
An Implementation of Narrowing Strategies

Sergio Antoy
antoy@cs.pdx.edu

Michael Hanus
mh@informatik.uni-kiel.de

Bart Massey
bart@cs.pdx.edu

Frank Steiner
fst@informatik.uni-kiel.de

Department of Computer Science
Portland State University

P.O. Box 751, Portland, OR 97207
U.S.A.

Institut für Informatik
Christian-Albrechts-Universität Kiel

Olshausenstr. 40, D-24098 Kiel
Germany

ABSTRACTThis paper des
ribes an implementation of narrowing, an es-sential
omponent of implementations of modern fun
tionallogi
 languages. These implementations rely on narrowing,in parti
ular on some optimal narrowing strategies, to exe-
ute fun
tional logi
 programs. We translate fun
tional logi
programs into imperative (Java) programs without an inter-mediate abstra
t ma
hine. A
entral idea of our approa
his the expli
it representation and pro
essing of narrowing
omputations as data obje
ts. This enables the implementa-tion of operationally
omplete strategies (i.e., without ba
k-tra
king) or te
hniques for sear
h
ontrol (e.g., en
apsulatedsear
h). Thanks to the use of an intermediate and portablerepresentation of programs, our implementation is generalenough to be used as a
ommon ba
k end for a wide varietyof fun
tional logi
 languages.
Categories and Subject DescriptorsD.3.2 [Programming Languages℄: Language Classi�
a-tions|Multiparadigm Languages
General TermsLanguages, Design, Theory, Experimentation
KeywordsFun
tional logi
, narrowing, Curry, XML, Java
1. INTRODUCTIONThis paper des
ribes an implementation of narrowing foroverlapping indu
tively sequential rewrite systems [5℄. Nar-rowing is the essential
omputational engine of fun
tionalIn Pro
. of the 3rd International ACM SIGPLAN Confer-en
e on Prin
iple and Pra
ti
e of De
larative Programming(PPDP'01), pp. 207{217, Floren
e, Italy, 2001.

2001 ACM. Permission to make digital or hard
opiesof part or all of this work for personal or
lassroom useis granted without fee provided that
opies are not madeor distributed for pro�t or
ommer
ial advantage and that
opies bear this noti
e and the full
itation on the �rst page.To
opy otherwise, to republish, to post on servers, or to re-distribute to lists, requires prior spe
i�
 permission.

logi
 languages (see [14℄ for a survey on su
h languages andtheir implementations). An implementation of narrowingtranslates a program
onsisting of rewrite rules into exe-
utable
ode. This exe
utable
ode
urrently falls into two
ategories: Prolog predi
ates (e.g., [4, 12, 15, 27℄) or in-stru
tions for an abstra
t ma
hine (e.g., [11, 19, 26, 29℄). Al-though these approa
hes are relatively simple, in both
ases,several layers of interpretation separate the fun
tional logi
program from the hardware intended to exe
ute it. Obvi-ously, this situation does not lead to eÆ
ient exe
ution.In this paper we investigate a di�erent approa
h. Wetranslate a fun
tional logi
 program into an imperative pro-gram. Our target language is Java, but we make limiteduse of spe
i�
 obje
t-oriented features, su
h as inheritan
eand dynami
 polymorphism. Repla
ing Java with a lower-level target language, su
h as C or ma
hine
ode, would bea simple task.In Se
tion 2 we brie
y introdu
e the aspe
ts of fun
tionallogi
 programming relevant to our dis
ussion. In Se
tion 3we review ba
kground information for the key
on
epts pre-sented in this paper. In Se
tion 4 we des
ribe the elementsand the
hara
teristi
s of our implementation of narrowing.In Se
tion 5 we des
ribe aspe
ts of our
ompilation pro
ess,as well as exe
ution issues su
h as input, output and tra
-ing/debugging that may greatly a�e
t the usability of a sys-tem. In Se
tion 6 we summarize
urrent e�orts toward theimplementation of fun
tional logi
 languages, parti
ularlyw.r.t. implementations of narrowing and how they
ompareto our work. Se
tion 7 sket
hes planned extensions to ourframework, and Se
tion 8 o�ers some
on
lusions.
2. FUNCTIONAL LOGIC PROGRAMSFun
tional logi
 languages
ombine the operational prin-
iples of two of the most important de
larative program-ming paradigms, namely fun
tional and logi
 programming(see [14℄ for a survey). EÆ
ient demand-driven fun
tional
omputations are amalgamated with the
exible use of logi-
al variables, providing for fun
tion inversion and sear
h forsolutions. Fun
tional logi
 languages with a sound and
om-plete operational semanti
s are usually based on narrowing(originally introdu
ed in automated theorem proving [32℄)whi
h
ombines redu
tion (from the fun
tional part) andvariable instantiation (from the logi
 part). A narrowing

step instantiates variables of an expression and applies a re-du
tion step to a redex of the instantiated expression. Theinstantiation of variables is usually
omputed by unifying asubterm of the entire expression with the left-hand side ofsome program equation.Example 1. Consider the following rules de�ning the �predi
ate leq on natural numbers whi
h are represented byterms built from zero and succ:
leq(zero,Y) = true
leq(succ(X),zero) = false
leq(succ(X),succ(Y)) = leq(X,Y)The expression leq(succ(M),Y)
an be evaluated (i.e.,redu
ed to a value) by instantiating Y to succ(N) to ap-ply the third equation, followed by the instantiation of M to

zero to apply the �rst equation:
leq(succ(M),Y) ;fY7!succ(N)g leq(M,N);fM7!zerog trueNarrowing provides
ompleteness in the sense of logi
 pro-gramming (
omputation of all answers, i.e., substitutionsleading to su

essful evaluations) as well as fun
tional pro-gramming (
omputation of values). Sin
e simple narrowing
an have a huge sear
h spa
e, a lot of e�ort has been madeto develop sophisti
ated narrowing strategies without los-ing
ompleteness (see [14℄). Needed narrowing [7℄ is basedon the idea of evaluating only subterms whi
h are neededin order to
ompute a result. For instan
e, in a term like

leq(t1,t2), it is always ne
essary to evaluate t1 (to somevariable or
onstru
tor-rooted term) sin
e all three rules inExample 1 have a non-variable �rst argument. On the otherhand, the evaluation of t2 is only needed if t1 is of the form
succ(t). Thus, if t1 is a free variable, needed narrowing in-stantiates it to a
onstru
tor term, here zero or succ(V).Depending on this instantiation, either the �rst equation isapplied or the se
ond argument t2 is evaluated. Needednarrowing is
urrently the best narrowing strategy for �rst-order (indu
tively sequential) fun
tional logi
 programs dueto its optimality properties w.r.t. the length of derivationsand the independen
e of
omputed solutions, and due to thepossibility of eÆ
iently implementing needed narrowing bypattern mat
hing and uni�
ation [7℄. Moreover, it has beenextended in various dire
tions, e.g., higher-order fun
tionsand �-terms as data stru
tures [18℄, overlapping rules [5℄,and
on
urrent
omputations [16℄.Needed narrowing is
omplete, in the sense that for ea
hsolution to a goal there exists a narrowing derivation
om-puting a more general solution. However, most of the ex-isting implementations of narrowing la
k this property sin
ethey are based on Prolog-style ba
ktra
king. Sin
e ba
k-tra
king is not fair in exploring all derivation paths, somesolutions might not be found in the presen
e of in�nitederivations, i.e., these implementations are in
omplete froman operational point of view. An important property ofour implementation is its operational
ompleteness, i.e., all
omputable answers are eventually
omputed by our imple-mentation.
3. BACKGROUNDSin
e pattern mat
hing is an essential feature of existingfun
tional logi
 languages, term rewriting systems (TRSs)

are an adequate formal model for fun
tional logi
 programs.Therefore, we review in the following some notions fromterm rewriting [9℄.We
onsider a (many-sorted) signature partitioned into aset C of
onstru
tors and a set F of (de�ned) fun
tions or op-erations. We write
=n 2 C and f=n 2 F for n-ary
onstru
-tor and operation symbols, respe
tively. As usual, terms arebuilt from these symbols and variables (e.g., x; y; z). A
on-stru
tor term is a term without operation symbols. The setof variables o

urring in a term t is denoted by Var(t). Aterm t is ground if Var(t) = ?. A term is linear if it doesnot
ontain multiple o

urren
es of one variable.A pattern is a term of the form f(d1; : : : ; dn) where f=n 2F and d1; : : : ; dn are
onstru
tor terms. A term is operation-rooted (
onstru
tor-rooted) if it has an operation (
onstru
-tor) symbol at the root. A position p in a term t is repre-sented by a sequen
e of natural numbers. tjp denotes thesubterm of t at position p, and t[s℄p denotes the result ofrepla
ing the subterm tjp by the term s.We denote by fx1 7! t1; : : : ; xn 7! tng the substitution� with �(xi) = ti for i = 1; : : : ; n (with xi 6= xj if i 6=j) and �(x) = x for all other variables x. Substitutionsare extended to morphisms on terms by �(f(t1; : : : ; tn)) =f(�(t1); : : : ; �(tn)) for every term f(t1; : : : ; tn).A set of rewrite rules l = r su
h that l is not a variable andVar(r) � Var(l) is
alled a term rewriting system (TRS).The terms l and r are
alled the left-hand side (lhs) and theright-hand side (rhs) of the rule, respe
tively. A TRS R isleft-linear if l is linear for all l = r 2 R. A TRS is
onstru
torbased (CB) if ea
h lhs l is a pattern. In the remainder of thispaper, a fun
tional logi
 program is a left-linear CB-TRS.A rewrite step is an appli
ation of a rewrite rule to aterm, i.e., t!p;R s if there exists a position p in t, a rewriterule R = l = r and a substitution � with tjp = �(l) ands = t[�(r)℄p (p and R will often be omitted in the notationof a
omputation step). The instantiated lhs �(l) is
alleda redex and the instantiated rhs �(r) is
alled the redu
tof this redex. A (
onstru
tor) head normal form is eithera variable or a
onstru
tor-rooted term. A term t is
alledirredu
ible or in normal form if there is no term s with t! s.!+ denotes the transitive
losure of ! and!� denotes there
exive and transitive
losure of !.To evaluate terms
ontaining variables, narrowing non-deterministi
ally instantiates the variables so that a rewritestep is possible. Formally, t ;p;R;� t0 is a narrowing stepif p is a non-variable position in t and �(t) !p;R t0. Wedenote by t0 ;�� tn a sequen
e of narrowing steps t0 ;�1: : : ;�n tn with � = �n Æ � � � Æ �1. Sin
e we are interestedin
omputing values (
onstru
tor terms) as well as answers(substitutions) in fun
tional logi
 programming, we say thatthe narrowing derivation t ;��

omputes the result
 withanswer � if
 is a
onstru
tor term. The evaluation to ground
onstru
tor terms (and not to arbitrary expressions) is theintended semanti
s of fun
tional languages and also of mostfun
tional logi
 languages.A
hallenge in the design of fun
tional logi
 languages isthe de�nition of a \good" narrowing strategy, i.e., a restri
-tion on the narrowing steps issuing from t, without losing
ompleteness. In the following, we brie
y outline the needednarrowing strategy (a formal des
ription
an be found in [7℄).Needed narrowing extends Huet and L�evy's notion of aneeded redu
tion [23℄ and is de�ned on indu
tively sequentialprograms [3℄. Roughly speaking, in an indu
tively sequen-

leq(X ,Y)

leq(zero,Y) = true

leq(succ(M), Y)

leq(succ(M),zero) = false

leq(succ(M),succ(N)) = leq(M,N)

���� QQQQQQ��� QQQQQQFigure 1: De�nitional tree for the operation leq ofExample 1tial program the rules for ea
h fun
tion
an be organizedin a tree-like stru
ture (de�nitional tree [3℄). The leaves
ontain all (and only) the rules de�ning the fun
tion. Theinner nodes have a dis
riminating argument, also
alled anindu
tive position: all
hild nodes have di�erent
onstru
torsymbols at this position. For instan
e, the de�nitional treefor the fun
tion leq in Example 1 is illustrated in Figure 1;the indu
tive position is marked by a surrounding box.The
omputation of a needed narrowing step is guidedby the de�nitional tree for the root of the operation-rootedterm t. If t is a leaf node, we redu
e it with the rule atthis leaf. Otherwise, we
he
k the subterm
orresponding tothe indu
tive position of the bran
h: if it is a variable, it is(non-deterministi
ally) instantiated to the
onstru
tor of a
hild; if it is already a
onstru
tor, we pro
eed with the
or-responding
hild; if it is a fun
tion, we evaluate it (to headnormal form) by re
ursively applying needed narrowing.
4. IMPLEMENTATION OF NEEDED NAR-

ROWINGIn this se
tion we des
ribe the main ideas of our imple-mentation of narrowing. We implement a strategy, referredto as INS [5℄, proven sound and
omplete for the
lass of theoverlapping indu
tively sequential rewrite systems. In thesesystems, the left-hand sides of the rewrite rules de�ning anoperation
an be organized in de�nitional trees. However, anoperation may have distin
t rewrite rules with the same left-hand side (modulo renaming of variables): operation coin(Se
tion 4.8), is one example. To ease the understandingof our work, we �rst des
ribe the implementation of rewrite
omputations in indu
tively sequential rewrite systems. Wethen des
ribe the extensions that lead to narrowing in over-lapping indu
tively sequential rewrite systems.
4.1 OverviewThe overall goals of our implementation are speed of exe-
ution and operational
ompleteness. The following prin-
iples guide our implementation and are instrumental ina
hieving the goal.1. A redu
tion step repla
es a redex of a term with itsredu
t. A term is represented as a tree-like data stru
-ture. The exe
ution of a redu
tion updates only theportion of this data stru
ture a�e
ted by the repla
e-ment. Thus, the
ost of a redu
tion is independentof its
ontext. We
all this prin
iple in-pla
e repla
e-ment.

2. Only somewhat needed steps are exe
uted. We usethe quali�er \somewhat" be
ause di�erent notions ofneed have been proposed for di�erent
lasses of rewritesystems. We exe
ute a parti
ular kind of steps thatfor redu
tions in orthogonal systems is known as root-needed [30℄. Thus, redu
tions that are a priori uselessare never performed. We
all this prin
iple useful step.3. Don't know non-deterministi
 redu
tions are exe
utedin parallel. Both narrowing
omputations (in mostrewrite systems) and redu
tions (in interesting rewritesystems) are non-deterministi
. Without some form ofparallel exe
ution, operational
ompleteness would belost. We
all this prin
iple operational
ompleteness.In indu
tively sequential rewrite systems, and when
om-putations are restri
ted to rewriting, it is relatively easyto faithfully implement all the above prin
iples. In fa
t,our implementation does it. However, our environment is
onsiderably ri
her. We exe
ute narrowing
omputations inoverlapping indu
tively sequential rewrite systems. In thissituation, two
ompli
ations arise. The non-determinismof narrowing and/or of overlapping rules imply that a re-dex may have several repla
ements. In these situations,there
annot be a single in-pla
e repla
ement. Furthermore,the steps that we
ompute in overlapping indu
tively se-quential rewrite systems are needed, but only modulo non-deterministi

hoi
es [5℄. Hen
e, some step may not beneeded in the stri
t sense of [7, 23℄, but we may not beable to know by feasible means whi
h steps.The ar
hite
ture of our implementation is
hara
terizedby terms and
omputations. Both terms and
omputationsare organized into tree-like linked (dynami
) stru
tures. Aterm
onsists of a root symbol applied to zero or more argu-ments whi
h are themselves terms. A
omputation
onsistsof a sta
k of terms that identify redu
tion steps. All theterms in the sta
k, with the possible ex
eption of the top,are not yet redexes, but will eventually be
ome redexes, andbe redu
ed, before the
omputation is
omplete. In terms,links go from a parent to its
hildren, whereas in
omputa-tions links go from
hildren to their parent.A graphi
al representation of these obje
ts is shown inFigure 2. In this �gure, the steps to the left represent theterms in the sta
k of the
omputation. Step0 is the bottomof the sta
k: it
annot be exe
uted before Step1 is exe
uted.Likewise Step1
annot be exe
uted before Step2 is exe
uted.To ease understanding, we begin with an a

ount of ourimplementation of rewriting
omputations in indu
tively se-quential rewrite systems. Although non-trivial, this imple-mentation is simple enough to inspire
on�den
e in bothits
orre
tness and eÆ
ien
y. Then, we generalize the dis-
ussion to larger
lasses of rewrite systems and �nally tonarrowing
omputations and argue why both
orre
tnessand eÆ
ien
y of this initial implementation are preservedby these extensions.
4.2 Symbol representationSymbols are used to represent terms. A symbol is an ob-je
t that
ontains two pie
es of information: a name and akind. Sin
e there is no good reason to have more than oneinstan
e of a given symbol in a program, ea
h distin
t sym-bol is implemented as an immutable singleton obje
t. Thename is a string. The kind is a tag that
lassi�es a symbol.For now, the tag is either \de�ned operation" or \data
on-

stru
tor". Additional tags will be de�ned later to
omputewith larger
lasses of rewrite systems. The tag of a symbolis used to dispat
h
omputations that depend on the
las-si�
ation of a symbol. Of
ourse, we
ould dispat
h these
omputations by dynami
 polymorphism, i.e., by de�ningan abstra
t method overridden by sub
lasses. Often, thesemethods would
onsist of a few statements that use the en-vironment of the
aller. A tag avoids both a proliferationof small methods and the ineÆ
ien
y of passing around theenvironment. Furthermore, this ar
hite
ture supports im-plementations in obje
tless target languages as well.Nevertheless, in our Java ar
hite
ture,
lass symbol hassub
lasses su
h as operation and
onstru
tor. In parti
ular,there is one sub
lass of operation for ea
h de�ned operationf of a fun
tional logi
 program. This
lass, a

ording to ourse
ond prin
iple,
ontains the
ode for the exe
ution of auseful step of any term rooted by f . Operations are de�nedby rewrite rules. We use the following rules in the examplesto
ome.
add (zero, Y) = Y
add (succ (X), Y) = succ (add (X, Y))

positive (zero) = false
positive (succ (-)) = true

4.3 Term representationTerms of user-de�ned type
ontain two pie
es of infor-mation: the root of the term, whi
h is a symbol, and thearguments of the root, whi
h are terms themselves. Termsof builtin types
ontain spe
ialized information, e.g., termsof the builtin type int
ontain an int. This situation sug-gests de�ning a
ommon base
lass and a spe
ialization ofthis
lass for ea
h appropriate type of term. However, this isin
on
i
t with the fa
t that a

ording to the �rst prin
ipleof our implementation, a term is a mutable obje
t. In Java,the
lass of an obje
t
annot
hange during exe
ution.Therefore, we implement a term as a bridge pattern. Aterm delegates its fun
tionality to a representation. Dif-ferent types, su
h as user-de�ned types, builtin types, andvariables are represented di�erently. All the representationsprovide a
ommon fun
tionality. The representation of aterm obje
t
an
hange at run-time and thus provide muta-bility of both value and behavior as required by the imple-mentation.
4.4 Computation representationA
omputation is an obje
t abstra
ting the ne
essity toexe
ute a sequen
e of spe
i�
 redu
tion steps in a term.Class
omputation
ontains two pie
es of information:1. A sta
k of terms to be
ontra
ted (redu
ed at theroot). The terms in the sta
k are not redexes ex
ept,possibly, the top term. Ea
h term in the sta
k is asubterm of the term below it, and must be redu
ed toa
onstru
tor-rooted term in order to redu
e the termbelow it. Therefore, the elements of the sta
k in a
om-putation may be regarded as steps as well. The under-pinning theoreti
al justi�
ation of this sta
k of stepsis in the proof of Th. 24 of the extended version of [5℄.We ensure that every term in the sta
k eventually willbe
ontra
ted. To a
hieve this aim, if a
omplete strat-egy
annot exe
ute a step in an operation-rooted term,it redu
es the term to the spe
ial value failure.

2. A set of bookkeeping information. For example, thisinformation in
ludes the number of steps exe
uted bythe
omputation and the elapsed time. An interest-ing bookkeeping datum is the state of a
omputation.Computations being exe
uted are in a ready state. A
omputation's state be
omes exhausted after the
om-putation has been exe
uted and it has been determinedthat no more steps will be exe
uted at the root ofthe bottom-most term of the sta
k. Before be
omingexhausted a
omputation state may be either resultor failure. Later, we will extend our model of
om-putation with residuation. With the introdu
tion ofresiduation, a new state of a
omputation,
ounder, isintrodu
ed as well.Loosely speaking, an initial
omputation is
reated for aninitial top-level expression to evaluate. This expression isthe top and only term of the sta
k of this
omputation. Ifthe top term t is not a redex, a subterm of t needed to
ontra
t t is pla
ed on the sta
k and so on until a redex isfound. A redex on top of the sta
k is repla
ed by its redu
t.If the redu
t is
onstru
tor-rooted, the sta
k is popped (itstop element is dis
arded).Step0 // positiveStep1 // add

??
??

??
?

��
��

��
�Step2 // coin tFigure 2: Snapshot of a
omputation of term

positive(add(coin,t))
4.5 Search space representationThe sear
h spa
e is a queue of
omputations whi
h are re-peatedly sele
ted for pro
essing. The ma
hinery of a queueand fair sele
tion is not ne
essary for rewriting in indu
-tively sequential rewrite systems. For these systems,
om-putations are stri
tly sequential and
onsequently a single(possibly impli
it) sta
k of steps would suÆ
e. However, thear
hite
ture that we des
ribe not only a

ommodates theextensions from rewriting to narrowing and/or from indu
-tively sequential rewrite systems to the larger
lasses thatare
oming later, but it allows us to
ompute more eÆ
iently.A
omputation serves two purposes: (1) �nding maximaloperation-rooted subterms t of the top-level term to eval-uate and (2) redu
ing ea
h t to head normal form. Thepseudo-
ode of Figure 3 sket
hes part (2), whi
h is the most
hallenging. Some optimizations would be possible, but weavoid them for the sake of
larity.Sin
e indu
tively sequential rewrite systems are
on
uent,repla
ing in-pla
e a subterm u of a term t with u's redu
tdoes not prevent rea
hing t's normal form. When a termhas a result this result is found, sin
e repeated
ontra
tionsof needed redexes are normalizing.
4.6 SentinelThe �rst extension to the previous model is the intro-du
tion of a \sentinel" at the root of the top-level expres-sion being evaluated. For this, we introdu
e a distinguished

while the queue is not emptyj sele
t a ready
omputation k from the queuej let t be the term at the top of k's sta
kj swit
h on the root of tj j
ase t is operation-rootedj j j swit
h on the redu
ibility of tj j j j
ase t is a redexj j j j j repla
e t with its redu
tj j j j j put k ba
k into the queuej j j j
ase t is not a redexj j j j j swit
h on s, a maximal needed subterm of tj j j j j j
ase s existsj j j j j j j push s on k's sta
kj j j j j j j put k ba
k into the queuej j j j j j
ase s does not existj j j j j j j stop the
omputation, no result existsj j j j j endswit
hj j j endswit
hj j
ase t is
onstru
tor-rootedj j j pop k's sta
kj j j if k's sta
k is not emptyj j j j put k ba
k into the queuej endswit
hendwhileFigure 3: Pro
edure to evaluate a term to a headnormal formsymbol
alled sentinel that takes exa
tly one argument ofany kind. If t is the term to evaluate, our implementationevaluates sentinel(t) instead. Thus, this is the a
tual termof the initial
omputation. Symbol sentinel has
hara
ter-isti
s of both an operation and a
onstru
tor. Similar toan operation, the sta
k of the initial
omputation
ontainssentinel(t), but similar to a
onstru
tor, sentinel(t)
annotbe
ontra
ted for any t. Having a sentinel has several ad-vantages. The strategy works with the sentinel by meansof impli
it rewrite rules that always look for an internalneeded redex and never
ontra
t the sentinel -rooted termitself. Also, using a sentinel saves frequent tests similar tousing a sentinel in many
lassi
 algorithms, e.g., sorting.
4.7 FailureThe se
ond extension to the previous model is
on
ernedwith the possibility of a \failure" of a
omputation. A failureo

urs when a term has no
onstru
tor normal form. The
omputation dete
ts a failure when the strategy, whi
h is
omplete, �nds no useful steps (redexes) in an operation-rooted term.The pseudo-
ode presented earlier simply terminates the
omputation when it dete
ts a failure. For the extensionsdis
ussed later it is more
onvenient to expli
itly representfailures in a term. This allows us, e.g., to
lean up
ompu-tations that
annot be
ompleted and to avoid dupli
ating
ertain
omputations. To this purpose we introdu
e a newsymbol
alled failure. The failure symbol is treated as a
onstant
onstru
tor.Suppose that u is an operation-rooted term. If the strat-egy �nds no step in u, it evaluates u to failure. A failuresymbol is treated as a
onstru
tor during the pattern mat
h-ing pro
ess. Impli
it rewrite rules for ea
h de�ned operationrewrite any term t to failure when a failure o

urs at aneeded position of t. For example, we perform the following

redu
tion:
add (failure, v) ! failureWith these impli
it rewrite rules, an inner o

urren
e offailure in a term propagates up to the sentinel, whi
h
anthus report that a
omputation has no result. The expli
itrepresentation of failing
omputations is also important inperforming non-deterministi

omputations.

4.8 Non-determinismThe third extension to the previous model is
on
ernedwith non-determinism. In our work, non-determinism is ex-pressed by rewrite rules with identi
al left-hand sides, butdistin
t right-hand sides. A textbook example of a non-deterministi
 de�ned operation is:
coin = zero
coin = succ (zero)This operation di�ers from the previous ones in that a giventerm, say s = coin, has two distin
t redu
ts.The most immediate problem posed by non-deterministi
operations is that if s o

urs in some term t and we repla
ein-pla
e s with one of its repla
ements, we may lose a resultthat
ould be obtained with another repla
ement. If a termsu
h as s be
omes the top of the sta
k of a
omputationk, we
hange the state of k to exhausted and we start twoor more new
omputations. Ea
h new
omputation, say k0,begins with a sta
k
ontaining a single term obtained by oneof the several possible redu
tions of s.The pro
edure des
ribed above
an be optimized in manyways. We mention only the most important one that wehave implemented | the sharing of subterms disjoint froms. We show this optimization in an example. Suppose thatthe top-level term being evaluated is:
add (coin, t)The non-determinism of coin gives rise to the
omputationof the following two terms:
add (zero, t)
add (succ (zero), t)These terms are evaluated
on
urrently and independently.However, term t in the above display is shared rather thandupli
ated. Sharing improves the eÆ
ien
y of
omputa-tions sin
e only one term, rather than several equal
opies,is
onstru
ted and possibly evaluated. In some situations,a shared term may o

ur in the sta
ks of two indepen-dent
omputations and be
on
urrently evaluated by ea
h
omputation. This approa
h avoids a
ommon problem ofba
ktra
king-based implementations of fun
tional logi
 lan-guages, in whi
h t will be evaluated twi
e if it is neededduring the evaluation of both add terms shown above.

4.9 Rewrite rulesThe �nal relevant portion of our ar
hite
ture is the im-plementation of rewrite rules. All the rules of an ordinaryde�ned operation f are translated into a single Java method.This method impli
itly uses a de�nitional tree of f to
om-pare
onstru
tor symbols in indu
tive positions of the treewith
orresponding o

urren
es in an f -rooted term t to re-du
e. Let kt be a
omputation in the queue, ready the stateof kt, and t the term on the top of kt's sta
k. The following
ase breakdown de�nes the
ode that needs to be generated.1. If t is a redex with a single redu
t, then t is repla
edin-pla
e by its redu
t.

2. If t is a redex with several redu
ts, then a new
om-putation is started for ea
h redu
t. The state of kt is
hanged to exhausted.3. If in a needed position of t there is failure, then t is
onsidered a redex as well and it is repla
ed in-pla
eby failure.4. If in a needed position of t there is an operation-rootedordinary term s, then s is pushed on the sta
k of kt.5. The last
ase to
onsider is when operation f is in
om-pletely de�ned and no needed subterm is found in t.In this
ase, t is repla
ed in-pla
e by failure.
4.10 NarrowingAt this point we are ready to dis
uss the extension of ourimplementation to narrowing. A narrowing step instantiatesvariables in a way very similar to a non-deterministi
 redu
-tion step. For example, suppose that allnat is an operationde�ned by the rules:

allnat = zero
allnat = succ (allnat)Narrowing term add(X,t), where X is an uninstantiatedvariable and t is any term, is not mu
h di�erent from redu
-ing add(allnat,t).There are two key di�eren
es in the handling of variablesw.r.t. non-deterministi
 redu
tions: (1) we must keep tra
kof variable bindings to
onstru
t the
omputed answer atthe end of a
omputation, and (2) if a given variable o

ursrepeatedly in a term being evaluated, the repla
ement of avariable with its binding must repla
e all the o

urren
es.We solve point (1) by storing the binding of a variable ina
omputation. Point (2) is simply bookkeeping. We rep-resent substitutions \in
rementally." A
omputation
om-putes both a value (for the fun
tional part) and an answer(for the logi
 part). The answer is a substitution. In most
ases, a narrowing step produ
es several distin
t bindingsfor a variable. Ea
h of these bindings in
rements a previ-ously
omputed substitution. For example, suppose that theexpression to narrow is:
add (X, Y) = tfor some term t. Some
omputation may initially bind Xto zero. Later on, a narrowing step may bind Y indepen-dently to both zero and succ(Y1). These bindings will\add" to the previous one. The previous binding is shared,whi
h saves both memory and exe
ution time.

4.11 ParallelismOur implementation in
ludes a form of parallelism knownas parallel-and. And-parallel steps do not a�e
t the sound-ness or
ompleteness of the strategy, INS, underlying ourimplementation, but in some
ases they may signi�
antlyredu
e the size of the narrowing spa
e of a
omputation |possibly from in�nite to �nite. The parallel-and operation ishandled expli
itly by our implementation. If a
omputationk leads to the evaluation of t & u, where t and u are termsand \&" denotes the parallel-and operation, then steps ofboth t and u are s
heduled. This requires to
hange thesta
k of a
omputation into a tree-like stru
ture. The set ofleaves of this tree-like stru
ture repla
es the top of the sta
kpreviously dis
ussed.As soon as one of these parallel steps has to be removedfrom the tree, whi
h means that its term argument has been

redu
ed to a
onstru
tor term
 (in
luding failure), the par-ent of the step is re
onsidered. Depending on
's value,either the parent term is redu
ed (to a failure if
 = failure)and the other parallel steps are removed, or (if
 = su

ess)the
omputation of the other parallel steps
ontinues nor-mally.
4.12 ResiduationResiduation is a
omputational me
hanism that delays theevaluation of a term
ontaining an uninstantiated variablein a needed position [1℄. Similar to narrowing, it supportsthe integration of fun
tional programming with logi
 pro-gramming by allowing uninstantiated variables in fun
tionalexpressions. However, in
ontrast to narrowing it is in
om-plete, i.e., unable to �nd all the solutions of some problems.Residuation is useful for dealing with built-in types su
h asnumbers [10℄. Residuation is meaningful only when a
om-putation has several steps exe
uting in parallel. If a
ompu-tation has only one step exe
uting, and this step residuates,the
omputation
annot be
ompleted and it is said to
oun-der.Operations that residuate are
alled rigid, whereas oper-ations that narrow are
alled
exible. A formal model forthe exe
ution of programs de�ning both rigid and
exibleoperations is des
ribed in [16℄. Our implementation alreadyhas the ne
essary infrastru
ture to a

ommodate this model.When a step s residuates on some variable V , we store (areferen
e to) s in V , mark s as residuating and
ontinue theexe
ution of the other steps. When V is bound, we removethe residuating mark from s so that s
an be exe
uted as anyother step. If all the steps of a
omputation are residuating,the
omputation
ounders.
5. THE COMPILATION PROCESSThe main motivation of this new implementation of nar-rowing is to provide a generi
 ba
k end that
an be used byfun
tional logi
 languages based on a lazy evaluation strat-egy. Current work [6℄ shows that any narrowing
ompu-tation in a left-linear
onstru
tor-based
onditional rewritesystem
an be simulated, with little or no loss of eÆ
ien
y, inan overlapping indu
tively sequential rewrite system, hen
eby our implementation. Therefore, our implementation
anbe used by languages su
h as Curry [21℄, Es
her [25℄ andToy [28℄.To support this idea, our implementation works indepen-dently of any
on
rete sour
e language. The sour
e pro-grams of our implementation are fun
tional logi
 programswhere all fun
tions are de�ned at the top level (i.e., no lo
alde
larations) and the pattern-mat
hing strategy is expli
it.This language,
alled FlatCurry, has been developed as anintermediate language for the Curry2Prolog
ompiler [8℄ inthe Curry development system PAKCS [17℄ and is used forvarious other purposes, e.g., meta-programming and par-tial evaluation [2℄. Basi
ally, a FlatCurry program is (apartfrom data type and operator de
larations) a list of fun
tionde
larations where ea
h fun
tion f is de�ned by a single ruleof the form f(x1; : : : ; xn) = e, i.e., the left-hand side
onsistsof pairwise di�erent variable arguments and the right-handside is an expression
ontaining
ase expressions for patternmat
hing.To be more pre
ise, an expression
an take any of theforms shown in Figure 4. The shallow patterns pi o

ur-ring in
ase expressions have the form
(x1; : : : ; xn), i.e., all

x (variable)
(e1; : : : ; en) (
onstru
tor)f(e1; : : : ; en) (fun
tion
all)
ase e0 offp1 ! e1; : : : ; pn ! eng (rigid
ase)f
ase e0 offp1 ! e1; : : : ; pn ! eng (
exible
ase)or(e1; e2) (
hoi
e)part
all(f; e1; : : : ; ek) (partial appli
ation)apply(e1; e2) (appli
ation)
onstr(fx1; : : : ; xng; e) (
onstraint)guarded(fx1; : : : ; xng; e1; e2) (guarded expression)Figure 4: FlatCurry expressions
leq(X,Y) = f
ase X of f

zero ! true;
succ(M) ! f
ase Y of f

zero ! false;
succ(N) ! leq(M,N)ggFigure 5: En
oding of Example 1 in FlatCurry
ase bran
hes are
onstru
tors applied to pairwise distin
t(fresh) variables. Any indu
tively sequential program
an betranslated into FlatCurry rules whose right-hand side
on-sists of only
onstru
tor appli
ations, fun
tion appli
ationsand
ase expressions [18℄. For instan
e, the fun
tion leq ofExample 1 is represented in FlatCurry as shown in Figure 5.The other options for expressions are used for the ex-tensions of indu
tively sequential programs that o

ur invarious fun
tional logi
 languages. For instan
e, or expres-sions are used to represent non-deterministi

hoi
es (seeSe
tion 4.8), rigid
ase expressions for residuation, i.e., fun
-tions whi
h suspend on insuÆ
iently instantiated arguments(see Se
tion 4.12), (partial) appli
ations for higher-orderfun
tions (whi
h
an be implemented by a transformationinto �rst-order rules, see [34℄), and guarded expressions for
onditional rules1.Although FlatCurry was originally designed as an inter-mediate language to
ompile and manipulate Curry pro-grams, it should be
lear that it
an also be used for variousother de
larative languages (e.g., Haskell-like lazy languageswith stri
t left-to-right pattern mat
hing
an be
ompiledby generating appropriate
ase expressions). Our ba
k enda

epts a synta
ti
 representation of FlatCurry programsin XML format2 so that other fun
tional logi
 languages
an be
ompiled into this implementation-independent for-mat. XML is be
oming the format of
hoi
e for ex
hangingstru
tured information, su
h as external representations of
ompiled programs, between di�erent programs and non-homogeneous systems. Our
hoi
e of this format is intendedto easily a

ommodate a variety of sour
e languages and tomaximize the usability of our ba
k end. Figure 6 shows the1See http://www.informatik.uni-kiel.de/~
urry/flat/for more details.2The DTD for the XML FlatCurry representation is avail-able from http://www.informatik.uni-kiel.de/~
urry/flat
urry.dtd.

XML
ode for the FlatCurry representation of leq givenabove.Our
ompiler, whi
h is fully implemented in Curry, readsan XML representation and
ompiles it into a Java programfollowing the ideas des
ribed in Se
tion 4. Re
all that everyfun
tion is represented by a sub
lass of operation. For ea
hfun
tion, we de�ne a method expand whi
h will expand afun
tion
all a

ording to its rules and depending on itsarguments (Se
tions 4.9, 4.10).To show the simpli
ity of our
ompiled
ode, we providean ex
erpt of the expand method for leq in Figure 7 whi
his generated from the XML representation given above. A
-
ording to Se
tion 4.9, we must de
ide whether leq(t1; t2)is a redex. This expression is a redex if t1 is a variable (wemust narrow) or zero (we apply the �rst rule). If t1 equals
succ(..), we must do the same
he
k for the se
ond ar-gument. If t1 fails, so does leq. If t1 is a fun
tion
all, wemust evaluate it �rst. For the sake of simpli
ity, we showpseudo-
ode, whi
h re
e
ts the basi
 stru
ture and is verysimilar to the real Java
ode.To use our ba
k end for a fun
tional logi
 language, it isonly ne
essary to
ompile programs from this language to aXML representation a

ording to the FlatCurry DTD. Forinstan
e, our
ompiler
an be used as a ba
k end for Currysin
e Curry programs
an be translated into this XML repre-sentation with PAKCS [17℄. Again, it is worth emphasizingthat FlatCurry
an en
ode more than just Curry programsor needed narrowing, be
ause the evaluation strategy is
om-piled into the
ase expressions. For instan
e, FlatCurry is asuperset of TFL, whi
h is used as an intermediate represen-tation for a Toy-like language based on the CRWL paradigm(Constru
tor-based
onditional ReWriting Logi
) [22℄.The
omputation engine is designed to work with the read-eval-print loop typi
al of many fun
tional, logi
 and fun
-tional logi
 interpreters. In our Java implementation, the
omputation engine and the read-eval-print loop are threadsthat intera
t with ea
h other in a produ
er/
onsumer pat-tern. When a
omputed expression (value plus answer) be-
omes available, the
omputation engine noti�es the read-eval-print loop while preserving the state of the narrowingspa
e. The read-eval-print loop presents the results to theuser and waits. The user may request further results or ter-minate the
omputation. If the user requests a new result,the read-eval-print loop noti�es the
omputation engine tofurther sear
h the narrowing spa
e. Otherwise, the narrow-ing spa
e is dis
arded.Currently we provide a naive tra
e fa
ility that is use-ful to debug both user
ode and our own implementation.Sin
e the
omputations originating from a goal are truly
on-
urrent, as is ne
essary to ensure operational
ompleteness,and sin
e some terms are shared between
omputations, thetra
e is not always easy to read. Computations are identi�edby a unique id. We envision a tool,
on
eptually and stru
-turally well separated from the
omputation engine, that
olle
ts the interleaved tra
es of all
omputations, separatesthem, and presents ea
h tra
e in a di�erent window for ea
h
omputation. This tool may have a graphi
al user interfa
eto sele
t whi
h
omputations to see and/or intera
t with.
6. RELATED WORKIn this se
tion we dis
uss and
ompare other approa
hesto fun
tional logi
 language implementation (see [14℄ for asurvey). Our approa
h provides an operationally
omplete

<fun
 name="leq" arity="2"><fun
type>... </fun
type> // the type of the fun
tion<rule> // the rule for the fun
tion<lhs> <var>X</var> <var>Y</var> </lhs> // two arguments, enumerated<rhs><
ase type="flex"> // evaluate by narrowing<var>X</var> // swit
h on �rst argument<bran
h><pattern name="zero" /> // if it mat
hes Zero...<
omb type="ConsCall" name="true" /> // ...redu
e to True</bran
h><bran
h><pattern name="su

"> // if it mat
hes su

(M)...<var>M</var></pattern><
ase type="flex"> // ...then go on with se
ond argument
ode for mat
hing the se
ond argument</
ase></bran
h> </
ase> </rhs> </rule> </fun
>Figure 6: XML
ode for leqexpand (Computation
omp) {term =
omp.getTerm(); // get the term from top of the sta
kX = term.getArg(0); // get �rst argumentY = term.getArg(1); // get se
ond argumentswit
h on kind of X //
ase X of ...
ase variable: // do narrowing: bind to patternsX.bindTo(zero);spawn new
omputation for leq(zero,Y);X.bindTo(su

(M));spawn new
omputation for leq(su

(M),Y);
omp.setExhausted(); // this
omputation is exhausted
ase
onstru
tor: // argument is
onstru
tor-rooted,swit
h on kind of
onstru
tor // thus do pattern mat
hing
ase zero: // apply �rst rule:term.update(true); // repla
e term with true
ase su

: //
ase X of su

(M) !
ase Y of...re
ursive
ase for swit
hing on Y
ase failure: // the needed subterm has failed,term.update(failure) // thus leq fails, too
ase operation: // X is a fun
tion
all, thus
omp.pushOnSta
k(X); // evaluate this
all �rst} Figure 7: Simpli�ed pseudo-
ode for the expand method of leqand eÆ
ient ar
hite
ture for implementing narrowing whi
h
an potentially a

ommodate sophisti
ated
on
epts, e.g.,the
ombination of narrowing and residuation, en
apsulatedsear
h or
ommitted
hoi
e. As some re
ent narrowing-based implementations of fun
tional logi
 languages show,most implementations that in
lude these
on
epts la
k
om-pleteness or are ineÆ
ient.One
ommon approa
h to implement fun
tional logi
 lan-guages is the transformation of sour
e fun
tional logi
 pro-grams into Prolog programs. This approa
h is favored forits simpli
ity sin
e Prolog has most of the features of fun
-tional logi
 languages: logi
al variables, uni�
ation, andnon-determinism implemented by ba
ktra
king. However,the
hallenge in su
h an implementation is the implemen-tation of a sophisti
ated evaluation strategy that exploitsthe presen
e of fun
tions in the sour
e programs. Di�er-ent implementations of this kind are
ompared and evalu-ated in [15℄ where it is demonstrated that needed narrow-ing is eÆ
iently implemented in a (stri
t) language su
h asProlog and that this implementation is superior to othernarrowing strategies. Therefore, most of the newer propos-

als to implement fun
tional logi
 languages in Prolog arebased on needed narrowing [4, 8, 15, 27℄. In
ontrast toour implementation of narrowing, all of these e�orts are op-erationally in
omplete (i.e., existing solutions might not befound due to in�nite derivation paths) sin
e they are basedon Prolog's depth-�rst sear
h me
hanism. The same draw-ba
k also o

urs in implementations of fun
tional logi
 lan-guages based on abstra
t ma
hines (e.g., [11, 26, 29, 22℄)sin
e these abstra
t ma
hines use ba
ktra
king to implementnon-determinism.An ex
eption is the Curry2Java
ompiler [19℄ whi
h isbased on an abstra
t ma
hine implementation in Java butuses independent threads to implement non-deterministi

hoi
es. If these threads are fairly evaluated (whi
h
an beensured by spe
i�
 instru
tions), in�nite derivations in onebran
h do not prevent �nding solutions in other bran
hes.Our approa
h is more
exible sin
e it does not depend onthreads, but it
an
ontrol to any degree of granularity thes
heduling of steps in distin
t
omputations. This eases theimplementation of problem-spe
i�
 sear
h strategies at thetop level, whereas Curry2Java is restri
ted to en
apsulated

sear
h [20℄.Our implementation is the subje
t of a
tive investigationin several dire
tions. Thus, we are not spe
i�
ally
on
ernedwith its eÆ
ien
y at this time. Rather, we are studyingar
hite
tures that easily integrate
on
epts and ideas thathave been proposed for fun
tional logi
 programming. Ef-�
ien
y is an important issue, though, and we expe
t thatit will be a strong point of our implementation due to thedire
t translation into an imperative language without theadditional
ontrol layers of an abstra
t ma
hine. While wehave attempted to sele
t an eÆ
ient ar
hite
ture, we havenot paid mu
h attention to detailed optimization of our im-plementation, and we do not expe
t top speed as long as we
ompile to Java. We performed only a limited number ofben
hmarks to get a feel for where we stand.For the fun
tional evaluation, we evaluated the naive re-verse of a list of 1200 elements (400 only for
omparingCurry2Java). To ben
hmark non-determinism we evalu-ated add x y =:= peano300, where peano300 de-notes the term en
oding 300 in unary notation and the in�xoperator =:= denotes the stri
t equality with uni�
ation.This goal is solved by
reating 301 parallel
omputations bynarrowing on the add operation.The two fastest available implementations of needed nar-rowing, to the best of our knowledge, are the Curry2Prolog
ompiler of the PAKCS system and theM�unster Curry Com-piler (MCC) [29℄. The Curry2Java ba
k end (C2J), in
ludedin the PAKCS system, is not as fast, but is the fastest avail-able
orre
t and
omplete implementation of needed narrow-ing. We have also
ompared our approa
h to a Java-basedimplementation of Prolog: Jinni [33℄ is the fastest engine inthe naive reverse ben
hmark among the Java-based Prologimplementations
ompared in [13℄. Table 1 shows exe
utiontimes, in se
onds, for simple ben
hmarks on a PIII-900 MHzLinux ma
hine. These results show that our engine is
ur-rently the fastest
omplete implementation of narrowing. Inall likelihood, its speed is partially due to the elimination ofthe overhead paid by Curry2Java for
omputing with an ab-stra
t ma
hine. In
omparison with Jinni, we perform betterin the rev1200 ben
hmark, where the number of redu
tionsteps is more or less the same for needed narrowing and SLD-resolution. For the add ben
hmark, we evaluate the goal
add(X,Y,peano300) in Jinni. Due to the rules for stri
tequality with uni�
ation, even an optimized implementationof needed narrowing will perform at least twi
e as many re-du
tion steps for add x y =:= peano300 as a SLD-resolution of add(X,Y,peano300). However, we arestill faster than Jinni in this ben
hmark, too. Curry2Prologand MCC are faster than our approa
h by a fa
tor 8 for
rev and by fa
tor 20 for add. This is to be expe
ted.Ba
ktra
king-based implementations are simpler and fasterbe
ause they sa
ri�
e
ompleteness. Additionally, Curry2-Prolog is exe
uted by the highly optimized SICStus Prolog
ompiler, and the abstra
t ma
hine of MCC is written inC, while our implementation is exe
uted by the JVM. Weexpe
t that if our implementation were optimized and/or
oded in C, it would o�er performan
e
ompetitive withthese in
omplete systems while retaining
ompleteness.A fa
tor of 8-20 speedup over Java for a C implemen-tation is reasonable and supported by the results of [19℄.The authors have shown that a C++ implementation of theCurry2Java abstra
t ma
hine was more than 50 times fasterthan the same implementation in Java. We do not expe
t a

Table 1: Exe
ution times for simple ben
hmarks onseveral FLP enginesOurs C2J MCC PAKCS Jinni
rev400 0.69 2.6
rev1200 5.5 N/A 0.69 0.68 45.9
add300 2.1 16.2 0.12 0.09 2.5similar improvement be
ause we have already eliminated theinterpretation layer of the abstra
t ma
hine, and be
ause theresults of [19℄ were obtained with JDK 1.1 while we use JDK1.3. The latter is more eÆ
ient. However, we are
on�dentthat there are still
onsiderable opportunities for improvingthe eÆ
ien
y of our implementation. We plan to work onthis aspe
t, but only after resolving the ar
hite
tural issuesrelated to the in
lusion of sear
h and
on
urren
y featureswhi
h are dis
ussed in the next se
tion.

7. FURTHER EXTENSIONSA very interesting feature for modern fun
tional logi
 lan-guages is en
apsulated sear
h [20℄. Although this feature isnot yet in
luded in our implementation, our ar
hite
ture isready to a

ommodate it.En
apsulated sear
h uses a sear
h operator to expli
itly
ontrol di�erent bran
hes of a non-deterministi

omputa-tion. It relies on a data stru
ture to en
ode sear
h goalsand their non-deterministi
 splitting. This stru
ture sup-ports di�erent sear
h strategies and
ontrols failures. Ad-ditionally, it prevents non-determinism from splitting theglobal
omputation, whi
h is
ru
ial to avoid
on
i
ts withirreversible I/O operations. Complete en
apsulated sear
hstrategies rely on another key feature,
ommitted
hoi
e [24℄.Losely speaking, di�erent bran
hes of a
omputation areevaluated in parallel. When one bran
h �nds a solution,the other bran
hes are dis
arded. The
ombination of thesear
h operator and
ommitted
hoi
e is ne
essary for im-plementing
omplete en
apsulated sear
h strategies [31, 20℄.To ensure
ompleteness, it is ne
essary to distinguish be-tween lo
al and global
omputations in three aspe
ts. Non-deterministi
 steps of a goal
annot split the global
ompu-tation. If a goal either fails or su

eeds we must take spe
iala
tions like en
oding the result in a data stru
ture or killingsome other lo
al
omputations (if the
ommitted
hoi
e is in-volved). The third aspe
t
on
erns variable binding. Globalvariables, i.e., variables not introdu
ed by sear
h,
annotbe bound by sear
h, be
ause di�erent lo
al
omputations
an share a global variable. Di�erent bindings of any su
hvariable in lo
al
omputations would be in
onsistent in theglobal
omputation.We know of only two attempts at narrowing-based im-plementations of en
apsulated sear
h. The M�unster CurryCompiler implements the sear
h operator, but it la
ks
om-mitted
hoi
e. Thus,
omplete sear
h algorithms
annot be
oded in MCC. Curry2Java provides both the sear
h oper-ator and
ommitted
hoi
e. Curry2Java employs threadsfor non-deterministi
 sear
h, thus it fa
es the problem ofintegrating lo
al sear
h into an ar
hite
ture whi
h was notdesigned for expli
it
ontrol. This problem has not yet beensolved and its solution is not near.In our ar
hite
ture, it should be mu
h easier to implementand integrate en
apsulated sear
h and
ommitted
hoi
e be-

ause we have expli
it and dire
t
ontrol of
omputation.Computations are designed to be nested, whi
h eases intro-du
ing lo
al
omputations. A
ru
ial aspe
t of the imple-mentation of en
apsulated sear
h is the distin
tion betweenlo
al and global variables. This
an be solved by makinga
omputation log a variable as lo
al when it is introdu
edinside this
omputation, e.g., by evaluating a lo
al de
lara-tion of a free variable. This method was su

essfully usedin Curry2Java.The implementation of
ommitted
hoi
e should be eveneasier than the sear
h operator. While the sear
h operatormust en
ode all possible bran
hes after a non-deterministi
step in a data stru
ture,
ommitted
hoi
e
an dis
ard allother possibilities if it has found one su

essful bran
h. If the
omputation en
ounters a fun
tion
all whi
h should be eval-uated by
ommitted
hoi
e, a new queue of
omputations(Se
tion 4.5) is
reated for goals to be evaluated in paral-lel. These lo
al
omputations follow the rules for lo
al vari-able bindings des
ribed above. When a non-deterministi
step o

urs in one of the
omputations, we just add new
omputations to the queue. This lo
al queue is similar tothe global one, ex
ept that when a
omputation su

eeds,we delete the entire lo
al queue and
ontinue with a singlegoal. Thus, the expli
it
ontrol of
omputation in our ar-
hite
ture allows us to implement both en
apsulated sear
hand
ommitted
hoi
e with modest extensions.Another advantage of our model is the potential for aneÆ
ient
omplete en
apsulated sear
h strategy. The sear
hoperator and
ommitted
hoi
e must be
ombined to real-ize a
omplete en
apsulated sear
h strategy, but su
h algo-rithms are highly ineÆ
ient be
ause
ommitted
hoi
e willrepeatedly spawn many lo
al
omputations whi
h are soonkilled again. In our model, we
ould realize an eÆ
ient al-gorithm with minimal e�ort. We just need to
reate a lo
alqueue of
omputations in whi
h we evaluate a sear
h goal.In
ontrast to the global queue, we need to take
are of lo
alvariable bindings, and we must return the solutions as a listof sear
h goals, whi
h
an be done lazily. However, theseare all just
hanges to the global queue. Thus, we
ouldprovide a lazy, eÆ
ient and
omplete en
apsulated sear
halgorithm whi
h avoids the ineÆ
ien
y of
ombining sear
hoperators and
ommitted
hoi
e, i.e., the repeated spawningand killing of lo
al
omputations.
8. CONCLUSIONWe des
ribed the ar
hite
ture of an engine for fun
tionallogi

omputations. Our engine implements an eÆ
ient,sound and
omplete narrowing strategy, INS, and integratesthis strategy with other features, e.g., residuation and and-parallelism, desirable in fun
tional logi
 programming. Ourimplementation is operationally
omplete, easy to extend(e.g., by external resour
es like
onstraint libraries) and gen-eral enough to be used as a ba
k end for a variety of lan-guages. Although our work is still evolving, simple ben
h-marks show that it is the fastest
omplete implementationof narrowing
urrently available: it has strong potential forfurther improvement in both performan
e and fun
tionality.
9. ACKNOWLEDGEMENTSThis resear
h has been partially supported by the NSFDAAD under grant INT-9981317 and the German Resear
hCoun
il (DFG) under grant Ha 2457/1-2.

10. AVAILABILITYOur implementation and supporting material is availableunder the GNU Publi
 Li
ense at http://nmind.
s.pdx.edu.
11. REFERENCES[1℄ H. A��t-Ka
i, P. Lin
oln, and R. Nasr. Le Fun: Logi
,equations, and fun
tions. In Pro
. 4th IEEE Internat.Symposium on Logi
 Programming, pages 17{23, SanFran
is
o, 1987.[2℄ E. Albert, M. Hanus, and G. Vidal. A pra
ti
al partialevaluator for a multi-paradigm de
larative language.In Pro
. 5th Intl. Symposium on Fun
tional and Logi
Programming (FLOPS '01), pages 326{342. SpringerLNCS 2024, 2001.[3℄ S. Antoy. De�nitional trees. In Pro
. 3rd Intl.Conferen
e on Algebrai
 and Logi
 Programming,pages 143{157. Springer LNCS 632, 1992.[4℄ S. Antoy. Needed narrowing in Prolog. Te
hni
alreport 96-2, Portland State University, 1996.[5℄ S. Antoy. Optimal non-deterministi
 fun
tional logi

omputations. In Pro
. Intl. Conferen
e on Algebrai
and Logi
 Programming (ALP '97), pages 16{30.Springer LNCS 1298, 1997.[6℄ S. Antoy. Constru
tor-based
onditional narrowing. InPrin
iples and Pra
ti
e of De
larative Programming,(PPDP'01), Sept. 2001. (In this volume).[7℄ S. Antoy, R. E
hahed, and M. Hanus. A needednarrowing strategy. Journal ACM, 47(4):776{822,2000. Previous version in Pro
. 21st ACM Symposiumon Prin
iples of Programming Languages, pp.268{279, 1994.[8℄ S. Antoy and M. Hanus. Compiling multi-paradigmde
larative programs into Prolog. In Pro
. 3rd Intl.Workshop on Frontiers of Combining Systems(FroCoS '00), pages 171{185. Springer LNCS 1794,2000.[9℄ F. Baader and T. Nipkow. Term Rewriting and AllThat. Cambridge University Press, 1998.[10℄ S. Bonnier and J. Maluszynski. Towards a
leanamalgamation of logi
 programs with externalpro
edures. In Pro
. 5th Conferen
e on Logi
Programming & 5th Symposium on Logi
 Programming(Seattle), pages 311{326. MIT Press, 1988.[11℄ M. Chakravarty and H. Lo
k. Towards the uniformimplementation of de
larative languages. ComputerLanguages, 23(2-4):121{160, 1997.[12℄ P. Cheong and L. Fribourg. Implementation ofnarrowing: The Prolog-based approa
h. In K. Apt,J. de Bakker, and J. Rutten, editors, Logi
programming languages:
onstraints, fun
tions, andobje
ts, pages 1{20. MIT Press, 1993.[13℄ E. Denti, A. Omi
ini, and A. Ri

i. tuProlog: Alight-weight Prolog for Internet appli
ations andinfrastru
tures. In Pra
ti
al Aspe
ts of De
larativeLanguages (PADL), pages 184{198. Springer LNCS1990, 2001.[14℄ M. Hanus. The integration of fun
tions into logi
programming: From theory to pra
ti
e. Journal ofLogi
 Programming, 19&20:583{628, 1994.[15℄ M. Hanus. EÆ
ient translation of lazy fun
tional logi
programs into Prolog. In Pro
. Fifth Intl. Workshop

on Logi
 Program Synthesis and Transformation,pages 252{266. Springer LNCS 1048, 1995.[16℄ M. Hanus. A uni�ed
omputation model for fun
tionaland logi
 programming. In Pro
. 24th ACMSymposium on Prin
iples of Programming Languages(Paris), pages 80{93, 1997.[17℄ M. Hanus, S. Antoy, J. Koj, R. Sadre, and F. Steiner.PAKCS 1.3: The Portland Aa
hen Kiel Curry SystemUser Manual. Te
hni
al report, University of Kiel,Germany, 2000. Available athttp://www.informatik.uni-kiel.de/~pak
s.[18℄ M. Hanus and C. Prehofer. Higher-order narrowingwith de�nitional trees. Journal of Fun
tionalProgramming, 9(1):33{75, 1999.[19℄ M. Hanus and R. Sadre. An abstra
t ma
hine forCurry and its
on
urrent implementation in Java.Journal of Fun
tional and Logi
 Programming,1999(6), 1999.[20℄ M. Hanus and F. Steiner. Controlling sear
h inde
larative programs. In Prin
iples of De
larativeProgramming (Pro
. Joint Intl. SymposiumPLILP/ALP '98), pages 374{390. Springer LNCS1490, 1998.[21℄ M. Hanus (ed.). Curry: An Integrated Fun
tionalLogi
 Language. Available athttp://www.informatik.uni-kiel.de/~
urry, 2000.[22℄ T. Hortala-Gonzalez and E. Ullan. An abstra
tma
hine based system for a lazy narrowing
al
ulus.In Pro
. 5th Intl. Symposium on Fun
tional and Logi
Programming (FLOPS '01), pages 216{232. SpringerLNCS 2024, 2001.[23℄ G. Huet and J.-J. L�evy. Computations in orthogonalrewriting systems. In J.-L. Lassez and G. Plotkin,editors, Computational Logi
: Essays in Honor ofAlan Robinson, pages 395{443. MIT Press, 1991.[24℄ S. Janson. AKL { A Multiparadigm ProgrammingLanguage. PhD thesis, Swedish Institute of ComputerS
ien
e, 1994.[25℄ J. Lloyd. Programming in an integrated fun
tionaland logi
 language. Journal of Fun
tional and Logi
Programming, 1999(3):1{49, 1999.[26℄ R. Loogen. Relating the implementation te
hniques offun
tional and fun
tional logi
 languages. NewGeneration Computing, 11:179{215, 1993.[27℄ R. Loogen, F. Lopez Fraguas, andM. Rodr��guez Artalejo. A demand driven
omputationstrategy for lazy narrowing. In Pro
. 5th Intl.Symposium on Programming LanguageImplementation and Logi
 Programming, pages184{200. Springer LNCS 714, 1993.[28℄ F. L�opez-Fraguas and J. S�an
hez-Hern�andez. TOY: AMultiparadigm De
larative System. In Pro
eedings ofRTA '99, pages 244{247. Springer LNCS 1631, 1999.[29℄ W. Lux. Implementing en
apsulated sear
h for a lazyfun
tional logi
 language. In Pro
. 4th Fuji Intl.Symposium on Fun
tional and Logi
 Programming(FLOPS '99), pages 100{113. Springer LNCS 1722,1999.[30℄ A. Middeldorp. Call by need
omputations toroot-stable form. In Pro
. 24th ACM Symposium onPrin
iples of Programming Languages (Paris), pages94{105, 1997.

[31℄ C. S
hulte and G. Smolka. En
apsulated sear
h forhigher-order
on
urrent
onstraint programming. InPro
. 1994 Intl. Logi
 Programming Symposium, pages505{520. MIT Press, 1994.[32℄ J. Slagle. Automated theorem-proving for theorieswith simpli�ers,
ommutativity, and asso
iativity.Journal of the ACM, 21(4):622{642, 1974.[33℄ P. Tarau. Jinni. Available athttp://www.binnet
orp.
om/Jinni/, 2001.[34℄ D. Warren. Higher-order extensions to Prolog: arethey needed? In Ma
hine Intelligen
e 10, pages441{454, 1982.

