
Conditional Narrowing without Conditions∗

Sergio Antoy
Department of Computer Science

Portland State University
P.O. Box 751, Portland, OR 97207, U.S.A.

antoy@cs.pdx.edu

Bernd Brassel Michael Hanus
Institut für Informatik

Christian-Albrechts-Universität Kiel
Olshausenstr. 40, D-24098 Kiel, Germany

Phone: +49-431/880-7271 / Fax: +49-431/880-7613

{bbr,mh}@informatik.uni-kiel.de

ABSTRACT
We present a new evaluation strategy for functional logic programs
described by weakly orthogonal conditional term rewriting sys-
tems. Our notion of weakly orthogonal conditional rewrite system
extends a notion of Bergstra and Klop and covers a large part of pro-
grams de£ned by conditional equations. Our strategy combines the
¤exibility of logic programming (computation of solutions for logic
variables) with ef£cient evaluation methods from functional pro-
gramming. In particular, it is the £rst known narrowing strategy for
this class of programs that evaluates ground terms deterministically.
This is achieved by a transformation of conditional term rewriting
systems (CTRS) into unconditional ones which is sound and com-
plete w.r.t. the semantics of the original CTRS. We show that the
transformation preserves weak orthogonality for the terms of inter-
est. This property allows us to apply a relatively ef£cient evalu-
ation strategy for weakly orthogonal unconditional term rewriting
systems (parallel narrowing) on the transformed programs.

Categories and Subject Descriptors
D.1.1 [Programming Techniques]: Applicative (Functional) Pro-
gramming; D.1.6 [Programming Techniques]: Logic Program-
ming; F.4.2 [Mathematical Logic and Formal Languages]:
Grammars and other Rewriting Systems; I.2.2 [Automatic Pro-
gramming]: Program Transformation

General Terms
Languages, Theory

Keywords
Functional Logic Programming, Narrowing, Evaluation Strategies,
Conditional Rewriting

∗This research has been partially supported by the DAAD/NSF
grant INT-9981317, the German Research Council (DFG) grant Ha
2457/1-2 and the NSF grants CCR-0110496 and CCR-0218224.

In Proc. of the 5th International ACM SIGPLAN Conference on
Principle and Practice of Declarative Programming (PPDP’03), pp.
20–31, Uppsala, Sweden, August 27–29, 2003.
c©2003 ACM. Permission to make digital or hard copies of part or

all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for pro£t or
commercial advantage and that copies bear this notice and the full
citation on the £rst page. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior speci£c permission
and/or a fee.

1. MOTIVATION
Functional logic programming is an approach to combine the

best features of functional and logic programming in a single pro-
gramming model. A reasonable functional logic language should
combine the (functional programming) idea of ef£cient evaluation
by demand-driven and deterministic reduction, if possible, with the
¤exibility of logic programming by dealing with logic variables,
partial data structures, and goal solving (see [18] for a survey on
functional logic programming). Many language proposals (see, for
instance, [18, 21, 26, 28, 35, 34]) have shown that such a combi-
nation is possible in principle. However, the choice of a “good”
evaluation strategy is a crucial point in this combination. Simple
narrowing calculi support completeness for large classes of pro-
grams but are often not an appropriate basis for a good evaluation
strategy (compare also the discussion in [2] on this topic). On the
other hand, sophisticated narrowing strategies have often stronger
restrictions on the programs. For instance, innermost narrowing
strategies require the termination of the rewrite relation in order
to ensure completeness. Clearly, a termination requirement is too
strong for practical programming since it inhibits the formulation
of some programs (e.g., interpreters).1 Needed narrowing [5] is a
sound, complete, and optimal strategy for the class of inductively
sequential programs [1] where functions are de£ned by induction
on the term structure and can be evaluated sequentially. This class
is also characterized as the strongly sequential constructor systems
[20]. Although this covers a large part of typical declarative pro-
grams, it excludes functions de£ned by rules with overlapping left-
hand sides (like the classical “parallel or” example). In order to
support the latter kind of function de£nitions, weakly needed nar-
rowing has been proposed [4, 27] which guesses the next reducible
expression (redex) non-deterministically in case of functions de-
£ned by overlapping rules. The amount of nondeterminism is re-
duced in parallel narrowing [4] by guessing only variable instan-
tiations and reducing disjoint outermost redexes in parallel. This
has the positive effect that ground terms are evaluated in a deter-
ministic manner. Weakly needed narrowing and parallel narrowing
have been proved to be complete for the class of weakly orthogonal
(see De£nition 10) constructor-based unconditional term rewriting
systems (TRS).

In this paper we want to exploit the positive properties of parallel
narrowing to develop a new strategy for conditional term rewriting

1Note that strict functional languages are based on innermost re-
duction (and some non-strict constructs like if-then-else) but do not
have a termination requirement since they do not ensure complete-
ness w.r.t. an equational interpretation of the de£ning rules. This
requires a more careful construction of programs in comparison
to languages with more sophisticated evaluation strategies, as dis-
cussed in [19].

systems (CTRS) that is deterministic on ground terms, i.e., inherits
an important property from functional programming. Since we are
interested in programming languages (rather than speci£cation lan-
guages), we do not require terminating TRSs but restrict ourselves
to left-linear and constructor-based TRSs. Without always men-
tioning this explicitly, we assume that all considered TRSs belong
to this class. The class of CTRSs is of considerable interest since
it is often natural to express functions by the use of conditions as
shown in the following example.

EXAMPLE 1. Conditional TRS for the absolute value

abs(x) → x if x ≥ 0
∗
→ true

abs(x) → −x if x < 0
∗
→ true

The question is how to deal with the evaluation of conditions. In
the deterministic world of functional programming, conditions are
normally tested in a sequential if-then-else style. This works well
for many functions, like abs. However, problems arise when the
test of some (but not all) of the conditions might lead to in£nite
computations. To understand this problem, refer to the next exam-
ple.

EXAMPLE 2. A specialized multiplication

gmult(x, y)→ 0 if g(x)
∗
→ 0

gmult(x, y)→ 0 if g(y)
∗
→ 0

gmult(x, y)→ g(x) ∗ g(y)

if g(x) > 0 ∧ g(y) > 0
∗
→ true

The function in Example 2 specializes the multiplication of terms
that will be processed by the unary function g. It is not necessary
to consider the details of g’s de£nition. It is enough to remark that
the computation of g(x) can be long and tedious (or even in£nite)
for some values of x. Thus, it makes sense to take a “shortcut”
when the result of g(x) ∗ g(y) is known to be 0 before £nishing
the evaluation for both arguments.2 It is intended that gmult has
a well de£ned normal form if possible, even if one of the argu-
ments is unde£ned (e.g., leads to an in£nite computation). Suppose
that g(0)

∗
→ 0 and g(∞) → g(∞), both terms gmult(0,∞) and

gmult(∞, 0) should evaluate to 0.
It is easy to see that no sequential evaluation in a £xed order

can obtain both results. Testing rule one £rst will lead into an in£-
nite computation with the term gmult(∞, 0), while preferring the
second rule does not lead to the desired result in the opposite case
gmult(0,∞).

Logic programming implementations test conditions in a “don’t
know” nondeterministic manner. However, this does not solve
the problem of possible in£nite computations but depends on the
search strategy employed. Using a depth-£rst search (i.e., back-
tracking), the problem is identical to the functional case, since one
has to decide which condition should be evaluated £rst. A breadth-
£rst search gives rise to another problem. Beside being relatively
expensive, a breadth-£rst search would still go on looking for pos-
sible answers after a £rst solution is found, thereby still computing
in£nitely for both terms. Note that this in£nite computation is not
necessary, as the £rst computed answer is the only interesting for
gmult. This is due to the fact that gmult is a weakly orthogonal
CTRS (see De£nition 14 below).
2The apparent loss in ef£ciency because of computing g(x) and
g(y) more than once can easily be remedied by employing a tech-
nique called sharing in the implementation of the functional logic
language. Sharing allows one to de£ne that all the occurrences of
g(x) are identical (share the same value) consequently omitting re-
peated computations.

In this paper we present a different approach which avoids the
described problems and yields the desired semantics. For this pur-
pose, we will transform the conditional program into an uncon-
ditional one and then apply parallel narrowing to the transformed
program. As mentioned above, parallel narrowing keeps the ad-
vantages of functional programming since the strategy works de-
terministically on ground terms. As we shall see, this advantage
will also be present for conditional TRSs due to our transformation.
The source systems of our transformation are the constructor-based
conditional weakly orthogonal term rewriting systems. We impose
an additional condition, De£nition 16, which does not actually re-
strict the source systems. We require that if two rules’ left-hand
sides overlap, then the rules’ left-hand sides are equal (modulo a
renaming of variables). Every source system can be easily trans-
formed to satisfy this additional condition.

This paper is organized as follows. Section 2 gives de£nitions for
some standard notions and clari£es our notation. Section 3 surveys
some former work on transforming conditional TRSs to uncondi-
tional ones and then introduces our own transformation, followed
by proofs of its key properties. In Sections 3 and 4 we apply our
transformation to conditional functional logic programs and prove
that important properties of the conditional programs will be pre-
served by the transformation. These properties enable us to ap-
ply parallel narrowing on the result of our transformation, as we
will show in Section 5. Finally, Section 6 contains our conclusions
along with further discussion of related work based on the results
of sections 3-5.

2. PRELIMINARIES
The following de£nitions are quite standard but necessary to £x

our notations. We de£ne term rewriting, both conditional and un-
conditional, and narrowing together with the necessary notions. We
use the standard notations according to [7, 12, 25].

DEFINITION 1. (Signature, T (Σ,X), Var(t), Ground Term,
Linear Term) A many-sorted signature Σ is a pair (S,Ω) where S
is a set of sorts and Ω is a family of sets of operations of the form
Ω = (Ωw,s|w ∈ S

∗, s ∈ S). Let X = (Xs|s ∈ S) be an S-sorted,
countably in£nite set of variables. Then the set T (Σ,X)s of terms
of sort s built from Σ and X is the smallest set containing Xs such
that f(t1, . . . , tn) ∈ T (Σ,X)s whenever f ∈ Ω(s1,...,sn),s and
ti ∈ T (Σ,X)si

. If f ∈ Ωε,s, we write f instead of f(). T (Σ,X)
denotes the set of all terms. The set of variables occurring in a
term t is denoted by Var(t). A term t is called ground term if
Var(t) = ∅. A term is called linear if it does not contain multiple
occurrences of one variable. In the following, Σ stands for a many-
sorted signature. ¦

Next we de£ne the notion of a constructor-based term rewriting
system. In such a TRS there is a distinction between reducible terms
and pure data structures. This distinction is made by dividing the
set of operation symbols of a signature into constructors and de-
£ned operations. Data structures are built with constructors (con-
structor terms) and the actual rewriting logic is formulated with
de£ned operations.

DEFINITION 2. (Constructor(-Rooted) Term, Pattern, Con-
structor-Based TRS) The set of operations Ω of a signature Σ is
partitioned into two disjoint sets C and D. C is the set of construc-
tors and D is the set of de£ned operations. The terms in T (C,X)
are called constructor terms. A term f(t1, . . . , tn) (n ≥ 0) is
called a pattern if f ∈ D and t1, . . . , tn are constructor terms. A
term f(t1, . . . , tn) (n ≥ 0) is called operation-rooted (constructor-

rooted) if f ∈ D (f ∈ C). A constructor-based term rewriting sys-
tem is a set of rewrite rules, l→ r, such that l and r have the same
sort, l is a pattern, and Var(r) ⊆ Var(l). ¦

As we shall see in the next section, constructor-based TRSs are
easier to handle than general TRSs, and consequently most func-
tional logic programs are constructor-based.3 Therefore, we de£ne
a program as follows:

DEFINITION 3. (Left-Linear TRS, Program)
A constructor-based term rewriting system is called left-linear if for
each of its rewrite rules l → r the pattern l is linear. A program is
a left-linear constructor-based rewriting system. In the following,
R denotes a program and ΣR its signature. ¦

The main purpose of this paper is to give a transformation for con-
ditional term rewriting systems in order to apply parallel narrowing
on the resulting unconditional TRS. We therefore have to introduce
the syntax of CTRSs:

DEFINITION 4. ((Constructor-Based) Conditional TRS,
(Un-) Conditional Rule) A conditional term rewriting sys-
tem (CTRS) is a set of rewrite rules which have either the form
“l→ r if u

∗
→ v” or “l→ r” such that l and r, u and v have the

same sort, respectively, and Var(r)∪Var(u)∪Var(v) ⊆ Var(l).
The rules of the form “l → r if u

∗
→ v” are called condi-

tional rules, the remaining rules are called unconditional. In the
following, CTRSs will be denoted as R.4 If for each rule in R

l is a pattern and for each conditional rule in R v is a ground
constructor term, then R is called constructor-based.
In this paper, we will exclusively be concerned with left-linear
CTRSs. ¦

Our de£nition of conditional TRSs seems rather restricted. How-
ever, a few considerations show that the restrictions are not too se-
rious: First, the de£nition allows only a single condition for each
rule. Using tuples, multiple conditions of the form

l→ r if u0
∗
→ v0 ∧ . . . ∧ un

∗
→ vn

can easily be expressed with a single condition

l→ r if (u0, . . . , un)
∗
→ (v0, . . . , vn)

Second, the restriction to conditions where a term is tested for re-
ducibility to a ground constructor term is also reasonable since it
covers the equation solving capabilities of current functional logic
languages with a lazy operational semantics, like Curry [21] or
TOY [28]. These languages are based on strict equality “≈” tests
in conditions (t1 ≈ t2 holds if t1 and t2 are reducible to the
same ground constructor term). Strict equality can be de£ned as
a binary operation by a set of orthogonal rewrite rules (e.g., see
[5]). In this case, a conditional rule with a strict equality condi-
tion “u ≈ v” can be expressed as l → r if (u ≈ v)

∗
→ true .

Similarly, non-left-linear rules f(x, x) → r can be transformed
into f(x, y) → r if x ≈ y

∗
→ true . For a discussion that this

elimination of non-linearity makes good sense cf. [2, section 4.1].
3See, for instance, the Equational Interpreter [32] and the func-
tional logic languages ALF [17], BABEL [31], Curry [21], K-LEAF
[15], LPG [10], SLOG [14], and TOY [28].
4There is a reason for the notation of R for an unconditional and
R for a conditional TRS and it is thus easy to memorize: Both
Rs stand for ”rewriting system” and choosing the old style letter to
denote a CTRS is a metaphor for our aim to transform TRSs into
CTRSs; in the ¤ow of time old things change to new ones and R
becomesR.

Finally, it will be discussed in the last section that omitting extra
variables for local de£nitions like let-clauses (cf. [33]) is not a re-
striction, since let-clauses can be eliminated by standard lambda
lifting [24].

We now turn to the semantics of TRSs, but we need a few more
notions to de£ne rewriting. One of the key operations on terms is
substitution:

DEFINITION 5. ((Constructor) Substitution, Instance, Vari-
ant, Uni£er) A substitution is a mapping σ : X → T (Σ,X) with
σ(x) ∈ T (Σ,X)s for all x ∈ Xs such that its domainDom(σ) =
{x ∈ X | σ(x) 6= x} is £nite. We frequently identify a substi-
tution σ with the set {x 7→σ(x) | x ∈ Dom(σ)}. Substitutions
are extended to morphisms on T (Σ,X) by σ(f(t1, . . . , tn)) =
f(σ(t1), . . . , σ(tn)) for every term f(t1, . . . , tn). A substitution
σ is called a constructor substitution if σ(x) is a constructor term
for all x ∈ Dom(σ). A term t′ is an instance of t if there is a
substitution σ with t′ = σ(t). If t is an instance of t′ and vice
versa, we call t′ a variant of t. A uni£er of two terms s and t is an
idempotent substitution σ with σ(s) = σ(t). ¦

When dealing with terms, one wants to be able to identify unam-
biguously each of its parts (subterms). This is done by de£ning the
positions of a term:

DEFINITION 6. (Occurrence, Position, Λ, t|p, t[s]p, p ≤ q,
p ‖ q, p · q) An occurrence or position is a sequence of positive
integers identifying a subterm in a term. For every term t, the empty
sequence is denoted by Λ and identi£es t itself. For every term of
the form f(t1, . . . , tk), the sequence i · p, where i is a positive
integer not greater than k and p is a position, identi£es the subterm
of ti at p. The subterm of t at p is denoted by t|p and the result of
replacing t|p with s in t is denoted by t[s]p. If p and q are positions,
we write p ≤ q if p is a pre£x of q and we say that p is above q. We
write p ‖ q if the positions are disjoint, i.e., none of them is above
the other (see [12] for details). The expression p · q denotes the
position resulting from the concatenation of the positions p and q,
i.e., the symbol “·” is overloaded. ¦

Now we are ready to de£ne rewriting.

DEFINITION 7. (Reduction t →p,R s, Redex, ∗
→, Normal

Form) A reduction step is an application of a rewrite rule to a term,
i.e., t→p,R s if there exist a position p, a rewrite rule R = l → r

and a substitution σ with t|p = σ(l) and s = t[σ(r)]p. In this
case we say t is rewritten (at position p) to s and t|p is a redex
of t. We will omit the subscripts p and R if they are clear from
the context.

∗
→ denotes the transitive and re¤exive closure of →.

A term t is reducible to a term s if t
∗
→ s. A term t is called

irreducible or in normal form if there is no term s with t → s. A
term s is a normal form of t if t is reducible to the irreducible term
s. When considering two TRSsR andR′ simultaneously, we write
∗
→R and

∗
→R′ to distinguish the rewrite relation de£ned byR and

R′, respectively. ¦

Rewriting in conditional TRSs is de£ned by extending uncondi-
tional rewriting by the evaluation of conditions:

DEFINITION 8. (Conditional Rewriting) The rewrite relation
∗
→R for a CTRS R is de£ned by induction:
→R0=→R, whereR is the set of unconditional rules in R.
s →Rn+1

t iff either s →Rn
t or there exists a rule l → r if

u
∗
→ v in R with s→l→r t and u

∗
→Rn

v.
Then s

∗
→R t iff there is a natural number n with s

∗
→Rn

t. ¦

Rewriting is computing, i.e., the value of a functional expression is
its normal form obtained by rewriting. Functional logic programs
compute with partial information, i.e., a functional expression may
contain logic variables. The goal is to compute values for these
variables such that the expression is evaluable to a particular normal
form, e.g., a constructor term [15, 31]. This is done by narrowing.

DEFINITION 9. (Narrowing t ;p, l→r,σ s, t ∗
;σ s) A term

t is narrowable to a term s if there exist a non-variable position p
of t (i.e., t|p 6∈ X), a variant l → r of a rewrite rule in R with
Var(t) ∩ Var(l → r) = ∅ and a uni£er σ of t|p and l such that
s = σ(t[r]p). In this case we write t ;p, l→r,σ s. ¦

Finally, we need the notion of orthogonal programs:

DEFINITION 10. ((Weak) Orthogonality, Overlapping Rule)
A program R is called orthogonal if, for all distinct rules l1 → r1
and l2 → r2, chosen with no variables in common, there is no
uni£er for l1 and l2. If there is a uni£er of l1 and l2, the rules are
called overlapping. R is called weakly orthogonal if all uni£ers of
l1 and l2 are also uni£ers of r1 and r2.5 ¦

We will transfer the notion of (weak) orthogonality to conditional
TRSs. Since our notion is not standard, we will present the de£ni-
tion later in Section 4.

3. TRANSFORMATION OF CONDITIO-
NAL TERM REWRITING SYSTEMS

A lot of research has been invested in conditional TRSs, particu-
larly, in attempts to transform them into unconditional ones. Early
work has been done by Bergstra and Klop [8]. The transformation
presented there has been later shown to be unsound in [13] (see
also [36, 11]). Further transformations were introduced in [16] and
[22] but they demand terminating conditional TRSs. As mentioned
in Section 1, a termination requirement is too restrictive for func-
tional logic programming.

In [9] it was shown that CTRSs have in a sense more expressive
power since they are more compact: an equivalent unconditional
system has to use more function symbols or function symbols with
greater arity to express the same content. Nevertheless, it is pos-
sible to construct an equivalent (see Theorems 1 and 3 to see in
detail what the notion “equivalence” means in this context) TRS
for a given CTRS. It is the aim of this section to introduce such a
transformation for constructor-based left-linear CTRSs. Further re-
lated work will be discussed in the last section when we have some
results to remark upon.

Antoy [2] has presented a transformation for arbitrary
constructor-based CTRSs into the class of “overlapping inductively
sequential” TRSs. These are inductively sequential TRSs with pos-
sibly multiple right-hand sides for a single rule. Since this trans-
formation maps different conditional rules into multiple right-hand
sides that are non-deterministically evaluated, the transformation
does not lead to a deterministic evaluation of ground terms. There-
fore, our transformation is based on the idea to join all conditions
into a single structure. This idea was proposed by Viry [36] for
general CTRSs so that we present his transformation £rst:

DEFINITION 11. (Transformation of Viry, tX , t⊥, t, In-
stantiating Rule, Reducing Rule) Let R be a conditional term
rewriting system. For each n-ary de£ned function f ∈ R let

5Note that our de£nition of (weak) orthogonality makes use of the
restriction to constructor-based TRSs. In such systems overlapping
of different rules can only occur at root position.

ρf,1, . . . , ρf,m be the conditional and ρf,m+1, . . . , ρf,m+k the un-
conditional rules de£ning f in R. Each de£ned n-ary function f is
replaced by an (n + m)-ary function f (i.e., for each conditional
rule an argument is added) and the new set of unconditional rules
RV contains for each conditional rule

ρf,i : f(t1, . . . , tn)→ rf,i if uf,i
∗
→ vf,i

two unconditional rules

ρ′f,i :f(t
X
1 , . . . , t

X
n | y1, . . . , ⊥i, . . . , ym)

→ f(tX1 , . . . , t
X
n | y1, . . . ,[u

⊥
f,i, ~x],. . . , ym)

(the notation ⊥i denotes ⊥ at argument i) and

ρ′′f,i : f(z1, . . . , zn | y1, . . . , [v
X
f,i, ~x], . . . , ym)→ r⊥f,i,

where ~x = (x1, . . . , xj) if Var(rf,i) = {x1, . . . , xj}, for some
arbitrary, but £xed, ordering of the variables. For replacing the
unconditional rules, one needs new variables. X denotes an
in£nite set of fresh variables. Each unconditional rule ρf,i :
f(t1, . . . , tn)→ rf,i is replaced by the rule

ρ
′′
f,i : f(t

X
1 , . . . , t

X
n | y1, . . . , ym)→ r

⊥
f,i

The new conditional arguments are £lled via the mappings tX and
t⊥ of type T (ΣR, X) → T (ΣRV , X). tX and t⊥ put fresh vari-
ables and the symbol ⊥ at these new arguments, respectively:

t
X =

{

t if t ∈ X

f(tX1
1 , . . . , tXn

n | y1, . . . , ym) if t = f(t1, . . . , tn)

where X1, . . . , Xn, {y1, . . . , ym} are pairwise disjoint subsets of
X with X1, . . . , Xn in£nite.

t
⊥ =

{

t if t ∈ X

f(t⊥1 , . . . , t
⊥
n | ⊥, . . . ,⊥) if t = f(t1, . . . , tn)

The symbol ⊥ is a constructor not in Σ and the grouping of
terms with parentheses and square brackets is only syntactic sugar
to avoid the introduction of new symbols. The mapping t̄ :
T (ΣRV , X) → T (ΣR, X) deletes the conditional arguments in
a term t:

t̄ =

{

t if t ∈ X

f(t̄1, . . . , t̄n) if t = f(t1, . . . , tn | s1, . . . , sm)

The ρ′-rules will be called instantiating rules, because they instan-
tiate the new conditional positions, and the ρ′′-rules will be called
reducing rules, because they correspond to the reduction steps of
the original system. ¦

EXAMPLE 3. Transforming the rules of Example 1 leads to the
following TRS:

abs(x | ⊥, y2) → abs(x | [x ≥ 0, (x)], y2)
abs(x | y1,⊥) → abs(x | y1, [x < 0, (x)])
abs(y0 | [true, (x)], y2) → x

abs(y0 | y1, [true, (x)]) → −x

The following two theorems by Viry are of interest for the remain-
ing paper.

THEOREM 1. (Viry [36]) The transformation V is sound and
complete for all conditional rewrite systems, i.e.,

1. for each derivation t
∗
→R t′ there is a derivation t⊥

∗
→RV

t′⊥ (completeness),

2. for each derivation t⊥
∗
→RV t′ there is a derivation t

∗
→R t̄′

(soundness).

Note that, by de£ning soundness this way, it is implied that only a
certain part of the target system RV is relevant for simulating R.6

If arbitrary terms of the target system are considered, soundness
can not be ensured. For instance, in the system of Example 3, the
term abs(x | [true, (x)], [true, (x)]) is contained in T (ΣRV , X).
It is immediate to see that this term could cause problems in the
context of the source system since it denotes that both x ≥ 0 and
x < 0 could be evaluated to true . Therefore, we de£ne the terms
of interest:

DEFINITION 12. (Terms of Interest, Bottom Term) Let RV
be the result of applying Viry’s transformation to a CTRS R. Then
the terms of interest TRV ⊂ T (ΣRV ,X) are all terms with
uninstantiated conditional positions (bottom terms) closed under
derivation: TRV := {u | ∃t ∈ T (ΣR,X) ∧ t

⊥ ∗
→ u}. ¦

It is easy to see that this de£nition excludes the example abs(x |
[true, (x)], [true, (x)]) (unless in the semantics of the source sys-
tem both x ≥ 0 and x < 0 can really be evaluated to true for some
x).

The following proposition is important for the use of terms of
interest:

PROPOSITION 1. For each t ∈ TRV each subterm of t is also
in TRV and for each substitution σ which replaces variables only
with terms of interest, σ(t) is also in TRV .

An interesting question is the preservation of con¤uence, i.e.,
given a con¤uent R, isRV con¤uent, too? This cannot be ensured
in general, as shown in the following example.

EXAMPLE 4. Consider the con¤uent CTRS R de£ned by the
rules

f(g(x)) → x if x
∗
→ 0

g(g(x)) → g(x)

The corresponding TRSRV is

f(g(x) | ⊥) → f(g(x) | [x, (x)])
f(y0 | [0, (x)]) → x

g(g(x)) → g(x)

Note that g(x)X = g(x) since no rule de£ning g is conditional.
Now there is anRV -derivation yielding two different normal forms
(contracted redexes are underlined):

f(g(g(0)) | ⊥) → f(g(0) | ⊥)

→ f(g(0) | [0, (0)])

→ 0

f(g(g(0)) | ⊥) → f(g(g(0)) | [g(0), (g(0))])

→ f(g(0) | [g(0), (g(0))])

Both derivations are attempts to simulate the R-derivation
f(g(g(0))) → f(g(0)) → 0 but the last step can be simulated
only by the £rstRV -derivation.

Viry suggests to solve the problem by restricting the possible
derivations in RV . By evaluating the conditional positions £rst,
he wants to ensure con¤uence. In terms of [36], such a deriva-
tion is called conditional eager (cf. [36, De£nition 4.1]). The sec-
ond derivation of Example 4 is not conditional eager, as the term
6This is not an accidental property of Viry’s transformation but a
consequence of the result that CTRSs are more compact than TRSs,
as mentioned at the beginning of this section and shown in [9].

g(g(0)) is rewritten although the conditional positions are already
instantiated.

Restricting the possible derivations in this way, Viry presents a
theorem about preserving con¤uence:

THEOREM 2. (⊥-Con¤uence [36]) If in RV all terms derived
from⊥-terms by conditional eager derivations (i.e., proving condi-
tions £rst) can be joined w.r.t. ,̄ then RV is called ⊥-con¤uent. If
R is con¤uent, thenRV is ⊥-con¤uent.

Unfortunately, this theorem does not hold: Revisiting Example 4
but taking only the £rst step of the second derivation, i.e.,

f(g(g(0)) | ⊥)→ f(g(g(0)) | [g(0), (g(0))])

one can see that the derivation so far is trivially conditional eager
(cf. [36, De£nition 4.1]), because there is no remaining derivation
which could rewrite an unconditional position of g(g(0)). But it is
already too late: the resulting term cannot be joined with its coun-
terpart f(g(0) | ⊥).

The main problem of the system in Example 4 is that the rules are
not constructor-based. However, for functional logic programming,
the class of considered systems can be further restricted since we
are interested in the class of weakly orthogonal, constructor-based
CTRSs.7 We want to show that a slightly modi£ed transformation
preserves con¤uence for this class. We £rst show that the target
system of a constructor-based CTRS is also constructor-based.

LEMMA 1. If R is constructor-based, then RV is constructor-
based.

PROOF. The signatures of R and RV differ only in the arity of
the functions and a few new symbols without de£ning rules. In
particular, ⊥ is a new constructor and the pair notation [u, (~x)] is
only intended to ease reading. Instead of the m+ k rules of R

ρf,i :f(lf,i1 , . . . , lf,in)→ rf,i if uf,i
∗
→ vf,i

ρf,j :f(lf,j1 , . . . , lf,jn)→ rf,j ,

where 1 ≤ i ≤ m and m < j ≤ m + k, we now have 2m + k

rules of the form

ρ′f,i :f(t
X
1 , . . . , t

X
n | y1, . . . , ⊥i, . . . , ym)

→ f(tX1 , . . . , t
X
n | y1, . . . ,[u

⊥
f,i, ~x],. . . , ym)

ρ′′f,i :f(z1, . . . , zn | y1, . . . ,[v
X
f,i, ~x],. . . , ym)→ r⊥f,i

ρ′′f,j :f(l
X
f,j1

, . . . , lXf,jn | y1, . . . , ym)→ r⊥f,j ,

where 1 ≤ i ≤ m andm < j ≤ m+k. According to the de£nition
of a constructor-based CTRS, the terms vf,i are ground constructor
terms (hence, vXf,i = vf,i). As⊥ is a constructor symbol, for every
pattern l, the terms lX and l⊥ are also patterns. Therefore, each
left-hand side ofRV is a pattern.

It is easy to see thatRV is left linear if R is left linear, since all the
variables introduced by X are fresh by de£nition. Now we will op-
timize the transformation to the case of interest of this paper. First
we consider the variable vector ~x. Saving the context in which
a condition was instantiated is essential for the soundness of the
transformation, as shown in Example 6 below. However, we will
show that saving the context can be avoided if the source CTRS is
constructor-based and left linear. Furthermore, some of the rules
can be joined in a single one as de£ned by the following transfor-
mation. The latter improvement is crucial for our narrowing strat-
egy.
7In [11] it is also shown that Viry’s transformation can be extended
to preserve con¤uence in general. However, we omit this result
since it is not needed in the context of this paper.

DEFINITION 13. (Transformation J) Let R be a constructor-
based CTRS whose rules are either of the form

ρf,i : f(l1, . . . , ln)→ rf,i if uf,i
∗
→ vf,i or

ρf,i : f(l1, . . . , ln)→ rf,i

We de£neRV ′ as the unconditional TRS that contains the following
two rules for each conditional rule of the previous form, where m
is the number of conditional rules for f in R:

πf,i :f(l1, . . . , ln | y1, . . . ,⊥i, . . . , ym)
→ f(l1, . . . , ln| y1, . . . ,u

⊥
f,i,. . . , ym)

π′′f,i :f(l1, . . . , ln | y1, . . . ,vf,i,. . . , ym)→ r⊥f,i.

For each unconditional rule of R,RV ′ contains

π
′′
f,i : f(l1, . . . , ln | y1, . . . , ym)→ r

⊥
f,i.

The set of rules ofRJ is de£ned by joining all π-rules ofRV ′ with
identical left-hand sides. Let I = {i1, . . . , ik} be the set of all
rules inRV ′ of the form

πf,i1 : f(l1, . . . , ln | . . . , ⊥i1 , . . . , yik , . . .)
→ f(l1, . . . , ln | . . . ,uf,i1 ,. . . , yik , . . .)

...
...

...
πf,ik : f(l1, . . . , ln | . . . , yi1 , . . . , ⊥ik , . . .)

→ f(l1, . . . , ln | . . . , yi1 , . . . ,uf,ik ,. . .).

Instead of these rules,RJ contains a single rule

π′f,I : f(l1, . . . , ln | . . . , ⊥i1 , . . . , ⊥ik , . . .)
→ f(l1, . . . , ln | . . . ,uf,i1 ,. . . ,uf,ik ,. . .).

The mappings tX , t⊥ and t as well as the notions of instantiating
and reducing rule, bottom term, and the de£nition of the terms of
interest carry over fromRV toRJ without dif£culty. ¦

Since the above de£nition applies to constructor-based CTRSs, by
contrast to De£nition 11 it is not necessary to transform the sub-
terms in the left-hand sides of the source systems. For constructor
terms, lXi = li.

EXAMPLE 5. Applying transformation J to the rules of Exam-
ple 1, we obtain the following system:

abs(x | ⊥,⊥) → abs(x | x ≥ 0, x < 0)
abs(x | true, y2) → x

abs(x | y1, true) → −x

However, the transformation is not sound for arbitrary CTRSs.

EXAMPLE 6. Consider the following (non-con¤uent) set of
conditional rules:

f(g(x)) → x if x
∗
→ s(0)

g(s(x)) → g(x)

The system is transformed to

f(g(x) | ⊥) → f(g(x) | x))
f(g(x) | s(0)) → x

g(s(x)) → g(x).

The derivation f(g(s(0)) | ⊥) → f(g(s(0)) | s(0)) →

f(g(0) | s(0)) → 0 is not sound, since, in the source system,
f(g(s(0))) is reducible to both the normal forms s(0) and f(g(0))
but not to 0.

It is easy to see that the problem can not occur with Viry’s trans-
formation. Using the variable vector ~x, the last step would have
been f(g(0) | [s(0), (s(0))]) → s(0). As mentioned above, we
will prove that there is a simple reason why this system and the one
of Example 4 are problematic: both systems are not constructor-
based.

THEOREM 3. For any constructor-based, left-linear CTRS R

the transformation J is complete and sound, i.e.,

1. for each derivation t
∗
→R t′ there is a derivation t⊥

∗
→RJ

t′⊥ (completeness),

2. for each derivation t⊥
∗
→RJ t′ there is a derivation t

∗
→R t̄′

(soundness).

PROOF. (Completeness)
We show completeness by induction over the actual length L(t

∗
→

t′) of the derivations t
∗
→R t′ which is de£ned as follows:

L(t→l→r t
′) = 1

L(t→
l→r if u

∗
→ v

t′) = 1 + L(u
∗
→ v)

L(t0 → t1 → . . .→ tn) =
∑n

i=1 L(ti−1 → ti)

Base case (L(t
∗
→ t′) = 0): The claim trivially holds for all deriva-

tions with an actual length of zero, since t = t′ implies t⊥ = t′⊥

and, thus, t⊥
∗
→ t′⊥.

Inductive case: Suppose that the claim holds for all derivations of
the actual length ≤ l. We have to show that it holds for all deriva-
tions with length l + 1. Consider the derivation t

∗
→ s →ρ,p t′.

By the induction hypothesis, there exists a derivation t⊥
∗
→ s⊥.

We now distinguish whether ρ is an unconditional or a conditional
rule. For an unconditional rule ρ = f(l1 . . . ln) → r ∈ R, there
exists a reducing rule ρ′′ : f(l1 . . . ln | y1 . . . ym) → r⊥ ∈ RJ .
For this rule the reduction s⊥ →ρ′′,p t′⊥ yields the last step we
need.8 If ρ = f(l1, . . . , ln)→ r if u

∗
→ v is the i-th conditional

rule de£ning f in R, then, by de£nition of L, the actual length of
u

∗
→ v is ≤ l and, by induction hypothesis, there exists a deriva-

tion α : u⊥
∗
→RJ v(= v⊥). Using the instantiating rule ρ′ and

the reducing rule ρ′′ corresponding to ρ in RJ , we can construct
the derivation s⊥ →ρ′,p s′

∗
→p·(n+i)·α s′′ →ρ′′,p→ t′⊥, where

p · (n+ i) ·α means that the derivation α is inserted and performed
at the position p · (n+ i).

(Soundness)
We de£ne a mapping µ : TRJ → TRV between the terms of
interest ofRJ andRV :

µ(t) =







t if t = t
⊥,

f(µ(t1), . . . , µ(tn) | s
′
1, . . . , s

′
m)

if t = f(t1, . . . , tn | s1, . . . , sm),

where s′i = ⊥ if si = ⊥. Otherwise, s′i = [µ(si), σ(~x)] where σ
is the matching of the term f(t1, . . . , tn | ⊥, . . . ,⊥) and the left-
hand side of the rule π′f,i ofRJ .9

We will prove that any derivation t⊥
∗
→RJ t′ implies the existence

of a derivation t⊥
∗
→RV µ(t′) by induction over the length l of the

derivation t⊥
∗
→RJ t′.

8Note that any position in t ∈ T (ΣR, X) is also a position in
t⊥ since the new conditional positions are added after the original
unconditional positions.
9This matching must (still) exist since in constructor-based and
left-linear systems the matching cannot be destroyed by reductions
below patterns.

s
︷ ︸︸ ︷

f(g(s(0)) | s(0)) →RJ

t′

︷ ︸︸ ︷

f(g(0) | s(0))
↓ µ ↓ µ

f(g(s(0)) | [s(0), (s(0))])
︸ ︷︷ ︸

µ(s)

→RV f(g(0) | [s(0), (s(0))])
︸ ︷︷ ︸

s′

6
∗
→RV f(g(0) | [s(0), (0)])

︸ ︷︷ ︸

µ(t′)

Figure 1: Sample derivations from Example 6

l = 0: The claim holds since µ(t⊥) = t⊥.
Inductive case:
Consider the last step of the derivation t⊥

∗
→ s→p,π t

′.
a) If π is an instantiating rule π′, then µ(s) can be reduced to µ(t′)
by applying all of the corresponding ρ′-rules ofRV joined in π′ in
an arbitrary order.
b) The remaining case is that π is a reducing rule π′′. By construc-
tion of RJ , there is a corresponding rule ρ′′ in RV which can be
applied at a position p′ similar to p in µ(s).10 We consider the re-
sult s′ of the reduction µ(s) →p′,ρ′′ s

′. How far can µ(t′) and s′

differ? The only possible difference is that the mapping µ might
instantiate variables in the vectors ~x differently in s and t′. This
causes only problems (i.e., leads to terms out of the terms of inter-
est) if R is not constructor-based, see, for example, the derivations
in Figure 1.
Since R is constructor-based, any reduction at an unconditional po-
sition must be possible within the corresponding variable vectors as
well, because the redexes copied when the vectors are instantiated
cannot be destroyed.11 Therefore, the same rule π′′ can be applied
below all the variables in the vector in arbitrary order, leading to
µ(s′)

∗
→ µ(t′).

Hence, we have shown that t⊥
∗
→RJ t′ implies the existence of

a derivation t⊥
∗
→RV µ(t′). By de£nition of µ, µ(t) = t holds

for all t. The soundness of V implies the existence of a derivation
t
∗
→R t and, thus, the transformation J is sound.

4. TRANSFORMATION OF FUNCTIONAL
LOGIC PROGRAMS

As stated in Section 1, our main aim is to apply parallel narrow-
ing to conditional TRSs. The remaining task to reach this aim is to
examine under which circumstances the property of weak orthog-
onality of the target system can be guaranteed, since this is a basic
requirement for the completeness of parallel narrowing. Therefore,
we will extend the notion of (weak) orthogonality to CTRSs. The
basic idea of orthogonality is as follows. If t is an arbitrary term
that can be reduced to two terms t1, t2, then these reductions do
not overlap. In the case of weak orthogonality, any two overlap-
ping rules must reduce the terms in the same way, i.e., t1 = t2.

For constructor-based TRSs, overlaps can only occur between
rules de£ning the same operation and at root positions. Thus, it is
suf£cient to examine rules li → ri, i = 1, 2 where l1 and l2 are
uni£able.

10p and p′ differ slightly because terms ofRV contain variable vec-
tors and terms of RJ do not. Thus, whenever a pre£x pp of p
denotes a conditional position with s|pp = u, the corresponding
pp′ has to denote the µ(u) in µ(s)|qq′ = [µ(u), (~x)] (where qq′ is
directly above pp′).

11In the case of Example 6, the existence of a rule f(g(s(0)) |
⊥) → f(g(s(0)) | s(0)) in a constructor-based system R implies
that there cannot be a rule inR rooted by the symbol g.

Considering constructor-based CTRSs, the left-hand sides of two
different rules might unify but, nevertheless, there may not exist
any term that is contracted by both rules. This can happen because
the conditions of the two rules may not be satis£able by a single
term. Thus, we de£ne (weak) orthogonality for conditional term
rewriting systems as follows.

DEFINITION 14. ((Weakly) Orthogonal CTRS) Let R be a
left-linear and constructor-based CTRS in which all unconditional
rules l → r are considered to be of the form l → r if true

∗
→

true . R is orthogonal if for all distinct conditional rules li →
ri if ui

∗
→ vi, i ∈ {1, 2}, chosen with no variables in common,

and for all uni£ers σ with σ(l1) = σ(l2) at most one derivation
among σ(u1)

∗
→ v1 and σ(u2)

∗
→ v2 is possible.

R is weakly orthogonal if for all distinct rules li → ri if ui
∗
→

vi, i ∈ {1, 2}, chosen with no variables in common, and for all
uni£ers σ with σ(l1) = σ(l2) it holds: either σ(r1) = σ(r2) or
at most one derivation among σ(u1)

∗
→ v1 and σ(u2)

∗
→ v2 is

possible. ¦

This de£nition captures the idea of orthogonality, as described
above. It generalizes a similar notion in [8] in which multiple rules
with overlapping left-hand sides are not allowed. Various examples
in this paper show that this generalization supports a more expres-
sive programming style.

Note that there is an important difference between orthogonality
for TRSs and the extended notion for CTRSs. Orthogonality for a
TRS is effectively decidable by a simple analysis of the syntactic
structure of the system. For CTRSs orthogonality is not decidable,
since the de£nition considers a semantic property by testing the
simultaneous satis£ability of the conditions. If in practical appli-
cations the property of (weak) orthogonality has to be effectively
tested, e.g., by the compiler of a functional logic program, orthog-
onality can be syntactically approximated, see, for instance, [30].

Since orthogonality for CTRSs is a non-trivial semantic property
and orthogonality for TRSs is a syntactic property, no computation
can transform a (weakly) orthogonal CTRS into a (weakly) orthog-
onal TRS. The key idea is to limit the notion of orthogonality to
that part of the target system RJ which represents the semantics
of R: the terms of interest TRJ . It turns out that RJ is (weakly)
orthogonal if R is (weakly) orthogonal provided that we consider
only the terms of interest TRJ . To show this, we £rst de£ne what
orthogonality means when restricted to a set of terms:

DEFINITION 15. ((Weak) Orthogonality for T) Let R be a
program and T a set of terms which is closed under

∗
→R. R is

orthogonal for T if, for all distinct rules ρ1 and ρ2 inR, there exist
no terms t, t1, t2 ∈ T and a position p in t such that t →p,ρ1 t1
and t→p,ρ2 t2.
R is weakly orthogonal for T if, for all rules ρ1, ρ2 inR, there exist
no terms t, t1, t2 ∈ T and a position p in t such that t →p,ρ1 t1
and t→p,ρ2 t2 and t1 6= t2. ¦

Analogously to the de£nition of ordinary orthogonality (De£ni-
tion 10), we make use of the constructor discipline of the sup-
posed system, since we consider overlapping at a same position
only. Note that, if T = T (Σ,X), then (weak) orthogonality for T
is equivalent to ordinary (weak) orthogonality.

We can now de£ne the set of CTRSs on which our transformation
J preserves orthogonality for the terms of interest:

DEFINITION 16. (Conditional Program) We call a condi-
tional program any constructor-based weakly orthogonal CTRS in
which overlapping rules have identical left-hand sides. ¦

Limiting conditional programs to overlapping rules with identical
left-hand sides is not a restriction. We show by an example the
idea of transforming every constructor-based left-linear CTRS into
a form where all overlapping rules have identical left-hand sides.
This is done by moving the pattern matching into the conditions
and adding explicit rules for these matchings for the needed con-
structors. This example can be easily generalized to all constructor-
based weakly orthogonal CTRSs. A formal proof can be found in
[11].

EXAMPLE 7. The system de£ned by the rules

fib(x) → 1 if x < 2
∗
→ true

fib(s(s(x))) → fib(s(x)) + fib(x)

can also be written as

fib(x) → 1 if x < 2
∗
→ true

fib(x) → fib(s(select(x))) + fib(select(x))

if match(x)
∗
→ true

match(s(s(x))) → true

select(s(s(x))) → x

Operations select and match are speci£cally generated wherever
needed. A compiler implementing this transformation would prob-
ably bene£t from more general purpose operations, e.g., a selectn
operation that selects the n-th argument of a constructor-rooted
term. However, our specialized operations ease the understanding
of the example. Note that it may be necessary to rename variables
in other rules in order to get identical left-hand sides. Derivations
in the new system will be longer because of the explicit matching
and the selection steps, but it is easy to see that there exists a bisim-
ulation between the two systems with respect to starting terms of
the universe of the original system. The advantage of this transfor-
mation over similar approaches, like the “sequentialization” given
in [2, section 4.3], is that it preserves (weak) orthogonality, which
is crucial for our purpose.

From now on we will assume that overlapping rules in the given
CTRSs have identical left-hand sides, as the only considered sys-
tems are constructor-based and left linear.

THEOREM 4. Let R be a conditional program. Then RJ is
weakly orthogonal for the set of terms of interest TRJ . Moreover,
if R is orthogonal, then RJ is orthogonal for the set of terms of
interest TRJ .

PROOF. Suppose that there exists a t in TRJ and two distinct
rules ρ : l→ r and ρ′ : l′ → r′ such that

t→Λ,ρ w and t→Λ,ρ′ w
′

Without loss of generality, we consider only root positions, since
in the constructor-based setting one can always remove the context
of a redex. Let π and π′ be the rules of the CTRS R, from which ρ
and ρ′ originate. The transformation replaces each conditional rule

by two unconditional ones. The instantiating rule introduces the
conditions by replacing⊥ symbols. The reducing rule contracts the
redex analogously to the unconditional part of the original rule. We
do not have overlapping instantiating rules because they are joined
by the transformation. Thus, all overlapping rules and, in particular,
ρ and ρ′ must be reducing rules. Hence, because all overlapping
rules have identical left-hand-sides, the two original rules of R have
the form π : l → r if v

∗
→ u and π′ : l → r′ if v′

∗
→ u′.

Furthermore, the pattern l must match both terms t and t′. Since
the transformation is sound, this implies the existence of the two
reductions t →Λ,π w and t →Λ,π′ w′ and, therefore, R cannot
have been orthogonal.
For weak orthogonality, we have to consider the additional case that
w and w′ are different. Since the right-hand sides of the reducing
rules ρ and ρ′ can only be different if the right-hand sides of their
original rules, namely r and r′, differ, w 6= w′ implies that R

cannot have been weakly orthogonal as well.

In the next section we will show that for a conditional program R

the resulting systemRJ can be evaluated with parallel narrowing if
we limit ourselves to the terms of interest. For this it is crucial to see
that the Parallel Moves Lemma (originally in [23], here according
to the more general formulation [7, Lemma 6.4.4]) can be extended
to the rewrite relation on TRJ . For this the notion of a parallel
rewriting step is required: t⇒P t′ if P = {p1, . . . , pn} is a set of
pairwise disjoint positions of t such that and t→p1 · · · →pn

t′.

LEMMA 2. Parallel Moves Lemma [7, Lemma 6.4.4]
Let R be a TRS and l → r ∈ R a left-linear rule. If σ(l) ⇒P t

for a set of positions P and all elements of P are below variable
positions of l, then there exists a substitution σ′ such that σ(r) ⇒
σ′(r)← t.

The important point is that on the terms of interests TRJ any
parallel rewriting step meets the conditions of the Parallel Moves
Lemma:

LEMMA 3. Let R be a conditional program and l → r a rule
in RJ . If σ(l) ∈ TRJ ⇒P t for a set of (disjoint) positions P ,
then there exists a substitution σ′ such that σ(r) ⇒ σ′(r) ← t or
σ(r) = σ′(r) = t.

PROOF. By de£nition of a conditional program and construction
of J , all rules of RJ are left linear. As conditional programs are
also constructor-based, all positions in P are either below variable
positions of l or P = {Λ}. In the £rst case, the Parallel Moves
Lemma yields the result. In the second case, becauseRJ is weakly
orthogonal for TRJ , σ(r) must be equal to t no matter which rule
was applied.

Analogously to the discussion in [7, p.152f], this leads to the
proof that⇒RJ has the diamond property if it is restricted to the
terms of interest:

LEMMA 4. Let R be a conditional program. Then for the terms
of interest,⇒ has the diamond property, i.e., for all s ∈ TRJ with
s ⇒P0 t0 and s ⇒P1 t1 there exists an s′ with t0 ⇒ s′ and
t1 ⇒ s′.

PROOF. (Analogously to the proof in [7, p.152]) We have to
distinguish how the positions of the parallel reductions are relative
to each other and partition the sets P0 and P1 accordingly:

P 6≤ := {p ∈ Pi | i ∈ {0, 1} ∧ ∀q ∈ P1−i : q 6≤ p}
P< := {p ∈ Pi | i ∈ {0, 1} ∧ ∃q ∈ P1−i : q < p}
P= := P0 ∩ P1

It is easy to see that we can obtain t0 and t1 from s by replacing
all subterms of s at positions in P 6≤ ∪ P= with the corresponding
subterms of ti: ti = s[ti|p]p∈P 6≤∪P= . As RJ is weakly orthogo-
nal for TRJ , t0|p = t1|p holds for all p ∈ P=. Hence it suf£ces
to construct, for each p ∈ P 6≤, a term up such that ti|p ⇒ up
(i = 1, 2). For each p ∈ P 6≤, either t0 or t1 is rewritten at p.
Calling this subterm tp, there must exist a rule l → r inRJ and a
substitution σ such that s|p = σ(l) and tp = σ(r). As s|p ∈ TRJ ,
our adapted Parallel Moves Lemma (Lemma 3) ensures the exis-
tence of a substitution σ′ with ti|p ⇒ σ′(r) or ti|p = σ′(r) and,
thus, we de£ne up := σ′(r).

These considerations enable us to draw some interesting conclu-
sions. We use [7, Corollary 2.7.7] which states: If→1⊆→2⊆

∗
→1

and →2 has the diamond property, then →1 is con¤uent. With
→1=→RJ and→2=⇒RJ , both restricted to the terms of inter-
est, we obtain:

COROLLARY 1. For any conditional program R and the cor-
responding TRSRJ , the following properties hold:

• RJ is con¤uent for TRJ .

• Each ⊥-term has at most one normal form.

• R is con¤uent (by soundness of the transformation).

Note how the soundness of the transformation enables us to draw
conclusions backwards, from the target to the source system. By
using this method, results about classic TRSs can be extended to
the conditional case. This result can be generalized to constructor-
based weakly orthogonal CTRSs using the transformation that en-
sures that the left-hand sides of overlapping rules are identical, see
Example 7.

5. NARROWING ON TRANSFORMED
FUNCTIONAL LOGIC PROGRAMS

This paper is concerned with the use of CTRSs in declarative
programming. Functional logic programs modeled by TRSs are
usually executed by narrowing because narrowing amalgamates
computational ideas from both functional and logic programming.
Consequently, a pertinent question is the choice of a narrowing
strategy appropriate to a given class of programs. The primary
motivation of this work is the transformation of a CTRS into an
ordinary TRS so that a wealth of existing results about narrowing
strategies for ordinary TRSs can be applied to CTRSs.

In general, if we only consider the syntactic structure of the rules
of RJ , we will not £nd any of the properties that support ef£-
cient, sound, and complete strategies, e.g., inductive sequentiality
or weak orthogonality. However, we have shown that some strong
properties are preserved for the rewrite relation over the set of the
terms of interest TRJ . These terms capture all and only the com-
putations that one can perform with R. Hence, there is no loss in
restricting our attention to these terms and considering terms out-
side this set does not conform with the semantics of R. Moreover,
by construction, the set of terms of interest of RJ is closed under
both substitution of bottom terms and rewriting. Consequently, it is
closed under narrowing for bottom terms, too.

Weakly needed and parallel narrowing [4] are strategies de£ned
for those TRSsR in which any operation de£ned inR has a paral-
lel de£nitional tree [1]. For a de£ned operation f , the de£nitional
tree for f is a data structure de£ned by the patterns, i.e., the left-
hand sides, of the rules de£ning f in R. A parallel de£nitional
tree may have so-called or-nodes in addition to those de£ned by

pattern matching. These or-nodes allow the speci£cation of over-
lapping rules and, thus, lead to parallel tests for pattern matching.
This is necessary to cover the class of weakly orthogonal TRSs. A
consequence of allowing overlapping rules is that the notion of a
needed redex position, i.e., the position of a redex in a given term t

which has to be reduced in order to yield a normal form for t, has
to be generalized to a necessary set of redex positions. From this
set the redex of at least one position has to be contracted to yield
a normal form. This leads to the basic idea of weakly needed nar-
rowing: (a) compute such a necessary set of positions for a given
term using the parallel de£nitional trees for the de£ned operations
of R; (b) non-deterministically choose some of the positions; (c)
instantiate the terms at the chosen positions so that they become
redexes and reduce them. In comparison to weakly needed narrow-
ing, the strategy called parallel narrowing is more sophisticated: a
minimal set of substitutions, i.e., the instantiations of variables, is
computed by examining the whole necessary set of positions. For
each substitution in this minimal set all resulting weakly needed
redexes are reduced in parallel. Consequently, parallel narrowing
is, in contrast to weakly needed narrowing, deterministic on ground
terms since there is only the empty substitution in this case. Due to
lack of space, we can not present all precise de£nitions but they are
available in [4].

In order to apply weakly or parallel narrowing, we have to prove
that any operation de£ned inRJ has a parallel de£nitional tree:

LEMMA 5. Let RJ be a TRS obtained by transformation J
from a conditional program R. If f is a de£ned operation of RJ ,
there exists a parallel de£nitional tree for f .

PROOF. If there is no left-hand side of a rule subsumed by the
left-hand side of another rule in RJ , [1, Theorem 19] proves the
existence of a parallel de£nitional tree. Note that [1, Theorem 19]
is proved under the assumption that the TRS is weakly orthogo-
nal, but the proof considers only the left-hand sides of the rules.
Thus, the triviality of possible critical pairs is irrelevant. Now we
prove that if the left-hand side of a rule is subsumed by some other
left-hand side in RJ , then one of the rules is useless (see [1]) and
can be discarded. By construction, subsuming left-hand sides of
RJ may originate only from subsuming left-hand sides of R. In
the original program R, the only case of subsumption of left-hand
sides occurs when there are several conditional rules and possibly
one unconditional rule, all with the same left-hand side. If there
is one such unconditional rule, we can discard all the conditional
rules with the same left-hand side. So, we are left only with condi-
tional rules. In this case, the rules of RJ that originate from these
conditional rules do not have subsuming left-hand sides according
to the de£nition of the transformation J .

EXAMPLE 8. The function abs of Example 5 has the following
parallel de£nitional tree:

Or

abs(x1|x2, x3) abs(x1|x2, x3)

abs(x1|⊥, x3) abs(x1|true, x3) abs(x1|x2, true)

abs(x1|⊥,⊥) x −x

abs(x1|x1 ≥ 0, x1 < 0)

Hence, one can apply both the weakly needed and parallel narrow-
ing strategies to RJ . However, the narrowing relation computed

by these strategies might not be complete for RJ w.r.t. arbitrary
terms, because these strategies £re only one rule (after variable in-
stantiation) when multiple overlapping rules can be applied to a
same redex. This problem does not occur for the set of the terms
of interest TRJ obtained from a conditional program R, because
either a single rule can be £red for a redex (when R is orthogonal
and, hence, RJ is orthogonal for TRJ) or the choice of multiple
rules does not matter (when R is weakly orthogonal and, hence,
RJ is weakly orthogonal for TRJ). This leads us to our main
result:12

THEOREM 5. Let R be a conditional program. Then both
weakly needed narrowing and parallel narrowing are sound and
complete with respect to the terms of interest TRJ , i.e.:

1. For each t ∈ TRJ and every constructor term s ∈
T (C, X) holds: If t ;σ1 . . . ;σn

s (t
;
;

σ1
. . .

;
;

σn
s)

is a weakly needed (parallel) narrowing derivation, then
σn(. . . σ1(t) . . .)

∗
→ s (soundness).

2. For each term t ∈ TRJ and each constructor substi-
tution σ such that σ(t) is also in TRJ and reduces to
a constructor term s ∈ T (C, X), there exists a weakly
needed (parallel) narrowing derivation t ;σ1 . . . ;σn

s′

(t
;
;

σ1
. . .

;
;

σn
s′) such that σn ◦ · · · ◦ σ1 is more general

than σ and s is an instance of s′ (completeness).

PROOF. Due to Lemma 5, both strategies can be applied toRJ .
(Soundness)
The soundness of both strategies is straightforward because a nar-
rowing step is de£ned as an instantiation followed by a rewriting
step.
(Completeness)
In [3] the completeness of weakly needed and parallel narrowing
are proven using commutative diagrams. The existence and com-
mutativity of these diagrams is ensured by con¤uence and the Par-
allel Moves Lemma. Consequently the proofs of completeness for
weakly needed narrowing [3, Theorem 4] and parallel needed nar-
rowing [3, Theorems 5] carry over without dif£culty.

Weakly needed and parallel narrowing are relatively ef£cient for
the class of systems we are discussing. The main advantage of us-
ing parallel narrowing for the class of transformed conditional pro-
grams is that, on ground terms, the computation is deterministic,
i.e., at each computation step there are no don’t know choices. This
ensures, among other advantages, that non-terminating evaluations
of a condition do not preclude the application of other conditional
rules. To see this, refer to the CTRS from Example 2 in Section 1.
In that system the evaluation of the expression gmult(∞, 0) does
not terminate if we try to apply the £rst rule for gmult. Similarly,
gmult(0,∞) does not terminate for the second rule and the third
rule leads to an in£nite computation for both terms. However, con-
sider the system obtained by our transformation.

EXAMPLE 9. Transforming the CTRS from Example 2, we ob-
tain:

gmult(x, y | ⊥,⊥,⊥)→
gmult(x, y | g(x), g(y), g(x) > 0 ∧ g(y) > 0)

gmult(x, y | 0, y2, y3)→ 0
gmult(x, y | y1, 0, y3)→ 0
gmult(x, y | y1, y2, true)→ g(x) ∗ g(y)
g(0)→ 0
g(∞)→ g(∞)

12As usual in functional logic programming, we consider only con-
structor substitutions and constructor terms as the intended results
of a computation, cf. [5]

In this system both expressions gmult(∞, 0 | ⊥,⊥,⊥) and
gmult(0,∞ | ⊥,⊥,⊥) are evaluated with a £nite number of par-
allel narrowing steps:

gmult(∞, 0|⊥,⊥,⊥)

;
; gmult(∞, 0|g(∞), g(0), g(∞) > 0 ∧ g(0) > 0)

;
; gmult(∞, 0|g(∞), 0, g(∞) > 0 ∧ 0 > 0)

;
; 0

and

gmult(0,∞|⊥,⊥,⊥)

;
; gmult(0,∞|g(0), g(∞), g(0) > 0 ∧ g(∞) > 0)

;
; gmult(0,∞|0, g(∞), 0 > 0 ∧ g(∞) > 0)

;
; 0

6. CONCLUSIONS AND RELATED WORK
We have presented a new evaluation strategy for functional logic

programs where functions are de£ned by conditional rewrite rules.
In order to cover a large part of such programs, we consider weakly
orthogonal constructor-based CTRSs, i.e., the overlaps are either
trivial or the conditions of overlapping rules are exclusive. We have
presented a transformation for this class of programs that maps
such programs into unconditional TRSs. Although the resulting
TRSs are not weakly orthogonal in general, they have this property
for all terms of interest, i.e., terms obtained by this transformation.
This property enables us to apply appropriate narrowing strategies
for unconditional TRSs to evaluate such programs. In particular,
both the non-strict evaluation strategies weakly needed and parallel
narrowing can be applied to the transformed programs. Since par-
allel narrowing is deterministic on ground terms, our work offers
the £rst known narrowing strategy that deterministically evaluates
ground terms in weakly orthogonal constructor-based CTRSs.

We want to emphasize that our new strategy is a conservative ex-
tension of narrowing strategies known to be appropriate for func-
tional logic programs. If the source program contains no con-
ditional rules, our transformation is the identity. Thus, if the
source program is inductively sequential, our strategy specializes
to needed narrowing that is known to be optimal w.r.t. the length
of successful computations and the number of computed solutions.
Furthermore, if the left-hand sides of a conditional program R are
inductively sequential, then weakly needed narrowing as well as
parallel narrowing computes a set of disjoint solutions [4, 5].

Our transformation is not an “unraveling” in the sense of [29].
By de£nition, an unraveling leaves the unconditional rules of a
CTRS unchanged [29, De£nition 3.1]. Furthermore, a “tidy” un-
raveling will transform every single conditional rule separately [29,
p.109]. This leads to the idea to introduce a new function symbol
for each conditional rule. In this case, one has to decide which
rule must be applied before knowing which conditions are satis£-
able. The key idea of Viry’s approach is to keep the information
of testing all conditions in a single structure. This ensures that the
correct rule can be chosen depending on the successful tests of all
conditions. This has the immediate consequence that Viry’s trans-
formation can be extended to preserve properties like termination
and con¤uence (as shown in [11]) which unravelings principally
cannot [29, p.120].

Transforming each conditional rule separately is also the ap-
proach of [33] so that it leads to the same problem as Marchiori’s
unravelings. The interesting feature of the transformation presented
in [33] is that it can deal with a certain form of extra variables. The
extension of our transformation to the systems considered by Ohle-
busch could be done by applying lambda-lifting [24] to eliminate
this kind of variables.

An interesting topic for future work is the ef£cient implementa-
tion of this strategy. A useful starting point could be [6] where an
implementation of weakly needed narrowing with a limited form of
parallel reductions is proposed.

7. REFERENCES
[1] S. Antoy. De£nitional trees. In Proc. of the 3rd International

Conference on Algebraic and Logic Programming, pages
143–157. Springer LNCS 632, 1992.

[2] S. Antoy. Constructor-based conditional narrowing. In Proc.
of the 3rd International ACM SIGPLAN Conference on
Principles and Practice of Declarative Programming (PPDP
2001), pages 199–206. ACM Press, 2001.

[3] S. Antoy, R. Echahed, and M. Hanus. A parallel narrowing
strategy. Technical report tr 96-1, Portland State University,
1996.

[4] S. Antoy, R. Echahed, and M. Hanus. Parallel evaluation
strategies for functional logic languages. In Proc. of the
Fourteenth International Conference on Logic Programming
(ICLP’97), pages 138–152. MIT Press, 1997.

[5] S. Antoy, R. Echahed, and M. Hanus. A needed narrowing
strategy. Journal of the ACM, 47(4):776–822, 2000.

[6] S. Antoy, M. Hanus, B. Massey, and F. Steiner. An
implementation of narrowing strategies. In Proc. of the 3rd
International ACM SIGPLAN Conference on Principles and
Practice of Declarative Programming (PPDP 2001), pages
207–217. ACM Press, 2001.

[7] F. Baader and T. Nipkow. Term Rewriting and All That.
Cambridge University Press, 1998.

[8] J.A. Bergstra and J.W. Klop. Conditional rewrite rules:
Con¤uence and termination. Journal of Computer and
System Sciences, 32(3):323–362, 1986.

[9] J.A. Bergstra and J.V. Tucker. Algebraic speci£cations of
computable and semicomputable data types. Theoretical
Computer Science, 75:111–138, 1987.

[10] D. Bert and R. Echahed. Design and implementation of a
generic, logic and functional programming language. In
Proc. European Symposium on Programming, pages
119–132. Springer LNCS 213, 1986.

[11] B. Brassel. Conditional narrowing with lazy evaluation (in
german). Master’s thesis, RWTH Aachen, 1999.

[12] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In
J. van Leeuwen, editor, Handbook of Theoretical Computer
Science, Vol. B, pages 243–320. Elsevier, 1990.

[13] N. Dershowitz and M. Okada. A rationale for conditional
equational programming. Theoretical Computer Science,
75:111–138, 1990.

[14] L. Fribourg. SLOG: A logic programming language
interpreter based on clausal superposition and rewriting. In
Proc. IEEE Internat. Symposium on Logic Programming,
pages 172–184, Boston, 1985.

[15] E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi.
Kernel LEAF: A logic plus functional language. Journal of
Computer and System Sciences, 42(2):139–185, 1991.

[16] E. Giovannetti and C. Moiso. Notes on the elimination of
conditions. In Proc. CTRS’87, pages 91–97. Springer LNCS
308, 1987.

[17] M. Hanus. Compiling logic programs with equality. In Proc.
of the 2nd Int. Workshop on Programming Language
Implementation and Logic Programming, pages 387–401.
Springer LNCS 456, 1990.

[18] M. Hanus. The integration of functions into logic
programming: From theory to practice. Journal of Logic
Programming, 19&20:583–628, 1994.

[19] M. Hanus. Reduction strategies for declarative programming.
In B. Gramlich and S. Lucas, editors, Electronic Notes in
Theoretical Computer Science, volume 57. Elsevier Science
Publishers, 2001.

[20] M. Hanus, S. Lucas, and A. Middeldorp. Strongly sequential
and inductively sequential term rewriting systems.
Information Processing Letters, 67(1):1–8, 1998.

[21] M. Hanus (ed.). Curry: An integrated functional logic
language (vers. 0.8). Available at
http://www.informatik.uni-kiel.de/˜curry,
2003.

[22] C. Hintermeier. How to transform canonical decreasing
CTRSs into equivalent canonical TRSs. In Proc. of the 4th
International Workshop on Conditional and Typed Rewriting
Systems (CTRS’94), pages 186–205. Springer LNCS 968,
1994.

[23] G. Huet and J.-J. Lévy. Computations in orthogonal rewriting
systems. In J.-L. Lassez and G. Plotkin, editors,
Computational Logic: Essays in Honor of Alan Robinson,
pages 395–443. MIT Press, 1991.

[24] T. Johnsson. Lambda lifting: Transforming programs to
recursive functions. In Functional Programming Languages
and Computer Architecture, pages 190–203. Springer LNCS
201, 1985.

[25] J.W. Klop. Term rewriting systems. In S. Abramsky,
D. Gabbay, and T. Maibaum, editors, Handbook of Logic in
Computer Science, volume II. Oxford University Press, 1992.

[26] J. Lloyd. Programming in an integrated functional and logic
language. Journal of Functional and Logic Programming,
(3):1–49, 1999.

[27] R. Loogen, F. Lopez Fraguas, and M. Rodrı́guez Artalejo. A
demand driven computation strategy for lazy narrowing. In
Proc. of the 5th International Symposium on Programming
Language Implementation and Logic Programming, pages
184–200. Springer LNCS 714, 1993.

[28] F. López-Fraguas and J. Sánchez-Hernández. TOY: A
Multiparadigm Declarative System. In Proc. of RTA’99,
pages 244–247. Springer LNCS 1631, 1999.

[29] M. Marchiori. Unravelings and ultra-properties. In 5th
International Conference on Algebraic and Logic
Programming (ALP’96), pages 107–121. Springer LNCS
1139, 1996.

[30] J.J. Moreno-Navarro, H. Kuchen, R. Loogen, and
M. Rodrı́guez-Artalejo. Lazy narrowing in a graph machine.
In Proc. Second International Conference on Algebraic and
Logic Programming, pages 298–317. Springer LNCS 463,
1990.

[31] J.J. Moreno-Navarro and M. Rodrı́guez-Artalejo. Logic
programming with functions and predicates: The language
BABEL. Journal of Logic Programming, 12:191–223, 1992.

[32] M.J. O’Donnell. Equational Logic as a Programming
Language. MIT Press, 1985.

[33] E. Ohlebusch. Transforming conditional rewrite system with
extra variables into unconditional systems. In Proc. of the 6th
International Conference on Logic for Programming and
Automated Reasoning (LPAR’99), pages 111–130. Springer
LNCS 1705, 1999.

[34] G. Smolka. The Oz programming model. In J. van Leeuwen,

editor, Computer Science Today: Recent Trends and
Developments, pages 324–343. Springer LNCS 1000, 1995.

[35] Z. Somogyi, F. Henderson, and T. Conway. The execution
algorithm of Mercury, an ef£cient purely declarative logic
programming language. Journal of Logic Programming,
29(1-3):17–64, 1996.

[36] P. Viry. Elimination of conditions. Journal of Symbolic
Computation, 28:381–400, 1999.

