From Non-determinism to Goroutines: A Fair Implementation of Curry in Go

Jonas Böhm
CAU Kiel
Institut für Informatik
Kiel, Germany
boehm-jonas@gmx.de

Michael Hanus
CAU Kiel
Institut für Informatik
Kiel, Germany
mh@informatik.uni-kiel.de

Finn Teegen
CAU Kiel
Institut für Informatik
Kiel, Germany
fte@informatik.uni-kiel.de

ABSTRACT
The declarative programming language Curry amalgamates demand-driven evaluation from functional programming with non-determinism from logic programming. In contrast to Prolog, the search strategy for non-deterministic computations is not fixed so that complete or parallel strategies are reasonable for Curry. In particular, a desirable option is a fair strategy which frees the programmer from considering the influence of the search strategy to the success of a computation. In this paper we describe an implementation with this property. Based on recent developments on operational models for functional logic programming, we present a new implementation which transforms Curry programs in several transformation steps into Go programs. By exploiting lightweight threads in the form of goroutines, we obtain a complete and fair implementation which automatically uses multi-processing to speed up non-deterministic computations. This has the effect that, in some cases, non-deterministic algorithms are more efficiently evaluated than deterministic ones.

CCS CONCEPTS
• Software and its engineering → Multiparadigm languages;
 Functional languages; Constraint and logic languages;
 Compilers.

KEYWORDS
Declarative programming, implementation, parallelism

ACM Reference Format:

1 INTRODUCTION
Declarative programming languages are based on the idea to express properties about a given problem in a high-level, execution-independent manner, e.g., equations in functional programming or implications (Horn formulas) in logic programming. Ideally, the implementation of such languages should ensure that results are computed when they exist. In functional programming, a result is a value (data term) equivalent to an initial expression w.r.t. the given equations. In logic programming, a result is a substitution of the variables occurring in the initial goal so that the goal instantiated with this substitution is a logical consequence of the program. In a combined functional logic language, such as Curry [32], results are values with possibly constraints on the free variables in the initial expression.

The practice of declarative programming is, however, a bit different. For instance, functional programs, e.g., written in Haskell [44], are sets of functions defined by equations, but the meaning of equations depends on a non-trivial pattern matching translator. For instance, consider the Haskell program

\[
\begin{align*}
f \ True \ True &= 0 \\
f \ True \ y &= 1 \\
\end{align*}
\]

Although the second equation might indicate that the value of \(f \ True \ True\) is 1, Haskell returns only the value 0, since rules are tried from top to bottom and only the first matching rule is applied. Although one gets at least a result in this case, it can be worse. Consider the function definitions

\[
\begin{align*}
g \ True \ True &= 0 \\
g \ False \ False &= 1 \\
\end{align*}
\]

and the expression \(g \ loop \ False\). The second equation defining \(g\) indicates that 1 is a value equivalent to this expression. However, Haskell does not return any result due to its pattern matching strategy.

On the other hand, the same definitions interpreted in Curry return the expected values, since Curry is based on a complete and optimal evaluation strategy [4, 6]. In the case of the expression \(f \ True \ True\), Curry returns both possible values 0 and 1. Hence, operations can have more than one result on a fixed input. Conceptually, operations have a set-valued semantics and they are often termed non-deterministic operations [23], an important concept of contemporary functional logic languages (see [11, 23] for discussions of this concept). As a consequence, Curry interprets equations as rewrite rules which are applied from left to right. In the case of overlapping rules, as the rules for \(f\) above, all rules are tried in a non-deterministic manner, similarly to the resolution principle of logic programming. This raises the question about the search strategy in the case of non-deterministic steps. Consider the expression \(f \ True \ loop\). If the first rule of \(f\) should be applied, it is necessary to evaluate the second argument \(loop\) which does not terminate. If the second rule of \(f\) should be applied, it is not necessary to evaluate...
1 loop to apply this rule so that we obtain the result 1. Hence, the order of rule applications might influence the computed results. The logic programming language Prolog uses a backtracking strategy based on a sequential ordering of program rules. It is well known that this causes operational incompleteness, i.e., results might not be computed. Hence, a Prolog programmer has to take into account the influence of the backtracking search strategy on the computed results. Actually, there are implementations of functional logic languages that compile into Prolog, like PAKCS [7, 29] or TOY [40]. Such implementations inherit the operational incompleteness from Prolog.

In this work we are interested in an operationally complete implementation. This frees the programmer from thinking about details of pattern matching or search, thus, supporting a stronger declarative programming view. This also yields a tight integration between specifications and code where (non-deterministic) specifications and more efficient implementations can be written in a single language [12] in order to enable automatic testing [27] or verification [28].

In order to achieve this goal, we develop a new implementation based on recent developments in operational models for functional logic programming. The main aspect of this implementation is to represent all non-deterministic choices in a single graph structure. This is also the basis of other implementations that are intended to support better search strategies rather than backtracking, e.g., KiCS [20], KiCS2 [19], or Sprite [18]. Similarly to implementations of non-strict functional languages, this graph structure is constructed on demand. However, a semantically correct implementation of demand-driven non-deterministic computations requires some additional structures that could lead to a considerably increased complexity of computations compared to backtracking (this will be explained later in more detail). A solution to this problem has been presented in [31] where the graph structure is enriched with information to memoize non-deterministic computations, called memoized pull-tabbing. In this paper we present an implementation of these ideas with a run-time system implemented in Go. In particular, we make the following contributions.

- We present a formal specification of memoized pull-tabbing which is the basis of our implementation.
- We show that the model of memoized pull-tabbing enables a flexible choice of various search strategies.
- In our concrete implementation, we exploit “goroutines” (lightweight threads supported in Go) for tasks representing non-deterministic computations. As a result, our implementation is complete and fair w.r.t. non-determinism. Fairness means that all the values of an expression are eventually produced, even if some branches of a computation run forever.
- We demonstrate that non-deterministic algorithms are sometimes more efficiently evaluated than deterministic ones. This is due to the fact that, in our implementation, non-deterministic computations automatically exploit several processors, if available, to speed up the evaluation of expressions.

This paper is structured as follows. The next section reviews some necessary details about functional logic programming and Curry. The intermediate languages used in our implementation are reviewed in Sect. 3 and 4. Section 5 introduces the basic operational mechanism to deal with non-determinism in our implementation. Since this has some drawbacks, we describe in Sect. 6 our operational model and provide a formal specification of it. This is the basis of our implementation which is sketched in Sect. 7. We evaluate it in Sect. 8 with a couple of benchmarks before we discuss related work and conclude.

2 Functional Logic Programming and Curry

This section reviews some aspects of functional logic programming and the multi-paradigm declarative language Curry that are necessary to understand the contents of this paper. More details can be found in surveys on functional logic programming [11, 26] and in the language report [32].

Curry combines features from functional programming (demand-driven evaluation, strong typing with parametric polymorphism, higher-order functions) and logic programming (non-determinism, computing with partial information, constraints). The syntax of Curry is close to Haskell [44] but allows free (logic) variables in conditions and right-hand sides of defining rules. Since free variables can be replaced by non-deterministic generator operations [9], we concentrate in the following on the handling of non-determinism, which is the main implementation challenge compared to purely functional languages. The operational semantics is based on an optimal evaluation strategy [4, 6]—a conservative extension of lazy functional programming and logic programming.

Similarly to functional programming, a Curry program defines data types, introducing data constructors, and functions or operations on these types. For instance, the data types for Boolean values and polymorphic lists are as follows:

```haskell
data Bool = False | True
data List a = [] | a : List a -- [a] denotes “List a”
```

Operations are defined by sets of rules as already presented in the introduction. Expressions might contain operations, constructors, and variables, whereas a value is an expression without defined operations. The objective of a computation is to reduce a given expression to some value by applying program rules.

As mentioned in Sect. 1, an important feature of contemporary functional logic languages are non-deterministic operations [29], i.e., operations that yield more than one result for a given argument. Curry defines an archetypal choice operation “?” by

```haskell
x ? _ = x
_ ? y = y
```

so that the expression "False ? True" has two values: False and True.

1Of course, details about the evaluation strategy might be relevant to analyze the complexity of a concrete execution, but this is outside the scope of this paper.

2Variables and function names usually start with lowercase letters and the names of type and data constructors start with an uppercase letter. The application of f to e is denoted by juxtaposition ("f e").
Although non-deterministic operations have a set-valued semantics [23], they return (non-deterministically) individual values rather than sets of values. This has the advantage that a non-deterministic operation can be used as any other operation, in particular, as an argument or in definitions of other operations. For instance, consider the following operation that inserts an element at an unspecified position into a list:

\[
\text{insert} :: \mathbf{a} \rightarrow \mathbf{a} \rightarrow \mathbf{a}
\]

\[
\text{insert} x \mathbf{ys} \equiv x \mathbin{:} \text{insert} x \mathbf{ys}
\]

Hence, the expression \(\text{insert} 0 [1,2]\) non-deterministically evaluates to one of the values \([0,1,2]\), \([1,0,2]\), or \([1,2,0]\). Based on this operation, one can easily define permutations:

\[
\text{perm} :: \mathbf{a} \rightarrow \mathbf{a}
\]

\[
\text{perm} \mathbf{[]} = \mathbf{[]}
\]

\[
\text{perm} (x:\mathbf{xs}) \equiv \text{insert} x (\text{perm} \mathbf{xs})
\]

Although \text{perm} is defined by non-overlapping rules, the use of \text{insert} has the effect that \text{perm} \([1,2,3,4]\) non-deterministically evaluates to all 24 permutations of the input list.

Compared to approaches where sets or lists of values are passed between operations, as in the “list of successes” approach in purely functional programming [48], the use of non-deterministic operations could lead to simpler program structures. Moreover, it has also operational advantages: since expressions are evaluated on demand, non-deterministic operations as arguments result in a demand-driven construction of the search space, leading to considerably smaller search spaces (see [11, 23] for more detailed discussions). Thus, it is important to keep in mind that any evaluation of an expression might lead to a non-deterministic choice between several expressions or values. This demands for specific implementation techniques which will be discussed later.

If non-deterministic operations occur as arguments to be evaluated, there is a semantical ambiguity which has to be fixed in a concrete programming language. To discuss this, consider the operations

\[
\text{xor} \text{False} \times x = \times \\
\text{not} \text{False} = \text{True}
\]

\[
\text{xor} \text{True} \times x = \text{not} x \\
\text{not} \text{True} = \text{False}
\]

\[
\text{xorSelf} \times x \times x = \text{aBool} = \text{False} ? \text{True}
\]

and the expression “\text{xorSelf aBool}”. If we just apply program rules from left to right, as in term rewriting, we could have the derivation

\[
\text{xorSelf} \times x \times x \rightarrow \text{aBool} = \text{False} \rightarrow \text{True}
\]
The operation \(g \) variables. The patterns \(\text{cases} \) so that Curry returns \(1 \) for the expression \(g \text{ loop} \text{ False} \). This kind of pattern matching, which is slightly different from Haskell, is the basis of Curry’s complete and optimal evaluation strategy [4, 6].

Any Curry program can be translated into a FlatCurry program. There exists a front end, used by various compilers and tools, to process and compile Curry programs into FlatCurry. The front end can also be accessed in Curry programs by a Curry package to represent FlatCurry programs.\(^3\)

4 ICURRY

FlatCurry is useful when Curry is compiled into Prolog [7, 29] or Haskell [19, 20]. However, when compiling Curry into typical imperative languages, like C, C++, Go, or Python, FlatCurry is less appropriate since some constructs cannot be directly mapped into imperative code, as discussed in [15]. This motivated the introduction of another intermediate language, called ICurry, which is the basis of our implementation. In the following, we review the structure of ICurry. More details can be found in [15].

The abstract syntax of operations in ICurry is summarized in Fig. 2 (similarly to FlatCurry, data definitions are omitted). In contrast to FlatCurry, where the body of a function is just an expression, a function definition in ICurry consists of (optional) variable declarations, assignments, and a final statement. The statement either returns an expression, marks a failure (\(\text{exn} \)), or performs a case distinction on a given variable. This is oriented towards imperative languages where switches or case distinctions are control structures rather than expressions. In contrast to FlatCurry, a case in ICurry compares only the tag of the discriminating variable with the tag of the constructors available for the data type (although we write constructor names in examples, ICurry uses unique tags, e.g., \text{num} for numerals, \text{str} for strings, \text{fun} for functions).

The abstract syntax of definitions in ICurry is summarized in Fig. 2. Data definitions are eliminated by lambda lifting [38], patterns are compiled into simple \(\text{case} \) expressions, disjunctions (written with \(or \) or in infix notation), \(let \) bindings, or introduction of free variables. The patterns \(p_i \) in a \(\text{case} \) expression are pairwise different constructors applied to variables. Therefore, complex function definitions with overlapping or deep patterns in source programs are represented by disjunctions and nested \(\text{case} \) expressions.

To omit the syntactic sugar of the source language, various transformations are applied to generate FlatCurry programs. Local definitions are eliminated by lambda lifting [38], patterns are compiled into simple \(\text{case} \) expressions, and overlapping rules are represented by \(or \) expressions (see [32] for a precise description of these transformations). For instance, the non-deterministic operation \(\text{insert} \) defined above is represented in FlatCurry as

\[
\text{insert}(x, xs) = (x;xs) \quad \text{or} \quad \text{case} \ xs \ of \ { y;ys \rightarrow y : \text{insert}(x, ys) } \}
\]

The operation \(g \) defined in Sect. 1 is transformed into FlatCurry as

\[
g(x, y) = \text{case} \ y \ of \ \\
\{ \text{True} \rightarrow \text{case} \ x \ of \ \\
\{ \text{True} \rightarrow 0 \} ; \}
\text{False} \rightarrow 1
\]

Due to this transformation, the first branch is on the second argument so that Curry returns \(1 \) for the expression \(g \text{ loop} \text{ False} \). This kind of pattern matching, which is slightly different from Haskell, is the basis of Curry’s complete and optimal evaluation strategy [4, 6].

\[\text{https://www-ps.informatik.uni-kiel.de/~cpm/pkg/flatcurry.html}\]
Local variable declarations and assignments are used to access arguments of a function call as well as the constructor arguments in case expressions. The values of local variables can be used to construct a new expression to be returned as the result of a function call. Such an expression is either a variable, an application of a constructor or function symbol to argument expressions, or a disjunction. In order to support various search strategies, non-determinism is not implemented as control code (like backtracking in Prolog), but explicitly represented in the graph structure (see below for more details). A variable in an expression is either the value of a local variable, the root of the function call (stored in a specific register \(\text{ROOT} \) when the function code is invoked), or \(\nu[i] \), the \(i \)-th successor of a node identified by \(\nu \).

For instance, a textual representation of the ICurry code for the operation \(\text{xor} \), defined in Sect. 2, could be as follows (arguments are indexed starting with 0):

```curry
function xor
    declare x1
    declare x2
    x1 = \text{ROOT}[0]
x2 = \text{ROOT}[1]
case x1 of
    True → return x2
    False → return NODE(not, x2)
end
```

In order to translate a FlatCurry program into an ICurry program, branches in case expressions must be ordered and completed, nested case and let constructs are eliminated by introducing new operations, etc. (see [15] for details). For instance, the translation of the operation `insert_CASE`, defined in Sect. 2, requires the introduction of a new auxiliary operation:

```curry
function insert_CASE
    declare x2
    declare x1
    x2 = \text{ROOT}[0]
x1 = \text{ROOT}[1]
    return NODE(:, x1, x2) or NODE(insert_CASE, x2, x1)
end
```

Note that an \textit{exempt} statement has been introduced in the completion of the \textit{case} statement in order to indicate the failure on empty lists of the operation `insert_CASE`.

A representation of ICurry programs together with a compiler from FlatCurry to ICurry is available as a Curry package.\(^4\) ICurry has been used for various approaches to compile Curry into imperative target languages, like C, Python, Java, JavaScript, or native code [15, 18, 52]. Although the meaning of most constructs is obvious, the complete operational semantics contains some freedom w.r.t. the implementation of non-determinism. Since this is one of the main aspects of our work, we will fix the concrete evaluation strategy in the next two sections.

5 PULL-TABBING

As mentioned in the introduction, our implementation works on a graph structure where non-deterministic choices are represented as graph nodes. This allows to use various, in particular, fair search strategies [17] to evaluate a program. Since a disjunction (or node) is not a defined operation, its evaluation must be fixed by the run-time system. We discuss this in the following.

In principle, there are various options to deal with non-deterministic choices (”don’t know non-determinism”) in declarative programming languages:

- **Backtracking** implements a choice by selecting one alternative and proceeding. If a computation is finished (with failure or success) and the next alternative should be explored, the state before a choice is restored and a next untried alternative is taken. This is used in Prolog implementations and also in implementations of functional logic languages that compile into Prolog, like PAKCS [7, 29] or TOY [40], or use Prolog-like implementation techniques [41]. Due to a possible non-termination of an alternative, some values might not be computed.

- **Copying** or **cloning** evaluates alternatives in parallel or by interleaving steps on different copies of the computation space that are made when a choice occurs. This ensures completeness (if the interleaving is fair) but can be costly when a choice occurs deeply in an expression. Thus, it has been used only in experimental implementations, e.g., [16].

- **Pull-tabling** avoids the cost of cloning by keeping all alternatives in one graph structure and duplicating nodes on demand. It was first sketched in [3] and formally explored in [5]. A pull-tab step moves a choice in a demanded argument outside by copying the node representing the operation. For instance,

\[
\text{not} (\text{False} ? \text{True}) \rightarrow (\text{not False}) ? (\text{not True})
\]

is a pull-tab step. Since evaluation steps are performed in place in a graph-based implementation [43, 45], such a step sets the tag of the initial ”not” node to the new tag ”?” and creates two new nodes tagged with ”not.” Since pull-tabbing avoids the disadvantage of cloning and does not require a fixed backtracking strategy, it is used in implementations targeting complete search strategies, e.g., KiCS [20], KiCS2 [19], or Sprite [18]. Therefore, we will also use pull-tabbing but in a considerably improved form.

A problem of pure pull-tabbing is its unsoundness w.r.t. the call-time choice semantics sketched in Sect. 2. Consider the definition of `xorSelf` in Sect. 2. The expression `xorSelf (\text{False} ? \text{True})` will be evaluated to

\[
(\text{False} ? \text{True}) ? (\text{True} ? \text{False})
\]

\(^4\)https://www-ps.informatik.uni-kiel.de/~cpm/pkgs/icurry.html
by pure pull-tabbing. According to the call-time choice semantics, True is not a valid result. To avoid the extraction of such unintended values, each choice has a specific identifier [5]. When a choice is introduced in an expression, a fresh identifier is assigned to this choice. Pull-tab steps keep the identifier of the choice. Hence, the expression xorSelf (False ? True) will be evaluated to (False ? True) | (True ? False) so that all choices have the same identifier. Furthermore, each task evaluating some branch of a computation has a fingerprint [18], i.e., a (partial) mapping from choice identifiers to choice alternatives (Left or Right). When a task evaluates a choice at the root, it proceeds as follows:

- If the fingerprint of the task contains a selection for this choice, the corresponding branch of this choice is selected.
- Otherwise, two new tasks for evaluating the left and right alternative are created, where the fingerprint is extended for this choice with L and R, respectively.

With this extension, the value True will not be extracted from the choice structure above.

By scheduling the tasks in various orders, pull-tabbing supports the application of various search strategies. Nevertheless, it has a serious drawback. As shown above, a single choice might result in multiple copies of this choice that need to be explored by tasks with their fingerprints. This could lead to a considerable overhead whenever a non-deterministic expression is shared multiple times during a computation, as discussed in [25]. A solution to this problem, recently sketched in [31], is the addition of a kind of memoization to pull-tabbing. In the next section, we formalize this strategy that is the basis of our implementation.

6 OPERATIONAL SEMANTICS

As already mentioned, the execution model of Curry is based on graph rewriting, i.e., a program is considered as a graph rewriting system [22, 45]: a rewrite step applies a rule to some subgraph by replacing the subgraph with the instantiated right-hand side of the rule. In the following, we extend a graph-based model for ICurry computations [15] with a refinement of pull-tabbing sketched in [31].

We review some notions of graph rewriting and fix our notation. We write \(f(x) = \bot \) if the (partial) function is undefined on \(x \). \(\overline{a}_k \) denotes a sequence of objects \(o_1, \ldots, o_k \). \(\overline{a}[j] \) denotes the sequence \(o_1, \ldots, o_{j-1}, a, o_{j+1}, \ldots, o_k \) where the object at position \(j \) is replaced by \(a \).

A graph \(G \) is a set of nodes, where each node has a label (a constructor or function symbol) and a sequence of successors. Later we will add a few more attributes to nodes. We write \(G[n] = s(\overline{a}) \) if \(n \) is a node of \(G \) with label \(s \) and \(k \) successor nodes \(\overline{a} \). Graph nodes correspond to expressions so that we use them interchangeably. A graph might also contain choice nodes of the form \(?\ell(n_1, n_2) \). \(c \) is a choice identifier, e.g., an integer or another element from an infinite set of constants [19], and the expressions \(n_1, n_2 \) are the alternatives.

We denote the update of a node \(n \) of a graph \(G \) by \(G[n \leftarrow s(\overline{a})] \). This replaces the label of \(n \) by \(s \) and the successors by \(\overline{a} \). In order to implement sharing, it is sometimes necessary to redirect a graph node \(n \) to a node \(n' \) of a graph \(G \), e.g., when a collapsing rule like “\(\text{i.d. } x = x' \)” is applied. We denote the redirection of node \(n \) to \(n' \) by \(G[n \leftarrow n'] \). This can be implemented either by a specific “redirection node” or by redirecting all edges pointing to \(n \) so that they point to \(n' \). Finally, we denote the extension of a graph \(G \) with a new node \(n \) by \(G \cup \{ n : s(\overline{a}) \} \). The node \(n \), which does not exist in \(G \), has label \(s \) and \(k \) successors \(\overline{a} \).

To deal with non-deterministic computations in a flexible manner, the run-time system works with a set or queue of computation tasks, where each task evaluates one expression. A task is a tuple \((C, S, F, T)\) with:

- \(C \) is the control which is either a graph node \(n \) to be evaluated or a pair \((b, E)\) consisting of an ICurry block (see Fig. 2) and an environment \(E \) (a mapping from local variables to graph nodes).
- \(S \) is a stack where each stack element is a node \(n \) labeled by a function symbol. The stack contains the functions to be evaluated by a task.
- \(F \) is a fingerprint: a (partial) mapping from choice identifiers to \([1, 2]\) (the indexes of alternatives).
- \(t \) is a task identifier to uniquely identify a task, e.g., a number or another constant taken from a conceptually infinite set. Task identifiers are used to store task-specific information in graph nodes.

Thus, the state of a computation is a triple \((G, T, R)\) with:

- \(G \) is a graph.
- \(T \) is a set of tasks.
- \(R \) is a set of graph nodes representing the computed results.\(^5\)

In the following, we use \(\phi[x \mapsto v] \) to denote an update of a mapping \(\phi \) for some argument \(v \). If \(\phi' = \phi[x \mapsto v] \), then \(\phi'(x) = v \) and \(\phi'(y) = \phi(y) \) for all \(y \neq x \). Furthermore, we use Curry’s list notation in states, e.g., we denote the set of tasks as a list (options to implement the set of tasks will be discussed later). Thus, an initial state of a computation has the form

\[
(G, ([n, [], [], t_0]), [])
\]

where the graph \(G \) contains the initial expression with root node \(n \) and \(t_0 \) is the identifier of the initial task. An initial state contains only one task with an empty stack and fingerprint and an empty set of results.

A final state of a computation has the form:

\[
(G, [], R)
\]

There are no tasks left and the set \(R \) contains the root nodes of all computed results.

The operational semantics is specified by a set of transformation rules on computation states. We will use an auxiliary operation extend to extend a graph with the graph representation of an expression occurring in an ICurry program. Informally, extend\((G, E, e)\) extends a graph \(G \) with an ICurry expression \(e \) w.r.t. an environment \(E \) and returns the pair \((G', n)\) consisting of the extended graph and the root node \(n \) of the added expression. To define extend, we use an auxiliary function lookup to retrieve a graph node w.r.t. an auxiliary operations.
While this is the usual implementation of non-strict functional languages [43], the extension to non-deterministic languages is not considered. In principle, one can extend the operational model of ICurry to more than one subgraph:

\[
\begin{align*}
\text{lookup}(G, v) &= \begin{cases}
E(v) & \text{if } v = x \text{ or } v = \text{ROOT} \\
\ n_i & \text{if } v = v'[i], \ \text{lookup}(G, v') = n \\
\ & \text{and } G[n] = (n_1, \ldots, n_k)
\end{cases}
\]

Now we can define extend \((G, e)\) by a case distinction on the ICurry expression \(e\). If \(e\) is a variable, the graph is not extended and the binding of the variable is looked up in the environment \(E\):

\[
\text{extend}(G, e) = (G, \text{lookup}(G, e))
\]

If \(e\) is a disjunction \(e_1 \lor e_2\), new subgraphs for \(e_1\) and \(e_2\) are created and connected by a new choice node:

\[
\text{extend}(G, e_1 \lor e_2) = G'' \cup \{ n : \text{lookup}(n_1, n_2) \}
\]

if \(\text{extend}(G, e_1) = (G', n_1)\) and \(\text{extend}(G', e_2) = (G'', n_2)\)

Here, \(c\) is a new choice identifier. We assume the existence of a global set of choice identifiers so that new unique choice identifiers can be obtained during the computation [19].

If \(e\) is a node constructor, new subgraphs for the argument expressions are created together with a new node connecting these subgraphs:

\[
\text{extend}(G, \text{NODE}([v_1, \ldots, v_k])) = G' \cup \{ n : \text{lookup}(n_1, n_2) \}
\]

where \(n_1\) is the root node for the subgraph created for \(v_i\) \((i = 1, \ldots, k)\) and \(G'\) is the graph containing \(G\) and the new subgraphs.

Each task evaluates an expression to head normal form, i.e., a constructor-rooted expression. It starts evaluating the function at the root by applying its defining rule. However, when the rule contains a case statement, the discriminating argument must be evaluated first. To do so, the current node is pushed onto the stack of the task and the discriminating node is evaluated. To simplify this process, we assume that each ICurry function contains at most one case statement, which can be obtained by replacing nested case statements by auxiliary operations (as also done in some implementations of Curry, e.g., [29]). Therefore, we denote by \(f^{d}\) an ICurry function which demands its \(d\)-th argument in a case statement, otherwise the superscript is omitted.\(^6\)

The notion of graph rewriting is used to perform updates in place: if a node \(n\) containing a function call \(f(\ldots)\) is reduced to some expression \(e\), node \(n\) is replaced by \(e\). This is important to avoid repeated evaluations of the same subexpression, e.g., the argument \(\not\text{not True}\) in the expression \(\text{xorSelf}(\not\text{not True})\)

Since the argument of \(\text{xorSelf}\) is shared (rather than duplicated), the update-in-place of the \(\not\text{not}\) node avoids a repeated evaluation. While this is the usual implementation of non-strict functional languages [43], the extension to non-deterministic languages is more involved. Consider the definition

\[
\begin{align*}
\text{and True} & \ x = x \\
\text{and False} & \ x = \text{False}
\end{align*}
\]

and the expression

\[
\begin{align*}
x & = \text{a bool in } \ldots \ \text{and } x \ x \ \ldots
\end{align*}
\]

If some task evaluates the argument \(x\) to \(\text{false}\), it would be wrong to replace \((x \ x)\) by \(\text{false}\), since another task might evaluate \(x\) to \(\text{true}\) so that the replacement is wrong w.r.t. this task. This is the reason why pull-tabbing moves every choice to the top before some task selects one of the alternatives. As mentioned above, this could lead to a substantial overhead if a non-deterministic expression, like \(x\), is shared and some task evaluates it several times: due to non-determinism, sharing is lost. For instance, consider a function

\[
f \ x = C(x, \ldots, x)
\]

where the argument \(x\) occurs \(n\) times in the right-hand side and every occurrence of \(x\) is demanded by the context \(C\). If we evaluate \(f \ (e_1 \ ? e_2)\), pull-tabbing moves every demanded occurrence of the choice to the root so that approximately \(n \cdot d\) pull-tab steps are performed if the \(n\) occurrences of \(x\) in \(C\) are at depth \(d\). Since each pull-tab step duplicates nodes, a complex choice structure is introduced and finally processed to extract the two different values.

A solution is sketched as memoized pull-tabbing in [31]: function nodes are not updated in place but contain a store for task-specific updates. For this purpose, each graph node representing a function call contains a task result map \(tr\) which is a partial mapping from task identifiers to graph nodes. To formalize this idea, we denote by \(tr_G[n]\) the task result map of node \(n\) in graph \(G\), and by \(tr_G[n][t \mapsto n']\), where \(t\) is a task identifier and \(n'\) a node in graph \(G\), the update of the task result map of node \(n\) so that \(tr_G[n][t] = n'\).

Now we have all elements to specify the operational semantics of ICurry w.r.t. the memoized pull-tabbing strategy. The rules, summarized in Fig. 3, describe the steps to transform a non-final state of a computation. We explain these transformation rules in the following.

Control rules. The first block of rules organize the control to deal with choices and results and to invoke functions.

split choice: If the control contains a choice node and an empty stack, the choice is at the top. Since the fingerprint does not contain a selection for this choice, the choice is evaluated for the first time so that both alternatives need to be evaluated by independent tasks. Thus, the current task is replaced by two new tasks where the fingerprint of each task is extended accordingly. We assume the existence of a global set of task identifiers so that fresh ones can be obtained during the computation. In principle, one can use any strategy to add the new tasks to the existing ones. Here we put them at the end which corresponds to a breadth-first strategy in the search tree. Putting them at the front of \(T\) corresponds to a depth-first search strategy. One can also evaluate the tasks in parallel. Due to this flexibility, our implementation supports the selection of different search strategies.

select choice: If the control contains a choice node and an empty stack, i.e., the choice is at the top, and the fingerprint has already a selection for this choice, the choice node in the control is simply replaced by the selected branch.

pull tab: This rule describes a pull-tab step as discussed in Sect. 5. If the control contains a choice node and the stack is not empty, the choice is at a demanded argument position \(d\) of some function \(f\) referenced by the graph node \(n\) contained in the top of the stack. Then two new nodes are created by duplicating this function call.
OVERALL CONTROL

(split choice)
(G, (n, [, F, t) : T, R) →
(G, T + [(n1, [F[c = 1], t11], (n2, [, F[c = 2], t2]), R)
if G[n] = f(n1, n2), F(c) = ⊥
and t1, t2 are new task identifiers

(select choice)
(G, (n, [, F, t) : T, R) →
(G, (n, [, F, t) : T, R)
if G[n] = f(n1, n2) and F(c) = j (≠ ⊥)

(pull tab)
(G, (n0, n : S, F, t) : T, R) →
(G'[n → f(d(n1, n2))], n, S, F, t) : T, R)
if G[n0] = f(d(n1, n2), F(c) = ⊥, G[n] = f(d(n1, n2))
G' = G ⊔ (n' : f(d(n1, n2)), n' : f(d(n1, n2)))

(memo pull tab)
(G, (n0, n : S, F, t) : T, R) →
(G', n, S, F, t) : T, R)
if G[n0] = f(n1, n2), F(c) = j, G[n] = f(d(n1, n2))
G' = G ⊔ (n' : f(d(n1, n2)), trG(n)[t → n']

(follow task result)
(G, (n, S, F, t) : T, R) →
(G, (n', S, F, t) : T, R)
if trG[n](t) = n' (≠ ⊥)

(case function)
(G, (n, S, F, t) : T, R) →
(G, (n, S, F, t) : T, R)
if trG[n](t) = ⊥ and G[n] = f(d(n1, n2))

(non-case function)
(G, (n, S, F, t) : T, R) →
(G, ((b, (ROOT → n)), S, F, t) : T, R)
if G[n] = c(···) for some constructor c

(global result)
(G, (n, [, F, t) : T, R) →
(G, T, R ∪ {n})
if G[n0] = c(···) for some constructor c,
G[n] = f(d(n1, n2)), f(d) defined by f = b
G' = G ⊔ {n' : f(d(n1, n2)), trG(n)[t → n']

(argument result)
(G, (n0, n : S, F, t) : T, R) →
(G, ((b, (ROOT → n')), S, F, t) : T, R)
if E(x) = n and G[n] = c(···)

EVALUATION OF BLOCKS

(variable declaration)
(G, ((x = e; E), S, F, t) : T, R) →
(G, ((b, E[x = null]), S, F, t) : T, R)
if extend(G, E, e) = (G', n)

(local assign)
(G, ((x = e; b, E), S, F, t) : T, R) →
(G', ((b, E[x = n]), S, F, t) : T, R)
if lookup(G, E, v) = n, G[n] = l(n)

(successor assign)
(G, ((c[i] = e; E), S, F, t) : T, R) →
(G'[n ← l(n1)], E, S, F, t) : T, R)
if extend(G, E, c) = (G', n')

(return)
(G, ((return e, E), S, F, t) : T, R) →
(G'[E(ROOT) ← n], S, F, t) : T, R)
if extend(G, E, e) = (G', n)

(exempt)
(G, ((exempt E), S, F, t) : T, R) →
(G, T, R)
if E(x) = n and G[n] = c(···)

(case)
(G, ((case x of {c1 = b1; · · · ; cn = bn}, E), S, F, t) : T, R) →
(G, ((b, E) : S, F, t) : T, R)
if E(x) = n and G[n] = c(···)

Figure 3: Operational semantics of ICurry with memoized pull-tabbing

but replacing the d-th argument by the two alternatives of the choice. The actual node at the top of the stack is replaced by a choice (with the same identifier) containing these two nodes and becomes the new control.

memo pull tab: This rule is an important part of the improved memoized pull-tabbing strategy. If the control contains a choice node at a demanded argument position and the actual task has a selection for this choice in its fingerprint, the choice is not moved to the top as in pure pull-tabbing. Instead, the selected alternative is put into the demanded argument. Since, due to sharing, it would be wrong to update the actual function node, a new function node is created with this update and the task result map of this original node refers to the new node for the current task identifier. Thanks to this rule, only the first occurrence of a choice is moved to the root by pull-tab steps.

follow task result: This rule is responsible to follow the correct alternative for shared non-deterministic expressions in a computation. If the task result map for a node contains an entry for the current task, the node referred by this entry becomes the new control element.

case function: If the control contains a graph node labeled with a defined function but no entry in its task result map and no demanded argument, the function is ready for evaluation. Hence, its body is put into the control together with an environment initialized with the specific variable ROOT set to the graph node with this function.
global result: If the control contains a graph node labeled with a constructor symbol and the stack is empty, this constructor-rooted term (head normal form) has been computed. This is added to the set of computed results and the current task is removed.

argument result: If the control contains a graph node labeled with a constructor symbol and the stack is not empty, then the top of the stack contains a function where the argument at position \(d \) is demanded and now evaluated. Since this result might be valid only for the current task, a new function node with this argument is introduced and remembered in the task result map (this could be relevant if the function is shared in the subsequent computation). After this preparation, the function is invoked similarly to rule (non-case function).

Evaluation of blocks. The remaining rules are responsible to evaluate the body of a single function contained in the control. It should be noted that these rules describe elementary computational activities so that they can be directly mapped into imperative programs.

variable declaration: If the control starts with a declaration of a local variable, it is initialized as a null pointer in the environment. The compilation scheme from FlatCurry into ICurry ensures that each variable will be assigned before its first use [15] so that null can be replaced by any other value.

local assign: If the control starts with an assignment to a local variable, the graph is extended with the expression and the environment is updated for this variable.

successor assign: If the control starts with an assignment to a successor of a node (such assignments might occur in the case of cyclic structures), the graph is extended with the expression and the successor is set to the created subgraph.

return: If the control contains a return statement, the graph is extended with the returned graph and the root node containing the current function is updated with the returned node.

exempt: If the control contains an exempt statement, the current computation is removed from the list of tasks.

case: If the control contains a case statement, the corresponding branch is selected. This selection is always possible since the case argument is demanded so that it has been evaluated before invoking the function and all case branches are complete.

Discussion. This operational model avoids repeated pull-tab steps for shared non-deterministic expressions by the use of task result maps for function nodes. The first occurrence of a non-deterministic choice is moved to the root by repeated applications of rule (pull tab). Then the computation is split into two tasks by rule (split choice). Each of these new tasks directly selects any further occurrence of the same choice to the appropriate branch by rule (memo pull tab). Since the further computation with this choice is valid only for the current task, the computed results are remembered in the task result maps.

The use of task result maps causes some overhead for deterministic computations, the updates of the task result map are avoided.

This improvement is sketched in [31]. Since a detailed specification would be quite technical, we omit it in this formal model.

7 Compilation to Go

After fixing the operational semantics of the intended implementation, we are ready to compile Curry programs into an existing target language. Since the transformation of Curry programs into ICurry programs via FlatCurry already exists, as specified in [15], we focus on the compilation of ICurry programs. We recapitulate the main issues of such an implementation:

1. Implement the graph structure containing all expressions and choices under evaluation.
2. Implement the overall control, i.e., the management of tasks.
3. Implement the evaluation of single functions, i.e., pattern matching via case distinctions, assignments, and construction of new graphs.

In order to do this with limited efforts (which was one of the motivations of designing ICurry), an imperative target language supporting dynamic data structures and garbage collection is an appropriate choice. Moreover, to support fair evaluation of non-determinism and exploiting multi-processor architectures for running Curry programs, the target language should also support lightweight threads.

Due to these considerations, we choose Go\(^7\) as the target language of our implementation. Go is a statically typed language with garbage collection and direct support for CSP-like concurrency [35]. New threads can be started as procedure calls prefixed by the keyword "go" so that they are also called goroutines. They run in the same address space (shared memory). Go also offers channels to communicate between goroutines. We will use channels to send computed results from the tasks to the main program presenting the results to the user. Since goroutines are multiplexed onto operating system threads, multi-core processors are automatically exploited (if not explicitly restricted by some compiler option).

In the following, we sketch our implementation, called Curry2Go, with some simplifications to keep it readable. The complete implementation is available as a Curry package\(^8\) and contains a compiler and an interactive environment ("REPL") in the style of Haskell, Prolog, or other Curry systems. Since the compiler and REPL are written in Curry, the initial installation requires another existing Curry compiler. Subsequently, it can be compiled with itself (bootstrapping).

7.1 Run-Time Structures

The main data structure of our run-time system is the graph representing expressions and choices occurring during the evaluation of the main expression. For this purpose, we have to define a structure for graph nodes. The various concrete kinds of nodes are distinguished by the following enumeration type in Go:

```go
package main

import "runtime"

const (  
    FCALL NodeType = iota  
    Const  
    Var  
    Fun  
    Call  
    Return  
    Exempt  
    Case  
)
```

\(^1\)https://golang.org/
\(^2\)https://github.com/curry-language/curry2go
Hence, a node could be a function call (\texttt{CALL}), a constructor
(application (\texttt{CONSTRUCTOR}), a choice (\texttt{CHOICE}), a redirection node (\texttt{REDIRECT}),
or a failure (\texttt{EXEMPT}) (further alternatives are different kinds of
literals, which are omitted here). Note that the operational semantics
described in Sect. 6 has no failure nodes but specifies ICurry’s
exempt statement by dropping the current task. Since Curry2Go
uses a separate layer for managing tasks and sending computed
results, we implement exempt by creating an \texttt{EXEMPT} node which is
processed by the task manager.

We use the following Go structure to implement graph nodes:

\begin{verbatim}
 type Node struct{
 Children []*Node
 node_type NodeType
 int_value int
 function func(*Task)
 arity int
 name string
 lock sync.Mutex
 tr map[int]*Node
 }
\end{verbatim}

Each node has an array \texttt{Children}, the successors of the node, i.e.,
pointers to other nodes, and a tag \texttt{node_type}. The use of the further
components depends on the kind of node. For constructor nodes,
\texttt{int_value} contains the index of the constructor which is used for the
efficient implementation of case selection according to rule \texttt{(case)}.
For choice nodes, \texttt{int_value} contains the identifier of the choice
(see Sect. 5). For function nodes, \texttt{int_value} contains the index of the
demanded argument (or -1 when the body of the function does not
contain a case statement), and \texttt{function} refers to the Go function
evaluated to invoke the function node (the reference to the task is
necessary since it is relevant which task evaluates a function). In the
case of function or constructor nodes, \texttt{arity} contains the number of
required arguments: if the number of successors is smaller than the
arity, the node represents a partial application. \texttt{name} refers to the
textual representation of the constructor or function and is used for
debugging or printing results. \texttt{lock} is a mutual exclusion lock which is necessary to synchronize
current tasks evaluating and updating the graph (see below).

The representation of tasks in our run-time system has a direct
correspondence to the operational semantics specified in Sect. 6:

\begin{verbatim}
 type Task struct{
 id int
 control *Node
 stack []*Node
 fingerprint map[int]int
 }
\end{verbatim}

id is the task identifier (used in the task result maps), \texttt{control} refers
to the node in the control, \texttt{stack} refers to the nodes in the stack of the
task, and \texttt{fingerprint} maps choice identifiers into the indexes
of children of choice nodes.

The ICurry block and environment, mentioned in the operational
semantics, are not part of the task structure since they are repre-
sented as Go code which implements the rules to evaluate blocks
as specified in Fig. 3. The structure and generation of this code is
described below in Sect. 7.3.

7.2 Search Control

The overall control (i.e., the operation implementing the evaluation
of an expression) uses a Go channel \texttt{result-chan} to receive
evaluated results from individual tasks (this corresponds to the
component \(R \) of the computation state of the operational
semantics) and a queue of tasks. It is based on a function \texttt{toHNF} which
evaluates the control node of a task to a head normal form or a
failure. This is done by repeatedly invoking the code of defined
operations. If a choice occurs and the fingerprint of the task has no
selection for the choice, a new task is created by copying the current
task and extending the fingerprints of the current and new task for
this choice. In the case of a depth-first search (DFS) strategy, the
new task is put into the front of the queue of tasks and we proceed
with the current task. In the case of a breadth-first search (BFS)
strategy, the current task and the new task is put at the end of the
queue of tasks and we proceed with the first task in the queue. If
evaluation of a task terminates, the result is ignored in the case
of an \texttt{EXEMPT} node or send to \texttt{result-chan} so that the overall control
can print it. If the queue of tasks is not empty, the next task is taken
from the queue and executed.

So far we have described a sequential search strategy where the
user can choose between DFS and BFS. However, a main motivation
of this work is to provide an operationally complete implementation.
For instance, consider the following contrived example:

\begin{verbatim}
 idND :: a -> a
 idND n = loop ? n ? loop
\end{verbatim}

Semantically, \texttt{idND} is the identity function but, operationally, it is
non-deterministically defined with looping alternatives. Although
\texttt{\&} is a value of \texttt{idND}, both DFS and BFS do not return any value
but loop. To avoid such kind of incompleteness, we implemented a
fair search (FS) strategy. FS evaluates each task concurrently as a
goroutine: the Go function \texttt{fsRunner(t,result-chan)}, which evalu-
ates a task \(t \) by \texttt{toHNF} and sends a non-failure result to \texttt{result-chan},
is started by

\begin{verbatim}
 go fsRunner(t,result-chan)
\end{verbatim}

This is done by the task handler implementing FS. After starting a
ew runner, the task handler waits for new tasks put by the runners
into the queue of tasks (which is also implemented as a Go channel)
and starts them (there is also an option to set a maximum for
current tasks). Thus, each non-deterministic branch is evaluated
as a separate goroutine.

Note that all these goroutines work on the same global graph
structure. Although they usually evaluate different parts of this
graph, due to sharing it is possible that different goroutines evaluate
the same node and update them in place, e.g., replacing a function
node by a constructor or by a choice node in a pull-tab step. In order to avoid inconsistencies due to concurrent updates, graph nodes have to be locked. This is the purpose of the component lock of a graph node. If some node has to be evaluated, it will be locked by the task so that at most one thread accesses the node or its task result map. If it is a choice node, the parent node must be locked since a possible pull-tab step will update the parent.

7.3 Code Generation

The implementation of the run-time structures and control routines described so far form the run-time system of our implementation. All components of the run-time system are bundled in a Go package named `gocurry`. Our compiler generates for each Curry module a corresponding Go package which imports `gocurry` and further compiled Curry modules.

As already mentioned, a concrete Curry module is transformed via FlatCurry into an ICurry program so that the actual compiler transforms ICurry programs into Go programs. For this purpose, each ICurry function is compiled into a Go function which has a single parameter: the task evaluating this function. The task parameter is used to initialize a local variable `root` with a reference to the control node. The values of all further local variables are accessed via `root`. Then the translation of an ICurry block into Go statements is straightforward: case is translated into a switch instruction, `node, or, exempt` into constructors for the corresponding graph nodes, and a `return` sets the root node before returning from the Go function. Furthermore, expressions are translated into statements which create new graph nodes. In the following, we sketch this compilation process.

In order to generate the Go code to create graph nodes, the Curry2Go compiler generates a Go function for each kind of node occurring in an ICurry expression. For this purpose, the run-time system contains a generic function which sets a given node (first argument) to a constructor node where the index, arity, name, and children of the constructor are passed as further arguments:

```go
// Constructor function.
func ConstCreate(root *Node, constructor int, arity int, name *string, args ...*Node) *Node {
    root.Children = root.Children[:0]
    root.node_type = CONSTRUCTOR
    root.int_value = constructor
    root.arity = arity
    root.name = name
    root.Children = append(root.Children, args...)
    return root
}
```

Similarly, there are further functions in the run-time system to set nodes to function nodes, choice nodes, etc.

Each data type is translated into an array containing the textual representation of each constructor and operations to create constructor nodes. For instance, for the data type of Boolean values (defined in the Prelude module), the following Go code is generated:

```go
// Boolean values.
var Prelude_Bool_names []string = []string{ "False", "True" }
```

```go
// Boolean constructors.
func Prelude_CREATE_False(root *Node) *Node {
    ConstCreate(root, 0, 0, &Prelude_Bool_names[0])
    return root
}

func Prelude_CREATE_True(root *Node) *Node {
    ConstCreate(root, 1, 0, &Prelude_Bool_names[1])
    return root
}
```

The use of a global string array `T_names` for the textual representation of the constructors of a type `T` reduces memory and time compared to the direct storage of strings in constructor nodes. Similarly, the names of all operations occurring in some module are stored in a string array.

Note that different constructors of a data type can be distinguished by the component `int_value` in the constructor nodes (in the previous example: `0` for `False` and `1` for `True`). This enables the straightforward translation of case expressions into Go switch instructions. For instance, the Curry operation `not`, defined in the Prelude as in Sect. 2, is transformed via FlatCurry into the following ICurry code:

```go
// Not operation.
function not
    declare x1
    x1 = ROOT[0]
    case x1 of
        False → return NODE(True)
        True → return NODE(False)
```

The translation of this definition into Go code is basically a switch instruction where in each branch the node representing the function call is replaced by `True` and `False`, respectively.

```go
// Curry2Go code.
func Prelude_not(task *Task) () {
    root := task.control // get root of function call
    var x1 *Node
    x1 = root.Children[0]
    switch x1.int_value {
        case 0:
            Prelude_CREATE_True(root)
            return
        case 1:
            Prelude_CREATE_False(root)
            return
    }
}
```

The Go code shown above has been simplified for the sake of readability, e.g., package qualifiers are omitted. Nevertheless, it shows that ICurry is an appropriate abstraction to generate imperative code from Curry programs, which was the main motivation to introduce ICurry, as discussed in [15].

7.4 Extensions

After sketching the main aspects of Curry2Go, we discuss some extensions necessary to support a complete Curry implementation.

Since Curry is intended to amalgamate functional and logic programming features, the usual higher-order constructs of functional programming must be supported. This is already prepared during
the transformation from Curry into FlatCurry: lambda abstractions are transformed into top-level functions with new names, and each application of an expression \(e_1 \) of functional type to some argument \(e_2 \) (if this is not a full or partial application of a defined operation or constructor) is transformed into the expression \(\text{apply}(e_1, e_2) \) where \(\text{apply} \) is a predefined operation. This technique is known as "defunctionalization" [47] and also used in logic programming to support higher-order features [50]. Therefore, Curry2Go interprets partially applied function calls as non-evaluable (which is the purpose of the component \text{arity} in graph nodes) and the operation \text{apply} is implemented by adding an argument and, if all arguments are provided, calls the actual function with all arguments.

So far we ignored free variables since, from a declarative point of view, they can be considered as non-deterministic operations generating their values [9]. For instance, the Curry expression

\[
\text{let } x \text{ free in } (x, \neg x)
\]

can be replaced by

\[
\text{let } x = \text{aBool in } (x, \neg x)
\]

where the non-deterministic value generator \text{aBool} is defined as in Sect. 2.

Although such a transformation could be used to compile Curry into a deterministic language if a mechanism to interpret non-deterministic computation is provided, as done in KiCS2 with Haskell as a target language [19], this approach has some drawbacks. If the possible set of values for free variables is infinite, computations with value generators might have larger or even infinite search spaces compared to Prolog, where free variables are treated as run-time objects and unification is used to solve term equations. In particular, unification can bind variables without instantiating them. Thus, unification can be considered as an optimized equality predicate where constraints between variables are stored instead of concrete variable bindings [14]. In order to get the same effect for Curry2Go, we have to represent free variables and their binding constraints at run time. This can be done by extending FlatCurry and ICurry with free variables (which is actually the case in the corresponding packages) and representing free variables as specific graph nodes. We implement a free variable as a constructor without successors and \text{int_value} "-1". This allows for an immediate implementation of narrowing, i.e., instantiating free variable arguments [46]. If an argument of some function is demanded, there is a switch instruction in the function’s body. This switch instruction is extended with a case for -1: since this branch is selected if the demanded argument is a free variable, this branch binds the free variable to a graph representing a choice of the various constructors. Since this binding is valid only for the current task, the free variable node is not updated in place but the binding is stored in the task result map of this node (this has some similarity to binding arrays used in parallel implementations of Prolog [51] but the structure is different due to our requirements). With this implementation, we obtain the advantages of using free variables as in Prolog implementations while still allowing flexible and complete search strategies.

8 EVALUATION

The compiler from Curry to Go is written in Curry and based on existing packages to represent FlatCurry and ICurry in Curry and generating ICurry programs from Curry source programs. Thanks to this infrastructure, the size of the actual compiler is less than 400 lines of Curry code. The implementation of the run-time system in Go is also reasonable: the kernel (without auxiliary operations to implement predefined operations) consists of less than 500 lines of Go code.

The main motivation for this work is to explore whether an operationally complete implementation of Curry (and, thus, logic programming) is possible in a way competitive to other existing implementations. Therefore, the fair search strategy is the default strategy in Curry2Go. Using Go as a target language is useful to get a compact and maintainable implementation but it might result in less efficient code compared to using C or LLVM. Nevertheless, we compare our current implementation to other implementations of Curry.

For the benchmarks, we choose two other major Curry implementations. PAKCS [29], which is part of Debian and Ubuntu Linux distributions, compiles to Prolog (SWI-Prolog 8.0) and is based on backtracking. KiCS2 [19] compiles to Haskell (GHC 8.4) where non-determinism is implemented by pure pull-tabbing (without memoization) so that various search strategies, like depth-first and breadth-first (default), are offered. Both Curry systems have been used for larger applications and provide many libraries and packages for application programming. Sprite [18] is a Curry implementation which uses LLVM to generate efficient target code. It is also based on pull-tabbing and ICurry and offers a fair evaluation strategy (without concurrency by rotating the queue of tasks every so often). We could not include it in the benchmarks since a working implementation is not available at the time of writing.

The published figures in [18] indicate that Sprite behaves similarly to KiCS2 (although KiCS2 does not support fair evaluation).

All benchmarks were executed on a Linux machine running Debian 10 with an Intel Core i7-7700K (4.2GHz) processor with eight cores. We measured the elapsed time in seconds (with the time command as the average of three runs) of invoking the executable generated by the Curry compiler. The first table shows the timings for purely functional programs:

<table>
<thead>
<tr>
<th>Example</th>
<th>PAKCS</th>
<th>KiCS2</th>
<th>Curry2Go</th>
</tr>
</thead>
<tbody>
<tr>
<td>nrev_4096</td>
<td>8.25</td>
<td>0.44</td>
<td>1.17</td>
</tr>
<tr>
<td>takPeano_24_16_8</td>
<td>54.16</td>
<td>0.32</td>
<td>5.17</td>
</tr>
<tr>
<td>takInt_24_16_8</td>
<td>41.19</td>
<td>0.40</td>
<td>5.96</td>
</tr>
<tr>
<td>revInt_1M</td>
<td>15.03</td>
<td>0.36</td>
<td>2.31</td>
</tr>
<tr>
<td>primesInt_1000</td>
<td>38.81</td>
<td>0.44</td>
<td>4.11</td>
</tr>
<tr>
<td>queens_10</td>
<td>203.29</td>
<td>0.59</td>
<td>15.81</td>
</tr>
</tbody>
</table>

nrev_4096 is the quadratic naive reverse algorithm applied to a list with 4096 elements, takPeano and takInt is a highly recursive function on naturals [42] applied to arguments (24, 16, 8) in Peano representation or with built-in integers, respectively. The remaining benchmarks use higher-order functions: revInt_1M reverses a list with one million elements in linear time using foldl and flip.

8 Personal communication with Andy Jost.
9 The benchmark suite is contained in the implementation of Curry2Go.
times, and with the deterministic insertion sort (\texttt{isort}) and the non-deterministic permutation sort (\texttt{psort}) algorithm, respectively, where \texttt{primes} defines the infinite list of all prime numbers. Due to backtracking, identical computations might be repeated if they occur in different non-deterministic branches. Thus, \texttt{primes} is re-evaluated by PAKCS several times when the list is passed to the non-deterministic operation \texttt{psort}. This is not the case in implementations based on pull-tabbing: due to sharing common subexpressions in the global graph, results of deterministic computations are \textit{shared across non-determinism} \cite{20}. This property has the advantage that a user of some library operation must not care about the internal implementation of the operation, e.g., whether it exploits non-determinism. With our implementation, where non-deterministic branches are evaluated by goroutines, it could be even better to use a non-deterministic implementation since it might map evaluations of common subexpressions to different computation nodes, as shown by the results for \texttt{psort-primes4}.

As a final benchmark, we show the timings for \texttt{psort-primes4} increased to a list of eight prime numbers and executed with different numbers of processors (by setting the Go variable \texttt{GOMAXPROCS}).

\begin{center}
\begin{tabular}{lcccccc}
\hline
processors & 1 & 2 & 4 & 8 \\
\hline
\texttt{psort-primes8} & 6.57 & 3.41 & 1.99 & 1.55 \\
\hline
\end{tabular}
\end{center}

The benchmark shows that the presence of multiple processors is exploited in a non-deterministic program without requiring specific user annotations.

We have seen that KiCS2 generates efficient code for deterministic programs. This could be explained with the highly optimized Haskell compiler GHC used as a back end (KiCS2 invokes GHC with option \texttt{-O2}). Since good code generation requires time, we performed a larger test to compare the compilation times. Since both KiCS2 and Curry2Go are implemented in Curry, we measured the time to bootstrap both compilers where the first phase used the same Curry compiler (PAKCS) and the second phase used the compiler generated in the first phase. In this experiment, Curry2Go was more than three times faster than KiCS2. Although the absolute run times are difficult to compare (due to different compiler source files and techniques to compile base libraries), it shows that the generation of good native code requires time, but our compiler would benefit from future optimization options of the Go compiler.

\section{Related Work}

Early implementations of functional logic languages were often based on Prolog due to the direct support of non-determinism and free variables \cite{7, 40}. Even implementations which compile into other target languages use backtracking to implement non-determinism, since the efficient implementation of backtracking,
known from Prolog [1], can be transferred to other compilation schemes (e.g., [24, 41]) or simulated with functional programming techniques [48]. However, the use of backtracking results in the operational incompleteness of the implementation.

Later on, some approaches use concurrent programming features for the implementation of functional logic languages. For instance, an abstract machine for Curry is implemented in Java where choices are implemented as Java threads [30], but the overall efficiency is low compared to other sequential implementations. KiCS2 [19] offers a parallel search strategy based on a parallel tree search library for Haskell, but operational completeness is not ensured in the case of infinite deterministic computations.

A systematic approach to operationally complete implementations of functional logic languages is the fair scheme [17], which is also the basis of Curry compiler Sprite [18]. Since the fair scheme is based on pull-tabbing, it suffers from the copying of choices as discussed in Sect. 5. This motivated our work in order to show that the fair scheme can be improved and implemented in a way which can compete with other incomplete schemes.

Related to our work are also parallel implementations of Prolog [21]. Such implementations might support Or-parallelism [51] (apply all rules in parallel) or And-parallelism [34] (prove conjunctions of literals in parallel). Andorra Prolog [33] tries to combine both kinds of parallelism. The main motivation of these approaches is to speed up the execution of programs while keeping their sequential properties. This is in contrast to our work where we aim at an implementation which frees the programmer from considering the influence of the evaluation strategy to computed results.

10 CONCLUSIONS

Implementations of declarative programming languages often trade efficiency for completeness. Although equations, as used in functional programs, have a clear interpretation (“replace equals by equals until a value is obtained”), functional programmers have to consider the peculiarities of the concrete programming language (e.g., strict evaluation of arguments vs. non-strict evaluation of branches of conditions, order of pattern matching, default rules) to ensure that intended results are actually computed. Similarly, logic programs can be interpreted as logic formulas but, due to backtracking in Prolog, one has to consider the order of search in concrete programs. Such considerations are somehow contrary to the idea of declarative programming where one wants to abstract from execution details. Therefore, an operationally complete implementation can support a higher-level programming style and has also advantages for teaching declarative programming.

In this work we presented a new approach towards this objective. We developed an operationally complete implementation by using recent advances in operational models for declarative programming. By representing computational alternatives as data rather than program code, our implementation supports various search strategies, in particular, strategies with a fair selection of non-deterministic choices. By mapping alternative computations to lightweight threads, i.e., goroutines, we obtain reduced elapsed times on multi-core processors. We presented a technique to compile Curry source programs into Go target programs by a stepwise transformation via FlatCurry and ICurry. In order to avoid potential efficiency problems when demand-driven evaluation is combined with non-determinism, we used a recent method, memoized pull tabbing, and provided a formal definition of this strategy. Using this formal model together with an existing infrastructure for processing Curry programs, the actual implementation could be done with modest efforts. In principle, one can use any other imperative language as a target language (actually, compilation to C or LLVM might get more efficient target code), but the choice of Go limits the implementation efforts due to the direct support of dynamic data structures with garbage collection and concurrency with threads.

Although our implementation is a first prototype, it has already been used to compile larger programs, like program analyzers, browsers, and documentation tools, and it is able to bootstrap the compiler in order to get a self-hosting system.

For future work, we will look into possibilities to speed up the target code and add more computational features, like set functions to encapsulate search [10] or residuation to support concurrency in source programs [26].

ACKNOWLEDGMENTS

The authors are grateful to the anonymous referees for helpful comments and suggestions to improve the paper.

REFERENCES

