
A Monadic Implementation of Functional Logic Programs
Michael Hanus

CAU Kiel
Institut für Informatik

Kiel, Germany
mh@informatik.uni-kiel.de

Kai-Oliver Prott
CAU Kiel

Institut für Informatik
Kiel, Germany

kpr@informatik.uni-kiel.de

Finn Teegen
CAU Kiel

Institut für Informatik
Kiel, Germany

fte@informatik.uni-kiel.de

ABSTRACT
Functional logic languages are a high-level approach to program-
ming by combining the most important declarative features. They
abstract from small-step operational details so that programmers
can concentrate on the logical aspects of an application. This is
supported by appropriate evaluation strategies. Demand-driven
evaluation from functional programming is amalgamated with non-
determinism from logic programming so that solutions or values
are computed whenever they exist. This frees the programmer from
considering the influence of an operational strategy to the success
of a computation but it is a challenge to the language implementer.
A non-deterministic demand-driven strategy might duplicate un-
evaluated choices of an expression which could duplicate the com-
putational efforts. In recent implementations, this problem has
been tackled by adding a kind of memoization of non-deterministic
choices to the expression under evaluation. Since this has been im-
plemented in imperative target languages, it was unclear whether
this could also be supported in a functional programming environ-
ment, like Haskell. This paper presents a solution to this challenge
by transforming functional logic programs into a monadic repre-
sentation. Although this transformation is not new, we present an
implementation of the monadic interface which supports memo-
ization in non-deterministic branches. We demonstrate that our
approach yields a promising performance that outperforms current
compilers for Curry.

CCS CONCEPTS
• Software and its engineering→Multiparadigm languages;
Functional languages; Constraint and logic languages; Com-
pilers.

KEYWORDS
Declarative programming, non-determinism, memoization, monads,
implementation

ACM Reference Format:
Michael Hanus, Kai-Oliver Prott, and Finn Teegen. 2022. A Monadic Imple-
mentation of Functional Logic Programs. In 24th International Symposium

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PPDP 2022, September 20–22, 2022, Tbilisi, Georgia
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9703-2/22/09. . . $15.00
https://doi.org/10.1145/3551357.3551370

on Principles and Practice of Declarative Programming (PPDP 2022), Sep-
tember 20–22, 2022, Tbilisi, Georgia. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3551357.3551370

1 INTRODUCTION
Declarative programming emphasizes the principle to express prop-
erties of a given problem in a high-level and execution-independent
manner. In functional programming languages, equations specify
the meaning of functions applied to given argument patterns. These
equations are used to reduce an initial expression to a value. In logic
programming languages, the meaning of predicates or relations is
specified by Horn formulas (implications). The non-deterministic
resolution principle [39] uses these formulas to compute solutions
to a given query.

Functional logic languages [12, 23] combine these programming
paradigms in a single language environment. In order to abstract
from small-step operational details, appropriate evaluation strate-
gies are required. Lazy or demand-driven strategies ensure that
iterated reduction steps w.r.t. given equations compute a value if it
exists [28]. Non-deterministic applications of program rules with
overlapping left-hand sides ensure that solutions are computed
whenever they exist [32]. The combination of these techniques is
called narrowing [38, 40]. Needed narrowing is a demand-driven
variant which is optimal w.r.t. the length of successful derivations
and the number of computed solutions [4, 7].

However, the combination of demand-driven and non-determin-
istic evaluation steps might cause efficiency problems in concrete
implementations. To sketch this problem, consider the following
operations (for source programs we use Curry syntax [27] which is
close to Haskell [36]):1

Currynot False = True aBool = False ? True

not True = False

not is a standard function whereas aBool is a non-deterministic op-
eration [21] which uses Curry’s archetypal choice operation “?” that
returns one of its arguments. Non-deterministic operations could
have more than one value for a given input, e.g., aBool has values
False and True. They are an important concept of contemporary
functional logic languages. (see [12, 21] for more details). Non-
deterministic operations can be used like any other operation, e.g.,
in data structures or as arguments to other operations, for example
in “not aBool”. Since the evaluation of any (sub)expression might
lead to a non-deterministic choice, the occurrences of choices must
be handled by the run-time system of the language implementation.

1Since the syntax of Curry is close to Haskell and we are going to compile Curry
programs into Haskell programs, we denote the concrete language used in examples
at the right margin.

https://orcid.org/0000-0002-4953-8202
https://orcid.org/0000-0002-5795-6308
https://orcid.org/0000-0002-7905-3804
https://doi.org/10.1145/3551357.3551370
https://doi.org/10.1145/3551357.3551370

PPDP 2022, September 20–22, 2022, Tbilisi, Georgia Michael Hanus, Kai-Oliver Prott, and Finn Teegen

For instance, some implementations use backtracking to handle
non-determinism, in particular, implementations of functional logic
languages which compile into Prolog, like PAKCS [8, 24] or TOY
[33]. Backtracking implements a choice by selecting one alterna-
tive to proceed the computation. If a computation terminates (with
success or failure), the state before the choice is restored and the
next alternative is taken. A well-known disadvantage of backtrack-
ing is its operational incompleteness: if the first alternative does
not terminate, no result will be computed. This can be avoided by
keeping all alternatives in one computation structure (a graph) and
using a fair strategy to explore this structure.

Pull-tabbing is an approach to implement this idea. It was first
sketched in [3] and formally explored in [6]. A pull-tab step is a
local transformation that moves a choice in a (demanded) argument
of an operation outside this operation. For instance,

not (False ? True) → (not False) ? (not True)

is a pull-tab step. Pull-tabbing is used in implementations targeting
complete search strategies, e.g., KiCS [18], KiCS2 [17], or Sprite [14].
Iterated pull-tab steps move choices to the root of an expression. If
expressions containing choices are shared (e.g., by applying rules
with multiple occurrences of parameters in their right-hand sides),
pull-tab steps might produce multiple copies of the same choice.
This could lead to unsoundness and to duplication of computations.
The latter is a serious problem of pull-tabbing implementations
[22]. For instance, consider the additional operations

Curryxor False x = x xorSelf x = xor x x

xor True x = not x

Then pull-tabbing transforms the single choice occurring in the
expression xorSelf aBool into three choice occurrences.

xorSelf aBool → xor aBool aBool → . . .

→ (False ? True) ? (True ? False)

The values True are unintended. Note that this is caused by the
combination of lazy (demand-driven) evaluation (which passes un-
evaluated expressions as arguments) and non-determinism which is
evaluated on demand. The problem of unsoundness can be fixed by
attaching identifiers to choices [6]. However, this does not fix the
duplication of choices, which can be detrimental to performance
due to repeated evaluation.

The Curry compiler KiCS2 [17] transforms Curry programs into
Haskell programs and uses pull-tabbing to handle non-determinism
and to offer various search strategies. Actually, KiCS2 attaches iden-
tifiers to choices and, thus, suffers from the performance problem
sketched above. Hence, an optimization is proposed in [22] to ea-
gerly evaluate demanded non-deterministic sub-expressions. This
optimization requires a demand analysis which is non-trivial and
often imprecise for complex data structures.

Recently, pull-tabbing has been improved by adding a kind of
memoization so that the re-evaluation of shared non-deterministic
choices is avoided. This scheme, calledmemoized pull-tabbing (MPT)
[26], has been used in Curry implementations which transform
source programs into Julia programs [26] or Go programs [16].

Since MPT has been implemented only in imperative target lan-
guages, it was stated as a question whether the “MPT scheme can be
combined with the purely functional implementation approach of

KiCS2” [26]. A solution to this could be useful since KiCS2 supports
maintainability by its high-level target language and is also highly
efficient for purely functional computations [16, 17].

In this paper we present a solution to this challenge by trans-
forming functional logic programs into a monadic representation.
Although this transformation is not new, we present an implemen-
tation of the monadic interface which supports memoization of
non-deterministic branches and also advanced features of contem-
porary functional logic languages, such as functional patterns [9]
and set functions to encapsulate non-determinism [11].

Our major contributions are:
(1) A basic monadic model for Curry that uses memoization to

avoid repeated computations.
(2) Refinements of this basic model for efficiency improvements.
(3) Extensions to cover advanced features of functional logic

languages.
While we do not show the implementation of all extensions in this
paper, our implementation is the first Curry implementation that
integrates all features of Curry with a promising performance.

This paper is structured as follows. The next section reviews
some necessary details about functional logic programming. Sec-
tion 3 presents the transformation of functional logic programs
into purely functional programs parameterized by a monad to han-
dle computational effects. Some relevant implementations of pull-
tabbing are sketched in Section 4, followed by the implementation
of our memoization monad in Section 5. This monad is extended in
Section 6 to cover an explicit representation of free (logic) variables.
We evaluate our approach in Section 7 before we discuss related
work in Section 8 and conclude with some future work in Section 9.

2 FUNCTIONAL LOGIC PROGRAMMING
We assume familiarity with functional programming and Haskell so
that we review only concepts of functional logic languages which
are addressed by the implementation presented later. Concrete
examples are shown in the multi-paradigm declarative language
Curry. 2 More details can be found in surveys on functional logic
programming [12, 23] and in the language report [27].

Functional logic languages amalgamate distinguishing features
from functional programming (demand-driven evaluation, strong
typing with parametric polymorphism, higher-order functions)
and logic programming (non-determinism, computing with partial
information, constraints). The language Curry has a Haskell-like
syntax3 [36] but allows free (logic) variables in conditions and right-
hand sides of defining rules. In contrast to Haskell, rule selection
is non-deterministic, i.e., if more than one rule is applicable, all
applicable rules are tried. The operational semantics is based on an
optimal evaluation strategy [4, 7]—a conservative extension of lazy
functional programming and logic programming.

As an example, consider the “classical” functional logic definition
of the operation last to compute the last element of a list (“++” is
the standard list concatenation operator, “=:=” denotes unification,
and free variables are introduced by the keyword free):

Curry
2www.curry-lang.org
3Variables and function names usually start with lowercase letters and the names of
type and data constructors start with an uppercase letter. The application of 𝑓 to 𝑒 is
denoted by juxtaposition (“𝑓 𝑒”).

www.curry-lang.org

A Monadic Implementation of Functional Logic Programs PPDP 2022, September 20–22, 2022, Tbilisi, Georgia

last xs | ys ++ [x] =:= xs = x

where x,ys free

This definition uses a conditional rule where the condition is solved
by evaluating ys ++ [x] (which instantiates ys to some list) and
unifying the result with the input list xs.

As mentioned in Section 1, non-deterministic operations [21] are
an important feature of contemporary functional logic languages.
They are conceptually equivalent to free variables (as shown in [10])
and can be nested as other functions. This is due to the fact that non-
deterministic operations return (non-deterministically) individual
values rather than sets of values (although their declarativemeaning
can be specified with a set-valued semantics [21]). For instance,
consider the following operation that inserts an element at an
unspecified position into a list:

Curryinsert :: a → [a] → [a]

insert x [] = [x]

insert x (y:ys) = (x : y : ys) ? (y : insert x ys)

Hence, the expression insert 0 [1,2] non-deterministically evalu-
ates to one of the values [0,1,2], [1,0,2], or [1,2,0]. One can
use this operation to easily define permutations:

Curryperm :: [a] → [a]

perm [] = []

perm (x:xs) = insert x (perm xs)

Although perm is defined by non-overlapping rules, the use of
insert has the effect that perm [1,2,3,4] non-deterministically
evaluates to all 24 permutations of the input list.

Compared to approaches where sets or lists of values are passed
between operations, as in the “list of successes” approach in purely
functional programming [42], non-deterministic operations lead to
simpler program structures. Furthermore, they have operational
advantages: since expressions are evaluated on demand, non-deter-
ministic operations as arguments result in a demand-driven con-
struction of the search space, leading to considerable smaller search
spaces (see [12, 21] for more detailed discussions).

As mentioned in Section 1, the occurrence of non-deterministic
operations as arguments might cause a semantical ambiguity when
such arguments are used multiple times. For instance, if we eval-
uate the expression xorSelf aBool as in standard term rewriting
[15], i.e., by applying program rules from left to right, there is the
derivation (among others)

CurryxorSelf aBool → xor aBool aBool

→ xor True aBool

→ xor True False

→ not False

→ True

The result True is unintended for the operation xorSelf. It is in-
teresting to note that this value cannot be obtained with a strict
evaluation strategy where arguments are evaluated prior to the
function calls. To avoid dependencies on the evaluation strategy
and exclude such unintended results, González-Moreno et al. [21]
proposed the rewriting logic CRWL as a logical (execution- and
strategy-independent) foundation for declarative programming
with non-strict and non-deterministic operations. CRWL specifies
the call-time choice semantics [29], where values of the arguments

of an operation are determined before the operation is evaluated.
This can be enforced in a lazy strategy by sharing actual arguments.
For instance, the expression above can be lazily evaluated provided
that all occurrences of aBool are shared so that all of them reduce
either to False or to True consistently.

Although sharing is also used in implementations of non-strict
functional languages, like Haskell, in order to support optimal
evaluation [28], we cannot directly map functional logic programs
into Haskell programs due to the non-deterministic features. Thus,
a correct mapping requires to model non-determinism and shar-
ing non-deterministic expressions. For this purpose, we will use a
monadic representation of programs.

In addition to these base features, functional logic languages
have more features which are useful for application programming.
Apart from standard features like modules or monadic I/O [44],
set functions [11] are useful to encapsulate search in a evaluation-
independent manner, and functional patterns [9] are useful to non-
deterministically select sub-expressions at arbitrary positions. In
the following, we first discuss a scheme to implement demand-
driven non-determinism in Haskell. Later, we extend our scheme
to more advanced features in order to obtain a full-fledged imple-
mentation of Curry in Haskell.

3 MONADIC TRANSFORMATION
When mapping a functional logic program into Haskell, one has
to model non-deterministic computations in a functional manner.
A well-known method to represent non-deterministic results in a
functional language is the “list of successes” technique [42]: a non-
deterministic operation is mapped into a function which returns
a list of values. Instead of lists, one can also use other container
structures, e.g., trees. In order to abstract from the data structure to
collect values, we parameterize the target program by a monad. A
monad m is a type constructor with two operations

Haskellreturn :: a → m a

(>>=) :: m a → (a → m b) → m b

To model failures and non-deterministic choices, the more specific
monadic structure MonadPlus is appropriate since it offers two
additional operations

Haskellmzero :: m a

mplus :: m a → m a → m a

mzero represents a failing computation and mplus a choice between
two computations. For instance, the non-deterministic operation
aBool defined in Section 1 can be mapped into4

HaskellaBoolC :: MonadPlus m ⇒ m BoolC

aBoolC = return FalseC `mplus ` return TrueC

A simple instance of MonadPlus is the list monad [42] where return
creates a singleton list, mzero an empty list, and mplus concatenates
the argument list. Then the monadic representation of aBool re-
turns the list of its two values:

Haskell> aBoolC :: [BoolC]

[FalseC ,TrueC]

4In order to distinguish Curry entities from their translations into Haskell, we decorate
the latter with the suffix “C”.

PPDP 2022, September 20–22, 2022, Tbilisi, Georgia Michael Hanus, Kai-Oliver Prott, and Finn Teegen

⟦∀𝛼1 . . . 𝛼𝑛. 𝜙 ⇒ 𝜏⟧𝑡 B ∀𝛼1 . . . 𝛼𝑛. ⟦𝜙⟧𝑡 ⇒ Curry (⟦𝜏⟧𝑖) (Polymorphic type)
⟦⟨𝜅1 𝜏1, . . ., 𝜅𝑛 𝜏𝑛 ⟩⟧𝑡 B ⟨rename(𝜅1)⟦𝜏1⟧𝑖, . . ., rename(𝜅1)⟦𝜏1⟧𝑖 ⟩ (Context)

⟦𝜏1 → 𝜏2⟧𝑖 B ⟦𝜏1⟧𝑖 →C ⟦𝜏2⟧𝑖 (Function type)
⟦𝜏1 𝜏2⟧𝑖 B ⟦𝜏1⟧𝑖 ⟦𝜏2⟧𝑖 (Type application)
⟦𝜒⟧𝑖 B rename(𝜒) (Type constructor)
⟦𝛼⟧𝑖 B 𝛼 (Type variable)

Figure 1: Type lifting ⟦◦⟧𝑡

The monadic bind operator (>>=) is used to pass non-deterministic
values of arguments. For instance, consider the Curry expression
not aBool. To evaluate it, notmust be applied to all values of aBool.
Thus, the monadic version of not takes the monadic representation
of its argument and returns a monadic value:

HaskellnotC :: MonadPlus m ⇒ m BoolC → m BoolC

notC x = x >>= 𝜆x' → case x' of

FalseC → return TrueC

TrueC → return FalseC

Since the bind operator of the list monad applies the second ar-
gument to all elements of its first argument and concatenates all
result values, we can nest these operations:

Haskell> notC (notC aBoolC) :: [BoolC]

[FalseC ,TrueC]

Due to the monadic abstraction, one can also use other monad
instances, e.g., search trees, or add more effects to the monadic
computation. As shown later, this is the key to our implementation
of advanced functional logic programming features.

Because of these considerations, we transform normal Curry
code to functional code parameterized by a monad where all trans-
formed operations get and return monadic values, which are non-
deterministic computations in our case. Such a transformation for
call-by-name and call-by-value languages has been presented by
Wadler [43] and is also called monadic lifting.

As sketched in Section 2, Curry uses a lazy call-by-need evalua-
tion strategy. However, Haskell’s sharing is not sufficient to obtain
call-by-need for the monadic representation. Since the bind opera-
tor triggers the evaluation of a monadic value, multiple occurrences
of a same expression might be independently evaluated. For in-
stance, the sub-expression aBool of the expression xorSelf aBool

(see Section 1) has two occurrences in the further evaluation of this
expression which are independently evaluated. In order to conform
to the call-time choice semantics, the non-deterministic values need
to be shared. Thus, we explicitly model sharing using an approach
adapted from both Fischer et al. [20] and Petricek [35]. For this, we
need to introduce an operator

Haskellshare :: Monad m ⇒ m a → m (m a)

By passing a “to-be-shared” monadic expression to share and ex-
tracting the result using (>>=), we obtain a new monadic expression
that respects our call-by-need evaluation strategy. Consider the
following translation of xorSelf which uses its argument twice.

HaskellxorSelfC x = share x >>= 𝜆x' → xorC x' x'

On the first evaluation of the new variable x' inside xorC, the
evaluation of the original argument x to share is triggered and the
computed result is memoized. On any subsequent evaluation of x',
the memoized result of x is used without evaluating x again.

Now we will present the transformation of Curry code to an
explicit monadic variant. For the rest of this paper, we will use
Curry to denote our monadic effect type and the following type for
lifted functions to increase readability.

Haskellnewtype a →C b = Func (Curry a → Curry b)

Types. On the type level, the monadic lifting replaces type con-
structors with their effectful counterparts and wraps the result and
argument of each function type in Curry. However, any quanti-
fiers and constraints (which might be absent) still remain at the
beginning of the type signature and we also wrap the outer type
of a function. Figure 1 presents the lifting of types, including the
renaming of type constructors by the operation “rename” (e.g., add
the suffix “C”). For instance, the type signature

Currynot :: Bool → Bool

is transformed into
HaskellnotC :: Curry (BoolC →C BoolC)

The transformed type signature differs from the one we gave previ-
ously for notC. The key difference is that we wrap the monadic type
constructor Curry around the whole type. The latter is required
because a function could introduce non-determinism before being
applied to an argument. To see this, consider the following artificial
function that is non-deterministically defined as either identity or
negation on Boolean values.

CurryidOrNot :: Bool → Bool

idOrNot = id ? not

The transformed type signature has the form
HaskellidOrNotC :: Curry (BoolC →C BoolC)

For this function, having the monadic type constructor Curry at
the outer level is necessary. Since we want to decide how to trans-
form the type of a function based solely on its type and not on its
implementation, we treat all functions as potentially introducing
non-determinism. Note that in-lining and rewrite optimizations can
get rid of some of the overhead introduced here. Such optimizations
are possible with the Glasgow Haskell Compiler that we target.

A Monadic Implementation of Functional Logic Programs PPDP 2022, September 20–22, 2022, Tbilisi, Georgia

⟦data 𝐷 𝛼1 . . . 𝛼𝑛 = 𝐶1 | . . . | 𝐶𝑛 ⟧𝑑 B data rename(𝐷) 𝛼1 . . . 𝛼𝑛 = ⟦𝐶1⟧𝑐 | . . . | ⟦𝐶𝑛⟧𝑐 (Data type)
⟦𝐶 𝜏1 . . . 𝜏𝑛⟧𝑐 B rename(𝐶) ⟦𝜏1⟧𝑡 . . . ⟦𝜏𝑛⟧𝑡 (Constructor)

Figure 2: Data type lifting ⟦◦⟧𝑑

⟦𝑥⟧𝑒 B 𝑥 (Variable)
⟦𝜆𝑥 → 𝑒⟧𝑒 B return (Func (𝜆y → 𝑎𝑙𝑖𝑎𝑠 (𝑦, 𝑥, ⟦𝑒⟧𝑒))) (Abstraction)
⟦𝑒1 𝑒2⟧𝑒 B ⟦𝑒1⟧𝑒 >>= 𝜆(Func 𝑦) → 𝑦 ⟦𝑒2⟧𝑒 (Application)
⟦𝐶⟧𝑒 B return (Func (𝜆𝑦1 → . . . return (Func (𝜆𝑦𝑛 → return (rename(𝐶) 𝑦1 . . . 𝑦𝑛))) . . .)) (Constructor)

⟦let 𝑥 = 𝑒1 in 𝑒2⟧𝑒 B let 𝑦 = ⟦𝑒1⟧𝑒 in 𝑎𝑙𝑖𝑎𝑠 (𝑦, 𝑥, 𝑒2) (Let Expression)
⟦(?)⟧𝑒 B return (Func (𝜆𝑦1 → return (Func (𝜆𝑦2 → 𝑦1 ‘mplus‘ 𝑦2)))) (Choice operator)

⟦failed⟧𝑒 B mzero (Failed computation)
⟦case 𝑒 of {𝑏𝑟1; . . . ;𝑏𝑟𝑛 }⟧𝑒 B ⟦𝑒⟧𝑒 >>= 𝜆𝑦 → case 𝑦 of {⟦𝑏𝑟1⟧𝑏 ; . . . ; ⟦𝑏𝑟𝑛⟧𝑏 } (Case Expression)

⟦𝐶 𝑥1 . . . 𝑥𝑛 → 𝑒⟧𝑏 B rename(𝐶) 𝑦1 . . . 𝑦𝑛 → 𝑎𝑙𝑖𝑎𝑠 (𝑦1, 𝑥1, (. . . (𝑎𝑙𝑖𝑎𝑠 (𝑦𝑛, 𝑥𝑛, ⟦𝑒⟧𝑒)))) (Case Branch)

𝑎𝑙𝑖𝑎𝑠 (𝑥new, 𝑥old , 𝑒) B share 𝑥new >>= 𝜆𝑥old → 𝑒 (Aliasing)

Figure 3: Expression lifting ⟦◦⟧𝑒 (where 𝑦, 𝑦1, . . . , 𝑦𝑛 are fresh variables)

Data Type Declarations. As discussed in [20] in detail, the argu-
ments of data constructors need also be transformed into monadic
values in order to achieve non-strictness of data constructors. Thus,
we need to modify data type definitions (except for primitive data
types). Because we rename the data types during the transforma-
tion, we have to update any type constructor in a type to use the
name of its effectful counterpart. We take a look at the transfor-
mation of data types next. To support non-strict data constructors,
we lift every constructor. As the (partial or full) application of a
constructor can never be non-deterministic by itself, we neither
have to lift the result type of the constructor nor wrap the function
arrow. This allows us to lift only the parameters of constructors,
because they are the only potential sources of non-deterministic
effects in a data type. Figure 2 shows the rules for the lifting of
data types. The following code shows an example for this transfor-
mation. To improve readability we use regular algebraic data type
syntax for the list type and its constructors instead of the special
list syntax of Curry and Haskell. The Curry data type

Currydata List a = Nil

| Cons a (List a)

is transformed into
Haskelldata ListC a = NilC

| ConsC (Curry a) (Curry (ListC a))

Because the lifting of a constructor differs from the lifting of a func-
tion, we later have to treat constructors and functions in expressions
differently. We rename constructors and type constructors in our
implementation so that we can more easily identify a transformed
(type) constructor.

Functions. The type of a lifted function serves as a guide for the
lifting of functions and expressions. We can derive three rules for
our lifting of expressions from our lifting of types:

(1) Each function arrow is wrapped in a Curry type. Therefore,
function definitions are replaced by constants that use a
sequence of lambda expressions to introduce the arguments
of the original function. All lambda expressions are wrapped
in a return because function arrows are wrapped in a Curry

type.
(2) We have to extract a value from the monad using (>>=) be-

fore we can pattern match on it. As an implication, we can-
not pattern match directly on the argument of a lambda or
use nested pattern matching, as arguments of a lambda and
nested values are effectful and have to be extracted using
(>>=) again.

(3) Before applying a function to an argument, we first have to
extract the function from the monad using (>>=). As each
function arrow is wrapped separately, we need this extrac-
tion for every parameter applied to the original function.

Implementing this kind of transformation in one pass over a con-
crete Curry program is challenging. Thus, we assume that a source
program is simplified first. For the remainder of this subsection, we
assume that our program is already desugared into a flat form:5
a program is a set of top-level functions in the form of lambda
abstractions (nested definitions are removed by lambda lifting [30]),
pattern matching is represented with non-nested patterns in case
expressions, all cases branches are complete (i.e., branches on miss-
ing constructors are completed with failed, the predefined always
failing operation), and non-determinism (e.g., overlapping rules) is
expressed with the choice operator (?). Actually, any functional
logic program or constructor-based conditional term rewriting sys-
tem can be transformed into this flat form [5]. For instance, the
operation insert defined in Section 2 is desugared into the follow-
ing flat form.

Curry5The flat form of programs is also used for the semantics [2] and implementation [13]
of functional logic programs.

PPDP 2022, September 20–22, 2022, Tbilisi, Georgia Michael Hanus, Kai-Oliver Prott, and Finn Teegen

insert = 𝜆x → 𝜆xs → case xs of

[] → [x]

y:ys → (x : y : ys) ? (y : insert x ys)

Figure 3 presents the rules of our monadic transformation. We ex-
plain the rules for abstractions and applications in more detail. Most
of the other rules are straightforward. Since our transformation
only works for correctly typed programs, we assume that the input
code to our transformation has been checked for type errors.

LambdaAbstractions. A lambda abstraction is translated bywrap-
ping it in a return as well as the lifted function constructor Func
and translating the inner expression. Additionally, we apply share

to the argument of the lambda abstraction. This is necessary to
avoid the re-evaluation of this argument when it occurs multiple
times in the body or is duplicated by other functions. Evaluating
arguments at most once is important in a call-by-need semantics to
avoid superfluous computations and is semantically relevant in a
non-deterministic setting to ensure the call-time choice semantics
(see Section 2).

Applications. We extract the “real” function from the monad
before applying it in the lifted setting. An application of a func-
tion to more than one argument is represented as multiple nested
applications. While Petricek [35] uses share in the application of
a function to an argument, we use share whenever a variable is
brought into scope. Because we consider data types and case ex-
pressions in contrast to Petricek, variables are brought into scope
in lambda, let, and case expressions.

Transformation Examples. As an example, consider the operation
not defined in Section 1. The flat form of not is

Currynot = 𝜆x → case x of False → True

True → False

This is transformed into (we slightly modify the target code to
improve its readability)

HaskellnotC = return ◦ Func $ 𝜆y →
share y >>= 𝜆x → x >>= 𝜆z →
case z of FalseC → return TrueC

TrueC → return FalseC

As a further example with a more complex pattern matching, con-
sider the transformed variant of the perm operation from Section 2.

HaskellpermC :: Curry (ListC a →C ListC a)

permC = return ◦ Func $ 𝜆arg ' →
share arg ' >>= 𝜆arg → arg >>= 𝜆xs → case xs of

NilC → return NilC

ConsC y' ys ' →
share y' >>= 𝜆y → share ys' >>= 𝜆ys →

insertC >>= 𝜆i1 →
i1 y >>= 𝜆i2 → i2 (permC >>= 𝜆p → p ys)

Although the code got significantly more complex, the user will
not have to read or write such code since the transformation can
be fully automated.

4 A HISTORY OF MONADIC PULL-TABBING
This section discusses some existing monadic implementations of
pull-tabbing and their deficiencies. Our own implementation builds
on some of these ideas but fixes the problems they have.

4.1 Tree-based Non-determinism
As already discussed in Section 3, the monadic transformation of
functional logic programs supports different implementations of
non-deterministic computations by providing different instances of
MonadPlus. The list instance computes a list of all non-deterministic
values and corresponds to backtracking search used in Prolog.

In order to support other search strategies, one can collect non-
deterministic values in tree structures rather than lists. For this, we
use a standard binary tree representation as seen below.

Haskelldata Tree a = Empty

| Leaf a

| Node (Tree a) (Tree a)

Thus, Leaf represents a single value, Empty no value, i.e., a failure,
and Node a non-deterministic choice between trees of values. With
this intuition in mind, it is straightforward to define the Monad and
MonadPlus instances so that we omit them here (see Appendix A).

Using the monadic transformation of functional logic programs
with this tree monad, each operation computes a tree of non-
deterministic values. By applying different tree traversals, one can
easily implement different search strategies, like depth- or breadth-
first search. In practice, this is used in the Curry implementation
KiCS2 [17] which has options to select various search strategies
(e.g., depth-/breadth-first, iterative deepening, parallel) [25].6

4.2 Fingerprinting
Using just a tree for the monadic effect is not sufficient to imple-
ment a call-time choice semantics. The tree-based monadic non-
determinism yields unintended answers (as with standard term
rewriting, see Section 2):

Haskell> xorSelfC aBoolC :: Tree BoolC

Node (Node (Leaf FalseC) (Leaf TrueC))

(Node (Leaf TrueC) (Leaf FalseC))

Here we can observe the problem discussed in Section 1, namely
the duplication of choices, which potentially leads to unsoundness
w.r.t. call-time choice and duplicated computations. The former
can be avoided by attaching identifiers to choices. When a choice
is created by an occurrence of the operation “?”, it is decorated
with a fresh choice identifier. In a pull-tab step, i.e., when a non-
deterministic demanded argument causes a choice of results, the
choice identifier is passed from the argument to the result. In our
example, all three Node constructors in the result tree would be
decorated with the same choice identifier. If the tree traversal that
extracts result values from a search tree always makes consistent
choices, i.e., selects the same (left/right) branch for identically dec-
orated choices, then the computed values are the intended ones [6].
Therefore, implementations of functional logic languages which use
pull-tabbing to support flexible and operationally complete search

6The actual implementation of KiCS2 is not based on a monadic representation of
Curry programs, but uses a direct encoding of search trees in translated operations.

A Monadic Implementation of Functional Logic Programs PPDP 2022, September 20–22, 2022, Tbilisi, Georgia

strategies [14, 17] often require choice identifiers in computations.
A computation branch, which evaluates an expression with some
decision for non-deterministic choices, contains a fingerprint, a
partial mapping from choice identifiers to left/right decisions, and
computes values for this fingerprint in a call-by-need manner. This
is done in KiCS2 where the search tree traversal is parameterized
by fingerprints [17].

Unfortunately, this method to implement non-determinism could
cause a serious efficiency problem. Since pull-tabbing moves every
choice occurring in arguments to the root of an expression, choices
occurring in shared subexpressions are multiplied (before they
are removed by fingerprinting). For instance, KiCS2 is the most
efficient Curry implementation on purely functional programs [17]
but it might be much slower than other Curry implementations for
particular uses of non-deterministic operations [22].

4.3 Explicit Sharing of Computations
A solution to pull-tabbing without fingerprinting is proposed by Fis-
cher et al. [20]. Their implementation not only solves the problem
of unsoundness but also aims to avoid the duplication of compu-
tations. They use the share operation we mentioned in Section 3
to save the result of a potentially non-deterministic computation
on a heap local to the current computation branch. While their
approach makes a key step in the right direction, it suffers from
a flaw that decreases performance in real-world applications. The
fact that results are only stored and looked up locally in the current
computation branch implies that results cannot be shared across
non-deterministic branches. Consider the following code snippet.

Curryprimes :: [Int]

primes = <deterministic definition of an infinite list of primes>

sharingAcrossND :: Int

sharingAcrossND = let prime800 = primes !! 799

in prime800 ? prime800

The value of prime800 will be computed for the first time when one
argument of the choice operator (?) is evaluated. At that point, the
value of prime800 is stored on the heap only in that computation
branch. Thus, we do not have the computed value available on
the heap of the alternative branch. When evaluating the other
argument of the choice, the value of prime800will be required again.
Consequently, we need to evaluate prime800 a second time even
though it will yield the same result. In conclusion, deterministic
values are not shared across non-deterministic branches in this
setting, as already noticed by Fischer et al.

5 A NON-DETERMINISM MONADWITH
MEMOIZATION

In this section we introduce the kernel of our implementation by de-
veloping an implementation of a basic memoized non-determinism
monad that aims to fix the problems of implementations shown in
the previous section. It is based on a solution to pull-tabbing with-
out fingerprinting that enables sharing across non-determinism,
proposed in [26], but here the results of non-deterministic com-
putations are memoized in a different way so that it fits into the
functional monadic transformation.

An implementation based on the monadic transformation pre-
sented in the previous section has to implement the functional
interface on which this transformation is based, i.e., an appropriate
monad instance and an implementation of the operation share.
This is quite similar to the approach of Fischer et al. [20] since
they proposed the same interface. While they give a purely func-
tional implementation of this interface for lazy non-determinism,
their approach suffers from the mentioned drawbacks. In order
to avoid these, our implementation uses a mutable (global) state
to implement memoization. Thus, we implement the same func-
tional interface (monad and share) but hide behind the interface
an impure implementation for the sake of efficiency.

In standard implementations of non-strict functional languages,
the node of a computation graph representing an operation is up-
dated in-place with the computed result in order to share it. This is
not possible in a functional logic language, since an operation might
have more than one result. To overcome this problem, computation
branches are uniquely identified by branch identifiers. Instead of
updating a node in-place, potentially non-deterministic operation
nodes contain a (partial) map 𝑡𝑟 , called task result map, from branch
identifiers to results. When a branch 𝑖 has to evaluate some node
𝑛 containing an operation with map 𝑛.𝑡𝑟 , it first checks whether
𝑛.𝑡𝑟 (𝑖) is defined. If not, node 𝑛 is evaluated and 𝑛.𝑡𝑟 (𝑖) is set to the
computed result before returning 𝑛.𝑡𝑟 (𝑖). This evaluation scheme,
called memoized pull-tabbing (MPT) [26] and formally described in
[16], avoids the aforementioned problem of pull-tabbing. Its effi-
ciency can compete with backtracking-based implementations [26].
Furthermore, it is a good basis for operationally complete imple-
mentations of functional logic languages. Existing implementations
[16, 26] use imperative target languages. In the following, we dis-
cuss a high-level Haskell-based implementation which exploits the
monadic transformation introduced so far.

5.1 Memoization Monad
To extend the tree-basedmonadic non-determinism implementation
with memoization for call-by-need evaluation and call-time-choice,
we need storages for memoized results and identifiers to uniquely
label every branch of a non-deterministic computation. For the
latter, we assume an abstract type of identifiers that support a
nextID operation to generate new identifiers.

Haskelltype ID

nextID :: ID → ID

In the next step, we define a state where we can store the cur-
rent branch identifier and any “parent” identifier that occurred
higher up in our tree of non-deterministic choices. The parents are
necessary because a deterministic result that was memoized for a
certain branch identifier is also valid in any child branch. Finally,
we need an IORef to be able to generate IDs that are unique across
all branches. The IORef itself will not change during computations
but its content will, for example, by using the freshID below.

Haskelldata MemoState = MemoState {

branchID :: ID,

parentIDs :: Set ID,

idSupply :: IORef ID

}

PPDP 2022, September 20–22, 2022, Tbilisi, Georgia Michael Hanus, Kai-Oliver Prott, and Finn Teegen

{-# NOINLINE freshID #-}
freshID :: MonadState MemoState m ⇒ m ID

freshID = do

MemoState _ _ idSupply ← get

let val = unsafePerformIO $
atomicModifyIORef idSupply

(𝜆i → (nextID i, i))

return val

Note that we need a NOINLINE pragma on freshID so that optimiza-
tions will not interfere with our usage of unsafePerformIO. Instead
of using unsafe features directly, we could also use the UniqSupply

type that is used inside the Glasgow Haskell Compiler (GHC) itself,
but that one uses unsafe features under the hood as well.

Below we define the type of our basic Curry monad. It is just a
state monad on top of our tree structure.

Haskellnewtype Curry a = Curry {

unCurry :: StateT MemoState Tree a

} deriving (Functor , Applicative , Monad)

The Monad instance can be derived from the underlying StateT im-
plementation using generalized newtype deriving, but we explicitly
need to give the MonadPlus instance so that we can manipulate our
branch identifiers correctly.

Haskellinstance MonadPlus Curry where

mempty = Curry (lift Empty)

Curry m1 `mplus ` Curry m2 = Curry $ do

MemoState branchID parentIDs idSupply ← get

i1 ← freshID

i2 ← freshID

let newPs = Set.insert branchID parentIDs

leftState = MemoState i1 newPs idSupply

rightState = MemoState i2 newPs idSupply

(put leftState >> m1)

`mplus ` (put rightState >> m2)

5.2 Memoizing Non-determinism
Now we define the central function share that enables lazy evalua-
tion via memoization.

Haskellshare :: Shareable a

⇒ Curry a → Curry (Curry a)

Compared to the type described in Section 3, we have added the
type class constraint Shareable. This constraint was introduced in
a more generalized form by Fischer et al. [20]. The class contains a
function shareArgs, which essentially calls share on each monadic
component of a lifted data type so that even the results of lazy
computations deep inside a data structure are shared and memoized.
For example, the Shareable instance for the lifted list type can be
defined as follows.

Haskellinstance Shareable a

⇒ Shareable (ListC a) where

shareArgs NilC = return NilC

shareArgs (ConsC x xs) =

ConsC <$> share x <*> share xs

Continuing with the implementation of share, we use shareArgs

for the purpose explained above and memoize the possible compu-
tation of the argument with a new operation memo.

Haskellshare ma = memo (ma >>= shareArgs)

The function memo does the actual memoization work. When called
with an argument computation, it first creates a new task result map
to memoize possible results of this computation. Then it returns a
new computation which checks and updates this map accordingly.
We present the implementation of memo step by step.

Haskellmemo :: Curry a → Curry (Curry a)

memo (Curry ma) = Curry $ do

let trRef = unsafePerformIO (newIORef emptyHeap)

MemoState b1 _ _ ← get

return $. . . -- see below

To store memoized results, we use the following data type Heap

with both an insertHeap and lookupHeap operation. The imple-
mentation of the heap is not relevant, as it can be any kind of
key-value store.

Haskelltype Heap a

emptyHeap :: Heap a

insertHeap :: ID → a → Heap a → Heap a

lookupHeap :: ID → Heap a → Maybe a

We initialize the heap by using unsafePerformIO together with
newIORef emptyHeap in the function memo to create a kind of mem-
ory cell where we can manipulate our results.7 In the next step, the
current branch ID (b1) is retrieved from the state so that we can use
the right ID to insert into the task result map. This is everything
that we need to do to prepare a shared computation. The actual
execution of our computation ma happens in the returned computa-
tion which starts with the return in the last line. We continue at
that return.

Haskellreturn $ do

MemoState b2 p2 idSupply2 ← get

case lookupTaskResult trRef b2 p2 of

Nothing → . . . -- see below

Just res → . . . -- see below

Here, we retrieve the current (possibly different) state and check if
we already have a result saved in the task result map that is valid in
the current or a parent branch. Checking the map for a memoized
result is done using lookupTaskResult which is defined as follows.

HaskelllookupTaskResult :: IORef (Heap a) → ID

→ Set ID → Maybe a

lookupTaskResult trRef i p =

msum (map (lookupHeap h) (i : Set.toList p))

where h = unsafePerformIO (readIORef trRef)

The current map is read using unsafePerformIO and, for the cur-
rent and each parent branch ID, we check if there is a valid result
memoized in this map. Combining all these Maybe a results using
the monoidal msum, we obtain the first result if it exists, or Nothing

7We tried getting rid of IO in our implementation but we conjecture that this is not
possible for our goal. Note that the usage of unsafePerformIO is captured in a safe
interface here and is, thus, just ugly but still safe.

A Monadic Implementation of Functional Logic Programs PPDP 2022, September 20–22, 2022, Tbilisi, Georgia

otherwise. Note that there can only ever be at most one valid result
in the map.

Now we continue with the Nothing case of memo where no valid
memoized result exists.

HaskellNothing → do

a ← ma

MemoState b3 _ _ ← get

let wasND = b2 /= b3

let whereTo = if wasND then b3 else b1

let addTR h = insertHeap whereTo a h

unsafePerformIO (modifyIORef trRef addTR)

`seq` return a

Here, we have to execute the computation ma to obtain a result
that we can memoize. Immediately afterwards, we get the current
branch ID so that we can check if the computation ma contained
non-determinism. If the branch ID changed during its execution
(i.e., b2 /= b3), the computation was indeed non-deterministic and,
thus, the new result is valid only for the local branch identifier b3.
In the case that the branch ID did not change, ma was deterministic
and, thus, the result is globally valid for the branch identifier b1

that was active on the outer monadic layer of memo. With this in-
formation at hand, we construct a new task result map and update
the IORef using unsafePerformIO. We have to force the computa-
tion of the result of unsafePerformIO using seq to ensure that it
actually happens before the result of the computation ma is returned.

If we actually have a result memoized, the Just branch after our
lookup simply returns the result.

HaskellJust res → return res

5.3 Nested Sharing of Non-deterministic Values
The implementation given above is correct for programs where
non-deterministic values are not shared twice or more. However,
there are some programs where such a multiple sharing happens.
To illustrate the problem, consider the following Curry program.

CurrynotIf :: Bool → Bool

notIf x = let f = not x

in if x then f else f

Semantically, we expect notIf (False ? True) to be equivalent
to True ? False. However, with the memoization implementation
given above, we get the result True ? True. To see why this happens,
let us look at the monadic transformation of notIf.

HaskellnotIfC :: Curry (BoolC →C BoolC)

notIfC = return ◦ Func $ 𝜆x' → share x' >>= 𝜆x →
let f' = notC >>= 𝜆n → n x

in share f' >>= 𝜆f → x >>= 𝜆x' → case x' of

TrueC → f

FalseC → f

We see that x is shared before f is introduced and x is evaluated
before f since it is demanded by notC. When the computation of f is
forced in either of the branches, the value for x is memoized and can
just be returned for any subsequent computation without triggering
any new non-determinism. Thus, the current implementation of
memoization deduces that f is deterministic so that the value of f is

memoized globally as TrueC. In consequence, our implementation
fails in situations where a shared value (f) depends on another
shared value (x) that is forced earlier than the first one.

To fix this, we also memoize whether a value is deterministic
and inserted globally, or non-deterministic and inserted locally.
On reading a memoized value that was non-deterministic, we sim-
ply advance the branch identifier. Thus, a repeated sharing of the
same non-deterministic value or a value that directly depends on it
will be assumed to be non-deterministic. In other words, we now
prevent global memoization of a computation if it depends on a
non-deterministic computation and not just when the computation
itself introduced non-determinism. Therefore, we need to adapt the
implementation. The relevant changes are in both case-branches.

Haskellcase lookupTaskResult trRef b2 p2 of

Just (wasND , res) →
| wasND → do

i ← freshID

let newParents = Set.insert b2 p2

put (MemoState i newParents idSupply2)

return res

| otherwise →
return res

Nothing → do

a ← ma

MemoState b3 _ _ ← get

let wasND = b2 /= b3

let whereTo = if wasND then b3 else b1

let addTR h = insertHeap whereTo (a, wasND) h

unsafePerformIO (modifyIORef trRef addTR)

`seq` return a

5.4 Improving Performance of Sharing
There is one major performance bottleneck with this implementa-
tion. The problem is that share traverses its argument recursively
via shareArgs, even when a previous share has done so already.
Repeated sharing of a computation is unneccessary and expensive
in both time and memory consumption, as each share introduces
another indirection with an IORef. Thus, an obvious performance
optimization is to prevent repeated sharing of values as much as
possible. To achieve this, we use the following two ideas.

(1) We prevent any unneccessary insertions of share during
monadic lifting. If a value is used at most once in its scope,
a share is not required. Consider the following example of
a function that reverses the order of elements in a list.

Curryreverse :: [a] → [a]

reverse [] = []

reverse (x:xs) = reverse xs ++ [x]

Here, both x and xs are used exactly once in the second
rule. Thus, we can avoid sharing them explicitly. In the rules
given in Figure 3, we replace the 𝑎𝑙𝑖𝑎𝑠 rule as seen in Fig-
ure 4. Note that, since Curry is a lazy language, we can only
over-approximate if a value will be used at least twice. For
example, in const x x, we will still consider x to be shared,
even though const does not evaluate its first argument.

PPDP 2022, September 20–22, 2022, Tbilisi, Georgia Michael Hanus, Kai-Oliver Prott, and Finn Teegen

𝑎𝑙𝑖𝑎𝑠 (𝑥𝑛𝑒𝑤 , 𝑥𝑜𝑙𝑑 , 𝑒) B

{
share 𝑥𝑛𝑒𝑤 >>= 𝜆𝑥𝑜𝑙𝑑 → e if 𝑥𝑜𝑙𝑑 might be used at least twice in 𝑒

let 𝑥𝑜𝑙𝑑 = 𝑥𝑛𝑒𝑤 in e if 𝑥𝑜𝑙𝑑 is guaranteed to be used at most once in 𝑒
(Aliasing)

Figure 4: Improved 𝑎𝑙𝑖𝑎𝑠 rule

(2) Additionally, we tag values with information on whether
or not they have been shared already. If a value is already
shared, we can skip recursing into its data structure with
shareArgs. This greatly improves performance for recursive
functions over inductive data types. The following example
of a contrived reverse function illustrates this.

Curryreverse xs = if null xs

then xs

else reverse (tail xs) ++ [head xs]

Here, xs is used at least twice in each branch. Thus, sharing
it is necessary to achieve the desired semantics explained in
Section 2. However, we will share the whole list in the first
call to reverse. Any share in a subsequent recursive call
is unnecessary. By tagging shared values and not sharing
tagged values again we can avoid some work. Since this
optimization is not relevant to this paper, we omit its code.
It is available in the Github repository for this project.8

6 EXTENDING THE MONAD
An important advantage of our monadic implementation is that
one can implement new features by modifying the monad without
modifying the translation of source programs. While we do not
have the space to discuss every extension we implemented, we want
to show at least the implementation of one extension as an example.
Therefore, we will demonstrate the extension of our monad by
free (logic) variables in order to support unification with variable
bindings instead of instantiating free variables to all possible values.

Free variables are an important feature of logic programming.
They denote unknown values which are fixed during the com-
putation. It is well known that free variables can be replaced by
value generators, i.e., non-deterministic operations that yield the
(possibly infinite) set of values of a given type [10]. Although this
works from a declarative point of view, a crucial feature of logic
programming is unification to compute with partial information,
i.e., without completely instantiating free variables. For instance,
if x and y are free variables, the unification x =:= y is solved by
binding x to y (or vice versa) without instantiating them to a value.
In contrast, if x and y are generators for an infinite set of values,
their evaluation leads to an infinite search space. In order to support
an efficient implementation of unification, we need to explicitly
represent free variables so that we can implement bindings without
value generation.

For this purpose, we use the approach taken by Teegen et al. [41]
and adapt it to our memoization monad. Central to their approach
is the idea that, if a computation demands a free variable by using
(>>=), the variable gets narrowed, i.e., it is partially instantiated.
Thus, variables only get narrowed on demand and a (>>=) is only
ever used to extract the scrutinee of a case-match or to extract a

8Available at: https://github.com/cau-placc/curry-monad

function to be applied.9 In both cases, we need an explicit value
instead of a free variable in order to continue the evaluation.

Teegen et al. define a type class Narrowable, which enumerates
all constructors of the given type and fills their arguments with
new free variables.10

Haskellclass Narrowable a where

narrow :: [a]

Implementations for this class have to be generated for every lifted
data type. For example, the instance for the list type looks as follows.

Haskellinstance Narrowable a ⇒ Narrowable (ListC a)

where

narrow [NilC , ConsC free free]

Any free variables are created using the free function that will
be introduced later. Next, we also need to extend our state with a
heap to store the bindings of free variables that have been narrowed
already. Not all free variables have the same type, thus, our heap has
to be untyped using existential data types [34] and unsafeCoerce

as seen below. Using unsafe features here will not go wrong at run
time, since they are captured behind a safe interface.

Haskelldata Untyped = ∀a. Untyped a

typed :: Untyped → a

typed (Untyped x) = unsafeCoerce x

data FreeState = FreeState {

branchID :: ID,

parentIDs :: Set ID,

varHeap :: Heap Untyped ,

idSupply :: IORef ID

}

Now we can give the new type for our memoization monad ex-
tended with free variables. Apart from the state, it differs from
our previous monad by having an FLVal a instead of a plain a in
its result type. This new type differentiates between values and
variables, with the latter one containing a Narrowable constraint
so that we are guaranteed to be able to narrow a variable that we
encounter during evaluation. Note that we cannot derive required
instances (e.g., Monad) automatically anymore.

Haskelldata FLVal a = Val a

| Narrowable a ⇒ Var ID

newtype CurryFree a = CF {

unCF :: StateT FreeState Tree (FLVal a)

}

9The operation (»=) is also used on the result of a share, but this is irrelevant here as
share never yields a free variable.
10Our implementation of Narrowable is actually a bit simpler compared to Teegen
et al., but the reasons why that is possible do not matter here.

https://github.com/cau-placc/curry-monad

A Monadic Implementation of Functional Logic Programs PPDP 2022, September 20–22, 2022, Tbilisi, Georgia

In the following we quickly show the implementation of free that
we mentioned earlier. It uses the new FLVal type and provides a
fresh identifier and the required Narrowable constraint. Here we
use the ID type to uniquely identify free variables in addition to
their use as branch identifiers.

Haskellfree :: Narrowable a ⇒ CurryFree a

free = CF $ do

i ← freshID

return (Var i)

Before we give the new Monad instance for the CurryFree type, we
introduce another helper function for the instantiation of free vari-
ables. This instantiation starts by generating a lifted value for each
constructor of the corresponding type using Narrowable. For each
of those values, we spawn a new computation that inserts a binding
for the instantiated variable into the heap and updates the branch
identifier accordingly. Thus, the varHeap in every branch contains
a mapping from variable indentifiers to monadic computations that
have been shared already. We then combine the computations for
each constructor by non-deterministic choices using msum. It is im-
perative that we write a shared variant of the corresponding value
to the heap. Otherwise, two computations in the same branch could
compute different identifiers for the free variables in the arguments
of a narrowed constructor, leading to unsound results.

Haskellinstantiate :: Narrowable a

⇒ ID → CurryFree a

instantiate vid = CF $ do

st ← get

msum (map (update st) narrow)

where

update (FreeState i ps h suppl) (x, a) = do

i' ← freshID

sharedX ← share (return x)

let h' = insertHeap vid (Untyped sharedX) h

put (FreeState i' (Set.insert i ps) h' suppl)

Finally, we give the implementation of the Monad instance. The only
interesting bit is that we case match on the result of the first argu-
ment so that we can check whether it is a variable or a value. Recall
that wewant to instantiate variables when they are patternmatched
on, which corresponds to a (>>=) in the monadic translation. In case
the result is a variable that is yet unbound, we first instantiate that
variable before we continue with the computation. Otherwise, we
can apply the continuation from the second argument.

Haskellinstance Monad CurryFree a where

CF ma >>= f = CF $ do

fla ← ma

FreeState _ _ h _ ← get

unCF $ case fla of

Var i → case lookupHeap i h of

Just x → typed x >>= f

Nothing → instantiate i >>= f

Val x → f x

Using this monad with an explicit representation of free variables,
it is possible to implement a standard unification procedure by

inserting variable bindings directly onto the heap rather than in-
stantiating these variables. An implementation of a Prolog-like
unification algorithm based on this representation is given in Ap-
pendix B.

As mentioned in Section 2, a few other extensions for high-level
declarative programming have been proposed, like functional pat-
terns [9], which support deep pattern matching, or set functions
[11] to encapsulate non-deterministic operations. Due to lack of
space, we have to omit their implementations as well. The imple-
mentation of these features are adapted from the papers cited above,
but there are some unique challenges with respect to our memoiza-
tion for each of them. The full implementation is available in our
Github repository.

7 EVALUATION
The objective of this work is to create a high-level memoization
implementation for Curry based on a purely functional interface.
This implementation is intended to support sharing of values to
avoid repeated pull-tab steps and allow for sharing of deterministic
values even across non-determinism.

Due to the monadic abstraction, the implementation of our pro-
totype compiler allowed for a clean separation between the run-
time system (i.e., the monad and share implementation) and the
monadic transformation. Although the full compiler is still under
implementation, the current implementation shows that the code
size is smaller (thus, better maintainable) than KiCS2, which also
compiles into Haskell.

In order to evaluate the overall efficiency of our high-level imple-
mentation, we compare it on various benchmark programs11 with
three other major Curry implementations. PAKCS [24], which is
part of Debian and Ubuntu Linux distributions, compiles to Prolog
(SWI-Prolog 8.4.2) so that its search strategy is based on backtrack-
ing. KICS2 [17] compiles to Haskell (GHC 8.4) and implements non-
determinism by pure pull-tabbing without memoization. Curry2Go
[16] compiles to Go (1.16.1) and uses an imperative implementation
of memoization. All benchmarks were executed on a Linux machine
running Debian 11 with an Intel Core i7-7700K (4.2GHz) processor
with eight cores. We measured the average elapsed time (in sec-
onds) of three runs using the time command and the executables
generated by the respective compilers. Since a complete compiler
environment including an interactive REPL (read-eval-print loop)
to evaluate arbitrary expressions based on our monadic implemen-
tation is under construction, we manually used the GHC to compile
the generated monadic code and to measure the run times shown
below.

Figure 5 shows the timings for various programs. The first four of
these test the properties that our implementation was designed for,
while the last two benchmarks are purely deterministic programs.
Times for our approach are both “Monadic MPT” colums, where
the latter one integrates an optimization for fully deterministic
sub-computations. We will focus on the non-optimized version of
“MonadicMPT” first and talk about the optimized implementation at
the end of this section. The benchmarks are based on the ones used
by Böhm et al. [16] to evaluate their implementation of memoized
pull-tabbing.

11The benchnmarks are available in our Github repository.

PPDP 2022, September 20–22, 2022, Tbilisi, Georgia Michael Hanus, Kai-Oliver Prott, and Finn Teegen

Program Monadic MPT Monadic MPT + det. optim. KiCS2 PAKCS Curry2Go
AddNum10 0.29 0.29 13.70 0.41 0.68
AddNum5 0.19 0.19 4.36 0.33 0.43
YesSharingND 0.62 0.20 0.42 33.65 4.62
NoSharingND 1.33 0.21 0.78 34.07 2.97
PermSort 2.46 2.44 2.80 10.30 5.96
SortPrimes 1.25 0.01 0.03 98.56 1.02
NaiveReverse 0.24 0.09 0.20 6.46 1.15
Queens10 2.67 0.03 0.45 185.31 27.41

Figure 5: Timings (in seconds) of various programs evaluated with different compilers, green marks best time

The first benchmark checks memoization, i.e., the avoidance of
repeated pull-tabbing. The contrived program to test this property
gets some number n as input and non-deterministically generates a
number x between 0 and n (inclusive). Afterwards, x is added ten
times to itself.

CurrysomeNum :: Int → Int

someNum n | n <= 0 = 0

| otherwise = n ? someNum (n-1)

addNum10 :: Int → Int

addNum10 n = let x = someNum n

in x+x+x+x+x+x+x+x+x+x+x+x

With memoized pull-tabbing, the choice for x should be made only
once and not on each addition of x. Looking at the times in Figure 5,
our implementation AddNum10 takes less than double the time of
a smaller test AddNum5 where x is added only five times to itself.
This is in contrast to KiCS2 which does not use memoization to
implement pull-tabbing.

The next benchmark uses the primes example from Section 4
to create an expensive deterministic computation that yields the
800th prime number.

Curryprime800 :: Int

prime800 = primes !! 799

We can use this expensive computation in the following tests, where
the first one shares the value of prime800 through a let-binding
across the non-deterministic choice and the second one does not.12

CurryyesSharingND :: Int

yesSharingND = let p = prime800 in p ? p

noSharingND :: Int

noSharingND = prime800 ? prime800

And indeed, the second test takes approximately twice as long as
the first test. Thus, we can conclude that our implementation shares
deterministic values across non-determinism.

The final benchmarks are taken from [26]. PermSort sorts a list
of 13 elements by non-deterministically generating all permutations
and keeping the sorted one. SortPrimes generates prime numbers
as shown above and sorts a list of four of them using permutation
sort. This benchmark mixes determinism and non-determinism.
The large execution time of PAKCS is due to the fact that it does

12Note that top-level declarations are always operations in Curry. Their results are
never shared.

not implement sharing across non-determinism so that the prime
numbers are recomputed in each permutation. NaiveReverse is a
simple deterministic example of the quadratic algorithm to reverse
a list of 4096 elements. Queens10 computes the number of safe
positions to put 10 queens on a 10 × 10 chessboard using Peano
numbers.

These benchmarks indicate that, for purely functional programs,
our non-optimized implementation is faster than both PAKCS and
Curry2Go but slower than KICS2. For non-deterministic programs,
the results depend on the exact benchmark. Since our implemen-
tation optimizes for programs such as AddNum10 where avoiding
repeated pull-tabbing is relevant, we are expectedly faster than
KiCS2 and even faster than Curry2Go. PAKCS is about as fast, since
it uses backtracking with Prolog and not pull-tabbing.

Unfortunately, the non-optimized version is a bit slower than
Curry2Go and much slower than KiCS2 in the mixed benchmark
SortPrimes. While this seems surprising at first, the speed of KiCS2
stems from the fact that it optimizes deterministic operations, even
when deterministic functions are applied to potentially non-deter-
ministic arguments. This is actually very beneficial in the implemen-
tation of SortPrimes and for the two deterministic benchmarks
as well. Without this optimization, KiCS2 is about as slow as our
unoptimized approach.

While we are not confident that we can replicate exactly the
same optimization from KiCS2 for our monadic implementation,
we have tested an experimental approach to optimize our monadic
implementation for purely deterministic computations that are only
applied to deterministic values. For such programs, we can generate
non-monadic, purely functional Haskell code that is much faster.
This requires a non-determinism analysis just like KICS2 uses. The
results in the column for our optimized approach in Figure 5 show
that our implementation is the fastest implementation for these
benchmarks, although one can still construct examples where KiCS2
could be faster.

8 RELATEDWORK
There are two different groups of related work which we discuss in
the following subsections.

8.1 Other Compilers for Curry
While we have already mentioned other Curry compilers through-
out the paper, here we summarize similarities and differences be-
tween them and our approach.

A Monadic Implementation of Functional Logic Programs PPDP 2022, September 20–22, 2022, Tbilisi, Georgia

The compiler most similar to our work is KiCS2 [17]. It compiles
to Haskell and the evaluation strategy is based on pull-tabbing as
well. However, KiCS2 does not support memoization. While its
model of Curry programs is not directly monadic, it bears some
resemblance. Instead of having an explicit effect data type like Tree

in our approach, the structure is basically in-lined by augmenting
every data type with a constuctor for non-deterministic choices
and for failure. Instead of using a state monad to pass around in-
formation, KICS2 augments every function with corresponding
parameters. This provides for better optimization but results in
more complex and less maintainable code. For instance, the im-
plementation of set functions in KiCS2 requires a modification in
the compilation scheme by adding an additional argument (the
encapsulation level) to each function [19].

Other related compilers are Curry2Go [16] and its Julia-based
predecessor [26]. These compilers introduced and refined the mem-
oization approach to pull-tabbing but both used an imperative
language as their back end. Thus, the compilation scheme and their
modeling of Curry are substantially different.

Sprite [14] compiles Curry to LLVM in order to generate efficient
target code. It is also based on pull-tabbing but does not implement
memoization. We could not include a comparison in our bench-
marks since a working implementation is not yet available. The
results published in [14] indicate that the performance of Sprite
behaves similarly to that of KiCS2.

The PAKCS compiler from Curry to Prolog [24] is very different
from our approach. Due to the use of Prolog as a target language for
compilation, PAKCS inherits the incompleteness of backtracking
as a search strategy.

8.2 Monadic Intermediate Languages
Our transformation basically models the denotational semantics
of Curry explicitly. Peyton Jones et al. [37] have applied such an
approach to design a common monadic intermediate language for
Haskell and ML. Although we do not use our monadic intermediate
language to model two languages, the idea remains the same.

Transforming an effectful language into purely functional code
using a monadic style has been used in the past to model functional
languages in various proof assistant systems. For instance, Abel
et al. [1] generate Agda code that models Haskell’s semantics via
an explicit monadic effect.

More recently, a compilation scheme for the algebraic effect
language Eff has been presented that translates Eff into monadic
OCaml [31]. However, Eff is an entirely different language than
Curry with different challenges.

9 CONCLUSIONS AND FUTUREWORK
In this work we developed an implementation of Curry which
supports various advanced features of functional logic languages
introduced during the last years. In order to achieve a sufficient
evaluation performance even when combining lazy evaluation with
non-determinism, we adapted the recent method of memoized pull-
tabbing from Curry compilers that use imperative target languages
to a functional language. This evaluation strategy is modeled in a
monadic style and can be combined with an automatic transforma-
tion of Curry programs into monadic Haskell programs. We also

extended this implementation to efficiently support free variables
from Curry and have integrated other extensions in the code on our
Github page. Due to the monadic structure of the target programs,
these extensions can be implemented by modifying the monad only
without changing the compilation scheme. Although the implemen-
tation of a complete Curry system based on our monadic scheme
requires more work, the first benchmark results indicate a good
performance compared to other compilers.

For future work, we will implement our idea on how to speed
up purely deterministic sub-computations of a Curry program by
integrating a compile-time analysis of deterministic operations. We
will also combine the monadic lifting with our monadic model of
Curry to implement a complete compiler for Curry.

ACKNOWLEDGMENTS
The authors are grateful to the anonymous reviewers for their
helpful comments to improve this paper.

REFERENCES
[1] Andreas Abel, Marcin Benke, Ana Bove, John Hughes, and Ulf Norell. 2005.

Verifying Haskell Programs Using Constructive Type Theory. In Proceedings of
the 2005 ACM SIGPLAN Workshop on Haskell. ACM Press, New York, NY, USA,
62–73. https://doi.org/10.1145/1088348.1088355

[2] E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. 2005. Operational Semantics
for Declarative Multi-Paradigm Languages. Journal of Symbolic Computation 40,
1 (2005), 795–829. https://doi.org/10.1016/j.jsc.2004.01.001

[3] A. Alqaddoumi, S. Antoy, S. Fischer, and F. Reck. 2010. The Pull-Tab Trans-
formation. In Proc. of the Third International Workshop on Graph Computation
Models. Published Online, Enschede, The Netherlands, 127–132. Available at
http://gcm2010.imag.fr/pages/gcm2010-preproceedings.pdf.

[4] S. Antoy. 1997. Optimal Non-Deterministic Functional Logic Computations. In
Proc. International Conference on Algebraic and Logic Programming (ALP’97).
Springer LNCS 1298, Berlin, Heidelberg, 16–30. https://doi.org/10.1007/
BFb0027000

[5] S. Antoy. 2001. Constructor-based Conditional Narrowing. In Proc. of the 3rd
International ACM SIGPLAN Conference on Principles and Practice of Declarative
Programming (PPDP 2001). ACM Press, New York, NY, USA, 199–206.

[6] S. Antoy. 2011. On the Correctness of Pull-Tabbing. Theory and Practice of Logic
Programming 11, 4-5 (2011), 713–730. https://doi.org/10.1017/S1471068411000263

[7] S. Antoy, R. Echahed, and M. Hanus. 2000. A Needed Narrowing Strategy . J.
ACM 47, 4 (2000), 776–822. https://doi.org/10.1145/347476.347484

[8] S. Antoy and M. Hanus. 2000. Compiling Multi-Paradigm Declarative Programs
into Prolog. In Proc. International Workshop on Frontiers of Combining Systems
(FroCoS’2000). Springer LNCS 1794, Berlin, Heidelberg, 171–185. https://doi.org/
10.1007/10720084_12

[9] S. Antoy and M. Hanus. 2005. Declarative Programming with Function Patterns.
In Proceedings of the International Symposium on Logic-based Program Synthesis
and Transformation (LOPSTR’05). Springer LNCS 3901, Berlin, Heidelberg, 6–22.
https://doi.org/10.1007/11680093_2

[10] S. Antoy andM. Hanus. 2006. Overlapping Rules and Logic Variables in Functional
Logic Programs. In Proceedings of the 22nd International Conference on Logic
Programming (ICLP 2006). Springer LNCS 4079, Berlin, Heidelberg, 87–101. https:
//doi.org/10.1007/11799573_9

[11] S. Antoy and M. Hanus. 2009. Set Functions for Functional Logic Programming.
In Proceedings of the 11th ACM SIGPLAN International Conference on Principles
and Practice of Declarative Programming (PPDP’09). ACM Press, New York, NY,
USA, 73–82. https://doi.org/10.1145/1599410.1599420

[12] S. Antoy and M. Hanus. 2010. Functional Logic Programming. Commun. ACM
53, 4 (2010), 74–85. https://doi.org/10.1145/1721654.1721675

[13] S. Antoy,M. Hanus, A. Jost, and S. Libby. 2020. ICurry. InDeclarative Programming
and Knowledge Management - Conference on Declarative Programming (DECLARE
2019). Springer LNCS 12057, Berlin, Heidelberg, 286–307. https://doi.org/10.1007/
978-3-030-46714-2_18

[14] S. Antoy and A. Jost. 2016. A New Functional-Logic Compiler for Curry: Sprite. In
Proceedings of the 26th International Symposium on Logic-Based Program Synthesis
and Transformation (LOPSTR 2016). Springer LNCS 10184, Berlin, Heidelberg,
97–113. https://doi.org/10.1007/978-3-319-63139-4_6

[15] F. Baader and T. Nipkow. 1998. Term Rewriting and All That. Cambridge University
Press, Cambridge, UK. https://doi.org/10.1017/CBO9781139172752

https://doi.org/10.1145/1088348.1088355
https://doi.org/10.1016/j.jsc.2004.01.001
https://doi.org/10.1007/BFb0027000
https://doi.org/10.1007/BFb0027000
https://doi.org/10.1017/S1471068411000263
https://doi.org/10.1145/347476.347484
https://doi.org/10.1007/10720084_12
https://doi.org/10.1007/10720084_12
https://doi.org/10.1007/11680093_2
https://doi.org/10.1007/11799573_9
https://doi.org/10.1007/11799573_9
https://doi.org/10.1145/1599410.1599420
https://doi.org/10.1145/1721654.1721675
https://doi.org/10.1007/978-3-030-46714-2_18
https://doi.org/10.1007/978-3-030-46714-2_18
https://doi.org/10.1007/978-3-319-63139-4_6
https://doi.org/10.1017/CBO9781139172752

PPDP 2022, September 20–22, 2022, Tbilisi, Georgia Michael Hanus, Kai-Oliver Prott, and Finn Teegen

[16] J. Böhm, M. Hanus, and F. Teegen. 2021. From Non-determinism to Goroutines: A
Fair Implementation of Curry in Go. In Proc. of the 23rd International Symposium
on Principles and Practice of Declarative Programming (PPDP 2021). ACM Press,
New York, NY, USA, 16:1–16:15. https://doi.org/10.1145/3479394.3479411

[17] B. Braßel, M. Hanus, B. Peemöller, and F. Reck. 2011. KiCS2: A New Compiler
from Curry to Haskell. In Proc. of the 20th International Workshop on Functional
and (Constraint) Logic Programming (WFLP 2011). Springer LNCS 6816, Berlin,
Heidelberg, 1–18. https://doi.org/10.1007/978-3-642-22531-4_1

[18] B. Braßel and F. Huch. 2007. On a Tighter Integration of Functional and Logic
Programming. In Proc. APLAS 2007. Springer LNCS 4807, Berlin, Heidelberg,
122–138. https://doi.org/10.1007/978-3-540-76637-7_9

[19] J. Christiansen, M. Hanus, F. Reck, and D. Seidel. 2013. A Semantics for Weakly
Encapsulated Search in Functional Logic Programs. In Proc. of the 15th Interna-
tional Symposium on Principle and Practice of Declarative Programming (PPDP’13).
ACM Press, New York, NY, USA, 49–60. https://doi.org/10.1145/2505879.2505896

[20] S. Fischer, O. Kiselyov, and C. Shan. 2011. Purely functional lazy nondeterministic
programming. Journal of Functional programming 21, 4&5 (2011), 413–465. https:
//doi.org/10.1017/S0956796811000189

[21] J.C. González-Moreno, M.T. Hortalá-González, F.J. López-Fraguas, and M.
Rodríguez-Artalejo. 1999. An approach to declarative programming based
on a rewriting logic. Journal of Logic Programming 40 (1999), 47–87. https:
//doi.org/10.1016/s0743-1066(98)10029-8

[22] M. Hanus. 2012. Improving Lazy Non-Deterministic Computations by Demand
Analysis. In Technical Communications of the 28th International Conference on
Logic Programming, Vol. 17. Leibniz International Proceedings in Informatics
(LIPIcs), Dagstuhl, Germany, 130–143. https://doi.org/10.4230/LIPIcs.ICLP.2012.
130

[23] M. Hanus. 2013. Functional Logic Programming: From Theory to Curry. In
Programming Logics - Essays in Memory of Harald Ganzinger. Springer LNCS
7797, Berlin, Heidelberg, 123–168. https://doi.org/10.1007/978-3-642-37651-1_6

[24] M. Hanus, S. Antoy, B. Braßel, M. Engelke, K. Höppner, J. Koj, P. Niederau, R.
Sadre, F. Steiner, and F. Teegen. 2021. PAKCS: The Portland Aachen Kiel Curry
System. Available at http://www.informatik.uni-kiel.de/~pakcs/.

[25] M. Hanus, B. Peemöller, and F. Reck. 2012. Search Strategies for Functional Logic
Programming. In Proc. of the 5th Working Conference on Programming Languages
(ATPS’12). Springer LNI 199, Bonn, 61–74. https://doi.org/20.500.12116/18376

[26] M. Hanus and F. Teegen. 2021. Memoized Pull-Tabbing for Functional Logic
Programming. In Proc. of the 28th International Workshop on Functional and (Con-
straint) Logic Programming (WFLP 2020). Springer LNCS 12560, Berlin, Heidelberg,
57–73. https://doi.org/10.1007/978-3-030-75333-7_4

[27] M. Hanus (ed.). 2016. Curry: An Integrated Functional Logic Language (Vers.
0.9.0). Available at http://www.curry-lang.org.

[28] G. Huet and J.-J. Lévy. 1991. Computations in Orthogonal Rewriting Systems. In
Computational Logic: Essays in Honor of Alan Robinson, J.-L. Lassez and G. Plotkin
(Eds.). MIT Press, Cambridge, Massachusetts, 395–443.

[29] H. Hussmann. 1992. Nondeterministic Algebraic Specifications and Nonconfluent
Term Rewriting. Journal of Logic Programming 12 (1992), 237–255. https:

//doi.org/10.1016/0743-1066(92)90026-Y
[30] T. Johnsson. 1985. Lambda Lifting: Transforming Programs to Recursive Func-

tions. In Functional Programming Languages and Computer Architecture. Springer
LNCS 201, Berlin, Heidelberg, 190–203. https://doi.org/10.1007/3-540-15975-4_37

[31] Georgios Karachalias, Filip Koprivec, Matija Pretnar, and Tom Schrijvers. 2021.
Efficient Compilation of Algebraic Effect Handlers. Proc. ACM Program. Lang. 5,
OOPSLA (Oct. 2021), 28. https://doi.org/10.1145/3485479

[32] J.W. Lloyd. 1987. Foundations of Logic Programming. Springer, second, extended
edition, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-96826-6

[33] F. López-Fraguas and J. Sánchez-Hernández. 1999. TOY: A Multiparadigm Declar-
ative System. In Proc. of RTA’99. Springer LNCS 1631, Berlin, Heidelberg, 244–247.
https://doi.org/10.1007/3-540-48685-2_19

[34] Nigel Perry. 2005. The Implementation of Practical Functional Programming
Languages. Ph.D. Dissertation. University of London.

[35] Tomas Petricek. 2012. Evaluation Strategies forMonadic Computations. Electronic
Proceedings in Theoretical Computer Science 76 (2012), 68–89. https://doi.org/10.
4204/EPTCS.76.7

[36] S. Peyton Jones (Ed.). 2003. Haskell 98 Language and Libraries—The Revised Report.
Cambridge University Press, Cambridge, UK.

[37] Simon Peyton Jones, Mark Shields, John Launchbury, and Andrew Tolmach.
1998. Bridging the Gulf: A Common Intermediate Language for ML and Haskell.
In Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL ’98). Association for Computing Machinery, New
York, NY, USA, 49–61. https://doi.org/10.1145/268946.268951

[38] U.S. Reddy. 1985. Narrowing as the Operational Semantics of Functional Lan-
guages. In Proc. IEEE International Symposium on Logic Programming. IEEE Com-
puter Society, Boston, 138–151.

[39] J.A. Robinson. 1965. AMachine-Oriented Logic Based on the Resolution Principle.
J. ACM 12, 1 (1965), 23–41. https://doi.org/10.1145/321250.321253

[40] J.R. Slagle. 1974. Automated Theorem-Proving for Theories with Simplifiers,
Commutativity, and Associativity. J. ACM 21, 4 (1974), 622–642. https://doi.org/
10.1145/321850.321859

[41] Finn Teegen, Kai-Oliver Prott, and Niels Bunkenburg. 2021. Haskell−1: Auto-
matic Function Inversion in Haskell. In Proceedings of the 14th ACM SIGPLAN
International Symposium on Haskell (Haskell 2021). Association for Computing
Machinery, New York, NY, USA, 41–55. https://doi.org/10.1145/3471874.3472982

[42] P. Wadler. 1985. How to Replace Failure by a List of Successes: A method
for exception handling, backtracking, and pattern matching in lazy functional
languages. In Conference on Functional Programming and Computer Architecture
(FPCA’85). Springer LNCS 201, Berlin, Heidelberg, 113–128. https://doi.org/10.
1007/3-540-15975-4_33

[43] P. Wadler. 1990. Comprehending Monads. In Proc. 1990 ACM Conference on
LISP and Functional Programming. ACM, New York, NY, USA, 61–78. https:
//doi.org/10.1145/91556.91592

[44] P. Wadler. 1997. How to Declare an Imperative. Comput. Surveys 29, 3 (1997),
240–263. https://doi.org/10.1145/262009.262011

https://doi.org/10.1145/3479394.3479411
https://doi.org/10.1007/978-3-642-22531-4_1
https://doi.org/10.1007/978-3-540-76637-7_9
https://doi.org/10.1145/2505879.2505896
https://doi.org/10.1017/S0956796811000189
https://doi.org/10.1017/S0956796811000189
https://doi.org/10.1016/s0743-1066(98)10029-8
https://doi.org/10.1016/s0743-1066(98)10029-8
https://doi.org/10.4230/LIPIcs.ICLP.2012.130
https://doi.org/10.4230/LIPIcs.ICLP.2012.130
https://doi.org/10.1007/978-3-642-37651-1_6
http://www.informatik.uni-kiel.de/~pakcs/
https://doi.org/20.500.12116/18376
https://doi.org/10.1007/978-3-030-75333-7_4
http://www.curry-lang.org
https://doi.org/10.1016/0743-1066(92)90026-Y
https://doi.org/10.1016/0743-1066(92)90026-Y
https://doi.org/10.1007/3-540-15975-4_37
https://doi.org/10.1145/3485479
https://doi.org/10.1007/978-3-642-96826-6
https://doi.org/10.1007/3-540-48685-2_19
https://doi.org/10.4204/EPTCS.76.7
https://doi.org/10.4204/EPTCS.76.7
https://doi.org/10.1145/268946.268951
https://doi.org/10.1145/321250.321253
https://doi.org/10.1145/321850.321859
https://doi.org/10.1145/321850.321859
https://doi.org/10.1145/3471874.3472982
https://doi.org/10.1007/3-540-15975-4_33
https://doi.org/10.1007/3-540-15975-4_33
https://doi.org/10.1145/91556.91592
https://doi.org/10.1145/91556.91592
https://doi.org/10.1145/262009.262011

A Monadic Implementation of Functional Logic Programs PPDP 2022, September 20–22, 2022, Tbilisi, Georgia

A MONAD INSTANCES FOR BINARY TREES
The Monad and MonadPlus instances for binary trees as introduced
in Section 4.1 can be defined as follows.

Haskellinstance Monad Tree where

return = Leaf

Empty >>= _ = Empty

Leaf x >>= f = f x

Node t1 t2 >>= f = Node (t1 >>= f) (t2 >>= f)

instance MonadPlus Tree where

mzero = Empty

mplus = Node

B MONADIC UNIFICATION
The following code shows an implementation of a unification pro-
cedure based on the monad with an explicit representation of free
variables introduced in Section 6. The important issue is the dis-
tinction between free variables and values (see type FLVal defined
in Section 6). If free variables are unified, a binding between these
variables is stored onto the heap instead of instantiating them.

We start by defining a type class Unifiable which contains the
operation unify.

Haskellclass Unifiable a where

unify :: a → a → CurryFree BoolC

Based on unify, we define a generic operation unifyCwhich checks
whether the arguments are free variables or values. Before the check,
we have to follow any chain of variables with deref since it can hap-
pen that a variable is bound to another one. If both arguments are
unbound free variables, we bind one variable to the other without
instantiating any of them. In the case that only one of the arguments
is a variable, we instantiate it and unify recursively. Whenever both
arguments are already instantiated, we simply unify their values.

HaskellunifyC :: Unifiable a

⇒ CurryFree a → CurryFree a

→ CurryFree BoolC

unifyC ma mb = CF $ do

fla ← deref ma

flb ← deref mb

unCF $ case (fla , flb) of

(Var i, Var j) → do

FreeState b ps h suppl ← get

let h' = insertHeap i (CF (Var j)) h

put (FreeState b ps h' suppl)

(Var i, Val y) → instantiate i >>= unify y

(Val x, Var j) → instantiate j >>= unify x

(Val x, Val y) → unify x y

where

deref (CF m) = do

fl ← m

case fl of

Var i → get >>= 𝜆(FreeState _ _ h _) →
case lookupHeap i h of

Just x → deref (typed x)
Nothing → return (Val i)

Val x → return (Val x)

The instances of Unifiable can be schematically generated to-
gether with the lifting of data types. Note that unify either returns
TrueC, if both arguments are unifiable, or fails. The instances for
base types are easy, as shown for the type of Booleans.

Haskellinstance Unifiable BoolC where

unify FalseC FalseC = return TrueC

unify TrueC TrueC = return TrueC

unify _ _ = mzero

Structured types are unified by pairwise unify the arguments of
identical data constructors, as shown for lists.

Haskellinstance Unifiable a ⇒ Unifiable (ListC a)

where

unify NilC NilC = return TrueC

unify (ConsC x xs) (ConsC y ys) =

(&&) <$> unifyC x y <*> unifyC xs ys

unify _ _ = mzero

Finally, Curry’s unification operator as seen in the Section 1 can be
implemented as follows.

Haskell(=:=) :: Unifiable a

⇒ CurryFree (a →C a →C BoolC)

(=:=) = return $ Func $ 𝜆x →
return $ Func $ 𝜆y → unifyC x y

	Abstract
	1 Introduction
	2 Functional Logic Programming
	3 Monadic Transformation
	4 A History of Monadic Pull-Tabbing
	4.1 Tree-based Non-determinism
	4.2 Fingerprinting
	4.3 Explicit Sharing of Computations

	5 A Non-determinism Monad with Memoization
	5.1 Memoization Monad
	5.2 Memoizing Non-determinism
	5.3 Nested Sharing of Non-deterministic Values
	5.4 Improving Performance of Sharing

	6 Extending the monad
	7 Evaluation
	8 Related Work
	8.1 Other Compilers for Curry
	8.2 Monadic Intermediate Languages

	9 Conclusions and Future Work
	Acknowledgments
	References
	A Monad Instances for Binary Trees
	B Monadic Unification

