen
e of des
riptions of the instantiation state of the rule variables. De-

pending on this instantiation state, the abstra
t normalization fun
tion yields

a des
ription of the next narrowing position in the right-hand side. To improve

the a

ura
y of the analysis, we have distinguished two kinds of fun
tions. Lo
al

fun
tions
annot be deleted by the normalization of surrounding fun
tions, and

hen
e they are
ompletely evaluated. Therefore it is only ne
essary to
onsider

the su

ess states of their
orresponding narrowing rules. The order or narrowing

steps in weakly lo
al fun
tions
annot be
hanged, but the evaluation may be

ut o� due to the deletion of arguments. Therefore they
an be treated with a

better a

ura
y than generally de�ned fun
tions, but it is ne
essary to
onsider

intermediate states in
ontrast to lo
al fun
tions.

The analysis of fun
tional logi
 programs is a rather new resear
h topi
 in

the general area of program analysis. As far as we know, this paper is the �rst

approa
h to derive mode information for fun
tional logi
 languages based on

normalizing narrowing. Boye [4℄ and Hanus [14℄ proposed methods to analyze

fun
tional logi
 programs where fun
tion
alls are simply delayed until they are

ompletely evaluable. Alpuente et al. [1℄ presented a framework to approximate

the su

ess patterns of terms evaluated by narrowing in order to dete
t unsolv-

able equations at analysis time. However, all these approa
hes do not
over the

derivation of modes for fun
tion
alls. As already dis
ussed, this is a
hallenge

in the presen
e of an operational semanti
s whi
h dynami
ally restru
ture the

all sequen
e in goals. Marriott et al. [23℄ proposed a framework to analyze logi

programs where subgoals are dynami
ally delayed. This is in some sense related

15

to the dynami
 restru
turing of goals, but it is di�erent from our framework sin
e

we try to approximate also the
omplete deletion of subgoals whi
h has no
or-

responden
e in logi
 programming. The possible deletion of subgoals is the main

reason for the
omplexity of our approa
h.

The a

ura
y of our analysis depends on the lo
ality of fun
tions and the

a

ura
y of the analysis of the normalization pro
ess. In our
urrent framework,

we use type graphs and mode information to approximate the normalization

pro
ess and, in parti
ular, the appli
ability of a rewrite rule. It is an interesting

topi
 for future resear
h to improve this approximation by stronger appli
ability

onditions for rewrite rules using re�ned abstra
t domains. Another topi
 for

future work is the implementation of this framework and the in
lusion into an

existing
ompiler in order to evaluate our analysis method on larger appli
ation

programs.

Referen
es

1. M. Alpuente, M. Falas
hi, and F. Manzo. Analyses of In
onsisten
y for In
remen-

tal Equational Logi
 Programming. In Pro
. of the 4th International Symposium

on Programming Language Implementation and Logi
 Programming, pp. 443{457.

Springer LNCS 631, 1992.

2. D. Bert and R. E
hahed. Design and Implementation of a Generi
, Logi
 and Fun
-

tional Programming Language. In Pro
. European Symposium on Programming, pp.

119{132. Springer LNCS 213, 1986.

3. P.G. Bos
o, E. Giovannetti, and C. Moiso. Narrowing vs. SLD-Resolution. Theo-

reti
al Computer S
ien
e 59, pp. 3{23, 1988.

4. J. Boye. Avoiding Dynami
 Delays in Fun
tional Logi
 Programs. In Pro
. of the

5th International Symposium on Programming Language Implementation and Logi

Programming, pp. 12{27. Springer LNCS 714, 1993.

5. M. Bruynooghe. A Pra
ti
al Framework for the Abstra
t Interpretation of Logi

Programs. Journal of Logi
 Programming (10), pp. 91{124, 1991.

6. P. Cousot and R. Cousot. Abstra
t interpretation: A uni�ed latti
e model for stati

analysis of programs by
onstru
tion of approximation of �xpoints. In Pro
. of the

4th ACM Symposium on Prin
iples of Programming Languages, pp. 238{252, 1977.

7. N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, editor,

Handbook of Theoreti
al Computer S
ien
e, Vol. B, pp. 243{320. Elsevier, 1990.

8. M.J. Fay. First-Order Uni�
ation in an Equational Theory. In Pro
. 4th Workshop

on Automated Dedu
tion, pp. 161{167, Austin (Texas), 1979. A
ademi
 Press.

9. L. Fribourg. SLOG: A Logi
 Programming Language Interpreter Based on Clausal

Superposition and Rewriting. In Pro
. IEEE Internat. Symposium on Logi
 Pro-

gramming, pp. 172{184, Boston, 1985.

10. E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel LEAF: A Logi
 plus

Fun
tional Language. Journal of Computer and System S
ien
es, Vol. 42, No. 2,

pp. 139{185, 1991.

11. M. Hanus. Compiling Logi
 Programs with Equality. In Pro
. of the 2nd Int.

Workshop on Programming Language Implementation and Logi
 Programming, pp.

387{401. Springer LNCS 456, 1990.

12. M. Hanus. EÆ
ient Implementation of Narrowing and Rewriting. In Pro
. Int.

Workshop on Pro
essing De
larative Knowledge, pp. 344{365. Springer LNAI 567,

1991.

13. M. Hanus. Improving Control of Logi
 Programs by Using Fun
tional Logi
 Lan-

guages. In Pro
. of the 4th International Symposium on Programming Language

Implementation and Logi
 Programming, pp. 1{23. Springer LNCS 631, 1992.

16

14. M. Hanus. On the Completeness of Residuation. In Pro
. of the 1992 Joint In-

ternational Conferen
e and Symposium on Logi
 Programming, pp. 192{206. MIT

Press, 1992.

15. M. Hanus. The Integration of Fun
tions into Logi
 Programming: From Theory to

Pra
ti
e. Journal of Logi
 Programming, Vol. 19-20, 1994.

16. M. Hanus. Towards the Global Optimization of Fun
tional Logi
 Programs. In

Pro
. 5th International Conferen
e on Compiler Constru
tion, pp. 68{82. Springer

LNCS 786, 1994.

17. D. Ja
obs and A. Langen. A

urate and EÆ
ient Approximation of Variable Alias-

ing in Logi
 Programs. In Pro
. of the 1989 North Ameri
an Conferen
e on Logi

Programming, pp. 154{165. MIT Press, 1989.

18. G. Janssens and M. Bruynooghe. Deriving Des
riptions of Possible Values of Pro-

gram Variables. Journal of Logi
 Programming, Vol. 13, No. 2 & 3, pp. 205{258,

1992.

19. H. Ku
hen, R. Loogen, J.J. Moreno-Navarro, and M. Rodr��guez-Artalejo. Graph-

based Implementation of a Fun
tional Logi
 Language. In Pro
. ESOP 90, pp.

271{290. Springer LNCS 432, 1990.

20. B. Le Charlier, K. Musumbu, and P. Van Hentenry
k. A Generi
 Abstra
t Inter-

pretation Algorithm and its Complexity Analysis. In Pro
. International Confer-

en
e on Logi
 Programming, pp. 64{78. MIT Press, 1991.

21. R. Loogen. Relating the Implementation Te
hniques of Fun
tional and Fun
tional

Logi
 Languages. New Generation Computing, Vol. 11, pp. 179{215, 1993.

22. A. Marien, G. Janssens, A. Mulkers, and M. Bruynooghe. The impa
t of abstra
t

interpretation: an experiment in
ode generation. In Pro
. Sixth International Con-

feren
e on Logi
 Programming (Lisboa), pp. 33{47. MIT Press, 1989.

23. K. Marriott, M.J. Gar
ia de la Banda, and M. Hermenegildo. Analyzing Logi

Programs with Dynami
 S
heduling. In Pro
. 21st ACM Symposium on Prin
iples

of Programming Languages, pp. 240{253, Portland, 1994.

24. C.S. Mellish. Some Global Optimizations for a Prolog Compiler. Journal of Logi

Programming (1), pp. 43{66, 1985.

25. J.J. Moreno-Navarro and M. Rodr��guez-Artalejo. Logi
 Programming with Fun
-

tions and Predi
ates: The Language BABEL. Journal of Logi
 Programming,

Vol. 12, pp. 191{223, 1992.

26. U. Nilsson. Systemati
 Semanti
 Approximations of Logi
 Programs. In Pro
.

of the 2nd Int. Workshop on Programming Language Implementation and Logi

Programming, pp. 293{306. Springer LNCS 456, 1990.

27. U.S. Reddy. Narrowing as the Operational Semanti
s of Fun
tional Languages.

In Pro
. IEEE Internat. Symposium on Logi
 Programming, pp. 138{151, Boston,

1985.

28. A. Taylor. Removal of Dereferen
ing and Trailing in Prolog Compilation. In Pro
.

Sixth International Conferen
e on Logi
 Programming (Lisboa), pp. 48{60. MIT

Press, 1989.

29. A. Taylor. LIPS on a MIPS: Results form a Prolog Compiler for a RISC. In Pro
.

Seventh International Conferen
e on Logi
 Programming, pp. 174{185. MIT Press,

1990.

30. P. Van Roy. An Intermediate Language to Support Prolog's Uni�
ation. In Pro
.

of the 1989 North Ameri
an Conferen
e on Logi
 Programming, pp. 1148{1164.

MIT Press, 1989.

31. P.L. Van Roy. Can Logi
 Programming Exe
ute as Fast as Imperative Program-

ming? PhD thesis, Univ. of California Berkeley, 1990. Report No. UCB/CSD

90/600.

32. D.H.D. Warren. Implementing PROLOG - Compiling Logi
 Programs. 1 and 2.

D.A.I. Resear
h Report No. 39 and 40, University of Edinburgh, 1977.

33. F. Zartmann. Global Analysis of Fun
tional Logi
 Programs. Te
hni
al Report,

Max-Plan
k-Institut f�ur Informatik, Saarbr�u
ken, 1994.

17

