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ABSTRACT
Encapsulated search is a key feature of (functional) logic languages.
It allows the programmer to access and process different results of
a non-deterministic computation within a program. Unfortunately,
due to advanced operational features (lazy evaluation, partial val-
ues, infinite structures), there is no straightforward definition of the
semantics of encapsulated search in functional logic languages. As
a consequence, various proposals and implementations are avail-
able but a rigorous definition covering all semantical aspects does
not exist. In this paper, we analyze the requirements of encapsu-
lated search in a functional logic language like Curry and provide
a comprehensive definition that covers weak encapsulation, a mod-
ular form of encapsulation, as well as nested applications of search
operators. We set up a denotational semantics that distinguishes
non-termination and different levels of failures in a computation.
The semantics is also the basis of a practical implementation of
search operators in the functional logic language Curry.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and The-
ory—Semantics; D.3.3 [Programming Languages]: Language Con-
structs and Features—Control structures; F.3.2 [Logics and Mean-
ings of Programs]: Semantics of Programming Languages—De-
notational semantics

General Terms
Algorithms, Design, Languages, Theory
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1. INTRODUCTION
Functional logic languages combine the most appealing features

of the functional world, like algebraic data types, higher-order and
lazy evaluation, with features from the logical world, like non-
determinism and free variables (see [4, 14] for recent surveys). The
functional logic language Curry [18], which is considered in this
paper, is based on a demand-driven (lazy) evaluation strategy that is
optimal for a wide class of programs [3]. Due to its logic program-
ming features, an expression in Curry might have multiple results
that are evaluated non-deterministically. In typical Curry systems
these results are shown in a read-eval-print-loop (REPL): the user
enters an expression and the system displays the computed values
in some order determined by the search strategy. For instance, the
Curry system KiCS2 [6] supports depth-first, breadth-first, iterative
deepening, or parallel search strategies.

In actual applications, however, the non-deterministic computa-
tions should be encapsulated: instead of processing (and eventually
printing) all results of a subcomputation, one wants to select a sin-
gle result, e.g., the shortest itinerary among all possible itineraries
between two cities [5]. Therefore, many non-deterministic lan-
guages provide primitives to compute the set of all results of a com-
putation. In this way results can be related, e.g., by computing the
smallest of the results or by accumulating them. For instance, Pro-
log has a primitive findall [23] to compute the list of all answers
to a goal.

In this work we specify the semantics of an encapsulation primi-
tive allValues so that allValues(e) denotes the set of all values
the expression e can evaluate to. However, the precise meaning of
this primitive is not obvious due to the combination of laziness and
non-determinism:

1. Does the result set contain fully evaluated expressions or
only head normal forms?

2. Which non-deterministic computations are encapsulated? For
instance, consider the expression

let x = e1 in allValues(e2)

where x occurs in e2 and both, e1 and e2, evaluate non-
deterministically to multiple results. Is the non-determinism
of e1 encapsulated by allValues(e2)?

3. If there are nested applications, as in

allValues(e1 allValues(e2) e3)



which non-deterministic computations are encapsulated by
which search operator? In particular, if some subcomputa-
tion fails, how does it affect the encapsulation?

Lazy evaluation complicates the answers to these questions. For
instance, the evaluation of e2 in the expressions above might trig-
ger the evaluation of some subexpression of e1 caused by shared
variables. The various proposals for encapsulating search in func-
tional logic languages (e.g., [5, 8, 9, 17, 20, 21]) together with se-
mantically different implementations in various Curry systems (as
discussed later) demonstrate that there are no clear answers to these
questions.

In order to specify the intended results of expressions and to be
independent of implementation details, we propose a denotational
semantics for the encapsulation primitive allValues, inspired by
a denotational semantics without capsules [11]. As we will see, a
precise description of nested capsules (item 3 above) requires the
introduction of different failure values in the semantical domain so
that one can distinguish between non-termination and finite failures
occuring in different nesting levels. This distinction is not made by
semantical descriptions that do not regard capsules (e.g., [12]).

Our semantics helps users of Curry to understand the detailed
meaning and semantical consequences of such a primitive, e.g., we
can show that particular program transformations used in the im-
plementation of purely functional languages are no longer valid in
the presence of such an encapsulation primitive. Furthermore, our
semantics is the basis for implementing advanced search operators
in the recent Curry implementation KiCS2 [6, 16].

The main focus of this paper is to provide a formal foundation
for encapsulated search in a functional logic language. We intro-
duce a kernel language for Curry programs that features primitives
to calculate and test the set of non-deterministic results of a com-
putation (Section 2). After discussing the intended behavior of en-
capsulated search (Section 3), we define its denotational semantics
(Section 4). Section 5 shows our semantics at work. In Section 6
we sketch an implementation of this semantics before we conclude
with a discussion on related work in Section 7.

2. (FLAT)CURRY
The syntax of Curry is very similar to the syntax of the func-

tional language Haskell [25]. In contrast to Haskell, Curry addi-
tionally provides free variables and the means to introduce non-
determinism. However, many tools that process Curry programs,
such as compilers and analyzers, actually work on a kernel lan-
guage, called FlatCurry, into which all Curry programs can be
translated by eliminating syntactic sugar from source programs.
Christiansen et al. [11] present a denotational semantics for a vari-
ant of this intermediate language, called TFLC.

On the one hand, we extend TFLC with a construct for encap-
sulation, a primitive data type for sets and operations on sets. On
the other hand, we exclude polymorphic types and restrict let-ex-
pressions to bind only a single variable. These restrictions are rea-
sonable since polymorphism does not add extra insights and non-
recursive let-expressions with more than one binding can easily be
split up into a series of bindings. Furthermore, Christiansen et al.
[11] point out that recursive let-expressions cannot be handled by
a compositional semantics like the one we head for. We could also
omit let-expressions completely because they can be simulated by
function calls, but they are useful for example calculations.

The syntax of our extended kernel language TFLCe is defined
in Figure 1. Similarly to TFLC, we consider a language with just
a few, concrete data types that can be easily extended, e.g., with
other types and primitive operations. In Figure 1, τ denotes a type,

τ ::= Nat | Bool (base types)
| [τ ] (list type)
| τ1 → τ2 (function type)
| {τ} (set type)

P ::= D P | ε
D ::= f :: τ ; f(xn) = e

e ::= x (variable)
| n (number)
| True | False (data constructors)| Nilτ | Cons(e1, e2)
| e1 + e2 (primitive operation)
| f (defined function)
| apply(e1, e2) (application)
| unknownτ (unknown value)
| e1 ? e2 (non-deterministic choice)
| failedτ (failure)
| case e of

(case on Booleans){True→ e1
;False→ e2}

| case e of
(case on lists){Nil→ e1

;Cons(x, xs)→ e2}
| let x :: τ = e1 in e2 (local definition)
| allValuesτ (e) (encapsulated search)
| sizeτ (e) (size of a set)
| isEmptyτ (e) (emptiness test on a set)
| minimumτ (e) (minimum of a set)

Figure 1: Syntax of the kernel language TFLCe

P a program, D a function definition, and e an expression. Fur-
thermore, x stands for an expression variable and n for a natu-
ral number. We call a type τ simple iff it is constructed without
the use of →. A bar, as in xn, denotes the sequence x1, . . . , xn.
An expression of the form (e1 ? e2) denotes a non-deterministic
choice between e1 and e2, apply(e1, e2) expresses the applica-
tion of e1 to e2 (and covers higher-order features), unknownτ the
non-deterministic choice between all values of type τ (i.e., a free
variable in the sense of logic programming) and failedτ a finite
failure. However, some restrictions apply: the types of free vari-
ables have to be simple and must not contain any set types ({τ})
and, as already told, let-expressions have to be non-recursive.

In order to deal with encapsulated search, we extend TFLC with
the primitive allValues and the set operations size, isEmpty
and minimum. Note that allValues yields a set rather than any
ordered structure to hide the order imposed by the search strategy
[8]. We exclusively allow sets of simple types, since implementa-
tions are not able to test functions for (extensional) equality. There-
fore, allValues may only be applied to expressions of simple type.
Further operations on sets can be added but are omitted here for
simplicity. Such operations have to respect the set properties, espe-
cially the internal ordering must not leak through the abstraction.
E.g., it is not possible to obtain a “first” object from the set without
sorting the set or escape to an IO context where we can ask an “or-
acle” for a virtually arbitrary ordering that coincidentally matches
the internal one.

The typing rules for the additional primitives of TFLCe are given
by Figure 2. The first rule states that the encapsulation primitive
that is applied to an expression of type τ yields a result of type
{τ}. The other rules state that the set operations can only be ap-



Γ ` e :: τ τ is simple
Γ ` allValuesτ (e) :: {τ}

Γ ` e :: {τ}
Γ ` sizeτ (e) :: Nat

Γ ` e :: {τ}
Γ ` isEmptyτ (e) :: Bool

Γ ` e :: {τ}
Γ `minimumτ (e) :: τ

Figure 2: Typing rules for encapsulation and set operations

plied to sets and yield a natural number, a Boolean, or a value with
a type that corresponds to the elements in the set, respectively. The
typing context Γ provides type information for unbound variables.
Typing rules for the remaining language constructs can be found in
[11]. In example programs, we often omit type subscripts if they
can be easily determined by the context. As a further notational
simplification, we write applications of an expression f to an ex-
pression e as f(e) instead of apply(f, e) (and similarly for more
than one argument).

3. REQUIREMENT ANALYSIS
As mentioned above, there are various proposals to encapsulate

non-deterministic computations in functional logic programs, e.g.,
[5, 8, 9, 17, 20, 21]. The most recent approach [5] proposes set
functions. With set functions, for every function f in a Curry pro-
gram, there is a function fS that yields the set of all results of
f applied to some deterministic input. Set functions encapsulate
only the non-determinism that is introduced by the function’s def-
inition but not the non-determinism brought in via arguments. For
instance, consider the operation inc12 defined as

inc12 :: Nat→ Nat

inc12 (x) = (x+ 1) ? (x+ 2)

Then inc12S(1) evaluates to some internal representation of the
set {2, 3}, i.e., the non-determinism caused by inc12 is encapsu-
lated into a set. However, the expression inc12S(1 ? 5) evaluates
to two different sets {2, 3} and {6, 7} due to its non-deterministic
argument, i.e., the non-determinism caused by the argument is not
encapsulated.

In contrast to many other approaches to encapsulated search (see
[8] for a detailed discussion), the result of a set function does not
depend on the evaluation steps that might be performed by the con-
text of the encapsulated expression—a modular and, thus, desirable
property for declarative programming. Therefore, our approach
should conform with the basic ideas of set functions. Using our
primitive allValues, for every Curry function f(x1, . . . , xn) = e
we can define the corresponding set function as

fS(x1, . . . , xn) = allValues(e)

However, as discussed below, the semantics of set functions that is
presented in [5] is underspecified in the presence of finite failures
and nested applications of set functions. Thus, a proposed imple-
mentation [7] of set functions does not yield the intended results
for the motivating example of [5].

In order to obtain a comprehensive and reasonable definition of
the meaning of allValues, in this section we consider the require-
ments for encapsulating non-deterministic computations.

3.1 Normal Form Encapsulation
Consider the following TFLCe program where coin denotes a

non-deterministic expression:

coin :: Nat

coin() = 0 ? 1

numCoinLists :: Nat

numCoinLists() = size(allValues(Cons(coin,Nil)))

What is the intended result of a call to numCoinLists? There
are two possible choices. If allValues does not evaluate the ele-
ments of the list Cons(coin,Nil) (since the values of the individual
elements are not demanded), the non-determinism in coin is not
uncovered, allValues returns a set with only one list and size re-
turns 1. If allValues evaluates its argument completely (similarly
to the top-level REPL of a Curry system), we get a set with the
elements Cons(0,Nil) and Cons(1,Nil), and, thus, size returns 2.

The first option is called head normal form encapsulation and
proposed in [9]. All elements of the set that allValues returns are
in head normal form (i.e., without a defined function as the outer-
most symbol) but not necessarily in normal form, i.e., completely
evaluated. This form of encapsulation implies that the result of an
encapsulated expression may still contain nested non-determinism,
as seen by the example.

The second option is called normal form encapsulation and pro-
posed in [5]. In this case the argument to allValues is fully
evaluated, i.e., the set contains only total values. Thus, all non-
determinism is capsuled.

For our semantics, we choose the second option since this con-
forms with the “REPL view of non-determinism”: the values in an
encapsulation set are also the values shown by the REPL of a Curry
system. This option is also used for set functions [5]. Moreover,
head normal form encapsulation might cause weird effects in com-
bination with sharing when further evaluation of encapsuled entries
is enforced. This could be possible if specific elements from a set
are processed.

3.2 Weak Encapsulation
A key feature of declarative languages is that the value of an

expression depends solely on the values of its sub-expressions. In
particular, the evaluation of a sub-expression does not influence the
result of another sub-expression. This property is most important
in conjunction with lazy evaluation where the order of evaluation
is not easily predictable by the user. Therefore, the demand that
allValues should retain this property is consistent.

Braßel et al. [8] investigate various approaches to encapsulated
search. They distinguish two concepts, strong encapsulation and
weak encapsulation. These concepts differ when non-deterministic
expressions are introduced outside an encapsulation primitive but
evaluated inside. For example, consider the following TFLCe pro-
gram:

coin :: Nat

coin = 0 ? 1

allCoins :: {Nat}
allCoins = let x :: Nat = coin in allValues(x)

The operation allCoins contains a non-deterministic sub-expression
coin that is bound to x. Since coin textually occurs outside of the
encapsulation primitive allValues, we will consider it as intro-
duced outside. With strong encapsulation, any non-determinism
that is evaluated by an encapsulation primitive is encapsulated, no
matter where it is introduced. Thus, allCoins would yield the set
{0, 1} w.r.t. strong encapsulation. The Curry system PAKCS [15]
implements this kind of encapsulation.



In contrast, weak encapsulation [8] only encapsulates the non-
determinism that is introduced inside the encapsulation primitive,
e.g., the non-determinism in the expression allValues(coin) is
considered to be introduced inside. In the case of weak encapsula-
tion, allCoins non-deterministically yields one of the sets {0} or
{1}. The Münster Curry Compiler (MCC) [22] provides a primi-
tive findall that implements weak encapsulation. However, the
function allValues cannot be defined by means of this primitive.1

Braßel et al. [8] show that with strong encapsulation the eval-
uation of a shared subexpression in the context can influence the
results of an encapsulation primitive. While they restrict the use
of encapsulation to prevent this non-declarative behavior, we opt to
implement weak encapsulation. Again, our choice is in line with
set functions [5].

3.3 Completeness of Results
Encapsulation is meant to provide access to the set of all results

of an encapsulated expression. Thus, if v is a value of some expres-
sion e, then we have v ∈ S for some result S of allValues(e) and
vice versa. Furthermore, we want two different results of an ex-
pression e to be in the same result S of allValues(e), if and only
if they only differ by different choices made for non-determinism
that was introduced inside e. For example, the expression coin
yields the results 0 and 1. Therefore, there has to be a result of
allValues(coin) that contains 0 and a result that contains 1. No
other elements are allowed. Since the non-determinism is intro-
duced inside allValues, both elements have to be in the same re-
sult set. Thus, {0, 1} is the only valid result of allValues(coin).
However, if we consider the expression

let x :: Nat = coin in allValues(x)

there also has to be a result that contains 0 and a result that contains
1. Furthermore, since the non-determinism is introduced outside of
allValues, 0 and 1 need to be in different result sets. Thus, {0}
and {1} are the only valid results of

let x :: Nat = coin in allValues(x)

This requirement is also formally stated for set functions in [5].

3.4 Finite Failures
So far, the intended meaning of our primitive allValues is not

completely specified. We stated which results have to reside in the
same sets, yet sets may also be empty. Empty result sets are of spe-
cial interest because they allow for programming with negation as
failure, similarly to logic programming [20]. Consider the follow-
ing TFLCe program:

nilP :: [Nat]→ Bool

nilP(x) = case x of

{Nil→ True

;Cons(y, ys)→ failedBool}
consP :: [Nat]→ Bool

consP(z) = isEmpty(allValues(nilP(z)))

The predicate nilP yields True if its argument is the empty list
and fails otherwise. The function consP is intended to yield True
exactly if its argument is a non-empty list. It is implemented by
means of negation as failure using the predicate nilP . If nilP is
1More precisely, the function allValues cannot be defined as
allValues e = findall (\x -> x =:= e) since the
non-determinism in the argument would not be encapsulated due
to weak encapsulation.

applied to a non-empty list, it fails and, hence, the result of the
encapsulated expression is the empty set so that consP yields True.

What happens if consP is applied to an expression fl whose
evaluation fails? In a language with a demand-driven evaluation
strategy, fl is not immediately evaluated but only when pattern
matching is performed in the body of nilP . This leads to two op-
tions:

1. Since the evaluation of nilP(fl) fails, the encapsulation prim-
itive returns an empty set and, therefore, the evaluation of
consP(fl) yields True.

2. Since the failing expression fl has been created outside the
encapsulated expression, its failure is not covered by the op-
eration allValues so that the evaluation of consP(fl) fails.

Thus, failures of expressions created outside of an encapsu-
lation primitive are not covered by allValues, similarly to
the behavior regarding non-determinism.

The first option leads to the problem that it is hard to understand
when a failure introduced outside an encapsulated expression will
result in an empty value set for the capsule, since it is very difficult
to reason about the control flow in a lazy language. Therefore, we
prefer the second option.

Consequently, failures of expressions created outside allValues
should not influence the result of the encapsulation, i.e., we have to
ignore such “outside” failures in a capsule—even when their value
is demanded in the encapsulated expression. For instance, consider
the following expression:

let x :: Bool = failedBool in allValues(x ? True)

The result of this expression should be the set {True} rather than
a failure. Otherwise, the property of the completeness of results
would be violated: the value True is a result of x ? True, indepen-
dently of the value of x, and, thus, it should appear in a result set
of allValues(x ? True). Note that this would be different in a
(Prolog-like) strict language where the strict evaluation of x would
lead to a failure before evaluating the encapsulated expression.

Note that [5] does not specify the handling of failures, although
it contains an example for programming with negation as failure
that only works with our interpretation of failures in encapsulated
computations. A precise definition of this interpretation of failures
demands for a sophisticated semantics where different kinds of fail-
ures can be distinguished. We introduce this kind of semantics in
the following section. As a positive side effect, we also specify
the meaning of nested applications of search primitives, which is
practically relevant but has not been formally covered in previous
approaches for weak encapsulation in non-strict functional logic
languages.

4. SEMANTICS
Christiansen et al. [11] present a set-based denotational seman-

tics for FlatCurry. We present a slightly modified version of this
semantics and extend it with constructs for encapsulation. The se-
mantics is based on a multialgebraic view on functions. That is,
functions map single elements to sets of elements. This view mod-
els the call-time choice semantics [19] for non-deterministic opera-
tions as used in contemporary functional logic languages. Further-
more, it closely corresponds to the CRWL [12] approach, which
is a well established logical foundation for functional logic lan-
guages. The denotational semantics is advantageous for our setting
in comparison with CRWL because expressions in the denotational
semantics are already set-valued whereas CRWL only states how
expressions can be rewritten to obtain valid results.



4.1 Semantics of Types
Curry provides angelic (“don’t know”) non-determinism, which

is modeled by the use of the Hoare powerdomain. We restrict our-
selves to continuous directed-complete partial orders (dcpos) as do-
mains. The Hoare powerdomain of a dcpo is the complete lattice of
all its non-empty Scott-closed subsets. For theoretical background,
consult the survey on domain theory from Abramsky and Jung [1],
in particular Section 6.2, Theorem 6.2.13. For a continuous dcpo
D = (D,v), we denote its Hoare powerdomain by PH(D). Then
infimum and supremum of M ⊆ PH(D) are defined by:⋂

M = {x ∈ D | ∀m ∈M. x ∈ m}⊔
M =

⋂
{m ∈ PH(D) | ∀n ∈M. n ⊆ m}.

In our calculus, we interpret types as follows.

JBoolK = {True,False}⊥
JNatK = N⊥

J[τ ]K = lfp(λS.{[ ]} ∪ {a : b | a ∈ JτK , b ∈ S}⊥)

Jτ1 → τ2K = {f : Jτ1K→PH(Jτ2K) | f continuous}⊥

This semantics of types slightly differs from the one introduced in
[11]. First, we need no extra environment, because we abstain from
polymorphism as mentioned before. Second, we directly add a ⊥-
element as least element to each dcpo via the lifting operator (·)⊥,
which is technically beneficial later on and is more similar to [1].
Regarding the order, the semantics of Bool and Nat are sets with
the discrete order and ⊥ as least element. The semantics of lists
is given as least fixpoint (lfp). Note that the entries of a list are
elements (rather than sets of elements), and, as we are modelling a
non-strict language, ⊥ is a valid entry as well. The order on lists
is given by element-wise comparison. The order on the function
space is point-wise and the functions need to be Scott-continuous
(i.e., monotone and preserving supremas of directed sets) to ensure
that the function space itself is a continuous dcpo.

We use ⊥ to model non-termination but do not use it to model
finite failures because the semantics of the encapsulation primitive
is supposed to distinguish non-termination from finite failure. Note
that we have to distinguish failures that are introduced outside an
encapsulated expression from those introduced inside, as required
in Section 3.4. In order to model nested encapsulations with dif-
ferent failure levels, we introduce new values for failures from dif-
ferent layers of encapsulation in our semantical domains. These
values are represented as Fi where i ∈ N denotes the encapsula-
tion level. To obtain a dcpo, we impose an order on these values,
defined by Fi v Fj ⇔ i ≤ j, and add an artificial greatest el-
ement F∞, i.e., Fi v F∞ for all i ∈ N. In order to keep our
definitions simple, we identify ⊥ with F0. Furthermore, we refer
to Fi with i > 0 as finite failure in the following.

Note that the element ⊥, usually interpreted as non-termination,
is the least element in the domain of failures and, therefore, holds
less information than any finite failure. Such an “undefinedness” or
“absence of information” element is usually introduced to model
lazy or non-strict functions (see also CRWL [12]). Due to our
requirement to treat different encapsulation levels in a functional
logic computation, we must also treat different levels of “unde-
finedness” in order to encapsulate the appropriate value sets.2 There-
fore, we also add undefined elements Ui for all encapsulation lev-
els i ∈ N to our semantical domains. These undefined values are
only comparable with ⊥, i.e., ⊥ v Ui for all i ∈ N.

2We present a motivating example for this quite technical issue in
Section 5.

⊥

U1U2

F1

F∞

D
finite failures

undefined values

Figure 3: Structure of a dcpo D lifted by (·)F

As finite failures or undefined values are supposed to be valid
inputs for functions and elements in lists, we provide a modified
version of the semantics of types that includes all F- and U-values:

JBoolKF = {True,False}F
JNatKF = NF

J[τ ]KF = lfp(λS.{[ ]} ∪ {a : b | a ∈ JτKF , b ∈ S}F)

Jτ1 → τ2KF = {f : Jτ1KF→PH(Jτ2KF) | f continuous}F

In this semantics, the new lifting function (·)F extends a dcpo with
finite failures, undefined values, and a least element. The order on
the lifted domain is as described above. Note that finite failures
are incomparable to any element of the unlifted dcpo. Figure 3
shows the structure of a dcpo after the lifting. In this modified
type semantics, lists can also contain finite failures and different
representations of undefined values. Functions are allowed to yield
finite failures and different representations of undefined values as
results.

4.2 Semantics of Expressions
After adjusting the semantical domains, we are ready to assign

denotations to expressions. As in [11], the semantic function J·Kτ,nσ
is a family of functions where the environment σ maps expression
variables to semantic values.3 The index τ indicates the type of the
argument of the semantic function. Subsequently, we omit the type
index if it is not relevant. The additional index n, not present in
[11], identifies different levels of nested encapsulations.

For given σ, τ and n, J·Kτ,nσ maps an expression of type τ (deter-
mined by type inference) to elements ofPH(JτKF). Figure 4 shows
the defining equations of TFLC’s expression semantics. In contrast
to [11], the elements of the Hoare powerdomain may contain fi-
nite failures as well as different representations of undefined values
and must contain⊥, which also entails changes to the semantics of
expressions.

As mentioned before, the elements of the Hoare powerdomain
are Scott-closed sets. We ensure this property by the down-closure
operation (·)↓. The down-closure is defined for every A ⊆ D,
where (D,v) is a dcpo, as

A↓ = {x ∈ D | ∃y ∈ A. x v y}

For instance, {True}↓ = {True,⊥}, {F2}↓ = {F2,F1,⊥}
and {U2}↓ = {U2,⊥} w.r.t. the structure shown in Figure 3.

Because ⊥ is now part of our dcpos, in contrast to the seman-
tics defined in [11], a separate handling of σ(x) = ⊥ is no longer
necessary in the case of an expression variable. For the same rea-
son, we now need to down-close the sets on the right-hand side of

3By σ[x 7→ a] we denote the modification of the environment σ
where x is mapped to the semantic value a.



JxKiσ = {σ(x)}↓ JnKiσ = {n}↓

JTrueKiσ = {True}↓ JFalseKiσ = {False}↓

JNilτ Kiσ = {[ ]}↓ JCons(e1, e2)Kiσ =
⊔

h∈Je1Kiσ

⊔
t∈Je2Kiσ

{h : t}↓

Junknownτ Kiσ = JτK Jfailedτ Kiσ = {Fi}↓

Je1 + e2Kiσ =
⊔

a∈Je1Kiσ

⊔
b∈Je2Kiσ

{a +F b}↓

Je1 ? e2Kiσ = Je1Kiσ ∪ Je2Kiσ

JfKiσ = {λa1. . . . {λan. JeKiσ[xn 7→an]
}↓ . . .}↓ with f :: τ ; f(xn) = e in P

Japply(e1, e2)Kiσ =
⊔

f∈Je1Kiσ

⊔
a∈Je2Kiσ

(f $ a) with f $ a =


{Fj}↓ if f = Fj

{Uj}↓ if f = Uj

f a otherwise

Jcase e of {Nil→ e1;Cons(x1, x2)→ e2}Kiσ =
⊔

t∈JeKiσ


{Fj}↓ if t = Fj

{Uj}↓ if t = Uj

Je1Kiσ if t = [ ]

Je2Kiσ[x1 7→t1,x2 7→t2]
if t = t1 : t2

Jcase e of {True→ e1;False→ e2}Kiσ =
⊔

t∈JeKiσ


{Fj}↓ if t = Fj

{Uj}↓ if t = Uj

Je1Kiσ if t = True

Je2Kiσ if t = False

Jlet x :: τ = e1 in e2Kiσ =
⊔

t∈Je1Kiσ
Je2Kiσ[x 7→t]

Figure 4: Adjusted denotational semantics for TFLC expressions

some of the equations. In non-failure cases, only ⊥ and values in-
cluding ⊥ but no finite failures are added to the set (according to
the ordering shown in Figure 3). However, if there is a failure Fj
present, then all Fi with i < j are added. Since we can no longer
rely on the property that the base operation + is only applied to
non-failure arguments, we use its strict extension +F , which yields
the leftmost failure or undefined value, if one of the arguments of
+F is a failure or undefined, and behaves like + otherwise. A free
variable, denoted by unknownτ , represents all values of its type.
Therefore, we can simply use the type semantics defined earlier to
specify the semantics of a free variable. Note that we use the ver-
sion of the type semantics that contains no finite failures, since a
free variable that produces all kinds of finite failures would behave
quite awkwardly. A finite failure with index iwould not necessarily
stem from the i-th layer of encapsulation in this case.

Up to now, the index i of the semantic function had no influence
on the semantics of expressions (except for failedτ where we use
this index to identify the encapsulation level in the failure values).
However, the semantics of allValues depends on the index. We
define it as follows:

JallValues(e)K{τ},iσ =


S↓ if S ⊆ {Fi}↓
L if Uj ∈ S for some j
{〈S〉,⊥} otherwise

(1)

where S = nf τ (JeKi+1
σ′ )

L = {Uj | Uj ∈ S, j < i} ∪ {⊥}
σ′(x) = trUi(σ(x)) for all x occurring in e

The definition requires some explanation: For every dcpo (D,v)
and A ⊆ D, 〈A〉 denotes the set of the compact (i.e., finite) el-
ements in A that are maximal in D (w.r.t. v). The argument to

allValues is evaluated under an environment σ′ obtained by a
manipulation of σ. In particular, we restrict it to the variables oc-
curring in the encapsulated expression and replace all occurrences
of ⊥ in the image of σ by Ui. The manipulation allows us to
distinguish undefined values coming from the environment from
undefined values originally in the encapsulated expression. It can
be formalized by the mapping trUi on semantic values defined as
follows:

trUi(⊥) = Ui

trUi(t) = t if t ∈ {True,False, [ ]} ∪ N
trUi(t) = trUi(t1) : trUi(t2) if t = t1 : t2

Note that this mapping is undefined for functional values, i.e., we
do not define the behavior of allValues when functional values
are passed inside the encapsulated expression.4 Finally, the normal
form function nf represents the complete evaluation of its argu-
ment and is defined as the set lifting of nf ′, where

nf ′
Bool(t) = t

nf ′
Nat(t) = t

nf ′
[τ ](t) =


nf ′

τ (t1) if t = t1 : t2 ∧ nf ′
τ (t1) ∈ F

nf ′
[τ ](t2) if t = t1 : t2 ∧ nf ′

τ (t1) 6∈ F
∧ nf ′

[τ ](t2) ∈ F
t otherwise

where F = {F∞}↓ ∪ {Ui | i ∈ N}

Thus, this definition specifies that the first failure which might oc-
cur when evaluating nested structures from left to right is returned,
4Although the implementation of allValues sketched in Section 6
can handle functions, we were not able to define an adequate deno-
tational semantics for it.



similarly to the evaluation of base operations like + (see above).
In order to motivate our definition of the semantics for the prim-

itive allValues in more detail, let us recall the properties of this
encapsulation primitive we are heading for (see Section 3). First of
all, we do not want to encapsulate non-determinism that is intro-
duced outside the capsule. This requirement is satisfied since non-
deterministic choices outside the capsule lead to different variable
bindings and environments σ which are passed to compute the val-
ues of the encapsulated expression. Therefore, non-deterministic
choices from outside are not visible inside a capsule.

Similarly to the case of non-determinism, failures that are intro-
duced outside a capsule should have no effect on the encapsulation
behavior (see Section 3.4). This is ensured since failures are treated
like values in the semantics. We use the index i to distinguish
failures from the outside from those introduced inside the capsule.
This index denotes the nesting level of encapsulation of the current
expression. A finite failure failedτ is mapped to the element in
the failure domain that corresponds to this level, i.e., the one with
the same index (see the definition of the semantics of failedτ in
Figure 4). To relate the nesting index i to the actual nesting level,
the encapsulated expression e in allValues(e) is evaluated with
an increased index i + 1, as defined in equation (1) of the defini-
tion of allValues. The normal form function nf is used to ensure
the requirement for normal form encapsulation (see Section 3.1). It
maps a semantic value either to itself, if it is a defined value, or to
the leftmost failure or undefined value within the semantic value.

In the defining equation (1), we distinguish three cases:

1. If the resulting set contains only failures from outside the
encapsulated expression, i.e., with indices less or equal to
i, then the set representing the greatest of these failures is
returned.

2. If the resulting set contains some undefined value from the
environment, i.e., some Uj , then all undefined values are
returned except for those introduced in the current encapsu-
lation. By this mechanism, undefined values of enclosing
encapsulations are kept.5

3. Otherwise, the set containing the set of all maximal and com-
pact elements of the resulting set is returned.

It should be noted that, since the result of allValues is intended
to be a set, allValues returns sets as semantic values. To fit these
sets into our framework, we need to extend the semantics and the
normal form function for the set type:

J{τ}K = (P(〈JτK〉))⊥
J{τ}KF = (P(〈JτK〉))F

nf ′
{τ}(t) = t

To make the domain of sets a dcpo, we impose the discrete order
on it. As before, ⊥ is added as the least element and in the latter
type semantics finite failures and undefined values are added.

Finally, we have to specify the semantics for the set operations
size, isEmpty, and minimum. Their definitions are straight-
forward:

Jsize(e)Kiσ =
⊔

t∈JeKiσ


{Fj}↓ if t = Fj

{Uj}↓ if t = Uj

{|t|}↓ if t is a finite set
{⊥} otherwise

5An example showing the need for this special treatment of unde-
fined values is given in Section 5.

JisEmpty(e)Kiσ =
⊔

t∈JeKiσ


{Fj}↓ if t = Fj

{Uj}↓ if t = Uj

{True}↓ if t = ∅
{False}↓ otherwise

Jminimum(e)Kiσ =
⊔

t∈JeKiσ


{Fj}↓ if t = Fj

{Uj}↓ if t = Uj

{min(t)}↓ if t is a finite set
{⊥} otherwise

Here |A| denotes the cardinality of set A. For “min”, False is
smaller than True, the ordering on naturals is the usual one and
the ordering on lists is the lexicographical ordering. In general
an ordering is imposed to user-defined data types by using a lex-
icographical ordering where constructors that are defined first are
always smaller than constructors that are defined later.

Note that allValues might have an infinite value set as a re-
sult. However, only the operation isEmpty can deliver a result on
infinite value sets.

5. EXAMPLES
To demonstrate the application of our semantics and to again

highlight the intended behavior of encapsulated search, in this sec-
tion we calculate the denotational semantics for a number of exam-
ple programs. Due to [11, Lemma 4.5 – 4.7], it suffices in most
cases to calculate with the maximal elements of a Scott-closed set
and to treat

⊔
as set union. The validity of this property is not

obvious for allValues, but, as the examples show, is retained by
the transformation trUi performed on values that are passed inside
allValues.

The semantics of the expression allValues(coin) can be com-
puted as follows:

JcoinKi∅ = J0 ? 1Ki∅ = J0Ki∅ ∪ J1Ki∅
= {0,⊥} ∪ {1,⊥}
= {0, 1,⊥}

JallValues(coin)Ki∅ = {〈{0, 1,⊥}〉,⊥} = {{0, 1},⊥}

As intended, the result is the down-closed set that contains the set
{0, 1}. The weak encapsulation behavior is demonstrated by the
following example from Section 3.2:

Jlet x :: Nat = coin in allValues(x)Ki∅
=

⊔
t∈JcoinKi∅

JallValues(x)Ki[x7→t]

= JallValues(x)Ki[x7→0] ∪ JallValues(x)Ki[x 7→1]

∪ JallValues(x)Ki[x 7→⊥]

= {〈{0,⊥}〉,⊥} ∪ {〈{1,⊥}〉,⊥} ∪ {⊥}
= {{0}, {1},⊥}

The calculation of JallValues(x)Ki[x 7→⊥] is the most interesting
in the equation above. According to the definition of the semantic
function, we need to calculate nf Nat(JxK

i+1
[x 7→Ui]

) first:

nf Nat(JxK
i+1
[x 7→Ui]

) = nf Nat({Ui,⊥}) = {Ui,⊥}

As Ui is contained in the set that we just calculated, the second
rule of the semantics of allValues is used and, therefore, we get
the result {Uj |Uj ∈ {Ui,⊥}, j < i} ∪ {⊥} = {⊥}.

The next examples show the results of our semantics when fail-
ures and non-determinism are combined with encapsulated search.



Without a precise semantics, the results of such expressions are un-
clear. We consider the following expressions:

let x = failedBool in allValues(x ? True) (2)
let x = failedBool in allValues(x ? failedBool) (3)

We first calculate the semantics of the common part of both expres-
sions, leaving the argument to allValues, named e in the follow-
ing, unspecified.

Jlet x = failedBool in allValues(e)K1∅
=

⊔
t∈JfailedBoolK1∅

JallValues(e)K1[x 7→t]

=
⊔

t∈{F1}↓

JallValues(e)K1[x 7→t]

= JallValues(e)K1[x 7→F1]
∪ JallValues(e)K1[x7→⊥]

To proceed with the calculation, we substitute e by a concrete ex-
pression. To calculate the semantics of expression (2), we choose
e = x ? True:

JeK2[x 7→F1]
= Jx ? TrueK2[x 7→F1]

= JxK2[x7→F1]
∪ JTrueK2[x 7→F1]

= {F1}↓ ∪ {True}↓
= {F1,True}↓

This result is left unchanged by nf Bool. Thus, we meet the third
case of the semantic definition of allValues and obtain

JallValues(e)K1[x 7→F1]
= {〈{F1,True}〉,⊥} = {{True},⊥}

since F1 is not maximal w.r.t. our ordering. Similarly, we calcu-
late the semantic value of JallValues(e)K1[x7→⊥] where we have to
change the environment [x 7→ ⊥] to [x 7→ U1] according to the
definition of allValues:

JeK2[x 7→U1]
= · · · = {U1,True}↓

Again, the result is left unchanged by nf Bool so that we meet the
second case of the semantic definition of allValues and obtain

JallValues(e)K1[x7→U1]
= {⊥}

Thus, we get {{True},⊥} as the semantics of the expression (2).
In the same manner, we can calculate the semantics of the ex-

pression (3) and substitute e by x ? failedBool: From

JeK2[x 7→F1]
= Jx ? failedBoolK2[x 7→F1]

= JxK2[x 7→F1]
∪ JfailedBoolK2[x7→F1]

= {F1}↓ ∪ {F2}↓
= {F2}↓

we obtain JallValues(e)K1[x 7→F1]
= {〈{F2}〉,⊥} = {{},⊥} by

the third case of the definition of allValues. Similarly, we have

JeK2[x7→U1]
= · · · = {U1,F2}↓

so that we obtain

JallValues(e)K1[x7→U1]
= {⊥}

by the second case of the definition of allValues. Altogether, we
get {{},⊥} as the semantics of the expression (3), i.e., the fail-
ure inside allValues is encapsulated and contributes to an empty

failure set. This would not be the case for the expression

Jlet x = failedBool in allValues(x)K1∅

which has the semantic value {F1}↓, i.e., it fails instead of return-
ing some value set.

However, if we encapsulate this expression by another outer call
to allValues, we get the following:

JallValues(let x = failedBool in allValues(x))K1∅ = {{},⊥}

The result is the set with the empty value set as element, since now
the failure is introduced inside the outer allValues and, thus, the
third rule of the semantics of allValues is used.

The next example demonstrates the need for the different rep-
resentations of undefined values in our semantics. Consider the
following calculation:

Jlet x = False in allValues(x ? True)K1∅
=

⊔
t∈JFalseK1∅

JallValues(x ? True)K1[x 7→t]

= JallValues(x ? True)K1[x 7→False]

∪ JallValues(x ? True)K1[x 7→⊥]

= {{True,False},⊥} ∪ {⊥}

because we have

Jx ? TrueK2[x7→False] = {True,False,⊥}

and

Jx ? TrueK2[x 7→U1]
= {U1,True,⊥}

Note that, without our special treatment of encapsulated “unknown”
values by introducing Ui in our semantic definition of allValues,
we would have obtained the unintended semantics

{{True,False}, {True},⊥}

for this expression. This shows the motivation for our domain struc-
ture shown in Figure 3. Nevertheless, the construction of other do-
mains with a simpler definition is an interesting topic for future
work.

In Section 3.4 we considered the encapsulation of failing compu-
tations and argued that the evaluation of consP(failed[Nat]) should
fail. In order to calculate the semantics of consP(failed[Nat]), we
need to calculate the semantics of the function nilP applied to a
variable that is bound to a finite failure from a lower level of encap-
sulation. Note that the finite failure has index 1 and the semantic
function is indexed by 2.

JnilP(z)K2[z 7→F1]

=
⊔

f∈JnilPK2
[z 7→F1]

⊔
a∈JzK2

[z 7→F1]

(f $ a)

= λa1.

u

v
case x of
{Nil→ True
;Cons(y, ys)→ failedBool}

}

~
2

[z 7→F1,x 7→a1]

$ F1

=

s
case x of {Nil→ True

;Cons(y, ys)→ failedBool}

{2

[z 7→F1,x 7→F1]

= {F1,⊥}

Since z is bound to a finite failure, the pattern matching in the body
of nilP just returns this finite failure.



When we apply our encapsulation primitive allValues to the
expression nilP(z), the failure is returned but not encapsulated,
since the failure is introduced outside the capsule:

JallValues(nilP(z))K1[z 7→F1]
= {F1,⊥}

Here the first case of the definition of allValues is used.
As we always calculate with down-closed sets, we also need to

pass ⊥ through the variable z. In this case, due to our transforma-
tion on the environment, we need to calculate

JnilP(z)K2[z 7→U1]
= {U1,⊥}

and with the second case of the semantics of allValues and

{Uj |Uj ∈ {U1,⊥}, j < 1} ∪ {⊥} = {⊥}

the result of JallValues(nilP(z))K1[z 7→⊥] is {⊥}.
Now we are ready to calculate the semantics of our initial ex-

pression:
q

consP(failed[Nat])
y1

∅ =
⊔

f∈JconsP K1∅

⊔
a∈Jfailed[Nat]K1∅

(f $ a)

= λa1. JisEmpty(allValues(nilP(z)))K1[z 7→a1]
$ F1

∪ λa1. JisEmpty(allValues(nilP(z)))K1[z 7→a1]
$ ⊥

= JisEmpty(allValues(nilP(z)))K1[z 7→F1]

∪ JisEmpty(allValues(nilP(z)))K1[z 7→⊥]

=
⊔

t∈JallValues(nilP(z)))K1
[z 7→F1]


{Fj}↓ if t = Fj

{Uj}↓ if t = Uj

{True}↓ if t = ∅
{False}↓ otherwise

∪
⊔

t∈JallValues(nilP(z)))K1
[z 7→⊥]


{Fj}↓ if t = Fj

{Uj}↓ if t = Uj

{True}↓ if t = ∅
{False}↓ otherwise

= {F1}↓ ∪ {⊥}
= {F1,⊥}

As mentioned in the introduction, we can also show that partic-
ular program transformations used in purely functional languages
are no longer valid in the presence of allValues. For instance,
Peyton Jones et al. [24] argue that, for efficiency reasons, a com-
piler should be able to change the order of evaluation. In particular,
the following two expressions should be interchangeable by a com-
piler:

case x of
(a,b) → case y of

(c,d) → e

case y of
(c,d) → case x of

(a,b) → e

The first expression enforces the evaluation of x before y. In the
second expression the pattern matchings are switched and, thus,
y is evaluated before x. A similar transformation is proposed in
[13] to improve the performance of the Curry system KiCS2 [6].
However, we can show that this transformation is not semantics-
preserving if calls to allValues occur in the transformed expres-
sions. For this purpose, consider two binary functions g1 and g2.
Both functions perform pattern matching by means of case expres-
sions on both of their arguments. The only difference is that g1

evaluates its first argument first while g2 evaluates its second argu-
ment first. Hence, we get

Jg1(x, y)Ki+1
[x 7→Fi,y 7→Fi+1]

= {Fi}↓

Jg2(x, y)Ki+1
[x 7→Fi,y 7→Fi+1]

= {Fi+1}↓

Consequently, exchanging g1 and g2 in some expression encapsu-
lated by allValues might turn a correct result into a failure or vice
versa. For example, we have the following semantic value (type
annotations and the passing of ⊥ into allValues are omitted):

Jlet x = failed in allValues(g1(x, failed))Ki∅
=

⊔
t∈JfailedKi∅

JallValues(g1(x, failed))Ki[x7→t]

= JallValues(g1(x, failed))Ki[x 7→Fi]

= {Fi}↓

Here the first case of allValues is used since the result of g1 is the
failure passed from outside.

However, replacing g1 by g2 yields a different semantic value:

Jlet x = failed in allValues(g2(x, failed))Ki∅
=

⊔
t∈JfailedKi∅

JallValues(g2(x, failed)Ki[x 7→t]

= JallValues(g2(x, failed)Ki[x 7→Fi]

= {{},⊥}

Here the third case of allValues is used, because the result of g2
is the failure that is introduced inside the argument.

6. IMPLEMENTATION
In the following we sketch an implementation of encapsulated

search based on the presented semantics. The implementation is
available in the form of set functions in the current release of KiCS2
[16]. For the sake of simplicity, we omit some details.

The Curry implementation KiCS2 translates Curry programs into
purely functional Haskell programs. The generated Haskell pro-
grams represent the search space, i.e., the non-deterministic results
of a computation, as a tree-like data structure. Curry provides an
encapsulation operator getSearchTree, which returns a repre-
sentation of this search space. A search strategy can be defined as
a tree traversal of this representation. For instance, KiCS2 already
provides depth-first, breadth-first, iterative deepening, and parallel
search. Due to the demand-driven evaluation strategy, one can also
deal with infinite search trees as long as one is interested only in
some finite parts of them. A detailed description of the compilation
scheme of KiCS2 together with some benchmarks can be found
in [6]. In the following, we shortly recapitulate some of the con-
cepts that are necessary to understand the implementation of weak
encapsulation according to our semantics.

To represent non-deterministic results in a data structure, KiCS2
extends each data type of the source program by constructors rep-
resenting a choice between two values and a failure. The latter is
necessary since, in functional logic programs, failures are not run-
time errors (as in Haskell) but can be constructively used in pro-
grams, as shown in Section 3.4. For instance, the Curry data type
for the Boolean values (True, False) is translated into the Haskell
data type6

6Actually, the KiCS2 compiler performs some renamings to avoid
name conflicts.



data Bool = True | False
| Choice Bool Bool | Fail

where Fail represents a failure and (Choice t t’) a non-
deterministic choice between two values t and t’.7 For instance,
an expression like (True ? False) will be evaluated to
(Choice True False)

In the following we use the fonts from Section 2 when we refer
to Curry syntax (True, nilP ) and use a different font to refer to
Haskell syntax (True, nilP).

To show the usage of the Fail constructor, we consider the op-
eration nilP defined in Section 3.4. This operation will be trans-
lated into the following Haskell code where the list data type is
translated similarly to the Boolean data type:
nilP :: List → Bool
nilP Nil = True
nilP (Cons y ys) = Fail
nilP (Choice t t’) = Choice (nilP t) (nilP t’)
nilP Fail = Fail

Hence, nilP evaluates to Fail if it is applied to a Cons or some
failure, and a non-deterministic choice in an argument is moved to
the result level (this is also called a “pull-tab” step in [2]).

To provide an implementation scheme for allValues, we as-
sume an abstract data type {a} representing sets with elements
of type a and we write {x1, . . . , xn} to construct a set with ele-
ments x1, . . . , xn. For the sake of brevity, we use an imaginary
pattern {..} to perform pattern matching on sets. This pattern
matches either an empty or a non-empty set. We start with a naïve
definition of allValues for Boolean expressions in our target lan-
guage Haskell that does not distinguish between non-determinism
and failures introduced outside or inside the encapsulation primi-
tive. Thus, it implements strong encapsulation. Later we refine its
implementation to achieve the behavior proposed in this paper:
allValues :: Bool → {Bool}
allValues True = {True}
allValues False = {False}
allValues (Choice t t’) = union (allValues t)

(allValues t’)
allValues Fail = {}

The operation allValues applied to a Boolean value just re-
turns the singleton set that contains that value. If the argument
is a choice, allValues is applied to both of its branches and the
union of the results is returned. A failing computation has no re-
sults, thus, allValues applied to the Fail constructor yields
the empty set.

To achieve weak encapsulation and to be able to handle finite
failures as intended, we have to distinguish non-determinism and
failures that are introduced outside the primitive allValues from
those that are introduced inside. Therefore, the Choice and the
Fail constructors both get an extra argument to identify the en-
capsulation level8.

For instance, the representation of Booleans in Haskell changes
to the following code:
data Bool = True | False

| Choice Int Bool Bool | Fail Int

7In the actual implementation described in [6], each Choice con-
structor has an additional argument to identify choices stemming
from the same subexpression in order to correctly implement call-
time choice semantics [19]. Since this aspect is outside the scope
of this paper, we omit it here.
8The idea of decorating choices to implement weak encapsulation
is due to [7]. However, that implementation does not cover failures
which leads to unintended results.

Additionally, every function is supplied with an argument that de-
notes the encapsulation level that is active when the function is ap-
plied:
nilP :: List → Int → Bool
nilP Nil _ = True
nilP (Cons y ys) enc = Fail enc
nilP (Choice d t t’) enc = Choice d (nilP t enc)

(nilP t’ enc)
nilP (Fail d) _ = Fail d

When Fail and Choice constructors are created (as in the sec-
ond equation), they get the current encapsulation level that is passed
to the function via the aditional argument of type Int. The levels
of already existing Fail and Choice constructors are retained
(as in the third and fourth equation).

To increase the nesting level for non-determinism and failures
that are introduced inside an encapsulated expression, we use a
source code transformation. It is applied to every subexpression
of an encapsulated expression by transforming every source code
expression allValues(e) into
(allValues e′ (enc + 1))

where e′ is obtained from e by replacing every function application
f(x) in e by f x (enc + 1)), where enc is the encapsulation
level in which the surrounding context is evaluated. For example, a
function declaration

f(x) = allValues(g(allValues(h(x)), x))

is transformed to
f x enc =
allValues (g (allValues (h x ((enc + 1) + 1))

((enc + 1) + 1))
(enc + 1))

(enc + 1)

In order to distinguish non-determinism and failures introduced in-
side from those introduced outside, we refine the implementation of
allValues in order to check if the encapsulation level is equal to
the current encapsulation level (introduced inside) or smaller (in-
troduced outside). Rules that have not changed are omitted.
allValues (Choice d t t’) enc
| d = enc = union (allValues t enc)

(allValues t’ enc)
| otherwise = Choice d (allValues t enc)

(allValues t’ enc)
allValues (Fail d) enc
| d = enc = {}
| otherwise = Fail d

If the encapsulation level is equal to the current level, then non-
determinism and failures are encapsulated as before. Otherwise,
the non-determinism and failures are preserved and the result is a
non-deterministic choice between two sets or a failure, respectively.

The above implementation handles non-determinism and finite
failures correctly w.r.t. weak encapsulation. To ensure the com-
pleteness of results property discussed in Section 3.3, we imple-
ment the union operation as follows:
union (Fail d) (Fail d’) = Fail (max d d’)
union s@{..} s’ = union’ s s’
union (Fail d) s@{..} = s
union f@(Fail _) (Choice d t t’)

= Choice d (union f t)
(union f t’)

union (Choice d t t’) s = Choice d (union t s)
(union t’ s)

If both arguments are failures, the one with the greater encapsu-
lation level is retained since this one will yield the most defined
value. The pattern s@{..} matches a—possibly empty—set that



is neither a choice nor a failure and binds the set to the variable
s. If one argument of union is such a set, the result must contain
all elements of this set. Hence, union’, used in the second rule,
lazily computes the union of two sets while ignoring any failure in
its second argument. Choice constructors are propagated to the
top.

This definition is closely related to the semantics of allValues
from Equation 1. The first case of the semantics is used if there
are only finite failures that stem from outside. Then the result is
the down-closed set of all finite failure values. This set is a repre-
sentative for the greatest of those failures. In our implementation
this behavior is achieved by calculating the maximal failure in the
first rule of union. The third case of the semantics state that, if
there is a non-failure value or a failure that is introduced inside
allValues in the semantics of the argument, then the result is the
possibly empty set containing all these non-failure values. In the
implementation, allValues creates singleton sets for non-failure
values and the empty set for failures that stem from inside. Then
the union function ignores failures if any of its arguments is a set.
The second case of allValues and the U values have no corre-
spondence in the implementation since those only had to be added
for the correct handling of the Scott-closed sets w.r.t. allValues.

For the sake of simplicity, we have defined allValues for
Booleans only. The same scheme can be used for other (non-
functional) types. If structured types, like lists, occur, one has to
compute the normal form of the encapsulated expression (see Sec-
tion 3.1) by applying the normal form operator ($!!) [18].

To demonstrate the behavior of our implementation, consider the
example from Section 3.4. The function consP is transformed to
Haskell as follows:
consP z enc = isEmpty (allValues (nilP z (enc + 1))

(enc + 1)
enc

When we apply consP to a finite failure, here denoted by failed,
and an initial encapsulation level 0, we get the following evalua-
tion:
consP (failed 0) 0

⇒ isEmpty (allValues (nilP (failed 0) 1) 1) 0
⇒ isEmpty (allValues (nilP (Fail 0) 1) 1) 0
⇒ isEmpty (allValues (Fail 0) 1) 0
⇒ isEmpty (Fail 0) 0
⇒ Fail 0

As intended, the result is a finite failure rather than the value True.
Since the additional argument for the encapsulation level is added

to every function in the generated Haskell program, the reader might
wonder if programs that do not make use of encapsulated search are
unnecessarily slowed down. However, our benchmarks that com-
pare implementations with and without the additional argument for
a number of such programs show no differences in the execution
time.

7. CONCLUSION AND RELATED WORK
In this paper we presented the first formal semantics for a primi-

tive to encapsulate non-deterministic computations in a weak man-
ner. Weak encapsulation is intended to distinguish non-determin-
istic and failing computations inside and outside the capsule. This
distinction is essential to obtain a modular semantics for encap-
sulation. We analyzed the various alternatives and requirements
(normal form encapsulation, completeness of results, weak encap-
sulation of non-deterministic and failing computations) before we
proposed an encapsulation primitive with an appropriate denota-
tional semantics. As an application of our semantics, we showed
that a program transformation used in purely functional languages

is not semantics preserving in our extended language framework.
An early and quite flexible approach to encapsulated search in

a multi-paradigm language has been proposed for Oz [26]. This
proposal is based on a primitive operator to evaluate an expression
until a non-deterministic step occurs. In this situation, the different
expressions are returned so that the programmer can decide how
to proceed with the different non-deterministic expressions. Based
on this primitive, one can define and implement different search
strategies. This proposal also influenced early proposals for encap-
sulated search in functional logic languages [17]. Unfortunately,
the complications due to lazy evaluation and sharing were not real-
ized (and they are also not covered by Oz due to its strict semantics)
so that later proposals refined these aspects in various ways [5, 8,
9, 17, 20, 21].

The Curry compiler MCC [22] provides a weak encapsulation
primitive, called findall [21], but lacks a formal foundation.
Moreover, Braßel et al. [8] point out that apparently equal expres-
sions yield different results with this primitive.

An operational semantics for a strong encapsulation operator
getSearchTree was presented in [8]. Since strong encapsu-
lation is known to depend on the evaluation order in specific cases,
the authors proposed to disallow these cases by means of program
analysis. In a subsequent work [9], Braßel and Huch presented a
simplified operational semantics for getSearchTree that fea-
tures sharing across non-deterministic computations.

Computations with failures in functional logic programs have
also been considered in [20]. The authors define the semantics of
an operator to check finitely failed computations by an extension of
the rewriting calculus CRWL [12]. However, they do not provide
an operator to collect all non-failing results as it is presented here.

Antoy and Hanus [5] proposed set functions to express encapsu-
lated search. Set functions can be considered as weak encapsula-
tion that is restricted to encapsulate the body of function definitions.
This restriction does not limit their expressiveness but rather eases
the comprehension of encapsulation. While the properties of set
functions have guided our design of allValues, Antoy and Hanus
did not specify the semantics of set functions in the presence of
finite failures or nested applications.

Braßel [7] presented an implementation idea for set functions.
While this idea conforms with the specification of set functions,
its treatment of finite failures does not conform with the intended
results of the motivating example given by Antoy and Hanus [5].
This motivated the work presented in this paper where we devel-
oped a comprehensive specification of weak encapsulation. Our
specification builds the foundation of a practical implementation of
set functions that is available in the current release of KiCS2 [16].
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