
Distributed Programming in a

Multi-Paradigm Declarative Language⋆

Michael Hanus

Informatik II, RWTH Aachen, D-52056 Aachen, Germany
hanus@informatik.rwth-aachen.de

c©Springer-Verlag
In Proc. of the International Conference on Principles and Practice of

Declarative Programming, PPDP’99, Paris.
Springer LNCS 1702, pp. 188–205, 1999

Abstract. Curry is a multi-paradigm declarative language covering
functional, logic, and concurrent programming paradigms. Curry’s op-
erational semantics is based on lazy reduction of expressions extended
by a possibly non-deterministic binding of free variables occurring in
expressions. Moreover, constraints can be executed concurrently which
provides for concurrent computation threads that are synchronized on
logical variables. In this paper, we extend Curry’s basic computational
model by a few primitives to support distributed applications where a
dynamically changing number of different program units must be co-
ordinated. We develop these primitives as a special case of the existing
basic model so that the new primitives interact smoothly with the exist-
ing features for search and concurrent computations. Moreover, programs
with local concurrency can be easily transformed into distributed applic-
ations. This supports a simple development of distributed systems that
are executable on local networks as well as on the Internet. In particu-
lar, sending partially instantiated messages containing logical variables
is quite useful to implement reply messages. We demonstrate the power
of these primitives by various programming examples.

1 Introduction

Curry [9, 13] is a multi-paradigm declarative language which integrates func-
tional, logic, and concurrent programming paradigms. Curry combines in a
seamless way features from functional programming (nested expressions, lazy
evaluation, higher-order functions), logic programming (logical variables, partial
data structures, built-in search), and concurrent programming (concurrent eval-
uation of expressions with synchronization on logical variables). Moreover, Curry
provides additional features in comparison to the pure paradigms (compared to
functional programming: search, computing with partial information; compared
to logic programming: more efficient evaluation due to the deterministic and
demand-driven evaluation of functions) and amalgamates the most important
operational principles developed in the area of integrated functional logic lan-
guages: “residuation” and “narrowing” (see [7] for a survey on functional logic
programming).

⋆ This research has been partially supported by the German Research Council (DFG)
under grant Ha 2457/1-1 and by the DAAD under the PROCOPE programme.

Curry’s operational semantics is based on a single computation model, firstly
described in [9], which combines lazy reduction of expressions with a possibly
non-deterministic binding of free variables occurring in expressions. Thus, purely
functional programming and purely logic programming are obtained as particular
restrictions of this model. Moreover, impure features of Prolog (e.g., arithmetic,
cut, I/O) are avoided and don’t know non-deterministic computations can be
encapsulated and controlled by the programmer [12]. For concurrent computa-
tions, the evaluation of functions can be suspended depending on the instanti-
ation of arguments, and constraints can be executed concurrently. This provides
an easy modeling of concurrent objects as functions synchronizing on a stream
of messages. Based on this computation model, we propose to add a new kind of
constraint to relate a multiset of incoming messages with a list containing these
messages. Such port constraints have been proposed in the context of concur-
rent logic programming [16] for the local communication between objects. We
generalize and embed them into the functional logic language Curry to obtain a
simple but powerful mechanism to implement distributed applications that are
executable on a network with an unknown number of communication partners.

The paper is structured as follows. In the next section, we review the ba-
sics of the operational model of Curry. We introduce and discuss the necessary
extensions of this model to support distributed applications in Section 3. We
demonstrate the use of these features by several examples in Section 4. Section 5
discusses some implementation issues and Section 6 relates our approach to other
existing proposals before we conclude in Section 7.

2 Operational Semantics of Curry

In this section, we sketch the basic computation model of Curry. More details
and a formal definition can be found in [9, 13].

From a syntactic point of view, a Curry program is a functional program1

extended by the possible inclusion of free (logical) variables in conditions and
right-hand sides of defining rules. Thus, the basic computational domain of Curry
consists of data terms, constructed from constants and data constructors, whose
structure is specified by a set of data type declarations like

data Bool = True | False
data List a = [] | a : List a

True and False are the Boolean constants and [] (empty list) and : (non-
empty list) are the constructors for polymorphic lists (a is a type variable and
the type List a is usually written as [a] for conformity with Haskell). Then, a
data term is a well-formed expression containing variables, constants, and data
constructors, e.g., True:[] or [x,y] (the latter stands for x:(y:[])).

1 Curry has a Haskell-like syntax [20], i.e., (type) variables and function names start
with lowercase letters and the names of type and data constructors start with an
uppercase letter. Moreover, the application of f to e is denoted by juxtaposition
(“f e”).

2

Functions are operations on data terms whose meaning is specified by (con-
ditional) rules of the general form “l | c = r where vs free” where l has the
form f t1 . . . tn with f being a function, t1, . . . , tn data terms and each variable
occurs only once, the condition c is a constraint, r is a well-formed expression
which may also contain function calls, and vs is the list of free variables that
occur in c and r but not in l (the condition and the where parts can be omitted
if c and vs are empty, respectively). A constraint is any expression of the built-in
type Constraintwhere primitive constraints are equations of the form e1 =:= e2.
A conditional rule can be applied if its condition is satisfiable. A Curry program
is a set of data type declarations and rules.

Example 1. Assume that the above data type declarations are given. Then the
following rules define the concatenation of lists, the last element of a list, and
a constraint which is satisfied if the first list argument is a prefix of the second
list argument:

conc [] ys = ys
conc (x:xs) ys = x : conc xs ys

last xs | conc ys [x] =:= xs = x where x,ys free

prefix ps xs = let ys free in conc ps ys =:= xs

If the equation “conc ys [x] =:= xs” is solvable, then x is the last element of
the list xs. Similarly, ps is a prefix of xs if the equation “conc ps ys =:= xs”
is solvable for some value ys (note that existentially quantified variables vs can
be introduced in a constraint c by let vs free in c).

Functional programming: In functional languages, the interest is in computing
values of expressions, where a value does not contain function symbols (i.e., it
is a data term) and should be equivalent (w.r.t. the program rules) to the initial
expression. The value can be computed by applying rules from left to right.
For instance, we compute the value of “conc[1] [2]” by applying the rules for
concatenation to this expression:

conc [1] [2] → 1 : (conc [] [2]) → [1,2]

To support computations with infinite data structures and a modular program-
ming style by separating control aspects [14], Curry is based on a lazy (out-
ermost) strategy, i.e., the selected function call in each reduction step is an
outermost one among all reducible function calls. This strategy yields an op-
timal evaluation strategy [1] and a demand-driven search method [10] for the
logic programming part that will be discussed next.

Logic programming: In logic languages, expressions (or constraints) may contain
free variables. A logic programming system should compute solutions, i.e., find
values for these variables such that the expression (or constraint) is reducible to
some value (or satisfiable). Fortunately, it requires only a slight extension of the
lazy reduction strategy to cover non-ground expressions and variable instanti-
ation: if the value of a free variable is demanded by the left-hand sides of program
rules in order to proceed the computation (i.e., no program rule is applicable if

3

the variable remains unbound), the variable is non-deterministically bound to
the different demanded values. For instance, if the function f is defined by the
rules

f 0 = 2
f 1 = 3

(the integer numbers are considered as an infinite set of constants), then the ex-
pression “f x” with the free variable x is evaluated to 2 by binding x to 0, or it
is evaluated to 3 by binding x to 1. Thus, a single computation step may yield a
single new expression (deterministic step) or a disjunction of new expressions to-
gether with the corresponding bindings (non-deterministic step). For inductively
sequential programs (these are, roughly speaking, function definitions without
overlapping left-hand sides), this strategy, called needed narrowing [1], computes
the shortest possible successful derivations (if common subterms are shared, as
usual in implementations of lazy languages) and a minimal set of solutions, and
it is fully deterministic if free variables do not occur.

Encapsulated search: Since functions in Curry have no side effects, the strategy to
handle non-deterministic computations is not fixed in Curry (in contrast to Pro-
log which fixes a backtracking strategy). To provide flexible application-oriented
search strategies and to avoid global backtracking like in Prolog which causes
problems when integrated with I/O and concurrent computations, don’t know
non-deterministic computations can be encapsulated and controlled by the pro-
grammer [12]. For this purpose, a search goal is a lambda abstraction \x->c

where c is the constraint to be solved and x is the search variable occurring
in c for which solutions should be computed. Based on a single language prim-
itive to control non-deterministic computation steps, various search strategies
can be defined (see [12] for details). For instance, findall computes the list
of all solutions for a search goal with a depth-first strategy, i.e., the expression
“findall \ps->prefix ps [1,2]” reduces to the list [[],[1],[1,2]] (w.r.t.
the program in Example 1).

An important point in the treatment of encapsulated search is that (i) the
search has only local effects and (ii) non-deterministic steps are only performed if
they are unavoidable. To satisfy requirement (i), “global” variables (i.e., variables
that are visible outside the search goal) are never bound in local search steps. To
satisfy requirement (ii), a possible non-deterministic step in a search goal is sus-
pended if the search goal contains a global variable (since binding this variable
outside the search goal might make this step deterministic) or another determ-
inistic step is possible. This corresponds to the stability requirement in AKL
[15]. In the context of this paper, the important point is that non-deterministic
steps are not performed if the search goal has a reference to some global vari-
able. Since we shall model the coordination of distributed activities by partially
instantiated global variables, non-deterministic steps are automatically avoided
if they refer to global communication channels.

Constraints: In functional logic programs, it is necessary to solve equations
between expressions containing defined functions (see Example 1). In general,

4

an equation or equational constraint e1=:=e2 is satisfied if both sides e1 and e2

are reducible to the same value (data term). As a consequence, if both sides
are undefined (non-terminating), then the equality does not hold (strict equality
[5]). Operationally, an equational constraint e1=:=e2 is solved by evaluating e1

and e2 to unifiable data terms where the lazy evaluation of the expressions is
interleaved with the binding of variables to constructor terms. Thus, an equa-
tional constraint e1=:=e2 without occurrences of defined functions has the same
meaning (unification) as in Prolog. The basic kernel of Curry only provides
equational constraints. Since it is conceptually fairly easy to add other con-
straint structures, extensions of Curry can provide richer constraint systems to
support constraint logic programming applications. In this paper, we add one
special kind of constraint (“port constraint”, see Section 3) to enable the efficient
sending of messages from different clients to a server.

Concurrent computations: To support flexible computation rules and avoid an
uncontrolled instantiation of free argument variables, Curry provides the suspen-
sion of a function call if a demanded argument is not instantiated. Such functions
are called rigid in contrast to flexible functions which instantiate their arguments
if it is necessary to proceed their evaluation. As a default in Curry (which can
be easily changed), constraints (i.e., functions with result type Constraint)
are flexible and non-constraint functions are rigid. Thus, purely logic programs
(where predicates correspond to constraints) behave as in Prolog, and purely
functional programs are executed as in lazy functional languages like Haskell.

To continue computations in the presence of suspended function calls, con-
straints can be combined with the concurrent conjunction operator &, i.e., c1 & c2

is a constraint which is evaluated by solving c1 and c2 concurrently. There is also
a sequential conjunction operator &>, i.e., the expression c1 &> c2 is evaluated by
first evaluating c1 and then c2.

A design principle of Curry is the clear separation of sequential and concur-
rent activities. Sequential computations, which form the basic units of a program,
can be expressed as usual functional (logic) programs, and they are composed to
concurrent computation units via concurrent conjunctions of constraints. This
separation supports the use of efficient and optimal evaluation strategies for
the sequential parts, where similar techniques for the concurrent parts are not
available. This is in contrast to other, more fine-grained concurrent computa-
tion models like AKL [15], CCP [22], or Oz [25]. In this paper, we extend the
basic concurrent computation model to support distributed applications where
different (external) clients interact.

Monadic I/O: Since the communication with external programs require some
knowledge about performing I/O declaratively, we assume familiarity with the
monadic I/O concept of Haskell [20, 27] which is also used in Curry. Due to lack
of space, we cannot describe it here in detail but it is sufficient to remember that
I/O actions are sequentially composed by the operators >>= and >>, putStrLn
is an action that prints its string argument to the output stream, and done is
the empty action. Since disjunctive I/O actions as a result of a program are not

5

reasonable, all possible search must be encapsulated between I/O operations,
otherwise the entire program suspends.

3 From Concurrent to Distributed Computations

This section motivates the primitives which we add to Curry to support dis-
tributed applications. Since these primitives should smoothly interact with the
basic computation model, in particular encapsulated search and local concurrent
computations, we introduce them as a specialization of the existing features for
concurrent object-oriented programming.

It is well known from concurrent logic programming [24] that (concurrent)
objects can be easily implemented as predicates processing a stream of incoming
messages. The internal state of the object is a parameter which may change in
recursive calls when a message is processed. For instance, a counter object which
understands the messages Set v, Inc, and Get v can be implemented in Curry
as follows (the predefined type Int denotes the type of all integer values and
success denotes the always satisfiable constraint):

data CounterMessage = Set Int | Inc | Get Int

counter eval rigid
counter _ (Set v : ms) = counter v ms
counter n (Inc : ms) = counter (n+1) ms
counter n (Get v : ms) = v=:=n & counter n ms
counter _ [] = success

The evaluation annotation “counter eval rigid” marks counter as a rigid
function, i.e., an expression “counter n s” can reduce only if s is a bound vari-
able. The first argument of counter is the current value of the counter and the
second argument is the stream of messages. Thus, the evaluation of the con-
straint “counter 0 s” creates a new counter object with initial value 0 where
messages are sent by instantiating the variable s. The final rule terminates the
object if the stream of incoming messages is finished. For instance, the constraint

let s free in counter 0 s & s=:=[Set 41, Inc, Get x]

is successfully evaluated by binding x to the value 42. Although the stream
variable s is instantiated at once to all messages in this simple example, it should
be clear that messages can be individually sent by incrementally instantiating s.

If there is more than one process sending messages to the same counter object,
it is necessary to merge the message streams from the different processes into
a single message stream (otherwise, the processes must coordinate themselves
for message sending). Since the processes work concurrently, the stream merger
must be fair. A fair merger can be implemented in Curry as follows:

merge eval choice
merge (x:xs) ys = x : merge xs ys
merge xs (y:ys) = y : merge xs ys
merge [] ys = ys
merge xs [] = xs

6

The evaluation annotation choice has the effect that at most one rule is applied
to a call to merge even if there is another applicable rule (where all altern-
atives are evaluated in a fair manner), i.e., this corresponds to a committed
choice in concurrent logic languages. Although a committed choice restricts the
declarative reading of programs and destroys the completeness results for the
basic operational semantics [9], such or a similar construct is usually introduced
to program reactive systems. Using the indeterministic merge function, we can
create a counter that accepts messages from different clients:

counter 0 (merge s1 s2) & client1 s1 & client2 s2

If we want to access the counter object from n different clients, it is immediate
to use n − 1 mergers to combine the different message streams into a single
one. It has been argued [16] that this causes a significant overhead due to the
forwarding of incoming messages through the mergers. Moreover, this solution
causes difficulties if the number of clients can change dynamically as in many
distributed applications. Therefore, Janson et al. [16] proposed the use of ports
to solve these problems. Ports provide a constant time message merging w.r.t.
an arbitrary number of senders and a convenient way to dynamically extend the
number of senders. Therefore, we also propose an extension of the base language
by ports but embed this concept into concurrent functional logic programming
(where Janson et al. proposed ports for the concurrent logic language AKL) and
extend it to communication with external partners.

In principle, a port is a constraint between a multiset and a list that is satisfied
if all elements in the multiset occur in the list and vice versa. A port is created by
evaluating the constraint “openPort p s” where p and s are uninstantiated free
variables. p and s will later be constrained to the multiset and list of elements,
respectively. Since sending messages is done through p, p is often identified with
the port and s is the stream of incoming messages. “Port a” denotes the type
of a port to which messages of type a can be sent, i.e., openPort has the type
definition

openPort :: Port a -> [a] -> Constraint

A message is sent to the port by evaluating the constraint “send m p” which
constrains (in constant time) p and the corresponding stream s to hold the
element m. From a logic programming point of view, the stream s has always an
uninstantiated variable s_tail at the end and evaluating the send constraint
means evaluating the constraint

let s_tail1 free in s_tail =:= (m : s_tail1)

Thus, the new message is appended at the end of the stream by instantiating
the current open end of the stream. Since the instantiation is done by solving
a strict equation (compare Section 2), it is also evident that the message m is
evaluated before sending it (“strict communication”, like in Eden [3]). If the
communication were lazy, the lazy evaluation of messages at the receiver’s side
would cause a communication overhead.

Using ports, we can rewrite our counter example with two clients as

openPort p s &> counter 0 s & client1 p & client2 p

7

Thus, the code for the object remains unchanged but we have to replace the
instantiation of the streams in the clients by calls to the send constraint.

This approach to communication between different processes has remarkable
consequences:

– It has a logical reading, i.e., communication is not done by predicates or
functions with side effects (like, e.g., the socket library of Sicstus-Prolog) but
can be described as instantiation of logical variables and constraint solving.
Thus, the operational semantics of our communication primitives is a simple
extension of the operational semantics of the base language.

– It interacts smoothly with the operational principles of the base language.
For instance, local search and non-deterministic computations are only pos-
sible if the search goal contains no reference to global variables (compare
Section 2). Thus, it is impossible to send messages to global ports in-
side local search computations or to split a server object into two non-
deterministic computation threads. This is perfectly intended, since back-
tracking on network-oriented applications or copying server processes to in-
teract with non-deterministic clients is difficult to implement.

– It provides an efficient implementation since message sending can be imple-
mented without forwarding through several mergers and the senders have no
reference to old messages, i.e., the multiset of the port must not be explicitly
stored.

– Partially instantiated messages containing free variables (e.g., message
“Get x”) provide an elegant approach to return values to the sender without
explicitly creating reply channels.

– The number of senders can be dynamically extended—every process which
gets access to the port reference (the multiset variable) can send messages
to the port. This property can be exploited in many distributed applications
(see below).

Up to now, we can use ports only inside one program (similarly to [16]) but for
many distributed applications (like Internet servers) it is necessary to commu-
nicate between different programs. Therefore, we introduce two operations to
create and connect to external ports, i.e., ports that are accessible from outside.
Since the connections of ports to the outside world changes the environment of
the program, these operations are introduced as I/O actions (see Section 2).

The I/O action “openNamedPortn” creates a new external port with name
n and returns the stream of incoming messages. If this action is executed on
machine m (where m is a symbolic Internet name), the port (but not the stream
of incoming messages) is now globally accessible as “n@m” by other applications.
On the client side, the I/O action “connectPort pn” returns the external port
which has the symbolic name pn so that clients can send messages to this port.
For instance, to create a globally accessible “counter server”, we add the following
definitions to our counter:

main = openNamedPort "counter" >>= counter_server
counter_server s | counter 0 s = done

8

If we execute main on the machine medoc.cs.rwth.de, we can implement a
client by

client port_name msg = connectPort port_name >>= sendPort msg

sendPort msg p | send msg p = done

and increment the global counter by evaluating

client "counter@medoc.cs.rwth.de" Inc

Before we present some more interesting examples, we introduce a final primitive
which has no declarative meaning but is useful in real distributed applications.
Since the communication over networks is unsafe and a selected server could
be down or may not respond in a given period of time, one want to take an-
other action (for instance, choosing a different server or inform the user) if this
happens. Therefore, we introduce a temporal constraint “after t” which is sat-
isfied t milliseconds after the constraint has been checked for the first time, i.e.,
“after 0” is immediately satisfied. Typically, this temporal constraint is used
as an alternative in a committed choice like in

getAnswer eval choice
getAnswer (msg:_) = msg
getAnswer _ | after 5000 = <take an alternative action>

For instance, if getAnswer is called with a stream of a port as an argument,
it returns the first message if it is received within five seconds, otherwise an
alternative action is taken.

The following type definitions summarizes the proposed new primitives to
support the development of distributed applications:

-- open an internal port for messages of type "a":
openPort :: Port a -> [a] -> Constraint

send :: a -> Port a -> Constraint -- send message to port

-- open a new external port, return stream of messages:
openNamedPort :: String -> IO [a]

-- connect to external port, return port for sending messages:
connectPort :: String -> IO (Port a)

after :: Int -> Constraint -- timeout

4 Examples

In this section, we demonstrate the use of the primitives for distributed applic-
ations introduced in the previous section. In order to avoid presenting all the
tedious details of such applications, we have simplified the examples so that we
concentrate on the communication structures.

4.1 A Name Server

The first example represents a class of client/server applications where the server
holds some database which is requested by the clients. For the sake of simplicity,

9

we consider a simple name server which stores an assignment from symbolic
names to numbers. It understands the messages “PutNamen i” to store the name
n with number i and “GetNamen i” to retrieve the number i associated to the
name n. The name server is implemented as a function which has the assignment
from names to numbers as the first argument (function n2i below) and the
incoming messages as the second argument (initially, 0 is assigned to all names
by the lambda abstraction _->0):

nameserver = openNamedPort "nameserver" >>= ns_loop _->0

ns_loop n2i (GetName n i : ms) | i=:=(n2i n) = ns_loop n2i ms
ns_loop n2i (PutName n i : ms) = ns_loop new_n2i ms
where new_n2i m = if m==n then i else n2i m

In the first rule of ns_loop, the (usually uninstantiated) variable i is instan-
tiated with the number assigned to the name n by solving the equational con-
straint in the condition. In the second rule, a modified assignment map new_n2i

is passed to the recursive call. If we evaluate nameserver on the machine
medoc.cs.rwth.de, then we can add the assignment of the name talk to the
number 42 by evaluating

client "nameserver@medoc.cs.rwth.de" (PutName "talk" 42)

on some machine connected to the Internet (where client was defined in Sec-
tion 3). After this assignment, the evaluation of

client "nameserver@medoc.cs.rwth.de" (GetName "talk" x)

binds the free variable x to the value 42.

Note that the sending of messages containing free variables is an elegant way
to return values to the sender. Here we exploit the fact that the base language
is an integrated functional logic language which can deal with logical variables.
Functional languages extended for distributed programming like Eden [3], Erlang
[2], or Goffin [4] require the explicit creation or sending of reply channels.

An extension of our name server should demonstrate the advantages of using
logical variables in messages. Consider a hierarchical name server organization:
if the local name server has no entry for the requested name (i.e., the assigned
number is the initial value 0), it forwards this request to another name server.
This can be easily expressed by changing the first rule of ns_loop to

ns_loop n2i (GetName n i : ms)
| if (n2i n)==0 then send (GetName n i) master else i=:=(n2i n)
= ns_loop n2i ms

It is assumed that master is the port of the other name server to which the
request is forwarded. Note that the local name server can immediately proceed
its service after forwarding the request to the master server and need not to wait
for the answer from the master since the master becomes responsible for binding
the free variable in the GetName message.

If the requested name server is down so that no answer is returned, one would
like to inform the user about this fact instead of an infinite waiting. This can be
easily implemented with a temporal constraint by the following function:

10

showAnswer eval choice
showAnswer ans | ans==ans = show ans
showAnswer _ | after 10000 = "No answer from name server"

“t1 == t2” denotes strict equality on ground data terms like in Haskell, i.e.,
if t1 or t2 reduces to a data term containing an uninstantiated variable, the
evaluation of this equality is suspended until the variable has been bound to
some ground data term. Thus, “showAnswer x” yields a string representation
of the value of x if it evaluates to a ground data term or it yields the string
"No answer from name server" if x has not been bound to a ground term
within ten seconds. Thus, the evaluation of

client "nameserver@medoc.cs.rwth.de" (GetName "talk" x)
>> putStrLn (showAnswer x)

prints the value assigned to talk or the required timeout message.

4.2 Talk

The next example shows a distributed application between two partners where
both of them act as a server as well as a client. The application is a simplification
of the well known Unix “talk” program. Here we consider only the main talk
activity (and not the calling of the partner via the talk daemon) where each
partner program must do the following (we assume that each partner has an
external talk port with symbolic name talk to receive the messages from the
partner):

– If the user inputs a line on the keyboard (which is transmitted through the
port with symbolic name stdin), this line is sent to the talk port of the
partner.

– If the program receives a line from the partner through its own talk port, this
line (preceded by ‘*’) is shown at the screen by the I/O action putStrLn.

Since the sequence of both events is not known in advance, the standard input
port as well as the talk port must be examined in parallel. For this purpose, we
use a committed choice. Thus, the talk program consists of a loop function tloop

which has three arguments: the talk port of the partner, the stream connected
to the own standard input, and the stream connected to the own talk port:

tloop eval choice
tloop your tty (m:ms) = putStrLn (’*’:m) >> tloop your tty ms
tloop your (m:ms) my = sendPort m your >> tloop your ms my

The tloop is activated by the following main program:2

talk your_portname = do my_port <- openNamedPort "talk"
tty_port <- openNamedPort "stdin"
your_port <- connectPort your_portname
tloop your_port tty_port my_port

2 Here we make use of Haskell’s do notation [20] where “do p1<-e1;...,pn<-en;e” is
syntactic sugar for “e1 >>= \p1->...en >>= \pn->e”.

11

"talk"

"stdin"

"talk"

"stdin"

user input
user input

m1 m2

my_port

my_port

ttyport

ttyport

Fig. 1. Communication structure of the talk program

If a user on machine m1 wants to talk with the user on machine m2, they must
evaluate

on machine m1: talk "talk@m2"

on machine m2: talk "talk@m1"

The communication structure created by these calls is shown in Fig. 1.

4.3 A Computation Server

Since our communication through ports is strict, i.e., messages are evaluated
before sending them (cf. Section 3), there is no direct way to distribute compu-
tational work like remote procedure calls (RPCs) where procedures are evaluated
at some other node in the network. Although port communication corresponds
to message passing, we can easily implement RPCs using the higher-order fea-
tures of the base language. For instance, a computation server, i.e., a process
running on some node in the network offering to execute some work by evaluat-
ing functions, can be implemented as a function accepting messages containing
triples (f,x,y) where f is a function to be applied to the actual argument x

and y is a free variable which is instantiated with the result of f x. Thus, the
entire computation server can be implemented as follows:

start_compserver = openNamedPort "compserver" >>= compserver

compserver ((f,x,y) : ms) | y=:=(f x) = compserver ms

If prime is a function to compute the n-th prime number, we can use this com-
putation server to compute prime numbers, e.g., the execution of

client "compserver@cs" (prime,1000,p)

binds the free variable p to the 1000th prime number where the computation is
performed on the node cs where the server has been started. This remarkable
simple implementation needs some comments.

1. In Section 2, we introduced the constraint =:= as equality on data terms
and, thus, it might be unclear how we can send functional objects in mes-
sages. For this purpose, we consider partially applied functions, i.e., functions

12

where the number of actual arguments is less than their arity, as data terms
since they are not evaluable. This is conform with standard methods to add
higher-order features to logic programming [28] and theoretically justified
for lazy functional logic languages in [6]. As a consequence, an equation like
“x=:=prime” is solved by binding the variable x to the function name prime.
Since partially applied function calls are considered as data terms, the code
implementing the function is not immediately sent in the above message but
it will be transferred from the client to the server when the server evaluates
it (dynamic code fetching).

2. The RPC is asynchronously performed since the client sends its request
without explicitly waiting for the answer. The client can proceed with other
computations as long as it does not need the result of this call which is
passed back through the third argument of the message. Thus, the free result
variable is similar to a “promise” which has been proposed by Liskov and
Shrira [17] to overcome the disadvantages of synchronous RPCs. A promise
is a special place holder for a future return value from an RPC. Since we
can use the logic part of the base language for this purpose, no linguistic
extension is necessary to implement asynchronous RPCs.

3. The attentive reader might raise the question what happens if the execution
of the transmitted function causes a non-deterministic computation step.
Does the server split into two disjunctive branches? This does not happen
since, as mentioned at the end of Section 2, non-deterministic steps between
I/O actions are suspended. One method to avoid this suspension is to return
only the first solution to the sender. This can be done by encapsulating the
search, i.e., we could replace the constraint “y=:=(f x)” by the expression

y =:= head (findall \z -> z=:=(f x))

A disadvantage of the above computation server is the fact that the complete
server is blocked if the evaluation of a single RPC is suspended or takes a long
time. Fortunately, it is very simple to provide a concurrent version of this server
using the concurrency features of the base language. For this purpose, we turn
the server function into a constraint and evaluate the RPC in parallel to the
main server process:

start_compserver = openNamedPort "compserver" >>= serve
where serve ms | compserver ms = done

compserver eval rigid3

compserver ((f,x,y) : ms) = y=:=(f x) & compserver ms

4.4 Encrypting Messages

To support more security during message sending, messages should be encrypted
before sending. For this purpose, public key methods are often used. The idea
of public key methods is to encode a message with a key before sending and to

3 The rigid annotation is necessary since constraints are flexible by default in Curry.

13

decode the message with another key after receiving. Both keys must be chosen
in a way so that decoding the encoded message gives the original message back.
Since the coding algorithm as well as one key are publicly known, it is essential
for the security of the method to choose keys that are large enough.

In the following, we use a similar idea but functions instead of keys, i.e., the
encoding algorithm as well as the key is put into a single function. Thus, one has
to choose a public encrypt function e and a private decrypt function d so that
d(e(m)) = m for all messages m (the additional property e(d(m)) = m would
be necessary for authentication).

As a simple example, we show a server which processes requests and returns
the answers encrypted. The public encrypt function is sent together with the
message. This has the advantage that for each message and client, another en-
cryption can be used. Since there are a huge number of encrypt/decrypt function
pairs, the functions could be relatively simple without sacrificing security. Sim-
ilarly to the computation server, this server receives triples (e,rq,rs) where e

is the public encrypt function, rq is the request to the server and rs will be
instantiated to the encrypted result (the unspecified function computeanswer

determines the main activity of the server):

start_crypticserver = openNamedPort "cryptserver" >>= cserver

cserver ((encode,rq,rs) : ms) | rs =:= encode(computeanswer rq)
= cserver ms

For strings, i.e., lists of characters, the pair rev/rev (list reversing) is a simple
encrypt/decrypt pair. Thus, we can send a request to the server and decode the
answer by

client "cryptserver@cs" (rev,"Question...",y) >> show (rev y)

Although this example is simplified, it should be obvious that further features
like authentication can be easily added.

5 Implementation

The full implementation of the presented concepts is ongoing. We have tested
the examples in this paper with a prototypical implementation of Curry based
on Sicstus-Prolog. In this implementation, we used the socket library of Sicstus-
Prolog to implement the port communication via sockets. Free variables sent
in messages are implemented by dynamic reply channels on which the receiver
sends the value back if the variable is instantiated.

Currently, we are working on a more efficient implementation based on the
compiler from Curry into Java described in [11]. In this implementation, we use
the distribution facilities of Java to implement our communication model. In
particular, we use Java’s RMI model to implement ports. Sending a message
amounts to binding a free variable (the stream connected to the port) by a
method call on the remote machine. Free variables sent in messages reside in the
sender’s computation space and if the receiver binds this variable, he calls a re-
mote method on the sender’s machine to bind this variable. The implementation

14

of functional objects sent in messages is more advanced. It could be implemented
by sending a reference to the code that implements this function. If the function
is applied and evaluated by the receiver, the function code is dynamically loaded
from the sender to the receiver (dynamic code fetching).

6 Related Work

Since features for concurrent and distributed programming become important
for many applications, there are a various approaches to extend functional or
logic programming languages with such features. In the following, we relate our
proposal to some of the existing ones.

Initiated by Japan’s fifth generation project, various approaches to add con-
currency features to logic programming [23] have been proposed culminating in
Saraswat’s framework for concurrent constraint programming [22]. Usually, these
approaches consider only concurrency inside an application but provide no fea-
tures for connecting different programs to a distributed system. The concurrent
logic language AKL [15] also supports only concurrency inside a program but
proposed ports [16] for the efficient communication between objects. Ports have
been also adapted to Oz [25] where it has been also embedded into a framework
for distributing the computational activities over a network [26]. In contrast to
our approach, ports are not a primitive constraint but are implemented by the
stateful features of Oz. All these languages are strict (and untyped) while our
proposal combines optimal lazy reduction for the sequential computation parts
with strict communication between the distributed and concurrent entities.

Concurrent Haskell [21] extends the lazy functional language Haskell by
methods to start processes inside an application and synchronize them with
mutable variables, but facilities for distribution are not provided. Closest to our
approach w.r.t. the communication features are Erlang [2] and an extension of
Goffin [4]. Erlang is a concurrent functional language developed for telecommu-
nication applications. Processes in Erlang can communicate over a network via
symbolic names which provides for communication between different applica-
tions. In contrast to our proposal, Erlang is a strict and untyped language and
provides no features for logic programming. Thus, partial messages can not be
sent so that explicit reply channels (process identifiers) must be included in
messages where answers should be sent back. The extension of Goffin described
in [4] extends a lazy typed concurrent functional language by a port model for
internal and external communication. Although it uses logical variables for syn-
chronization, it does not provide typical logic programming features like search
for solutions. Differently to our proposal for communication, partial messages
including logical variables are not supported, the creation of connections to ex-
ternal ports is not integrated in the I/O monad (and, hence, I/O operations
like reading/writing files can not be used in a distributed program) and, once
a port is made public on the network, every node can not only send messages
to this port but can also read all messages incoming at this port. The latter
property may cause security problems for many distributed applications. This is

15

avoided in our proposal by allowing only one server process to read the incoming
messages at an external port.

7 Conclusions

We have proposed an extension of the concurrent functional logic language Curry
that supports a simple implementation of distributed applications. This exten-
sion is based on communication via ports. The important point is that the
meaning of port communication can be described in terms of computation with
constraints. This has the consequence that (i) the communication mechanism in-
teracts smoothly with the existing language features for search and concurrency
so that all these features can be used to program server applications, and (ii)
existing programs can be fairly easy integrated into a distributed environment.
Moreover, the use of logical variables in partially instantiated messages is quite
useful to avoid complicated communication structures with reply channels. Nev-
ertheless, external communication ports can be given a symbolic name so that
they can be passed in messages as in the π-calculus [18]. We have demonstrated
the appropriateness and feasibility of our language extensions by implementing
several distributed applications. As far as we know, this is the first approach
which combines functional logic programming based on a lazy (optimal) evalu-
ation strategy with features for concurrent and distributed programming.

For future work, we will investigate the application of program analysis tech-
niques to ensure the safe execution of distributed applications. For instance,
deadlock exclusion can be approximated by checking groundness of relevant vari-
ables [8] or the non-conflicting use of free variables transmitted in messages could
be ensured by proving that they are instantiated by at most one receiver.

Acknowledgements. The author is grateful to Frank Steiner and Philipp Niederau for
many discussions and comments on this paper and for providing the implementation
of the talk program.

References

1. S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. In Proc. 21st
ACM Symp. on Principles of Programming Languages, pp. 268–279, 1994.

2. J. Armstrong, M. Williams, C. Wikstrom, and R. Virding. Concurrent Program-
ming in Erlang. Prentice Hall, 1996.

3. S. Breitinger, R. Loogen, and Y. Ortega-Mallen. Concurrency in Functional and
Logic Programming. In Fuji International Workshop on Functional and Logic
Programming. World Scientific Publ., 1995.

4. M.M.T. Chakravarty, Y. Guo, and M. Köhler. Distributed Haskell: Goffin on the
Internet. In Proc. of the Third Fuji International Symposium on Functional and
Logic Programming. World Scientific, 1998.

5. E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel LEAF: A Logic plus
Functional Language. Journal of Computer and System Sciences, Vol. 42, No. 2,
pp. 139–185, 1991.

16

6. J.C. González-Moreno, M.T. Hortalá-González, and M. Rodŕıguez-Artalejo. A
Higher Order Rewriting Logic for Functional Logic Programming. In Proc. Int.
Conference on Logic Programming (ICLP’97), pp. 153–167. MIT Press, 1997.

7. M. Hanus. The Integration of Functions into Logic Programming: From Theory to
Practice. Journal of Logic Programming, Vol. 19&20, pp. 583–628, 1994.

8. M. Hanus. Analysis of Residuating Logic Programs. Journal of Logic Programming,
Vol. 24, No. 3, pp. 161–199, 1995.

9. M. Hanus. A Unified Computation Model for Functional and Logic Programming.
In Proc. 24th ACM Symp. Principles of Programming Languages, pp. 80–93, 1997.

10. M. Hanus and P. Réty. Demand-driven Search in Functional Logic Programs.
Research Report RR-LIFO-98-08, Univ. Orléans, 1998.

11. M. Hanus and R. Sadre. An Abstract Machine for Curry and its Concurrent
Implementation in Java. Journal of Functional and Logic Programming, 1999(6).

12. M. Hanus and F. Steiner. Controlling Search in Declarative Programs. In Principles
of Declarative Programming, pp. 374–390. Springer LNCS 1490, 1998.

13. M. Hanus (ed.). Curry: An Integrated Functional Logic Language (Vers. 0.5).
Available at http://www-i2.informatik.rwth-aachen.de/~hanus/curry, 1999.

14. J. Hughes. Why Functional Programming Matters. In D.A. Turner, editor, Re-
search Topics in Functional Programming, pp. 17–42. Addison Wesley, 1990.

15. S. Janson and S. Haridi. Programming Paradigms of the Andorra Kernel Language.
In Proc. 1991 Int. Logic Programming Symposium, pp. 167–183. MIT Press, 1991.

16. S. Janson, J. Montelius, and S. Haridi. Ports for Objects in Concurrent Logic
Programs. In Research Directions in Concurrent Object-Oriented Programming.
MIT Press, 1993.

17. B. Liskov and L. Shrira. Promises: Linguistic Support for Efficient Asynchronous
Procedure Calls in Distributed Systems. In Proc. SIGPLAN’88 Conference on
Programming Language Design and Implementation, pp. 260–267, 1988.

18. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Parts I and
II. Information and Computation, Vol. 100, pp. 1–77, 1992.

19. J.J. Moreno-Navarro and M. Rodŕıguez-Artalejo. Logic Programming with Func-
tions and Predicates: The Language BABEL. Journal of Logic Programming,
Vol. 12, pp. 191–223, 1992.

20. J. Peterson et al. Haskell: A Non-strict, Purely Functional Language (Version 1.4).
Technical Report, Yale University, 1997.

21. S.L. Peyton Jones, A. Gordon, and S. Finne. Concurrent Haskell. In Proc. 23rd
ACM Symp. on Principles of Programming Languages, pp. 295–308, 1996.

22. V.A. Saraswat. Concurrent Constraint Programming. MIT Press, 1993.
23. E. Shapiro. The family of concurrent logic programming languages. ACM Com-

puting Surveys, Vol. 21, No. 3, pp. 412–510, 1989.
24. E. Shapiro and A. Takeuchi. Object Oriented Programming in Concurrent Prolog.

In Concurrent Prolog: Collected Papers, volume 2, pp. 251–273. MIT Press, 1987.
25. G. Smolka. The Oz Programming Model. In Computer Science Today: Recent

Trends and Developments, pp. 324–343. Springer LNCS 1000, 1995.
26. P. Van Roy, S. Haridi, P. Brand, G. Smolka, M. Mehl, and R. Scheidhauer. Mobile

Objects in Distributed Oz. ACM TOPLAS, 19(5), pp. 804–851, 1997.
27. P. Wadler. How to Declare an Imperative. In Proc. of the 1995 International Logic

Programming Symposium, pp. 18–32. MIT Press, 1995.
28. D.H.D. Warren. Higher-order extensions to PROLOG: are they needed? In Ma-

chine Intelligence 10, pp. 441–454, 1982.

17

