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Abstrat. Funtional logi languages with a sound and omplete opera-

tional semantis are mainly based on narrowing. Due to the huge searh

spae of simple narrowing, steadily improved narrowing strategies have

been developed in the past. Needed narrowing is urrently the best nar-

rowing strategy for �rst-order funtional logi programs due to its opti-

mality properties w.r.t. the length of derivations and the number of om-

puted solutions. In this paper, we extend the needed narrowing strategy to

higher-order funtions and �-terms as data strutures. By the use of def-

initional trees, our strategy omputes only inomparable solutions. Thus,

it is the �rst alulus for higher-order funtional logi programming whih

provides for suh an optimality result. Sine we allow higher-order logial

variables denoting �-terms, appliations go beyond urrent funtional and

logi programming languages.

1 Introdution

Funtional logi languages [7℄ with a sound and omplete operational semantis

are mainly based on narrowing. Narrowing, originally introdued in automated

theorem proving [20℄, is used to solve goals by �nding appropriate values for vari-

ables ourring in arguments of funtions. A narrowing step instantiates variables

in a goal and applies a redution step to a redex of the instantiated goal. The

instantiation of goal variables is usually omputed by unifying a subterm of the

goal with the left-hand side of some rule.

Example 1. Consider the following rules de�ning the less-or-equal prediate on

natural numbers whih are represented by terms built from 0 and s:

0 � X ! true

s(X) � 0! false

s(X) � s(Y )! X � Y

To solve the goal s(X) � Y , we perform a �rst narrowing step by instantiating Y

to s(Y

1

) and applying the third rule, and a seond narrowing step by instantiating

X to 0 and applying the �rst rule:

s(X) � Y ;

fY 7!s(Y

1

)g

X � Y

1

;

fX 7!0g

true

Sine the goal is redued to true, the omputed solution is fX 7! 0; Y 7! s(Y

1

)g.



Due to the huge searh spae of simple narrowing, steadily improved narrowing

strategies have been developed in the past. Needed narrowing [2℄ is based on the

idea to evaluate only subterms whih are needed in order to ompute some result.

For instane, in a goal t

1

� t

2

, it is always neessary to evaluate t

1

(to some head

normal form) sine all three rules in Example 1 have a non-variable �rst argument.

On the other hand, the evaluation of t

2

is only needed if t

1

is of the form s(� � �).

Thus, if t

1

is a free variable, needed narrowing instantiates it to a onstrutor,

here 0 or s. Depending on this instantiation, either the �rst rule is applied or the

seond argument t

2

is evaluated. Needed narrowing is the urrently best narrowing

strategy for �rst-order funtional logi programs due to its optimality properties

w.r.t. the length of derivations and the number of omputed solutions [2℄. More-

over, it an be eÆiently implemented by pattern-mathing and uni�ation due to

its loal omputation of a narrowing step (see, e.g., [8℄).

In this paper, we extend the needed narrowing strategy to higher-order fun-

tions and �-terms as data strutures. We introdue a lass of higher-order in-

dutively sequential rewrite rules whih an be de�ned via de�nitional trees. Al-

though this lass is a restrition of general higher-order rewrite systems, it overs

higher-order funtional languages. As higher-order rewrite steps an be expensive

in general, we show that �nding a redex with indutively sequential rules an be

performed as in the �rst-order ase.

Sine our narrowing alulus LNT is oriented towards previous work on higher-

order narrowing [19℄, we show in the �rst part that LNT oinides with needed

narrowing in the �rst-order ase. For the higher-order ase, we show soundness

and ompleteness with respet to higher-order needed redutions, whih we de�ne

via de�nitional trees. Furthermore, we show that the alulus is optimal w.r.t. the

solutions omputed, i.e., no solution is produed twie. Optimality of higher-order

redutions is subjet of urrent researh. It is however shown that higher-order

needed redutions are in fat needed for redution to a onstrutor normal form.

This strategy is the �rst alulus for higher-order funtional logi programming

whih provides for optimality results. Moreover, it falls bak to the optimal needed

narrowing strategy if the higher-order features are not used, i.e., our alulus is a

onservative extension of an optimal �rst-order narrowing alulus. Sine we allow

higher-order logial variables denoting �-terms, appliations go beyond urrent

funtional and logi programming languages. In general, our alulus an ompute

solutions for variables of funtional type. Although this is very powerful, we show

that the inurring higher-order uni�ation an sometimes be avoided by tehniques

similar to [4℄. Due to lak of spae, some details and the proofs are omitted. They

an be found in [9℄.

2 Preliminaries

We briey introdue the simply typed �-alulus (see e.g. [10℄). We assume the

following variable onventions:

{ F;G;H; P;X; Y denote free variables,

{ a; b; ; f; g (funtion) onstants, and

2



{ x; y; z bound variables.

Type judgments are written as t : � . Further, we often use s and t for terms and

u; v; w for onstants or bound variables. The set of types T for the simply typed

�-terms is generated by a set T

0

of base types (e.g., int, bool) and the funtion

type onstrutor !. The syntax for �-terms is given by

t = F j x j  j �x:t j (t

1

t

2

)

A list of syntati objets s

1

; : : : ; s

n

where n � 0 is abbreviated by s

n

. For in-

stane, n-fold abstration and appliation are written as �x

n

:s = �x

1

: : : �x

n

:s

and a(s

n

) = ((� � � (a s

1

) � � �) s

n

), respetively. Substitutions are �nite mappings

from variables to terms, denoted by fX

n

7! t

n

g, and extend homomorphially from

variables to terms. Free and bound variables of a term t will be denoted as FV(t)

and BV(t), respetively. A term t is ground if FV(t) = fg. The onversions in

�-alulus are de�ned as:

{ �-onversion: �x:t =

�

�y:(fx 7! ygt),

{ �-onversion: (�x:s)t =

�

fx 7! tgs, and

{ �-onversion: if x =2 FV(t), then �x:(tx) =

�

t.

The long ��-normal form [14℄ of a term t, denoted by tl

�

�

, is the �-expanded

form of the �-normal form of t. It is well known [10℄ that s =

���

t i� sl

�

�

=

�

tl

�

�

.

As long ��-normal forms exist for typed �-terms, we will in general assume that

terms are in long ��-normal form. For brevity, we may write variables in �-normal

form, e.g., X instead of �x

n

:X(x

n

). We assume that the transformation into long

��-normal form is an impliit operation, e.g., when applying a substitution to a

term.

A substitution � is in long ��-normal form if all terms in the image of � are in

long ��-normal form. The onvention that �-equivalent terms are identi�ed and

that free and bound variables are kept disjoint (see also [5℄) is used in the following.

Furthermore, we assume that bound variables with di�erent binders have di�erent

names. De�ne Dom(�) = fX j �X 6= Xg and Rng(�) =

S

X2Dom(�)

FV(�X).

Two substitutions are equal on a set of variables W , written as � =

W

�

0

,

if �� = �

0

� for all � 2 W . The restrition of a substitution to a set of variables

W is de�ned as �

jW

� = �� if � 2 W and �

jW

� = � otherwise. A substitution

� is idempotent i� � = ��. We will in general assume that substitutions are

idempotent. A substitution �

0

is more general than �, written as �

0

� �, if � = ��

0

for some substitution �. We desribe positions in �-terms by sequenes over natural

numbers. The subterm at a position p in a �-term t is denoted by tj

p

. A term t

with the subterm at position p replaed by s is written as t[s℄

p

.

A term t in �-normal form is alled a higher-order pattern if every free our-

rene of a variable F is in a subterm F (u

n

) of t suh that the u

n

are �-equivalent

to a list of distint bound variables. Uni�ation of patterns is deidable and a

most general uni�er exists if they are uni�able [12℄. Examples are �x; y:F (x; y)

and �x:f(G(�z:x(z))).

A rewrite rule [14℄ is a pair l ! r suh that l is a higher-order pattern but

not a free variable, l and r are long ��-normal forms of the same base type, and
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FV(l) � FV(r). Assuming a rule l ! r and a position p in a term s in long

��-normal form, a rewrite step from s to t is de�ned as

s �!

l!r

p;�

t , sj

p

= �l ^ t = s[�r℄

p

:

For a rewrite step we often omit some of the parameters l ! r; p and �. It is

a standard assumption in funtional logi programming that onstant symbols

are divided into free onstrutor symbols and de�ned symbols. A symbol f is

alled a de�ned symbol or operation, if a rule f(� � �)! t exists. A onstru-

tor term is a term without de�ned symbols. Construtor symbols and onstrutor

terms are denoted by  and d. A term f(t

n

) is alled operation-rooted (respe-

tively onstrutor-rooted) if f is a de�ned symbol (respetively onstrutor). A

higher-order rewrite system (HRS) R is a set of rewrite rules. A term is in

R-normal form if no rule from R applies and a substitution � is R-normalized

if all terms in the image of � are in R-normal form.

By applying rewrite steps, we an ompute the value of a funtional expression.

However, in the presene of free variables, we have to ompute values for these free

variables suh that the instantiated expression is reduible. This is the motivation

for narrowing whih will be preisely de�ned in the following setions. Narrowing is

intended to solve goals, where a goal is an expression of Boolean type that should

be redued to the onstant true. This is general enough to over the equation

solving apabilities of urrent funtional logi languages with a lazy operational

semantis, like BABEL [13℄ or K-LEAF [6℄, sine the strit equality �

1

an be

de�ned as a binary operation by a set of orthogonal rewrite rules (see [2, 6, 13℄ for

more details about strit equality). An important onsequene of this restrition

on goals is the fat that during the suessful rewriting of a goal the topmost

symbol is always an operation or the onstant true. This property will be used to

simplify the narrowing alulus.

Notie that a subterm sj

p

may ontain free variables whih used to be bound

in s. For rewriting it is possible to ignore this, as only mathing of a left-hand

side of a rewrite rule is needed. For narrowing, we need uni�ation and hene we

use the following onstrution to lift a rule into a binding ontext to failitate the

tehnial treatment. An x

k

-lifter of a term t away from W is a substitution � =

fF 7! (�F )(x

k

) j F 2 FV(t)g where � is a renaming suh that Dom(�) = FV(t),

Rng(�) \W = fg and �F : �

1

! � � � ! �

k

! � if x

1

: �

1

, . . . , x

k

: �

k

and F : � .

A term t (rewrite rule l ! r) is x

k

-lifted if an x

k

-lifter has been applied to t (l

and r). For example, fG 7! G

0

(x)g is an x-lifter of g(G) away from any W not

ontaining G

0

.

3 First-Order De�nitional Trees

De�nitional trees are introdued in [1℄ to de�ne eÆient normalization strategies

for (�rst-order) term rewriting. The idea is to represent all rules for a de�ned

1

The strit equality t � t

0

holds if t and t

0

are reduible to the same ground onstrutor

term. Note that normal forms may not exist in general due to non-terminating rewrite

rules.
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symbol in a tree and to ontrol the seletion of the next redex by this tree. This

tehnique is extended to narrowing in [2℄. We will extend de�nitional trees to the

higher-order ase in order to obtain a similar strategy for higher-order narrowing.

To state a lear relationship between the �rst-order and the higher-order ase, we

review the �rst-order ase in this setion and present the needed narrowing alulus

in a new form. Thus, we assume in this setion that all terms are �rst-order, i.e.,

�-abstrations and funtional variables do not our.

Traditionally [7℄, a term t is narrowed into a term t

0

if there exist a non-

variable position p in t (i.e., tj

p

is not a free variable), a variant l! r of a rewrite

rule with FV(t) \ FV(l ! r) = fg and a most general uni�er � of tj

p

and l

suh that t = �(t[r℄

p

). In this ase we write t ;

�

t

0

. We write t

0

;

�

�

t

n

if there

is a narrowing derivation t

0

;

�

1

t

1

;

�

2

� � � ;

�

n

t

n

with � = �

n

� � ��

2

�

1

.

In order to ompute all solutions by narrowing, we have to apply all rules at all

non-variable subterms in parallel. Sine this simple method leads to a huge and

often in�nite searh spae, many improvements have been proposed in the past

(see [7℄ for a survey). A narrowing strategy determines the position where the

next narrowing step should be applied. As shown in [2℄, an optimal narrowing

strategy an be obtained by dropping the requirement for most general uni�ers

and ontrolling the instantiation of variables and seletion of narrowing positions

by a data struture, alled de�nitional tree. T is a de�nitional tree with pattern

� i� its depth is �nite and one of the following ases holds:

T = rule(l! r), where l! r is a variant of a rule in R suh that l = �.

T = branh(�; o; T

k

), where o is an ourrene of a variable in �, 

k

are di�erent

onstrutors of the type of �j

o

(k > 0), and, for i = 1; : : : ; k, T

i

is a de�nitional

tree with pattern �[

i

(X

n

i

)℄

o

, where n

i

is the arity of 

i

and X

n

i

are new

distint variables.

A de�nitional tree of an n-ary funtion f is a de�nitional tree T with pattern

f(X

n

), whereX

n

are distint variables, suh that for eah rule l! r with l = f(t

n

)

there is a node rule(l

0

! r

0

) in T with l variant of l

0

.

2

For instane, the rules in

Example 1 an be represented by the following de�nitional tree:

branh(X � Y; 1; rule(0 � Y ! true);

branh(s(X

0

) � Y; 2; rule(s(X

0

) � 0! false);

rule(s(X

0

) � s(Y

0

)! X

0

� Y

0

)))

A de�nitional tree starts always with the most general pattern for a de�ned symbol

and branhes on the instantiation of a variable to onstrutor-headed terms, here

0 and s(X

0

). It is essential that eah rewrite rule ours only one as a leaf of the

tree. Thus, when evaluating the arguments of a term f(t

n

) to onstrutor terms,

the tree an be inrementally traversed to �nd the mathing rule.

A funtion f is alled indutively sequential if there exists a de�nitional

tree of f suh that eah rule node orresponds to exatly one rule of the rewrite

system R. The term rewriting system R is alled indutively sequential if eah

funtion de�ned by R is indutively sequential.

2

This orresponds to Antoy's notion [1℄ exept that we ignore exempt nodes.
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A de�nitional tree de�nes a strategy to apply narrowing steps.

3

To narrow a

term t, we onsider the de�nitional tree T of the outermost funtion symbol of t

(note that, by our restrition on goals, the outermost symbol is always a Boolean

funtion). If T = rule(l! r), we apply the rule l ! r to t. If T = branh(�; o; T

k

),

we onsider the subterm tj

o

. If tj

o

has a funtion symbol at the top, we narrow

this subterm (to a head normal form) by reursively applying our strategy to tj

o

.

If tj

o

has a onstrutor symbol at the top, we narrow t with T

j

, where the pattern

of T

j

uni�es with t. If tj

o

is a variable, we non-deterministially selet a subtree

T

j

, instantiate tj

o

to the onstrutor of the pattern of T

j

at position o, and narrow

this instane of t with T

j

. This strategy is alled needed narrowing [2℄ and is

the urrently best narrowing strategy due to its optimality w.r.t. the length of

derivations (if terms are shared) and the number of omputed solutions.

In order to extend this strategy to higher-order funtions, another representa-

tion is required sine it is shown in [17℄ that the diret appliation of narrowing

steps to inner subterms should be avoided in the presene of �-bound variables.

For this purpose we transform the needed narrowing alulus into a lazy narrow-

ing alulus in the spirit of Martelli/Montanari's inferene rules. In a �rst step, we

integrate the de�nitional trees into the rewrite rules by extending the language of

terms and providing ase onstruts to express the onrete narrowing strategy. A

ase expression has the form

ase X of 

1

(X

n

1

) : X

1

; : : : ; 

k

(X

n

k

) : X

k

where X is a variable, 

1

; : : : ; 

k

are di�erent onstrutors of the type of X , and

X

1

; : : : ;X

k

are terms possibly ontaining ase expressions. Using suh ase expres-

sions, eah indutively sequential funtion symbol an be de�ned by exatly one

rewrite rule. For instane, the rules for the funtion � de�ned in Example 1 are

represented by the following rule:

X � Y ! ase X of 0 : true; s(X

1

) : (ase Y of 0 : false; s(Y

1

) : X

1

� Y

1

)

To be more preise, we translate a de�nitional tree T into a term with ase ex-

pressions by the use of the funtion dt(T ) whih is de�ned as follows:

dt(rule(l! r)) = r

dt(branh(�; o; T

k

)) = ase �j

o

of �

1

j

o

: dt(T

1

); : : : ; �

k

j

o

: dt(T

k

)

where �

i

is the pattern of T

i

If T is the de�nitional tree with pattern f(X

n

) of the n-ary funtion f , then

f(X

n

)! dt(T ) is the new rewrite rule for f . A ase expression ase X of p

n

: X

n

an be onsidered as a funtion with arity 2n+ 1 where the semantis is de�ned

by the following n rewrite rules:

4

ase p

i

of p

n

: X

n

! X

i

(i = 1; : : : ; n)

3

Due to lak of spae, we omit a preise de�nition whih an be found in [2℄.

4

To be more preise, di�erent ase funtions are needed for ase expressions with di�er-

ent patterns, i.e., the ase funtions should be indexed by the ase patterns. However,

for the sake of readability, we do not write these indies and allow the overloading of

the ase funtion symbols.
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Bind

e!

?

Z;G )

�

�(G)

if e is not a ase term and � = fZ 7! eg

Case Selet

ase (t

n

) of p

k

: X

k

!

?

Z;G )

�

�(X

i

)!

?

Z; G

where p

i

= (X

n

) and � = fX

n

7! t

n

g

Case Guess

ase X of p

k

: X

k

!

?

Z;G )

�

�(X

i

)!

?

Z; �(G)

where � = fX 7! p

i

g

Case Eval

ase f(t

n

) of p

k

: X

k

!

?

Z;G )

�

�(X )!

?

X; ase X of p

k

: X

k

!

?

Z;G

if f(X

n

)! X 2 R

0

is a rule with fresh variables,

� = fX

n

7! t

n

g, and X is a fresh variable

Fig. 1. Calulus LNT for lazy narrowing with de�nitional trees in the �rst-order ase

In the following, we denote by R an indutively sequential rewrite system, by R

0

its translated version ontaining exatly one rewrite rule for eah funtion de�ned

by R, and by R



the additional ase rewrite rules. The following theorem states

that needed narrowing w.r.t. R and leftmost-outermost narrowing w.r.t. R

0

[ R



are equivalent, where leftmost-outermost means that the seleted subterm is

the leftmost-outermost one among all possible narrowing positions.

5

Theorem1. Let t be a term with a Boolean funtion at the top. For eah needed

narrowing derivation t;

�

�

true w.r.t. R there exists a leftmost-outermost narrow-

ing derivation t;

�

�

0

true w.r.t. R

0

[ R



with � =

FV(t)

�

0

, and vie versa.

As mentioned above, in the higher-order ase we need a narrowing alulus

whih always applies narrowing steps to the outermost funtion symbol whih is

often di�erent from the leftmost-outermost narrowing position. For this purpose,

we transform a leftmost-outermost narrowing derivation w.r.t. R

0

[ R



into a

derivation on a goal system G (a sequene of goals of the form t !

?

X) where

narrowing rules are only applied to the outermost funtion symbol of the leftmost

goal. This is the purpose of the inferene system LNT shown in Figure 1. The

Bind rule propagates a term to the subsequent ase expression. The Case rules

orrespond to the ase distintion in the de�nition of needed narrowing, where the

narrowing of a funtion is integrated in the Case Eval rule. Note that the only

possible non-determinism during omputation with these inferene rules is in the

Case Guess rule. Sine we are interested in solving goals by redution to true,

we assume that the initial goal has always the form ase t of true : true !

?

T .

We use this representation in order to provide a alulus with few inferene rules.

Note that T 7! true if suh a goal an be redued to the empty goal system.

5

A position p is leftmost-outermost in a set P of positions if there is no p

0

2 P with

p

0

pre�x of p, or p

0

= q � i � q

0

and p = q � j � q

00

and i < j.
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Theorem2. Let t be a term with a Boolean funtion at the top and X a fresh

variable. For eah leftmost-outermost narrowing derivation t;

�

�

true w.r.t. R

0

[

R



there exists a LNT-derivation ase t of true : true!

?

X

�

)

�

0

true!

?

X

w.r.t. R

0

suh that �

0

=

FV(t)

�, and vie versa.

Theorems 1 and 2 imply the equivalene of needed narrowing and the alulus

LNT. Sine we will extend LNT to higher-order funtions in the next setion,

the results in this setion show that our higher-order alulus is a onservative

extension of an optimal �rst-order narrowing strategy.

4 Higher-Order De�nitional Trees

In the following we extend �rst-order de�nitional trees to the higher-order ase.

To generalize from the �rst-order ase, it is useful to reall the main ideas: When

evaluating the arguments of a term f(t

n

) to onstrutor terms, the de�nitional tree

an be inrementally traversed to �nd the (single) mathing rule. It is essential

that eah branhing depends on only one subterm (or argument to the funtion)

and that for eah rigid term (non-variable headed), a single branh an be hosen.

For this purpose, we need further restritions in the higher-order ase, where we

employ �-terms as data struture, e.g., higher-order terms with bound variables

in the left-hand sides. For instane, we permit the rules

di�(�y:y;X) ! 1

di�(�y:sin(F (y)); X)! os(F (X)) � di�(�y:F (y); X)

di�(�y:ln(F (y)); X) ! di�(�y:F (y); X)=F (X)

where di�(F;X) omputes the di�erential of F at X .

A shallow pattern is a linear term of the form �x

n

:v(H

m

(x

n

)). We will use

shallow patterns for branhing in trees. In ontrast to the �rst-order ase, v an

also be a bound variable.

De�nition 3. T is a higher-order de�nitional tree (hdt) i� its depth is �nite

and one of the following ases holds:

{ T = p

f

: ase X of T

n

{ T = p

f

: rhs,

where p

f

are shallow patterns with fresh variables, X is a free variable and T

n

are

hdts in the �rst ase, and rhs is a term (representing the right-hand side of a rule).

Moreover, all shallow patterns of the hdts T

n

must be pairwise non-uni�able.

We write hdts as p

f

: X , where X stands for a ase expression or a term. To simplify

tehnialities, rewrite rules f(X

n

) ! X are identi�ed with the hdt f(X

n

) : X .

With this latter form of a rule, we an relate rules to the usual notation as follows.

The seletor of a tree T of the form T = p

f

: X is de�ned as sel(T ) = p

f

. For

a node T

0

in a tree T , the onstraints in the ase expressions on the path to it

determine a term, whih is reursively de�ned by the pattern funtion pat

T

(T

0

):

pat

T

(T

0

) =

�

sel(T

0

) if T = T

0

(i.e., T

0

is the root)

fX 7! sel(T

0

)gpat

T

(T

00

) if T

0

has parent T

00

= p

f

: aseX of T

n

8



Eah branh variable must belong to the pattern of this node, i.e., for eah node

T

0

= p

f

: ase X of T

n

in a tree T , X is a free variable of pat

T

(T

0

). Furthermore,

eah leaf T

0

= p : rhs of a hdt T is required to orrespond to a rewrite rule l! r,

i.e., pat

T

(T

0

) ! rhs is a variant of l ! r. T is alled hdt of a funtion f if for

all rewrite rules of f there is exatly one orresponding leaf in T .

As in the �rst-order ase, rewrite rules must be onstrutor based. This

means that in a hdt only the outermost pattern has a de�ned symbol. An HRS,

for all of whih de�ned symbols hdts exits, is alled indutively sequential.

For instane, the rules for di� above have the hdt

di�(F;X)! ase F of �y:y : 1;

�y:sin(F

0

(y)) : os(F

0

(X)) � di�(�y:F

0

(y); X);

�y:ln(F

0

(y)) : di�(�y:F

0

(y); X)=F

0

(X)

Note that free variables in left-hand sides must have all bound variables of the

urrent sope as arguments. Suh terms are alled fully extended. This important

restrition, whih also ours in [16℄, allows to �nd redies as in the �rst-order ase,

and furthermore simpli�es narrowing. For instane, Flex-Flex pairs do not arise

here, in ontrast to the full higher-order ase [18, 19℄. Consider an example for

some non-overlapping rewrite rules whih do not have a hdt:

f(�x:(x)) ! a

f(�x:H) ! b

The problem is that for rewriting a term with these rules the full term must be

sanned. For example, if the argument to f is the rigid term �x:(G(t)), it is not

possible to ommit to one of the rules (or branhes of a tree) before heking if

the bound variable x ours inside t. In general, this may lead to an unexpeted

omplexity w.r.t. the term size for evaluation via rewriting.

We de�ne the x

k

-lifting of hdts by shematially applying the x

k

-lifter to all

terms in the tree, i.e., to all patterns, right-hand sides, and free variables in ases.

5 Narrowing with Higher-Order De�nitional Trees

In the higher-order ase, the rules of LNT of Setion 3 must be extended to a-

ount for several new ases. Compared to the �rst-order ase, we need to maintain

binding environments and higher-order free variables, possibly with arguments,

whih are handled by higher-order uni�ation. For this purpose, the Imitation,

the Funtion Guess and the Projetion rules have been added in Figure 2. These

three new rules, to whih we refer as the Guess Rules, are the only ones to om-

pute substitutions for the variables in the ase onstruts. The Case Guess rule of

the �rst-order ase an be retained by applying Imitation plus Case Selet. The

Imitation and Projetion rules are taken from higher-order uni�ation and om-

pute a partial binding for some variable. The Funtion Guess rule overs the ase

of non-onstrutor solutions, whih may our for higher-order variables. It thus

enables the synthesis of funtions from existing ones. Note that the seletion of

a binding in this rule is only restrited by the types ourring. For all rules, we

assume that newly introdued variables are fresh, as in the �rst-order ase.

9



Bind

e!

?

Z;G )

fg

�(G)

where � = fZ 7! eg and e is not a ase term

Case Selet

�x

k

:ase �y

l

:v(t

m

) of )

fg

�x

k

:�(X

i

)!

?

Z;G

p

n

: X

n

!

?

Z;G

if p

i

= �y

l

:v(X

m

(x

k

; y

l

)) and � = fX

m

7! �x

k

; y

l

:t

m

g

Imitation

�x

k

:ase �y

l

:X(t

m

) of )

�

�(�x

k

:ase �y

l

:X(t

m

) of p

n

: X

n

!

?

Z;G)

p

n

: X

n

!

?

Z;G

if p

i

= �y

l

:(X

o

(x

k

; y

l

)) and � = fX 7! �x

m

:(H

o

(x

m

))g

Funtion Guess

�x

k

:ase �y

l

:X(t

m

) of )

�

�(�x

k

:ase �y

l

:X(t

m

) of p

n

: X

n

!

?

Z;G)

p

n

: X

n

!

?

Z;G

if �x

k

; y

l

:X(t

m

) is not a higher-order pattern,

� = fX 7! �x

m

:f(H

o

(x

m

))g, and f is a de�ned funtion

Projetion

�x

k

:ase �y

l

:X(t

m

) of )

�

�(�x

k

:ase �y

l

:X(t

m

) of p

n

: X

n

!

?

Z;G)

p

n

: X

n

!

?

Z;G

where � = fX 7! �x

m

:x

i

(H

o

(x

m

))g

Case Eval

�x

k

:ase �y

l

:f(t

m

) of )

fg

�x

k

; y

l

:�(X )!

?

X;

p

n

: X

n

!

?

Z;G �x

k

:ase �y

l

:X(x

k

; y

l

) of p

n

: X

n

!

?

Z;G

where � = fX

m

7! �x

k

; y

l

:t

m

g, and

f(X

m

(x

k

; y

l

))! X is a x

k

; y

l

-lifted rule

Fig. 2. System LNT for needed narrowing in the higher-order ase

Notie that for goals where only higher-order patterns our, there is no hoie

between Projetion and Imitation and furthermore Funtion Guess does not apply.

This speial ase is re�ned later in Setion 8.

For a sequene)

�

1

� � � )

�

n

of LNT steps, we write

�

)

�

, where � = �

n

� � � �

1

. In

ontrast to the alulus in Setion 3 not all substitutions are reorded for

�

); only

the ones produed by guessing are needed for the tehnial treatment. Informally,

all other substitutions only onern intermediate (or auxiliary) variables similar

to [18℄.

As in the �rst-order ase, we onsider only redutions to the dediated onstant

true. This is general enough to over redutions to a term without de�ned symbols

, sine a redution t

�

�!  an be modeled by f(t)

�

�! true with the additional

rule f() ! true and a new symbol f . Hene we assume that solving a goal

t!

?

true is initiated with the initial goal I(t) = ase t of true : true!

?

X .

As an example, onsider the goal �x:di�(�y:sin(F (x; y)); x) !

?

�x:os(x)

w.r.t. the rules for di� and the hdt for the funtion �:

X � Y ! ase Y of 1 : X; s(Y

0

) : X +X � Y

0

To solve the above goal, we simply add the rule f(�x:os(x)) ! true to solve the

following goal. Sine eah omputation step only a�ets the two leftmost goals, we

often omit the others.

ase f(�x:di�(�y:sin(F (x; y)); x)) of true : true!

?

X

1

10



)

Case Eval

ase �x:di�(�y:sin(F (x; y)); x) of os : true!

?

X

2

;

ase X

2

of true : true!

?

X

1

)

Case Eval

�x:ase �y:sin(F (x; y)) of : : : ; �y:sin(G(x; y)) : : : : ; : : :!

?

X

3

;

ase X

3

of os : true!

?

X

2

; ase X

2

of true : true!

?

X

1

)

Case Selet

�x:os(F (x; x)) � di�(�y:F (x; y); x) !

?

X

3

; ase X

3

of os : true!

?

X

2

; : : :

)

Bind

ase �x:os(F (x; x)) � di�(�y:F (x; y); x) of os : true!

?

X

2

; : : :

)

Case Eval

�x:ase di�(�y:F (x; y); x) of 1 : os(F (x; x)); : : : !

?

X

0

3

; : : :

)

Case Eval

�x:ase �y:F (x; y) of �y:y : 1; : : :!

?

X

4

; �x:ase X

4

(x) of 1 : os(F (x; x)); : : :

)

fF 7!�x;y:yg

Projetion

�x:ase �y:y of �y:y : 1; : : :!

?

X

4

; �x:ase X

4

(x) of 1 : os(x); : : :!

?

X

0

3

; : : :

)

Case Selet

�x:1!

?

X

4

; �x:ase X

4

(x) of 1 : os(x); : : :!

?

X

0

3

; : : :

)

Bind

�x:ase 1 of 1 : os(x); : : :!

?

X

0

3

; ase X

0

3

of os : true!

?

X

2

; : : :

)

Case Selet

)

Bind

)

Case Selet

)

Bind

ase true of true : true!

?

X

1

)

Case Selet

true!

?

X

1

)

Bind

fg

Thus, the omputed solution is fF 7! �x; y:yg.

6 Corretness and Completeness

As in the �rst-order ase, we show ompleteness w.r.t. needed redutions. We

�rst de�ne needed redutions and then lift needed redutions to narrowing. In the

following we assume an indutively sequential HRS R and assume LNT is invoked

with the orresponding de�nitional trees.

For our purpose it is onvenient to de�ne needed redutions via LNT. Then

we show that they are in fat needed. For modeling rewriting, the Guess rules are

not needed: For LNT we have S

�

)

fg

LNT

S

0

if and only if no Guess rules are used

in the redution. Hene no narrowing is performed. This an also be seen as an

implementation of a partiular rewriting strategy.

In order to relate a system of LNT goals to a term, we assoiate a position p

with eah ase onstrut and a substitution � for all newly introdued variables on

the right. For eah ase expression T = ase X of : : : in a rule T

0

= f(X

n

)! X

we attah the position p of X in the left-hand side of the orresponding rewrite

rule. Formally, we de�ne a funtion l

T

suh that l

T

(f(X

n

) : X ) yields the labeled

tree for a rule T = f(X

n

)! X :

{ l

T

(p

f

: ase X of T

n

) = p

f

: ase

p

X of l

T

(T

n

)

where p is the position of X in pat

T

(p

f

: ase X of T

n

)

{ l

T

(p

f

: r) = p

f

: r

11



We assume in the following that de�nitional trees for some indutively sequential

HRS R are labeled.

The following invariant will allow us to relate a goal system with a term:

Theorem4. For an initial goal with ase

�

t of true : true!

?

X

1

�

)

fg

LNT

S, S is

of one of the following two forms:

1. �x:ase

p

n

s of : : :!

?

X

n

; �x:ase

p

n�1

�y:X

n

(x; y) of : : :!

?

X

n�1

; : : : ;

�x:ase

p

2

�y:X

3

(x; y) of : : :!

?

X

2

; ase

p

1

X

2

of true : true!

?

X

1

2. r !

?

X

n+1

; �x:ase

p

n

�y:X

n+1

(x; y) of : : :!

?

X

n

;

�x:ase

p

n�1

�y:X

n

(x; y) of : : :!

?

X

n�1

; : : : ;

�x:ase

p

2

�y:X

3

(x; y) of : : :!

?

X

2

; ase

p

1

X

2

of true : true!

?

X

1

Furthermore, all X

n+1

are distint and eah variable X

i

ours only as shown

above, i.e. at most twie in : : : ; e!

?

X

i

; ase X

i

of : : :.

Notie that the seond form in the above theorem is reated by a Case Selet rule

appliation, whih may redue a ase term to a non-ase term, or by Case Eval

with a rule f(X

n

) ! r. As only the Bind rule applies on suh systems, they are

immediately redued to the �rst form. As we will see, the Bind rule orresponds

to the replaement whih is part of a rewrite step. Sine we now know the preise

form of goal systems whih may our, bound variables as arguments and binders

are often omitted in goal systems for brevity.

The next goal is to relate LNT and rewriting. For a goal system S, we write

S# for the normal form obtained by applying Case Eval and Case Selet.

De�nition 5. We de�ne an assoiated substitution for eah goal system in-

dutively on

�

)

LNT

:

{ For an initial goal system of the form S = ase

�

t of true : true !

?

X , we

de�ne the assoiated substitution �

S

= fX 7! tg.

{ For the Case Eval rule on S = �x:ase

p

�y:f(t) of : : :!

?

X;G with

S ) �x; y:�(X ) !

?

X

0

; �x:ase

p

�y:X

0

(x; y) of : : :!

?

X;G =: S

0

we de�ne �

S

0

= �

S

[ fX

0

7! �x:(�

S

X)j

p

g.

For all other rules, the assoiated substitution is unhanged.

For a goal system S we write the assoiated substitution as �

S

. Notie that the

assoiated substitution is not a \solution" as used in the ompleteness result and

only serves to reonstrut the original term.

We an translate a goal system produed by LNT into one term as follows. The

idea is that ase

p

t of : : : !

?

X should be interpreted as the replaement of the

ase term t at position p in �

S

X , i.e., (�

S

X)[t℄

p

. Extending this to goal systems

yields the following de�nition:

De�nition 6. For a goal system S of the form

[r !

?

X; ℄ �x:ase

p

n

s of : : :!

?

X

n

; : : : ; ase

p

1

X

2

of true : true!

?

X

1

(where [r !

?

X; ℄ is optional) with assoiated substitution � we de�ne the asso-

iated term T (S) as (�X

1

)[(�X

2

)[: : : (�X

n

(x))[�s℄

p

n

: : :℄

p

2

℄

p

1

.
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For instane, if we start with a goal system S

1

= ase

�

t of true : true !

?

X ,

then T (S

1

) = t.

For a goal system S, we write Bind(S) to denote the result of applying the

Case Bind rule. Notie that the substitution of the Bind rule only a�ets the two

leftmost goals.

Lemma7. Let S = I(t). If S# is of the form of Invariant 2, then t = T (S#)

is reduible at position p = p

1

� � � p

n

. Furthermore, if t �!

p

t

0

, then I(t

0

)# =

Bind(S#)#.

Now, we an de�ne needed redutions:

De�nition 8. A term t has a needed redex p if I(t)# is of Invariant 2 with p =

p

1

� � � p

n

.

It remains to show that needed redutions are indeed needed to ompute a on-

strutor headed term.

Theorem9. If t redues to true, then t has a needed redex at position p and t

must be redued at p eventually. Otherwise, t is not reduible to true.

The next desirable result is to show that needed redutions are normalizing. This

is suggested from related works [15, 11℄, but is beyond the sope of this paper.

For a goal system S, we all the variables that do not our in T (S) dummies.

In partiular, all variables on the right and all variables in seletors in patterns of

some tree in S are dummies.

Lemma10. If S

�

)

�

LNT

fg, then �S

�

)

fg

LNT

fg.

Theorem11 (Corretness of LNT). If I(t)

�

)

�

LNT

fg for a term t, then �t

�

�!

true.

We �rst state ompleteness in terms of LNT redutions.

Lemma12. If �S

�

)

fg

LNT

fg and � is in R-normal form and ontains no dummies

of S,

6

then S

�

)

�

0

LNT

fg with �

0

� �.

Theorem13 (Completeness of LNT). If �t

�

�! true and � is in R-normal

form, then I(t)

�

)

�

0

LNT

fg with �

0

� �.

7 Optimality regarding Solutions

We show here another important aspet, namely uniqueness of the solutions om-

puted. Compared to the more general ase in [19℄, optimality of solutions is possible

here, sine we only evaluate to onstrutor-headed terms. For this to hold for all

subgoals in a narrowing proess, our requirement of onstrutor-based rules is also

essential. For these reasons, we never have to hose between Case Selet and Case

Eval in our setting and optimality follows easily from the orresponding result of

higher-order uni�ation.

6

I.e., FV(�) \ FV(S) = FV(T (S))
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Theorem14 (Optimality). If I(t)

�

)

�

LNT

fg and I(t)

�

)

�

0

LNT

fg are two di�er-

ent derivations, then � and �

0

are inomparable.

It is also onjetured that our notion of needed redutions is optimal (this is

subjet to urrent researh [16, 15, 3℄). Note, however, that sharing is needed for

optimality, as shown for the �rst-order ase in [2℄.

8 Avoiding Funtion Synthesis

Although the synthesis of funtional objets by full higher-order uni�ation in

LNT is very powerful, it an also be expensive and operationally omplex. There

is an interesting restrition on rewrite rules whih entails that full higher-order

uni�ation is not needed in LNT for (quasi) �rst-order goals.

We show that the orresponding result in [4℄ is easy to see in our ontext,

although lifting over binders obsures the results somewhat unneessarily. Lifting

may instantiate a �rst-order variable by a higher-order one, but this is only needed

to handle the ontext orretly.

A term t is quasi �rst-order if t is a higher-order pattern without free higher-

order variables. A rule f(X

n

)! X is alledweakly higher-order, if every higher-

order free variable whih ours in X is in fX

n

g. In other words, higher-order

variables may only our diretly below the root and are immediately eliminated

when hdts are introdued in the Case Eval rule.

Theorem15. If I(t)

�

)

LNT

S where t is quasi �rst-order w.r.t. weakly higher-

order rules, then T (S) is quasi �rst-order.

As a trivial onsequene of the last result, Funtion Guess and Projetion do not

apply and Imitation is only used as in the �rst-order ase.

9 Conlusions

We have presented an e�etive model for the integration of funtional and logi pro-

gramming with ompleteness and optimality results. Sine we do not require termi-

nating rewrite rules and permit higher-order logial variables and �-abstrations,

our strategy is a suitable basis for truly higher-order funtional logi languages.

Moreover, our strategy redues to an optimal �rst-order strategy if the higher-order

features are not used. Further work will fous on adapting the expliit model for

sharing using goal systems from [19℄ to this re�ned ontext.
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