In Proc. 1st International Static Analysis Symposium, Namur (Belgium),
pp- 2642, Springer LNCS 864, 1994

Mode Analysis of Functional Logic Programs*

Michael Hanus Frank Zartmann

Max-Planck-Institut fiir Informatik
Im Stadtwald, D-66123 Saarbriicken, Germany
michael,frank@mpi-sb.mpg.de

Abstract. Functional logic languages amalgamate functional and logic
programming paradigms. They can be efficiently implemented by extend-
ing techniques known from logic programming. Such implementations can
be largely improved if information about the run-time behavior, in par-
ticular the modes of function calls, is available at compile time. In this
paper we present a framework to derive such global information. The
concrete operational semantics considered in this paper is normalizing
innermost narrowing, which combines the deterministic reduction prin-
ciple of functional languages with the nondeterministic search principle
of logic languages. Due to the normalization process between narrowing
steps, standard analysis frameworks for logic programming cannot be ap-
plied. Therefore we develop new techniques to correctly approximate the
effect of the intermediate normalization process.

1 Introduction

A lot of proposals have been made to amalgamate functional and logic pro-
gramming languages (see [15] for a recent survey). Functional logic languages
with a sound and complete operational semantics are based on narrowing (e.g.,
[9, 11, 25, 27]), a combination of the reduction principle of functional languages
and the resolution principle of logic languages. Narrowing solves equations by
finding appropriate values for variables occurring in goal equations. This is done
by unifying an input term with the left-hand side of some rule and then replacing
the instantiated input term by the instantiated right-hand side of the rule.

Example 1. The following rules define the addition of two natural numbers which
are represented by terms built from 0 and s:

0+N —N (Rl)
s(M) + N —» s(M + N) (R2)

To solve the equation X+s(0)=s(s(0)), we apply a narrowing step with rule
R,. This instantiates X to s(M). The resulting left-hand side s (M+s(0)) is nar-
rowed with rule Ry so that M is instantiated to 0. Since the resulting equation,
s(s(0))=s(s(0)), is trivially true, we have computed the solution X—s(0) to
the initial equation. O

* The research described in this paper was supported in part by the German Ministry
for Research and Technology (BMFT) under grant ITS 9103. The responsibility for
the contents of this publication lies with the authors.

In order to ensure completeness in general, each rule must be unified with each
non-variable subterm of the given equation which yields a huge search space.
This situation can be improved by particular narrowing strategies which restrict
the possible positions for the application of the next narrowing step (see [15] for
a detailed survey). In this paper we are interested in an innermost narrowing
strategy where a narrowing step is performed at the leftmost innermost position.
This corresponds to eager evaluation in functional languages.

However, the restriction to particular narrowing positions is not sufficient to
avoid a lot of useless derivations since the uncontrolled instantiation of variables
may cause infinite loops. For instance, consider the rules in Example 1 and the
equation (X+Y)+Z=0. Applying innermost narrowing to this equation using rule
R> produces the following infinite derivation (the instantiation of variables oc-
curring in the equation is recorded at the derivation arrow):

(X+Y) +Z=0 ~rxs5(x1) 8 (X1+Y)+Z=0 ~>x155(x2) S(8(X2+Y))+Z=0~>xa 45(x3) "+

To avoid such useless derivations, narrowing can be combined with simplification
(evaluation of a term): Before a narrowing step is applied, the equation is rewrit-
ten to normal form w.r.t. the given rules [8, 9] (thus this strategy is also called
normalizing narrowing). The infinite narrowing derivation above is avoided by
rewriting the first derived equation to normal form:

s(X1+Y)+Z=0 — s((X1+Y)+Z)=0

The last equation can never be satisfied since the terms s ((X1+Y)+Z) and 0 are
always different due to the absence of rules for the symbols s and 0. Hence we
can safely terminate the unsuccessful narrowing derivation at this point.

Generally, the integration of rewriting into narrowing derivations yields a
better control strategy than Prolog’s SLD-resolution due to the reduction of the
search space and the preference for deterministic computations (see [9, 12, 13]
for more details).? Therefore we consider in this paper a normalizing innermost
narrowing strategy where the computation of the normal form between narrow-
ing steps is performed by applying rewrite rules from innermost to outermost
positions, i.e., a rewrite rule is applied to a term only if each of its subterms is
in normal form. Such an operational semantics can be efficiently implemented by
extending compilation techniques known from logic programming [11, 12].

In logic programming it has been shown that the efficiency of programs can be
largely improved if information about particular run-time properties is available
at compile time (e.g., [22, 24, 28, 29, 30, 31, 32]). Moreover, in [16] it has been
shown that there are useful optimizations which are unique to functional logic
programs based on a normalizing narrowing strategy like ALF [11, 12], LPG [2],
or SLOG [9]. Thus we need methods to derive the necessary information about
the run-time behavior at compile time. The following example demonstrates that
standard methods for the analysis of logic programs cannot be used.

? Note that the normalization of terms between narrowing steps is a deterministic
process due to the uniqueness of normal forms.

Example 2. Consider the rules of Example 1 and the following additional rule:
0%N — 0 (R3)

We are interested in the instantiation state of the variables after evaluating the
goal 0 (X+Y)=Z. From a logic programming point of view, where all subgoals are
completely evaluated to prove the entire goal, we could infer that the evaluation
of the innermost subterm X+Y binds X to a ground term before the outermost
function * is evaluated. However, this is wrong if normalization is taken into
account. Since the entire goal is normalized before a narrowing step is applied,
the goal is reduced to 0=Z by a rewrite step with rule R3. Hence X remains
unbound since the subterm X+Y is deleted during the normalization process. The
deletion of subgoals has no correspondence in logic programming and therefore
analysis methods for logic programming do not apply. O

This example shows that the analysis of normalizing narrowing requires a safe
approximation of the effect of the normalization process before each narrowing
step. After a precise definition of the operational semantics in Section 2, we re-
view the notion of modes for functional logic programs in Section 3. We discuss
problems related to the automatic derivation of modes in Section 4. In Section 5
we present our method to approximate modes at compile time. Due to lack of
space, some details and the correctness proofs of the framework are omitted.
They can be found in [33].

2 Normalizing Innermost Narrowing

In this section, we recall basic notions of term rewriting [7] in order to define the
operational semantics considered in this paper.

A signature is a set F of function symbols together with their arity. If X is
a countably infinite set of variables disjoint from F, then 7 (F,X) denotes the
set of terms built from F and X. The set of variables occurring in a term ¢ is
denoted by Var(t). A term ¢ is called ground if Var(t) = 0.

Usually, functional logic programs are constructor-based, i.e., a distinction is
made between operation symbols to construct data terms, called constructors,
and operation symbols to operate on data terms, called defined functions or op-
erations (see, for instance, the functional logic languages ALF [11], BABEL [25],
K-LEAF [10], SLOG [9]). Hence we assume that the signature F is partitioned
into two sets F = CUD with CND = 0. A constructor term t is built from
constructors and variables, i.e., t € T(C,X). An innermost term t [9] is an op-
eration applied to constructor terms, i.e., t = f(t1,...,t,) with f € D and
t1y..oytn € T(C,X). A function call f(t1,...,t,) is an operation f € D applied
to arbitrary terms.

A (rewrite) rulel — r is a pair of an innermost term / and a term r satisfying
Var(r) C Var(l) where I and r are called left-hand side and right-hand side,
respectively. A rule is called a variant of another rule if it is obtained by a unique
replacement of variables by other variables. A term rewriting system R is a set

of rules.? In the following we assume a given term rewriting system R.

Substitutions and most general unifiers (mgu) are defined as usual. A position
p in a term t is represented by a sequence of natural numbers, t|, denotes the
subterm of ¢ at position p, and t[s], denotes the result of replacing the subterm
t|p, by the term s (see [7] for details). Pos(t) denotes the set of all positions in a
term t and N"Pos(t) denotes the set of positions p of the term ¢ with the property
that r|, € X or r|, = f(5), f € D. The binary relation < on Pos(t) is the union
of the relations {(p,q) | ¢ is a proper prefix of p} and {(p,q) | p = p.i.p',q =
p.7.q" and i < j}. It reflects the leftmost innermost ordering.

A rewrite step is an application of a rewrite rule to a term, i.e., t =5 s if there
exist a position p in ¢, a rewrite rule I — r and a substitution o with ¢|, = o(I)
and s = t[o(r)],. In this case we say ¢ is reducible. A term ¢ is called irreducible
or in normal form if there is no term s with ¢ =5 s.

—% denotes the transitive-reflexive closure of the rewrite relation —%. R is
called terminating if there are no infinite rewrite sequences t| =g ts =g -~ R
is called confluent if for all terms ¢, t1, to with t =% t; and ¢ =% t» there exists
a term t3 with #; —)7;2 t3 and to —)7;2 t3.

If R is confluent and terminating, we can decide the validity of an equation s=t
by computing the normal form of both sides using an arbitrary sequence of rewrite
steps. In order to solve an equation, we have to find appropriate instantiations for
the variables in s and ¢. This can be done by narrowing. A term ¢ is narrowable
into a term ¢ if there exist a non-variable position p in ¢ (i.e., t|, € X), a
variant [— r of a rewrite rule and a substitution o such that o is a most
general unifier of t|, and [and ¢’ = o(¢[r]y). In this case we write t ~, ¢
In order to solve an equation s=t, we consider = as a new constructor symbol
and apply narrowing steps until we obtain an equation s'=t' where s’ and #
are unifiable. The composition of all unifiers in the derivation restricted to the
variables of the initial equation is the computed solution (cf. Example 1). Since
this simple narrowing procedure (enumerating all narrowing derivations) has a
huge search space, several authors have improved it by restricting the admissible
narrowing derivations (see [15] for a detailed survey). In the following we consider
normalizing innermost narrowing derivations [9] where

— the narrowing step is performed at the leftmost innermost subterm, and
— the term is simplified to its normal form before a narrowing step is performed
by applying rewrite rules from innermost to outermost positions.

The innermost strategy provides an efficient implementation [11, 12, 19, 21],
whereas the normalization process is important since it prefers deterministic com-
putations: rewriting a term to normal form can be done in a deterministic way

% We will apply rules in two ways: (a) in rewrite steps to evaluate terms, and (b) in
narrowing steps to solve equations. Therefore we will sometimes distinguish between
rewrite rules and narrowing rules. Usually, the set of rewrite rules and the set of
narrowing rules are identical, but in some languages it is also possible to use some
rules only for rewrite steps or only for narrowing steps (e.g., in ALF [11, 12] or SLOG

[9])-

since every rewrite sequence yields the same result (because R is confluent and
terminating), whereas different narrowing steps may lead to different solutions
and therefore all admissible narrowing steps must be considered. Soundness and
completeness results for this strategy can be found in [9].

3 Modes for Functional Logic Programs

It has been shown that mode information is useful to optimize the compiled code
of pure logic programs [22, 24, 29, 31, 32]. A mode for a predicate is a description
of the possible arguments of a predicate when it is called [32]. E.g., the mode
p(yg, [, a) specifies that the first argument is a ground term, the second argument
is a free variable, and the third argument is an arbitrary term for all calls to
predicate p. The notion of a “mode” in functional logic programs is different from
pure logic programs because functions are evaluated by narrowing as well as by
rewriting. In order to provide a better understanding of the subsequent sections,
we review the notion of modes for functional logic programs as introduced in [16].

Ezample 3. In this example we discuss a derivation w.r.t. the normalizing in-
nermost narrowing strategy. Consider the rules of Example 1 and the goal
X+(X+X)=s(s(s(0))). To compute a solution to this equation, we iterate the
reduction to normal form with a subsequent narrowing step at the leftmost in-
nermost subterm. Hence the left-hand side X+ (X+X) is evaluated as follows (the
rule applied in each step is listed in the rightmost column):

X+ (X+X) ~rypyouy 5D +s (M+s (M) Ry
—R s(M+s (M+s(M))) Ry
~ M0 s(0+s(s(0))) Ry
—R s(s(s(0))) Ry

Since the term is already in normal form, the first step is a narrowing step at
the inner subterm X+X. To normalize the resulting term, a rewrite step with rule
R is applied to the outermost occurrence of +. It follows a narrowing step at
the inner subterm M+s(M) and a rewrite step at the remaining occurrence of +.
Thus {X — s(0)} is the computed solution. This derivation has the following
interesting properties:
1. The operation + is evaluated both by narrowing and rewrite steps.
2. If a narrowing step is applied to +, the first argument is always an unbound
variable.
3. If a rewrite step is applied to +, the first argument is partially instantiated.
O

Therefore we distinguish between a narrowing mode and a rewrite mode for each
function. The narrowing mode describes the instantiation state of a function call
if a narrowing step is applied to it (+(f,a) in the previous example) and the
rewrite mode describes the instantiation state if a rewrite step is applied (+(a, a)
in the previous example). Since narrowing and rewrite rules are usually compiled
into different code sequences [11, 12], this distinction is necessary to optimize the

compiled code, i.e., to specialize the unification/matching instructions and the
indexing scheme (as done in pure logic programs). Moreover, using this kind of
mode information it is possible to avoid unnecessary rewrite attempts, compile
rewrite derivations in a more efficient way, delete unnecessary rewrite or nar-
rowing rules etc. (see [16] for more details). However, a safe approximation of
these modes is more complicated than in the pure logic programming case due to
some global effects of the normalization process (cf. Example 2). In the following
section we discuss these problems and potential solutions.

4 Automatic Derivation of Modes: Problems

Bosco et al. [3] have shown that innermost narrowing without normalization is
equivalent to SLD-resolution if the functional logic program is transformed into
a flat program without nested function calls. For instance, we could transform
the rules of Examples 1 and 2 into the flat logic program

add (0,N,N) .
add(s(M),N,s(Z)) :- add(M,N,Z).
mult(O,N,0).

where add and mult correspond to the functions + and * with their result values.
The nested function call in the right-hand side of rule R, has been replaced by
the new variable Z and the additional condition add(M,N,Z). There is a strong
correspondence between innermost narrowing derivations w.r.t. rules Ry, R2 and
R3 and SLD-derivations w.r.t. the transformed logic program.

Due to these similarities of narrowing and SLD-resolution, one could try to
apply abstract interpretation techniques developed for logic programming (e.g.,
[5, 20, 26]) to derive the desired information. E.g., to derive the narrowing mode
of the function + w.r.t. the class of initial goals z+y=z, where z and y are always
ground and z is a free variable, we could use an abstract interpretation framework
for logic programming to infer the call modes of the predicate add w.r.t. the class
of initial goals add (z,y, 2). In this case we infer that the call mode is add(g, g, f)
and the argument z of the initial goal will be bound to a ground term at the end
of a successful computation. Hence we could deduce that +(g, g) is the narrowing
mode of the function +.

However, we have shown in Example 2 that normalizing innermost narrowing
does not directly correspond to SLD-resolution because of the intermediate nor-
malization process. For instance, the flat form of the equation 0% (X+Y)=Z is the
goal

add(X,Y,R), mult(O,R,Z).

The execution of the latter goal by SLD-resolution binds variable X to a ground
term, whereas the execution of the original goal 0* (X+Y)=Z by normalizing nar-
rowing does not bind variable X. Therefore the analysis of the flattened logic
program would yield an incorrect result.

This discussion shows that we cannot use a framework for the analysis of
logic programs in our case. It is necessary to develop a new framework which

takes into account the effect of normalization between narrowing steps. Since the
accurate approximation of the normalization process is a challenging task, we will
use the ideas of logic program analysis as long as possible, and we will introduce
new analysis techniques only if it is unavoidable. This is a reasonable method
since there are many functional logic programs where the “unpleasant” effects of
normalization (from an analysis point of view) do not occur. Therefore we will
distinguish between “pleasant” and “unpleasant” situations.

Different frameworks for the analysis of logic programs with a fixed left-to-
right computation rule have been proposed in recent years (e.g., [5, 20, 26]).
A common characteristic of these frameworks is the locality of the analysis: in
order to derive information about the run-time behavior of the entire program,
each clause is separately analyzed. The connection between the clauses and the
goal literals activating the clauses is controlled by well-defined interfaces. For
instance, from an analysis point of view a literal or predicate call L is considered
as a function from call patterns into return patterns.* To compute or approximate
this function, we take a clause Lo < L1,..., Ly, compute the mgu of L and Ly
and restrict the unifier to the variables occurring in this clause. The restricted
unifier applied to L; yields the call pattern of the first literal in this clause and we
proceed the analysis of the clause body where the return pattern of L; is identical
to the call pattern of L;y; (i = 1,...,n—1). The return pattern of the last literal
L, will be applied to Lo and then unified with L. If we omit the information
about the clause variables in this result, we obtain the result pattern of L. Since
there is usually more than one applicable clause, we also analyze all other clauses
in this way and compute the least upper bound of all result patterns.

Locality in this analysis means that during the analysis of the clause body
Ly,...,L, we do not consider the environment of L (i.e., the goal or clause
body in which L occurs). This is justified since in a concrete computation the
environment has no influence to the computation in the body. However, this is
different in the case of functional logic programs due to the normalization process:

Example 4. Consider the following rules:

f(c(a,2)) — a (Ry1)
g(X,Y) —» c@),h(¥)) (R2)
h(a) — a (RS)

We want to compute the result pattern (here: modes) of the goal f(g(X,Y)).
For this purpose, we analyze the right-hand side c(h(X),h(Y)) of the rule for
g. A local analysis would mean that we analyze the patterns for the function
calls h(X) and h(Y), and then infer the result pattern of the function call g(X,Y)
(in this case: both arguments are bound to a ground term). However, we would
obtain an incorrect result since the environment of this function call influence the
evaluation of the right-hand side. This can be seen in the concrete derivation:

f(g(X,Y)) =g £(c(h(X),h(Y))) ~ysa flc(a,h(¥))) —r a

4 A pattern is an abstract description of a set of concrete substitutions. For instance,
the mode pattern add(g, g, f) of a literal add (X,Y,Z) describes all substitutions which
maps X and Y into ground terms and Z into a free variable.

Hence the variable Y remains free after the entire evaluation. Therefore we cannot
analyze the rule for g without considering the environment. A more complex
analysis method is necessary. O

Fortunately, this unpleasant case is rare and we often have the following situation:
If s is a subterm of ¢, then the defined function symbols above s do not influence
the evaluation of s, i.e., the ordering of narrowing steps inside s is not changed and
s is completely evaluated before a narrowing step is applied outside s. Instead
of giving a precise definition, we provide a sufficient and computable criterion
to ensure that the context of s does not influence the evaluation of s. We say
a subterm s at position p in ¢ is local iff all defined function symbols above s
preserve locality. The set of defined function symbols which preserve locality is the
least set satisfying the following conditions. A defined function symbol preserves
locality iff for all rules f(@) — r for f, where (X1, ..., X,,) is the list of variables
of @ in leftmost innermost order, the following conditions are satisfied:

1. For all j € {1,...,n} there is a position p € N'Pos(r) with r|, = X; and
{rlg | 4 € NPos(r),q < p} = {X1,..., X;_1}.
2. All defined function symbols in r preserve locality.

The first condition demands that the rule does not delete subterms and ensures
that the order of variables is preserved up to repetitions (this allows the rule
£f(X,Y)—=c(X,X,Y,X) but excludes f(X,Y)—c(Y,X)). In the second condition
we continue our demands on the defined functions in r. We denote by LOC(r)
the set of positions of local subterms in a term r.

If a subterm is not local in a term, we have to take into account the effect
of normalization during the analysis. Since the precise influence of normalization
can only be approximated by the analysis, we obtain less accurate results in this
case. In order to improve the accuracy of the analysis, we distinguish a class of
subterms which allow a better analysis than in the general case. In many cases,
functions with a nonlocal behavior on argument terms (like multiplication in
Example 2) do not change the order of narrowing steps but simply deletes some
possible narrowing steps (i.e., “possible” if normalization is not included). Since
this allows a better analysis than in the general case, we want to characterize
subterms s where the defined functions above s do not influence the ordering of
narrowing steps in the derivation of s. Again, we provide a sufficient criterion for
this property. We say a subterm s at position p in t is weakly local iff all defined
function symbols above s preserve weak locality. The set of defined functions
preserving weak locality is the least set satisfying the following conditions. A
defined function symbol f preserves weak locality iff for all rules f(u) — r for
f, where (Xi,...,X,) is the list of variables in f(%) in innermost order, the
following conditions are satisfied:

1. If X; € var(r), then there exists p € N'Pos(r) with r|, = X; and
{rlg | ¢ € NPos(r),q < p} = {X1,..., X;_1}.
2. The defined function symbols in r preserve weak locality.

This definition is similar to the definition of defined function symbols preserving
locality, but we do not require that all variables occurring in the left-hand side
must also occur in the right-hand side. For instance, the function defined by
0%N—0 preserves weak locality but not locality. We denote by WLOC(r) the set
of positions of weakly local subterms in a term r. Note that LOC(r) C WLOC(r).

The notions of locality and weak locality are sufficient to provide an accu-
rate analysis for most practical programs. Therefore we give an overview of our
analysis method in the next section.

5 Abstract Interpretation of Functional Logic Programs

Abstract interpretation is a systematic methodology to develop static program
analysis methods [6]. The design of an abstract interpretation consists in defining
an abstract domain AD which expresses relevant run-time information of pro-
grams. We assume that this abstract domain is a finite complete lattice.” Each
element of an abstract domain represents a set of concrete elements, e.g., sets
of substitutions. This relation is given by a concretization function ~. It maps
an element of the abstract domain into the powerset of the concrete domain
D. We assume that - is an ordering morphism between the abstract domain
and the powerset of the concrete domain endowed with the inclusion ordering:
Va,b € AD : a < b= v(a) C v(b). The image of the bottom element 1. € AD
should be the empty set and the image of the top element should be D. a Ll b
denotes the least upper bound of two elements a,b € AD. We say that a € AD
approzimates d € D, written a o« d iff d € y(a). Further essential components
of an abstract interpretation are operations on AD approximating the concrete
operations on D. We assume familiarity with basic concepts of abstract interpre-
tation.

5.1 Abstract Domains and Operations

We are interested in a general framework for the analysis of functional logic pro-
grams. Therefore we do not restrict ourselves to a particular abstract domain. We
only assume that the abstract domain contains elements to describe substitutions
over a fixed finite set V of variables. We denote the set of all these descriptions
by ASy. We abbreviate the abstract substitution best approximating the iden-
tity substitution by Id. In order to present examples for the analysis of modes in
functional logic programs, we use in subsequent examples the product of the two
domains Modey and Sy, i.e., ASy = Modey x Sy. The first domain Modey is
a mapping of each variable in V into one of the four modes g, f, a, L. Each mode
represents a set of constructor terms: y(L) = 0, y(a) = T(C,X), v(g9) = T(C,)
and y(f) = X. The concretization function on Modey is defined in the following
way: o € Y({z1 = ma,...,xp = myp}) iff o(z;) € y(m;) Vjie{l,...,n}. Acor-
rect analysis of freeness is not possible without considering the possible sharing

5 It is possible to weaken this condition, but for the sake of simplicity we require a
finite complete lattice.

between variables. Thus the second domain is the sharing domain Sy = P(P(V))
(sets of sets of variables from V') of Jacobs and Langen [17] with the following
concretization function: o € y(S) iff for all X € Var(o(v)) for some v € V
{y | X € Var(o(y))} C A for some A € S. We define v on the entire domain
by v((M,S)) = v(M) N v(S). Since Modey and Sy are complete lattices, the
product Modey x Sy is also a complete lattice.

In our analysis we have to approximate the evaluation of functions by nor-
malizing narrowing. Thus we consider the derivation of o(r), where r is the
right-hand side of a narrowing rule R : f(@) — r or a part of a goal and ¢ is a
constructor substitution. In Section 2 we have seen that the concrete computa-
tion is performed by applying narrowing steps with intermediate computations
of the normal form, i.e., the concrete computation has the form

* * ! * ! * !
o(r) =R To ~rgy T1 DR T ~gy o R To-r ~rg Ty =5 T

As already discussed in Section 4, the potential problem in this derivation is the
possibility that the normalization process changes the order of function calls. In
particular, the leftmost innermost position in r; may be quite different from r;.
In order to obtain a correct approximation of such derivations, we will compute
for each right-hand side r a sequence of states which approximates the sequence
of narrowing steps in the derivation above. For this purpose we define the set of
computation states of a narrowing rule R : f(a) — r as

CS(R) = ASy x (WLOC(r) U {1})

where V' = Var(R). The first component A of a computation state (4,p) €
CS(R) describes the instantiation of the rule variables, whereas the second com-
ponent p describes the last narrowing position in r (or L at the beginning of the
derivation of r).%

In order to approximate the next narrowing position of the concrete computa-
tion, we have to analyze the behavior of the normalization process. For this pur-
pose we use an extension of type graphs, a data structure introduced by Janssens
and Bruynooghe [18] to describe sets of constructor terms. Our extended type
graphs include additional information about the possible next narrowing posi-
tion. We call these extended type graphs term descriptions and denote the set
by TD(R). Due to lack of space we cannot discuss the precise structure of term
descriptions and the analysis of the normalization process (see [33] for more de-
tails). We only summarize those operations on T'D(R) which are necessary to
understand the algorithm in Section 5.2.

The analysis of the normalization process is described as a family of functions

normpg : ASy — TD(R)

6 The sequence of computation states corresponds in some sense to the sequence of
abstractions computed during the analysis of a clause body in abstract interpretation
frameworks for logic programming [5]. However, the analysis of a clause body follows
the left-to-right evaluation order of Prolog, whereas the sequence of computation
states of a narrowing rule may not reflect the left-to-right innermost order in r since
the normalization may restructure the subterms in r at run time.

10

(one for each narrowing rule R : f(z) — r with V' = Var(R)). A function normpg
takes an approximation of the instantiation of the variables occurring in R and
yields a description of the right-hand side after the normalization process. Due to
the innermost normalization strategy, arguments are normalized before applying
a rewrite rule to a function call. Thus the definition of normpg computes also the
normalization of inner subterms which will be denoted by the function

norm_argsg : ASy x Pos(r) = ASy x T(C,V")

The function norm-argsg takes a description of the rule variables and a position
in the right-hand side and yields a description of the normalized arguments of
the function call at this position. For instance, if the subterm f (g(X),Y) occurs
in r at position 1 and the abstraction A implies that X is ground and Y free, then
norm_argsg(A,1) = (A’, (Z,Y)) where Z is a new variable representing the result
of g(X) and A’ implies that Z is ground (provided that the function g evaluates
to a ground term if its argument is ground). Thus arguments containing defined
functions are replaced by new variables describing the result of the argument
evaluation, i.e., V' D V. In our analysis the new variables are only used to
describe the effect of applying a narrowing rule at this position. Thus we omit
these new variables after the rule application. For this purpose we need a restrict
function Aly which maps an abstraction A € ASy into an abstraction A’ € ASy
by forgetting the information about variables in V' — V.

The remaining auxiliary functions used in the analysis of a narrowing rule
R: f(a) = r with V = Var(R) are summarized in the following table:

Auxiliary functions for the analysis of functional logic programs
lub : P(ASV) — ASy
cons :TD(R) — Bool
func :TD(R) — Bool
leftmost : TD(R) — P(WLOC(r)U{(9(v),A) | g€ D, A€ ASyiyarn)})

The function lub (least upper bound) takes a set of abstractions {4;,...,4,}
and constructs a single abstraction which is the least upper bound A; U---U A,
of these abstractions. The predicate cons(td) is satisfied if the denotation of
a term description td may contain constructor terms. The predicate func is
satisfied if the denotation may contain a term with defined function symbols.
The function leftmost yields the set of possible function calls at the leftmost
innermost position. Note that the leftmost innermost function cannot be uniquely
determined in the analysis. Thus leftmost returns a set of possible narrowing
candidates. This set consists of weakly local subterms of r (i.e., function calls in
the right-hand side of the rule) and new function calls possibly introduced during
normalization in a subterm which is not weakly local. For instance, consider rule
R, of Example 4. If the abstraction A describes X and Y as a (any possible term),
the function le ftmost applied to normpg,(A) yields the weakly local positions 1
and 2 of the subterms h(X) and h(Y). This is a correct approximation since the
concrete normalization depends on the exact instantiation of X and Y.

Finally, we use in our framework two operations unify-aa : ASy x T(C,V) x
ASw x T(C,W) — ASw and unify-ac : ASy x T(C,V) x T(C,W) — ASy

11

approximating unification.” If we assume that the abstract substitutions A and
B describe substitutions ¢ and ¢ over disjoint sets V' and W of variables, then
uni fy-aa(A,t, B,3) describes the resulting substitution mgu(a (%), ¢(5)) o . In
contrast unify-ac(A4,t,5) approximates mgu(o(t),s) o o, i.e., it describes the
effect of unifying o () with 5 on the variables in £.

5.2 The Analysis Algorithm for Functional Logic Programs

We want to analyze a rule R : f(i) — r.® As usual, the analysis of functional
logic programs is a recursive process, and we describe the analysis as the least
fixpoint of a system of recursive functions. For this purpose we define a narrowing
denotation as a function

0 : Rules x ASy x T(C,X) —» ASy x ASx

which maps a narrowing rule (Rules denotes the set of all narrowing rules in
the program, where we assume that rules contain fresh variables if they are used
in the analysis), a description and a list of current arguments into two other
descriptions of the variables of the current arguments. Intuitively, if §(f(z) —
r, A, t) = (A1, As), then A; describes the possible instantiations of the variables
in ¢ during the derivation of the right-hand side r if this rule is applied to f(#),
whereas As describes the instantiations after a successful derivation of f(f). This
distinction is necessary since it is sufficient to consider the complete result of the
derivation only for local functions, whereas for weakly local functions it is also
necessary to consider the intermediate states (since weakly local functions can
be partially deleted, cf. Section 4).

If NDen denotes all narrowing denotations, we define our analysis as com-
puting the least fixpoint of the operator (2 : NDen — N Den with

) (R, A, t) = analyzegr(d, A, T) .

The family of functions analyzer approximates the behavior of a computation
with narrowing rule R by generating all computation states for the right-hand
side after the head unification (for convenience, we describe the functions of our
algorithm with a free syntax, but it should be clear how to translate it into a
pure functional language):

function analyzer(d € NDen, A € ASx,t € T(C, X)) : ASxy x ASx
begin
o = (unify-aa(A,t, Id,u), L) % first state contains initial instantiations

(T,¥) = generate_statesgr(d, 1) % generate subsequent states
return(back_unifyr(1, ¥, A,t)) % give the results back
end

The functions generate_statesg compute the transitive closure of the computa-
tion states of the right-hand side of each narrowing rule. Moreover, they collect

" For the sake of simplicity we consider an n-tuple of constructor terms also as a
constructor term. This is always possible by introducing a pairing constructor symbol.
& W.lo.g. we assume that the initial goal is also represented as a rewrite rule.

12

the intermediate patterns of local computations in the first component of the
result. This is necessary to correctly approximate the intermediate states of sur-
rounding weakly local functions (see back_unifyr below).

function generate_statesg(6 € NDen, vy € CS(R)) : P(ASx) x P(CS(R))
begin % R = f(a) = r
= {tho};T=0
repeat % main loop: add new states to ¥:
for all (A,u) € ¥ do
for all | € leftmost(normgr(A)) do % consider narrowing candidates
if | € WLOC(r) then % candidate is weakly local function
if [# u then % candidate not considered before
let h(3) = r|; and (A’,f) = norm_argsg(4,l) in
for all h(w) — s € Rules do

(I, F) = 0(h(w) = s, A",)|var(r) % analyze rules for h
U =vU{(F)} % add final state of the rule
ifl € LOC(r) then Y =7 U{I}
else v =0 U{(I,I)} i % add intermediate states
od % for nonlocal functions
fi
else % global functions (i.e., not weakly local): compute effect of
let (h(f),A") =1 in % head unification with these functions
¥ =W U {(unify-ac(A',t,0)|var(r), L) | () = s € Rules}
fi
od

od
until (no new states are added to ¥)
return(7,¥)
end

The functions back_uni fyr compute upper bounds of all intermediate states and
all final states of a narrowing rule:

function back_unifyr(Y € P(ASx),¥ € P(CS(R)),A € AS»,t € T(C,X)):
ASy x ASy
begin % R = f(a) - r
(1,F) = (0, 1)
for all (4',p) € ¥ do
td = normpg(A")
% add abstraction to I if rhs of R still contains function calls:
if func(td) then I = I U{unify-aa(A’',a,A,t)} fi
% add abstraction to F' if the right-hand side of R is totally evaluated:
if cons(td) then F = F U {unify-aa(A’,u, A,t)} i
od
I =TU {unify-aa(B,a,A,t)| B}
return(lub(I), lub(F))
end

13

5.3 Derivation of Narrowing and Rewrite Modes

The main motivation of this work is the derivation of narrowing and rewrite
modes for functional logic programs since they can be used to optimize the com-
piled programs in various ways (see Section 3 and [16]). The analysis presented so
far does not derive these modes but approximates the instantiation of variables
after a successful application of a narrowing rule. This is the most difficult task
in the analysis due to the problems discussed in Section 4. Therefore it is easy to
derive the narrowing and rewrite modes from our analysis. The narrowing modes
can be inferred by collecting the initial modes of all narrowing rules computed in
the functions analyzer and in uni fy-ac-calls. The computation of rewrite modes
can be integrated in the functions generate_statesrp and normpg by collecting all
abstractions occurring during the normalization process.

5.4 Examples

In the following example we sketch the computed results of our algorithm. Since
we are mainly interested in the mode component Modey of the abstractions, we
omit the sharing component in the example (although it is necessary to correctly
derive freeness information).

Example 5. We discuss the analysis of a recursively defined function. We want to
derive the modes of Example 3. For this purpose we represent the term of the
initial goal as the right-hand side of a new rule:

0+U—>1U (Ry) three(X) — X+(X+X) (R3)
s(V) + W — s(V + W) (R2)

Since all functions are local, it is not necessary to consider the intermediate modes
of narrowing rules. Hence we ignore these in the following discussion. The analysis
starts by analyzing clause Rz with the initial abstraction 49 = {X — f}. Nor-
malization of the right-hand side yields leftmost(normp,(Ao)) = {2}, i.e., the
subterm X+X is the next narrowing position. The analysis of rule R; is performed
by analyzeg, (L, Ao, (X,X)) = (..., {X +— g}) (note that we start a fixpoint com-
putation with the undefined narrowing denotation L). To analyze the second rule,
we compute the initial abstraction A; = {V+— f,W — a} of the right-hand side.
The next narrowing position is the subterm V+W: le ftmost(normpg,(41)) = {1}.
The result of this recursive function call is approximated by the following chain
of fixpoint iterations (note that we do not show the sharing component, but it is
necessary to derive these results):

analyzegr, (L, Ay, (V,W)) =(..{VegWmg}
analyzegr,(L, Ay, (V,W)) =(..,{Ve L W-1})
analyzeR1(Q(J-)a Ala (V7 W)) = () {V =g, W g})
analyzeRz(Q(J-)a Ala (V7 W)) = () {V =g, W g})

A further iteration does not change the narrowing denotations. Thus the analysis
of Ry w.r.t. Ag yields the final result {X — g}, and we have reached a stable
situation after one fixpoint iteration.

14

The narrowing modes for + can be derived by collecting all initial modes for
the analysis of Ry and Ry, i.e., +(f,a) is the narrowing mode. Similarly, +(a,a)
is the derived rewrite mode. a

Due to lack of space we cannot discuss the analysis of Example 4 in detail.
Our analysis yields as success substitution for f (g(X,Y)) the abstract value {X —
a,Y — a}. The computed approximation is the worst possible one because of the
presence of nonlocal function symbols. However, it is correct in contrast to an
analysis of the corresponding flattened logic program.

6 Conclusions

In this paper we have presented a framework to approximate the run-time behav-
ior of functional logic programs. The considered concrete operational semantics
is normalizing narrowing, a combination of reduction, as used in pure functional
languages, and nondeterministic narrowing steps, which are comparable to resolu-
tion steps in pure logic languages. This combination is very useful since it reduces
the search space by the preference of deterministic evaluations and the deletion
of complete subgoals during normalization. However, these useful effects makes
an accurate approximation very difficult since the intermediate normalization
process during narrowing steps may delete or restructure the order of subsequent
narrowing steps. In order to catch this behavior at the abstract level, we have
described the evolving computation of the right-hand side of each narrowing rule
by a sequence of descriptions of the instantiation state of the rule variables. De-
pending on this instantiation state, the abstract normalization function yields
a description of the next narrowing position in the right-hand side. To improve
the accuracy of the analysis, we have distinguished two kinds of functions. Local
functions cannot be deleted by the normalization of surrounding functions, and
hence they are completely evaluated. Therefore it is only necessary to consider
the success states of their corresponding narrowing rules. The order or narrowing
steps in weakly local functions cannot be changed, but the evaluation may be
cut off due to the deletion of arguments. Therefore they can be treated with a
better accuracy than generally defined functions, but it is necessary to consider
intermediate states in contrast to local functions.

The analysis of functional logic programs is a rather new research topic in
the general area of program analysis. As far as we know, this paper is the first
approach to derive mode information for functional logic languages based on
normalizing narrowing. Boye [4] and Hanus [14] proposed methods to analyze
functional logic programs where function calls are simply delayed until they are
completely evaluable. Alpuente et al. [1] presented a framework to approximate
the success patterns of terms evaluated by narrowing in order to detect unsolv-
able equations at analysis time. However, all these approaches do not cover the
derivation of modes for function calls. As already discussed, this is a challenge
in the presence of an operational semantics which dynamically restructure the
call sequence in goals. Marriott et al. [23] proposed a framework to analyze logic
programs where subgoals are dynamically delayed. This is in some sense related

15

to the dynamic restructuring of goals, but it is different from our framework since
we try to approximate also the complete deletion of subgoals which has no cor-
respondence in logic programming. The possible deletion of subgoals is the main
reason for the complexity of our approach.

The accuracy of our analysis depends on the locality of functions and the
accuracy of the analysis of the normalization process. In our current framework,
we use type graphs and mode information to approximate the normalization
process and, in particular, the applicability of a rewrite rule. It is an interesting
topic for future research to improve this approximation by stronger applicability
conditions for rewrite rules using refined abstract domains. Another topic for
future work is the implementation of this framework and the inclusion into an
existing compiler in order to evaluate our analysis method on larger application
programs.

References

1. M. Alpuente, M. Falaschi, and F. Manzo. Analyses of Inconsistency for Incremen-
tal Equational Logic Programming. In Proc. of the 4th International Symposium
on Programming Language Implementation and Logic Programming, pp. 443-457.
Springer LNCS 631, 1992.

2. D. Bert and R. Echahed. Design and Implementation of a Generic, Logic and Func-
tional Programming Language. In Proc. European Symposium on Programming, pp.
119-132. Springer LNCS 213, 1986.

3. P.G. Bosco, E. Giovannetti, and C. Moiso. Narrowing vs. SLD-Resolution. Theo-
retical Computer Science 59, pp. 3—23, 1988.

4. J. Boye. Avoiding Dynamic Delays in Functional Logic Programs. In Proc. of the
5th International Symposium on Programming Language Implementation and Logic
Programming, pp. 12-27. Springer LNCS 714, 1993.

5. M. Bruynooghe. A Practical Framework for the Abstract Interpretation of Logic
Programs. Journal of Logic Programming (10), pp. 91-124, 1991.

6. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction of approximation of fixpoints. In Proc. of the
4th ACM Symposium on Principles of Programming Languages, pp. 238252, 1977.

7. N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, Vol. B, pp. 243-320. Elsevier, 1990.

8. M.J. Fay. First-Order Unification in an Equational Theory. In Proc. 4th Workshop
on Automated Deduction, pp. 161-167, Austin (Texas), 1979. Academic Press.

9. L. Fribourg. SLOG: A Logic Programming Language Interpreter Based on Clausal
Superposition and Rewriting. In Proc. IEEE Internat. Symposium on Logic Pro-
grammang, pp- 172-184, Boston, 1985.

10. E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel LEAF: A Logic plus
Functional Language. Journal of Computer and System Sciences, Vol. 42, No. 2,
pp. 139-185, 1991.

11. M. Hanus. Compiling Logic Programs with Equality. In Proc. of the 2nd Int.
Workshop on Programming Language Implementation and Logic Programming, pp.
387-401. Springer LNCS 456, 1990.

12. M. Hanus. Efficient Implementation of Narrowing and Rewriting. In Proc. Int.
Workshop on Processing Declarative Knowledge, pp. 344-365. Springer LNAT 567,
1991.

13. M. Hanus. Improving Control of Logic Programs by Using Functional Logic Lan-
guages. In Proc. of the 4th International Symposium on Programming Language
Implementation and Logic Programming, pp. 1-23. Springer LNCS 631, 1992.

16

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

M. Hanus. On the Completeness of Residuation. In Proc. of the 1992 Joint In-
ternational Conference and Symposium on Logic Programming, pp. 192-206. MIT
Press, 1992.

M. Hanus. The Integration of Functions into Logic Programming: From Theory to
Practice. Journal of Logic Programming, Vol. 19-20, 1994.

M. Hanus. Towards the Global Optimization of Functional Logic Programs. In
Proc. 5th International Conference on Compiler Construction, pp. 68-82. Springer
LNCS 786, 1994.

D. Jacobs and A. Langen. Accurate and Efficient Approximation of Variable Alias-
ing in Logic Programs. In Proc. of the 1989 North American Conference on Logic
Programming, pp. 154-165. MIT Press, 1989.

G. Janssens and M. Bruynooghe. Deriving Descriptions of Possible Values of Pro-
gram Variables. Journal of Logic Programming, Vol. 13, No. 2 & 3, pp. 205-258,
1992.

H. Kuchen, R. Loogen, J.J. Moreno-Navarro, and M. Rodriguez-Artalejo. Graph-
based Implementation of a Functional Logic Language. In Proc. ESOP 90, pp.
271-290. Springer LNCS 432, 1990.

B. Le Charlier, K. Musumbu, and P. Van Hentenryck. A Generic Abstract Inter-
pretation Algorithm and its Complexity Analysis. In Proc. International Confer-
ence on Logic Programming, pp. 64-78. MIT Press, 1991.

R. Loogen. Relating the Implementation Techniques of Functional and Functional
Logic Languages. New Generation Computing, Vol. 11, pp. 179-215, 1993.

A. Marien, G. Janssens, A. Mulkers, and M. Bruynooghe. The impact of abstract
interpretation: an experiment in code generation. In Proc. Sizth International Con-
ference on Logic Programming (Lisboa), pp. 33—47. MIT Press, 1989.

K. Marriott, M.J. Garcia de la Banda, and M. Hermenegildo. Analyzing Logic
Programs with Dynamic Scheduling. In Proc. 21st ACM Symposium on Principles
of Programming Languages, pp. 240-253, Portland, 1994.

C.S. Mellish. Some Global Optimizations for a Prolog Compiler. Journal of Logic
Programming (1), pp. 43-66, 1985.

J.J. Moreno-Navarro and M. Rodriguez-Artalejo. Logic Programming with Func-
tions and Predicates: The Language BABEL. Journal of Logic Programming,
Vol. 12, pp. 191-223, 1992.

U. Nilsson. Systematic Semantic Approximations of Logic Programs. In Proc.
of the 2nd Int. Workshop on Programming Language Implementation and Logic
Programming, pp. 293-306. Springer LNCS 456, 1990.

U.S. Reddy. Narrowing as the Operational Semantics of Functional Languages.
In Proc. IEEE Internat. Symposium on Logic Programming, pp. 138-151, Boston,
1985.

A. Taylor. Removal of Dereferencing and Trailing in Prolog Compilation. In Proc.
Sizth International Conference on Logic Programming (Lisboa), pp. 48-60. MIT
Press, 1989.

A. Taylor. LIPS on a MIPS: Results form a Prolog Compiler for a RISC. In Proc.
Seventh International Conference on Logic Programming, pp. 174-185. MIT Press,
1990.

P. Van Roy. An Intermediate Language to Support Prolog’s Unification. In Proc.
of the 1989 North American Conference on Logic Programming, pp. 1148-1164.
MIT Press, 1989.

P.L. Van Roy. Can Logic Programming Ezecute as Fast as Imperative Program-
ming? PhD thesis, Univ. of California Berkeley, 1990. Report No. UCB/CSD
90/600.

D.{-I.D. Warren. Implementing PROLOG - Compiling Logic Programs. 1 and 2.
D.A.I Research Report No. 39 and 40, University of Edinburgh, 1977.

F. Zartmann. Global Analysis of Functional Logic Programs. Technical Report,
Max-Planck-Institut fiir Informatik, Saarbriicken, 1994.

17

