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ABSTRACTThis paper des
ribes an implementation of narrowing, an es-sential 
omponent of implementations of modern fun
tionallogi
 languages. These implementations rely on narrowing,in parti
ular on some optimal narrowing strategies, to exe-
ute fun
tional logi
 programs. We translate fun
tional logi
programs into imperative (Java) programs without an inter-mediate abstra
t ma
hine. A 
entral idea of our approa
his the expli
it representation and pro
essing of narrowing
omputations as data obje
ts. This enables the implementa-tion of operationally 
omplete strategies (i.e., without ba
k-tra
king) or te
hniques for sear
h 
ontrol (e.g., en
apsulatedsear
h). Thanks to the use of an intermediate and portablerepresentation of programs, our implementation is generalenough to be used as a 
ommon ba
k end for a wide varietyof fun
tional logi
 languages.
Categories and Subject DescriptorsD.3.2 [Programming Languages℄: Language Classi�
a-tions|Multiparadigm Languages
General TermsLanguages, Design, Theory, Experimentation
KeywordsFun
tional logi
, narrowing, Curry, XML, Java
1. INTRODUCTIONThis paper des
ribes an implementation of narrowing foroverlapping indu
tively sequential rewrite systems [5℄. Nar-rowing is the essential 
omputational engine of fun
tionalIn Pro
. of the 3rd International ACM SIGPLAN Confer-en
e on Prin
iple and Pra
ti
e of De
larative Programming(PPDP'01), pp. 207{217, Floren
e, Italy, 2001.
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logi
 languages (see [14℄ for a survey on su
h languages andtheir implementations). An implementation of narrowingtranslates a program 
onsisting of rewrite rules into exe-
utable 
ode. This exe
utable 
ode 
urrently falls into two
ategories: Prolog predi
ates (e.g., [4, 12, 15, 27℄) or in-stru
tions for an abstra
t ma
hine (e.g., [11, 19, 26, 29℄). Al-though these approa
hes are relatively simple, in both 
ases,several layers of interpretation separate the fun
tional logi
program from the hardware intended to exe
ute it. Obvi-ously, this situation does not lead to eÆ
ient exe
ution.In this paper we investigate a di�erent approa
h. Wetranslate a fun
tional logi
 program into an imperative pro-gram. Our target language is Java, but we make limiteduse of spe
i�
 obje
t-oriented features, su
h as inheritan
eand dynami
 polymorphism. Repla
ing Java with a lower-level target language, su
h as C or ma
hine 
ode, would bea simple task.In Se
tion 2 we brie
y introdu
e the aspe
ts of fun
tionallogi
 programming relevant to our dis
ussion. In Se
tion 3we review ba
kground information for the key 
on
epts pre-sented in this paper. In Se
tion 4 we des
ribe the elementsand the 
hara
teristi
s of our implementation of narrowing.In Se
tion 5 we des
ribe aspe
ts of our 
ompilation pro
ess,as well as exe
ution issues su
h as input, output and tra
-ing/debugging that may greatly a�e
t the usability of a sys-tem. In Se
tion 6 we summarize 
urrent e�orts toward theimplementation of fun
tional logi
 languages, parti
ularlyw.r.t. implementations of narrowing and how they 
ompareto our work. Se
tion 7 sket
hes planned extensions to ourframework, and Se
tion 8 o�ers some 
on
lusions.
2. FUNCTIONAL LOGIC PROGRAMSFun
tional logi
 languages 
ombine the operational prin-
iples of two of the most important de
larative program-ming paradigms, namely fun
tional and logi
 programming(see [14℄ for a survey). EÆ
ient demand-driven fun
tional
omputations are amalgamated with the 
exible use of logi-
al variables, providing for fun
tion inversion and sear
h forsolutions. Fun
tional logi
 languages with a sound and 
om-plete operational semanti
s are usually based on narrowing(originally introdu
ed in automated theorem proving [32℄)whi
h 
ombines redu
tion (from the fun
tional part) andvariable instantiation (from the logi
 part). A narrowing



step instantiates variables of an expression and applies a re-du
tion step to a redex of the instantiated expression. Theinstantiation of variables is usually 
omputed by unifying asubterm of the entire expression with the left-hand side ofsome program equation.Example 1. Consider the following rules de�ning the �predi
ate leq on natural numbers whi
h are represented byterms built from zero and succ:
leq(zero,Y) = true
leq(succ(X),zero) = false
leq(succ(X),succ(Y)) = leq(X,Y)The expression leq(succ(M),Y) 
an be evaluated (i.e.,redu
ed to a value) by instantiating Y to succ(N) to ap-ply the third equation, followed by the instantiation of M to

zero to apply the �rst equation:
leq(succ(M),Y) ;fY7!succ(N)g leq(M,N);fM7!zerog trueNarrowing provides 
ompleteness in the sense of logi
 pro-gramming (
omputation of all answers, i.e., substitutionsleading to su

essful evaluations) as well as fun
tional pro-gramming (
omputation of values). Sin
e simple narrowing
an have a huge sear
h spa
e, a lot of e�ort has been madeto develop sophisti
ated narrowing strategies without los-ing 
ompleteness (see [14℄). Needed narrowing [7℄ is basedon the idea of evaluating only subterms whi
h are neededin order to 
ompute a result. For instan
e, in a term like

leq(t1,t2), it is always ne
essary to evaluate t1 (to somevariable or 
onstru
tor-rooted term) sin
e all three rules inExample 1 have a non-variable �rst argument. On the otherhand, the evaluation of t2 is only needed if t1 is of the form
succ(t). Thus, if t1 is a free variable, needed narrowing in-stantiates it to a 
onstru
tor term, here zero or succ(V).Depending on this instantiation, either the �rst equation isapplied or the se
ond argument t2 is evaluated. Needednarrowing is 
urrently the best narrowing strategy for �rst-order (indu
tively sequential) fun
tional logi
 programs dueto its optimality properties w.r.t. the length of derivationsand the independen
e of 
omputed solutions, and due to thepossibility of eÆ
iently implementing needed narrowing bypattern mat
hing and uni�
ation [7℄. Moreover, it has beenextended in various dire
tions, e.g., higher-order fun
tionsand �-terms as data stru
tures [18℄, overlapping rules [5℄,and 
on
urrent 
omputations [16℄.Needed narrowing is 
omplete, in the sense that for ea
hsolution to a goal there exists a narrowing derivation 
om-puting a more general solution. However, most of the ex-isting implementations of narrowing la
k this property sin
ethey are based on Prolog-style ba
ktra
king. Sin
e ba
k-tra
king is not fair in exploring all derivation paths, somesolutions might not be found in the presen
e of in�nitederivations, i.e., these implementations are in
omplete froman operational point of view. An important property ofour implementation is its operational 
ompleteness, i.e., all
omputable answers are eventually 
omputed by our imple-mentation.
3. BACKGROUNDSin
e pattern mat
hing is an essential feature of existingfun
tional logi
 languages, term rewriting systems (TRSs)

are an adequate formal model for fun
tional logi
 programs.Therefore, we review in the following some notions fromterm rewriting [9℄.We 
onsider a (many-sorted) signature partitioned into aset C of 
onstru
tors and a set F of (de�ned) fun
tions or op-erations. We write 
=n 2 C and f=n 2 F for n-ary 
onstru
-tor and operation symbols, respe
tively. As usual, terms arebuilt from these symbols and variables (e.g., x; y; z). A 
on-stru
tor term is a term without operation symbols. The setof variables o

urring in a term t is denoted by Var(t). Aterm t is ground if Var(t) = ?. A term is linear if it doesnot 
ontain multiple o

urren
es of one variable.A pattern is a term of the form f(d1; : : : ; dn) where f=n 2F and d1; : : : ; dn are 
onstru
tor terms. A term is operation-rooted (
onstru
tor-rooted) if it has an operation (
onstru
-tor) symbol at the root. A position p in a term t is repre-sented by a sequen
e of natural numbers. tjp denotes thesubterm of t at position p, and t[s℄p denotes the result ofrepla
ing the subterm tjp by the term s.We denote by fx1 7! t1; : : : ; xn 7! tng the substitution� with �(xi) = ti for i = 1; : : : ; n (with xi 6= xj if i 6=j) and �(x) = x for all other variables x. Substitutionsare extended to morphisms on terms by �(f(t1; : : : ; tn)) =f(�(t1); : : : ; �(tn)) for every term f(t1; : : : ; tn).A set of rewrite rules l = r su
h that l is not a variable andVar(r) � Var(l) is 
alled a term rewriting system (TRS).The terms l and r are 
alled the left-hand side (lhs) and theright-hand side (rhs) of the rule, respe
tively. A TRS R isleft-linear if l is linear for all l = r 2 R. A TRS is 
onstru
torbased (CB) if ea
h lhs l is a pattern. In the remainder of thispaper, a fun
tional logi
 program is a left-linear CB-TRS.A rewrite step is an appli
ation of a rewrite rule to aterm, i.e., t!p;R s if there exists a position p in t, a rewriterule R = l = r and a substitution � with tjp = �(l) ands = t[�(r)℄p (p and R will often be omitted in the notationof a 
omputation step). The instantiated lhs �(l) is 
alleda redex and the instantiated rhs �(r) is 
alled the redu
tof this redex. A (
onstru
tor) head normal form is eithera variable or a 
onstru
tor-rooted term. A term t is 
alledirredu
ible or in normal form if there is no term s with t! s.!+ denotes the transitive 
losure of ! and!� denotes there
exive and transitive 
losure of !.To evaluate terms 
ontaining variables, narrowing non-deterministi
ally instantiates the variables so that a rewritestep is possible. Formally, t ;p;R;� t0 is a narrowing stepif p is a non-variable position in t and �(t) !p;R t0. Wedenote by t0 ;�� tn a sequen
e of narrowing steps t0 ;�1: : : ;�n tn with � = �n Æ � � � Æ �1. Sin
e we are interestedin 
omputing values (
onstru
tor terms) as well as answers(substitutions) in fun
tional logi
 programming, we say thatthe narrowing derivation t ;�� 
 
omputes the result 
 withanswer � if 
 is a 
onstru
tor term. The evaluation to ground
onstru
tor terms (and not to arbitrary expressions) is theintended semanti
s of fun
tional languages and also of mostfun
tional logi
 languages.A 
hallenge in the design of fun
tional logi
 languages isthe de�nition of a \good" narrowing strategy, i.e., a restri
-tion on the narrowing steps issuing from t, without losing
ompleteness. In the following, we brie
y outline the needednarrowing strategy (a formal des
ription 
an be found in [7℄).Needed narrowing extends Huet and L�evy's notion of aneeded redu
tion [23℄ and is de�ned on indu
tively sequentialprograms [3℄. Roughly speaking, in an indu
tively sequen-



leq( X ,Y)

leq(zero,Y) = true

leq(succ(M), Y )

leq(succ(M),zero) = false

leq(succ(M),succ(N)) = leq(M,N)

���� QQQQQQ��� QQQQQQFigure 1: De�nitional tree for the operation leq ofExample 1tial program the rules for ea
h fun
tion 
an be organizedin a tree-like stru
ture (de�nitional tree [3℄). The leaves
ontain all (and only) the rules de�ning the fun
tion. Theinner nodes have a dis
riminating argument, also 
alled anindu
tive position: all 
hild nodes have di�erent 
onstru
torsymbols at this position. For instan
e, the de�nitional treefor the fun
tion leq in Example 1 is illustrated in Figure 1;the indu
tive position is marked by a surrounding box.The 
omputation of a needed narrowing step is guidedby the de�nitional tree for the root of the operation-rootedterm t. If t is a leaf node, we redu
e it with the rule atthis leaf. Otherwise, we 
he
k the subterm 
orresponding tothe indu
tive position of the bran
h: if it is a variable, it is(non-deterministi
ally) instantiated to the 
onstru
tor of a
hild; if it is already a 
onstru
tor, we pro
eed with the 
or-responding 
hild; if it is a fun
tion, we evaluate it (to headnormal form) by re
ursively applying needed narrowing.
4. IMPLEMENTATION OF NEEDED NAR-

ROWINGIn this se
tion we des
ribe the main ideas of our imple-mentation of narrowing. We implement a strategy, referredto as INS [5℄, proven sound and 
omplete for the 
lass of theoverlapping indu
tively sequential rewrite systems. In thesesystems, the left-hand sides of the rewrite rules de�ning anoperation 
an be organized in de�nitional trees. However, anoperation may have distin
t rewrite rules with the same left-hand side (modulo renaming of variables): operation coin(Se
tion 4.8), is one example. To ease the understandingof our work, we �rst des
ribe the implementation of rewrite
omputations in indu
tively sequential rewrite systems. Wethen des
ribe the extensions that lead to narrowing in over-lapping indu
tively sequential rewrite systems.
4.1 OverviewThe overall goals of our implementation are speed of exe-
ution and operational 
ompleteness. The following prin-
iples guide our implementation and are instrumental ina
hieving the goal.1. A redu
tion step repla
es a redex of a term with itsredu
t. A term is represented as a tree-like data stru
-ture. The exe
ution of a redu
tion updates only theportion of this data stru
ture a�e
ted by the repla
e-ment. Thus, the 
ost of a redu
tion is independentof its 
ontext. We 
all this prin
iple in-pla
e repla
e-ment.

2. Only somewhat needed steps are exe
uted. We usethe quali�er \somewhat" be
ause di�erent notions ofneed have been proposed for di�erent 
lasses of rewritesystems. We exe
ute a parti
ular kind of steps thatfor redu
tions in orthogonal systems is known as root-needed [30℄. Thus, redu
tions that are a priori uselessare never performed. We 
all this prin
iple useful step.3. Don't know non-deterministi
 redu
tions are exe
utedin parallel. Both narrowing 
omputations (in mostrewrite systems) and redu
tions (in interesting rewritesystems) are non-deterministi
. Without some form ofparallel exe
ution, operational 
ompleteness would belost. We 
all this prin
iple operational 
ompleteness.In indu
tively sequential rewrite systems, and when 
om-putations are restri
ted to rewriting, it is relatively easyto faithfully implement all the above prin
iples. In fa
t,our implementation does it. However, our environment is
onsiderably ri
her. We exe
ute narrowing 
omputations inoverlapping indu
tively sequential rewrite systems. In thissituation, two 
ompli
ations arise. The non-determinismof narrowing and/or of overlapping rules imply that a re-dex may have several repla
ements. In these situations,there 
annot be a single in-pla
e repla
ement. Furthermore,the steps that we 
ompute in overlapping indu
tively se-quential rewrite systems are needed, but only modulo non-deterministi
 
hoi
es [5℄. Hen
e, some step may not beneeded in the stri
t sense of [7, 23℄, but we may not beable to know by feasible means whi
h steps.The ar
hite
ture of our implementation is 
hara
terizedby terms and 
omputations. Both terms and 
omputationsare organized into tree-like linked (dynami
) stru
tures. Aterm 
onsists of a root symbol applied to zero or more argu-ments whi
h are themselves terms. A 
omputation 
onsistsof a sta
k of terms that identify redu
tion steps. All theterms in the sta
k, with the possible ex
eption of the top,are not yet redexes, but will eventually be
ome redexes, andbe redu
ed, before the 
omputation is 
omplete. In terms,links go from a parent to its 
hildren, whereas in 
omputa-tions links go from 
hildren to their parent.A graphi
al representation of these obje
ts is shown inFigure 2. In this �gure, the steps to the left represent theterms in the sta
k of the 
omputation. Step0 is the bottomof the sta
k: it 
annot be exe
uted before Step1 is exe
uted.Likewise Step1 
annot be exe
uted before Step2 is exe
uted.To ease understanding, we begin with an a

ount of ourimplementation of rewriting 
omputations in indu
tively se-quential rewrite systems. Although non-trivial, this imple-mentation is simple enough to inspire 
on�den
e in bothits 
orre
tness and eÆ
ien
y. Then, we generalize the dis-
ussion to larger 
lasses of rewrite systems and �nally tonarrowing 
omputations and argue why both 
orre
tnessand eÆ
ien
y of this initial implementation are preservedby these extensions.
4.2 Symbol representationSymbols are used to represent terms. A symbol is an ob-je
t that 
ontains two pie
es of information: a name and akind. Sin
e there is no good reason to have more than oneinstan
e of a given symbol in a program, ea
h distin
t sym-bol is implemented as an immutable singleton obje
t. Thename is a string. The kind is a tag that 
lassi�es a symbol.For now, the tag is either \de�ned operation" or \data 
on-



stru
tor". Additional tags will be de�ned later to 
omputewith larger 
lasses of rewrite systems. The tag of a symbolis used to dispat
h 
omputations that depend on the 
las-si�
ation of a symbol. Of 
ourse, we 
ould dispat
h these
omputations by dynami
 polymorphism, i.e., by de�ningan abstra
t method overridden by sub
lasses. Often, thesemethods would 
onsist of a few statements that use the en-vironment of the 
aller. A tag avoids both a proliferationof small methods and the ineÆ
ien
y of passing around theenvironment. Furthermore, this ar
hite
ture supports im-plementations in obje
tless target languages as well.Nevertheless, in our Java ar
hite
ture, 
lass symbol hassub
lasses su
h as operation and 
onstru
tor. In parti
ular,there is one sub
lass of operation for ea
h de�ned operationf of a fun
tional logi
 program. This 
lass, a

ording to ourse
ond prin
iple, 
ontains the 
ode for the exe
ution of auseful step of any term rooted by f . Operations are de�nedby rewrite rules. We use the following rules in the examplesto 
ome.
add (zero, Y) = Y
add (succ (X), Y) = succ (add (X, Y))

positive (zero) = false
positive (succ (-)) = true

4.3 Term representationTerms of user-de�ned type 
ontain two pie
es of infor-mation: the root of the term, whi
h is a symbol, and thearguments of the root, whi
h are terms themselves. Termsof builtin types 
ontain spe
ialized information, e.g., termsof the builtin type int 
ontain an int. This situation sug-gests de�ning a 
ommon base 
lass and a spe
ialization ofthis 
lass for ea
h appropriate type of term. However, this isin 
on
i
t with the fa
t that a

ording to the �rst prin
ipleof our implementation, a term is a mutable obje
t. In Java,the 
lass of an obje
t 
annot 
hange during exe
ution.Therefore, we implement a term as a bridge pattern. Aterm delegates its fun
tionality to a representation. Dif-ferent types, su
h as user-de�ned types, builtin types, andvariables are represented di�erently. All the representationsprovide a 
ommon fun
tionality. The representation of aterm obje
t 
an 
hange at run-time and thus provide muta-bility of both value and behavior as required by the imple-mentation.
4.4 Computation representationA 
omputation is an obje
t abstra
ting the ne
essity toexe
ute a sequen
e of spe
i�
 redu
tion steps in a term.Class 
omputation 
ontains two pie
es of information:1. A sta
k of terms to be 
ontra
ted (redu
ed at theroot). The terms in the sta
k are not redexes ex
ept,possibly, the top term. Ea
h term in the sta
k is asubterm of the term below it, and must be redu
ed toa 
onstru
tor-rooted term in order to redu
e the termbelow it. Therefore, the elements of the sta
k in a 
om-putation may be regarded as steps as well. The under-pinning theoreti
al justi�
ation of this sta
k of stepsis in the proof of Th. 24 of the extended version of [5℄.We ensure that every term in the sta
k eventually willbe 
ontra
ted. To a
hieve this aim, if a 
omplete strat-egy 
annot exe
ute a step in an operation-rooted term,it redu
es the term to the spe
ial value failure.

2. A set of bookkeeping information. For example, thisinformation in
ludes the number of steps exe
uted bythe 
omputation and the elapsed time. An interest-ing bookkeeping datum is the state of a 
omputation.Computations being exe
uted are in a ready state. A
omputation's state be
omes exhausted after the 
om-putation has been exe
uted and it has been determinedthat no more steps will be exe
uted at the root ofthe bottom-most term of the sta
k. Before be
omingexhausted a 
omputation state may be either resultor failure. Later, we will extend our model of 
om-putation with residuation. With the introdu
tion ofresiduation, a new state of a 
omputation, 
ounder, isintrodu
ed as well.Loosely speaking, an initial 
omputation is 
reated for aninitial top-level expression to evaluate. This expression isthe top and only term of the sta
k of this 
omputation. Ifthe top term t is not a redex, a subterm of t needed to
ontra
t t is pla
ed on the sta
k and so on until a redex isfound. A redex on top of the sta
k is repla
ed by its redu
t.If the redu
t is 
onstru
tor-rooted, the sta
k is popped (itstop element is dis
arded).Step0 // positiveStep1 // add

??
??

??
?

��
��

��
�Step2 // coin tFigure 2: Snapshot of a 
omputation of term

positive(add(coin,t))
4.5 Search space representationThe sear
h spa
e is a queue of 
omputations whi
h are re-peatedly sele
ted for pro
essing. The ma
hinery of a queueand fair sele
tion is not ne
essary for rewriting in indu
-tively sequential rewrite systems. For these systems, 
om-putations are stri
tly sequential and 
onsequently a single(possibly impli
it) sta
k of steps would suÆ
e. However, thear
hite
ture that we des
ribe not only a

ommodates theextensions from rewriting to narrowing and/or from indu
-tively sequential rewrite systems to the larger 
lasses thatare 
oming later, but it allows us to 
ompute more eÆ
iently.A 
omputation serves two purposes: (1) �nding maximaloperation-rooted subterms t of the top-level term to eval-uate and (2) redu
ing ea
h t to head normal form. Thepseudo-
ode of Figure 3 sket
hes part (2), whi
h is the most
hallenging. Some optimizations would be possible, but weavoid them for the sake of 
larity.Sin
e indu
tively sequential rewrite systems are 
on
uent,repla
ing in-pla
e a subterm u of a term t with u's redu
tdoes not prevent rea
hing t's normal form. When a termhas a result this result is found, sin
e repeated 
ontra
tionsof needed redexes are normalizing.
4.6 SentinelThe �rst extension to the previous model is the intro-du
tion of a \sentinel" at the root of the top-level expres-sion being evaluated. For this, we introdu
e a distinguished



while the queue is not emptyj sele
t a ready 
omputation k from the queuej let t be the term at the top of k's sta
kj swit
h on the root of tj j 
ase t is operation-rootedj j j swit
h on the redu
ibility of tj j j j 
ase t is a redexj j j j j repla
e t with its redu
tj j j j j put k ba
k into the queuej j j j 
ase t is not a redexj j j j j swit
h on s, a maximal needed subterm of tj j j j j j 
ase s existsj j j j j j j push s on k's sta
kj j j j j j j put k ba
k into the queuej j j j j j 
ase s does not existj j j j j j j stop the 
omputation, no result existsj j j j j endswit
hj j j endswit
hj j 
ase t is 
onstru
tor-rootedj j j pop k's sta
kj j j if k's sta
k is not emptyj j j j put k ba
k into the queuej endswit
hendwhileFigure 3: Pro
edure to evaluate a term to a headnormal formsymbol 
alled sentinel that takes exa
tly one argument ofany kind. If t is the term to evaluate, our implementationevaluates sentinel(t) instead. Thus, this is the a
tual termof the initial 
omputation. Symbol sentinel has 
hara
ter-isti
s of both an operation and a 
onstru
tor. Similar toan operation, the sta
k of the initial 
omputation 
ontainssentinel(t), but similar to a 
onstru
tor, sentinel(t) 
annotbe 
ontra
ted for any t. Having a sentinel has several ad-vantages. The strategy works with the sentinel by meansof impli
it rewrite rules that always look for an internalneeded redex and never 
ontra
t the sentinel -rooted termitself. Also, using a sentinel saves frequent tests similar tousing a sentinel in many 
lassi
 algorithms, e.g., sorting.
4.7 FailureThe se
ond extension to the previous model is 
on
ernedwith the possibility of a \failure" of a 
omputation. A failureo

urs when a term has no 
onstru
tor normal form. The
omputation dete
ts a failure when the strategy, whi
h is
omplete, �nds no useful steps (redexes) in an operation-rooted term.The pseudo-
ode presented earlier simply terminates the
omputation when it dete
ts a failure. For the extensionsdis
ussed later it is more 
onvenient to expli
itly representfailures in a term. This allows us, e.g., to 
lean up 
ompu-tations that 
annot be 
ompleted and to avoid dupli
ating
ertain 
omputations. To this purpose we introdu
e a newsymbol 
alled failure. The failure symbol is treated as a
onstant 
onstru
tor.Suppose that u is an operation-rooted term. If the strat-egy �nds no step in u, it evaluates u to failure. A failuresymbol is treated as a 
onstru
tor during the pattern mat
h-ing pro
ess. Impli
it rewrite rules for ea
h de�ned operationrewrite any term t to failure when a failure o

urs at aneeded position of t. For example, we perform the following

redu
tion:
add (failure, v) ! failureWith these impli
it rewrite rules, an inner o

urren
e offailure in a term propagates up to the sentinel, whi
h 
anthus report that a 
omputation has no result. The expli
itrepresentation of failing 
omputations is also important inperforming non-deterministi
 
omputations.

4.8 Non-determinismThe third extension to the previous model is 
on
ernedwith non-determinism. In our work, non-determinism is ex-pressed by rewrite rules with identi
al left-hand sides, butdistin
t right-hand sides. A textbook example of a non-deterministi
 de�ned operation is:
coin = zero
coin = succ (zero)This operation di�ers from the previous ones in that a giventerm, say s = coin, has two distin
t redu
ts.The most immediate problem posed by non-deterministi
operations is that if s o

urs in some term t and we repla
ein-pla
e s with one of its repla
ements, we may lose a resultthat 
ould be obtained with another repla
ement. If a termsu
h as s be
omes the top of the sta
k of a 
omputationk, we 
hange the state of k to exhausted and we start twoor more new 
omputations. Ea
h new 
omputation, say k0,begins with a sta
k 
ontaining a single term obtained by oneof the several possible redu
tions of s.The pro
edure des
ribed above 
an be optimized in manyways. We mention only the most important one that wehave implemented | the sharing of subterms disjoint froms. We show this optimization in an example. Suppose thatthe top-level term being evaluated is:
add (coin, t)The non-determinism of coin gives rise to the 
omputationof the following two terms:
add (zero, t)
add (succ (zero), t)These terms are evaluated 
on
urrently and independently.However, term t in the above display is shared rather thandupli
ated. Sharing improves the eÆ
ien
y of 
omputa-tions sin
e only one term, rather than several equal 
opies,is 
onstru
ted and possibly evaluated. In some situations,a shared term may o

ur in the sta
ks of two indepen-dent 
omputations and be 
on
urrently evaluated by ea
h
omputation. This approa
h avoids a 
ommon problem ofba
ktra
king-based implementations of fun
tional logi
 lan-guages, in whi
h t will be evaluated twi
e if it is neededduring the evaluation of both add terms shown above.

4.9 Rewrite rulesThe �nal relevant portion of our ar
hite
ture is the im-plementation of rewrite rules. All the rules of an ordinaryde�ned operation f are translated into a single Java method.This method impli
itly uses a de�nitional tree of f to 
om-pare 
onstru
tor symbols in indu
tive positions of the treewith 
orresponding o

urren
es in an f -rooted term t to re-du
e. Let kt be a 
omputation in the queue, ready the stateof kt, and t the term on the top of kt's sta
k. The following
ase breakdown de�nes the 
ode that needs to be generated.1. If t is a redex with a single redu
t, then t is repla
edin-pla
e by its redu
t.



2. If t is a redex with several redu
ts, then a new 
om-putation is started for ea
h redu
t. The state of kt is
hanged to exhausted.3. If in a needed position of t there is failure, then t is
onsidered a redex as well and it is repla
ed in-pla
eby failure.4. If in a needed position of t there is an operation-rootedordinary term s, then s is pushed on the sta
k of kt.5. The last 
ase to 
onsider is when operation f is in
om-pletely de�ned and no needed subterm is found in t.In this 
ase, t is repla
ed in-pla
e by failure.
4.10 NarrowingAt this point we are ready to dis
uss the extension of ourimplementation to narrowing. A narrowing step instantiatesvariables in a way very similar to a non-deterministi
 redu
-tion step. For example, suppose that allnat is an operationde�ned by the rules:

allnat = zero
allnat = succ (allnat)Narrowing term add(X,t), where X is an uninstantiatedvariable and t is any term, is not mu
h di�erent from redu
-ing add(allnat,t).There are two key di�eren
es in the handling of variablesw.r.t. non-deterministi
 redu
tions: (1) we must keep tra
kof variable bindings to 
onstru
t the 
omputed answer atthe end of a 
omputation, and (2) if a given variable o

ursrepeatedly in a term being evaluated, the repla
ement of avariable with its binding must repla
e all the o

urren
es.We solve point (1) by storing the binding of a variable ina 
omputation. Point (2) is simply bookkeeping. We rep-resent substitutions \in
rementally." A 
omputation 
om-putes both a value (for the fun
tional part) and an answer(for the logi
 part). The answer is a substitution. In most
ases, a narrowing step produ
es several distin
t bindingsfor a variable. Ea
h of these bindings in
rements a previ-ously 
omputed substitution. For example, suppose that theexpression to narrow is:
add (X, Y) = tfor some term t. Some 
omputation may initially bind Xto zero. Later on, a narrowing step may bind Y indepen-dently to both zero and succ(Y1). These bindings will\add" to the previous one. The previous binding is shared,whi
h saves both memory and exe
ution time.

4.11 ParallelismOur implementation in
ludes a form of parallelism knownas parallel-and. And-parallel steps do not a�e
t the sound-ness or 
ompleteness of the strategy, INS, underlying ourimplementation, but in some 
ases they may signi�
antlyredu
e the size of the narrowing spa
e of a 
omputation |possibly from in�nite to �nite. The parallel-and operation ishandled expli
itly by our implementation. If a 
omputationk leads to the evaluation of t & u, where t and u are termsand \&" denotes the parallel-and operation, then steps ofboth t and u are s
heduled. This requires to 
hange thesta
k of a 
omputation into a tree-like stru
ture. The set ofleaves of this tree-like stru
ture repla
es the top of the sta
kpreviously dis
ussed.As soon as one of these parallel steps has to be removedfrom the tree, whi
h means that its term argument has been

redu
ed to a 
onstru
tor term 
 (in
luding failure), the par-ent of the step is re
onsidered. Depending on 
's value,either the parent term is redu
ed (to a failure if 
 = failure)and the other parallel steps are removed, or (if 
 = su

ess)the 
omputation of the other parallel steps 
ontinues nor-mally.
4.12 ResiduationResiduation is a 
omputational me
hanism that delays theevaluation of a term 
ontaining an uninstantiated variablein a needed position [1℄. Similar to narrowing, it supportsthe integration of fun
tional programming with logi
 pro-gramming by allowing uninstantiated variables in fun
tionalexpressions. However, in 
ontrast to narrowing it is in
om-plete, i.e., unable to �nd all the solutions of some problems.Residuation is useful for dealing with built-in types su
h asnumbers [10℄. Residuation is meaningful only when a 
om-putation has several steps exe
uting in parallel. If a 
ompu-tation has only one step exe
uting, and this step residuates,the 
omputation 
annot be 
ompleted and it is said to 
oun-der.Operations that residuate are 
alled rigid, whereas oper-ations that narrow are 
alled 
exible. A formal model forthe exe
ution of programs de�ning both rigid and 
exibleoperations is des
ribed in [16℄. Our implementation alreadyhas the ne
essary infrastru
ture to a

ommodate this model.When a step s residuates on some variable V , we store (areferen
e to) s in V , mark s as residuating and 
ontinue theexe
ution of the other steps. When V is bound, we removethe residuating mark from s so that s 
an be exe
uted as anyother step. If all the steps of a 
omputation are residuating,the 
omputation 
ounders.
5. THE COMPILATION PROCESSThe main motivation of this new implementation of nar-rowing is to provide a generi
 ba
k end that 
an be used byfun
tional logi
 languages based on a lazy evaluation strat-egy. Current work [6℄ shows that any narrowing 
ompu-tation in a left-linear 
onstru
tor-based 
onditional rewritesystem 
an be simulated, with little or no loss of eÆ
ien
y, inan overlapping indu
tively sequential rewrite system, hen
eby our implementation. Therefore, our implementation 
anbe used by languages su
h as Curry [21℄, Es
her [25℄ andToy [28℄.To support this idea, our implementation works indepen-dently of any 
on
rete sour
e language. The sour
e pro-grams of our implementation are fun
tional logi
 programswhere all fun
tions are de�ned at the top level (i.e., no lo
alde
larations) and the pattern-mat
hing strategy is expli
it.This language, 
alled FlatCurry, has been developed as anintermediate language for the Curry2Prolog 
ompiler [8℄ inthe Curry development system PAKCS [17℄ and is used forvarious other purposes, e.g., meta-programming and par-tial evaluation [2℄. Basi
ally, a FlatCurry program is (apartfrom data type and operator de
larations) a list of fun
tionde
larations where ea
h fun
tion f is de�ned by a single ruleof the form f(x1; : : : ; xn) = e, i.e., the left-hand side 
onsistsof pairwise di�erent variable arguments and the right-handside is an expression 
ontaining 
ase expressions for patternmat
hing.To be more pre
ise, an expression 
an take any of theforms shown in Figure 4. The shallow patterns pi o

ur-ring in 
ase expressions have the form 
(x1; : : : ; xn), i.e., all



x (variable)
(e1; : : : ; en) (
onstru
tor)f(e1; : : : ; en) (fun
tion 
all)
ase e0 offp1 ! e1; : : : ; pn ! eng (rigid 
ase)f
ase e0 offp1 ! e1; : : : ; pn ! eng (
exible 
ase)or(e1; e2) (
hoi
e)part
all(f; e1; : : : ; ek) (partial appli
ation)apply(e1; e2) (appli
ation)
onstr(fx1; : : : ; xng; e) (
onstraint)guarded(fx1; : : : ; xng; e1; e2) (guarded expression)Figure 4: FlatCurry expressions
leq(X,Y) = f
ase X of f

zero ! true;
succ(M) ! f
ase Y of f

zero ! false;
succ(N) ! leq(M,N)ggFigure 5: En
oding of Example 1 in FlatCurry
ase bran
hes are 
onstru
tors applied to pairwise distin
t(fresh) variables. Any indu
tively sequential program 
an betranslated into FlatCurry rules whose right-hand side 
on-sists of only 
onstru
tor appli
ations, fun
tion appli
ationsand 
ase expressions [18℄. For instan
e, the fun
tion leq ofExample 1 is represented in FlatCurry as shown in Figure 5.The other options for expressions are used for the ex-tensions of indu
tively sequential programs that o

ur invarious fun
tional logi
 languages. For instan
e, or expres-sions are used to represent non-deterministi
 
hoi
es (seeSe
tion 4.8), rigid 
ase expressions for residuation, i.e., fun
-tions whi
h suspend on insuÆ
iently instantiated arguments(see Se
tion 4.12), (partial) appli
ations for higher-orderfun
tions (whi
h 
an be implemented by a transformationinto �rst-order rules, see [34℄), and guarded expressions for
onditional rules1.Although FlatCurry was originally designed as an inter-mediate language to 
ompile and manipulate Curry pro-grams, it should be 
lear that it 
an also be used for variousother de
larative languages (e.g., Haskell-like lazy languageswith stri
t left-to-right pattern mat
hing 
an be 
ompiledby generating appropriate 
ase expressions). Our ba
k enda

epts a synta
ti
 representation of FlatCurry programsin XML format2 so that other fun
tional logi
 languages
an be 
ompiled into this implementation-independent for-mat. XML is be
oming the format of 
hoi
e for ex
hangingstru
tured information, su
h as external representations of
ompiled programs, between di�erent programs and non-homogeneous systems. Our 
hoi
e of this format is intendedto easily a

ommodate a variety of sour
e languages and tomaximize the usability of our ba
k end. Figure 6 shows the1See http://www.informatik.uni-kiel.de/~
urry/flat/for more details.2The DTD for the XML FlatCurry representation is avail-able from http://www.informatik.uni-kiel.de/~
urry/flat
urry.dtd.

XML 
ode for the FlatCurry representation of leq givenabove.Our 
ompiler, whi
h is fully implemented in Curry, readsan XML representation and 
ompiles it into a Java programfollowing the ideas des
ribed in Se
tion 4. Re
all that everyfun
tion is represented by a sub
lass of operation. For ea
hfun
tion, we de�ne a method expand whi
h will expand afun
tion 
all a

ording to its rules and depending on itsarguments (Se
tions 4.9, 4.10).To show the simpli
ity of our 
ompiled 
ode, we providean ex
erpt of the expand method for leq in Figure 7 whi
his generated from the XML representation given above. A
-
ording to Se
tion 4.9, we must de
ide whether leq(t1; t2)is a redex. This expression is a redex if t1 is a variable (wemust narrow) or zero (we apply the �rst rule). If t1 equals
succ(..), we must do the same 
he
k for the se
ond ar-gument. If t1 fails, so does leq. If t1 is a fun
tion 
all, wemust evaluate it �rst. For the sake of simpli
ity, we showpseudo-
ode, whi
h re
e
ts the basi
 stru
ture and is verysimilar to the real Java 
ode.To use our ba
k end for a fun
tional logi
 language, it isonly ne
essary to 
ompile programs from this language to aXML representation a

ording to the FlatCurry DTD. Forinstan
e, our 
ompiler 
an be used as a ba
k end for Currysin
e Curry programs 
an be translated into this XML repre-sentation with PAKCS [17℄. Again, it is worth emphasizingthat FlatCurry 
an en
ode more than just Curry programsor needed narrowing, be
ause the evaluation strategy is 
om-piled into the 
ase expressions. For instan
e, FlatCurry is asuperset of TFL, whi
h is used as an intermediate represen-tation for a Toy-like language based on the CRWL paradigm(Constru
tor-based 
onditional ReWriting Logi
) [22℄.The 
omputation engine is designed to work with the read-eval-print loop typi
al of many fun
tional, logi
 and fun
-tional logi
 interpreters. In our Java implementation, the
omputation engine and the read-eval-print loop are threadsthat intera
t with ea
h other in a produ
er/
onsumer pat-tern. When a 
omputed expression (value plus answer) be-
omes available, the 
omputation engine noti�es the read-eval-print loop while preserving the state of the narrowingspa
e. The read-eval-print loop presents the results to theuser and waits. The user may request further results or ter-minate the 
omputation. If the user requests a new result,the read-eval-print loop noti�es the 
omputation engine tofurther sear
h the narrowing spa
e. Otherwise, the narrow-ing spa
e is dis
arded.Currently we provide a naive tra
e fa
ility that is use-ful to debug both user 
ode and our own implementation.Sin
e the 
omputations originating from a goal are truly 
on-
urrent, as is ne
essary to ensure operational 
ompleteness,and sin
e some terms are shared between 
omputations, thetra
e is not always easy to read. Computations are identi�edby a unique id. We envision a tool, 
on
eptually and stru
-turally well separated from the 
omputation engine, that
olle
ts the interleaved tra
es of all 
omputations, separatesthem, and presents ea
h tra
e in a di�erent window for ea
h
omputation. This tool may have a graphi
al user interfa
eto sele
t whi
h 
omputations to see and/or intera
t with.
6. RELATED WORKIn this se
tion we dis
uss and 
ompare other approa
hesto fun
tional logi
 language implementation (see [14℄ for asurvey). Our approa
h provides an operationally 
omplete



<fun
 name="leq" arity="2"><fun
type>... </fun
type> // the type of the fun
tion<rule> // the rule for the fun
tion<lhs> <var>X</var> <var>Y</var> </lhs> // two arguments, enumerated<rhs><
ase type="flex"> // evaluate by narrowing<var>X</var> // swit
h on �rst argument<bran
h><pattern name="zero" /> // if it mat
hes Zero...<
omb type="ConsCall" name="true" /> // ...redu
e to True</bran
h><bran
h><pattern name="su

"> // if it mat
hes su

(M)...<var>M</var></pattern><
ase type="flex"> // ...then go on with se
ond argument
ode for mat
hing the se
ond argument</
ase></bran
h> </
ase> </rhs> </rule> </fun
>Figure 6: XML 
ode for leqexpand (Computation 
omp) {term = 
omp.getTerm(); // get the term from top of the sta
kX = term.getArg(0); // get �rst argumentY = term.getArg(1); // get se
ond argumentswit
h on kind of X // 
ase X of ...
ase variable: // do narrowing: bind to patternsX.bindTo(zero);spawn new 
omputation for leq(zero,Y);X.bindTo(su

(M));spawn new 
omputation for leq(su

(M),Y);
omp.setExhausted(); // this 
omputation is exhausted
ase 
onstru
tor: // argument is 
onstru
tor-rooted,swit
h on kind of 
onstru
tor // thus do pattern mat
hing
ase zero: // apply �rst rule:term.update(true); // repla
e term with true
ase su

: // 
ase X of su

(M) ! 
ase Y of...re
ursive 
ase for swit
hing on Y
ase failure: // the needed subterm has failed,term.update(failure) // thus leq fails, too
ase operation: // X is a fun
tion 
all, thus
omp.pushOnSta
k(X); // evaluate this 
all �rst} Figure 7: Simpli�ed pseudo-
ode for the expand method of leqand eÆ
ient ar
hite
ture for implementing narrowing whi
h
an potentially a

ommodate sophisti
ated 
on
epts, e.g.,the 
ombination of narrowing and residuation, en
apsulatedsear
h or 
ommitted 
hoi
e. As some re
ent narrowing-based implementations of fun
tional logi
 languages show,most implementations that in
lude these 
on
epts la
k 
om-pleteness or are ineÆ
ient.One 
ommon approa
h to implement fun
tional logi
 lan-guages is the transformation of sour
e fun
tional logi
 pro-grams into Prolog programs. This approa
h is favored forits simpli
ity sin
e Prolog has most of the features of fun
-tional logi
 languages: logi
al variables, uni�
ation, andnon-determinism implemented by ba
ktra
king. However,the 
hallenge in su
h an implementation is the implemen-tation of a sophisti
ated evaluation strategy that exploitsthe presen
e of fun
tions in the sour
e programs. Di�er-ent implementations of this kind are 
ompared and evalu-ated in [15℄ where it is demonstrated that needed narrow-ing is eÆ
iently implemented in a (stri
t) language su
h asProlog and that this implementation is superior to othernarrowing strategies. Therefore, most of the newer propos-

als to implement fun
tional logi
 languages in Prolog arebased on needed narrowing [4, 8, 15, 27℄. In 
ontrast toour implementation of narrowing, all of these e�orts are op-erationally in
omplete (i.e., existing solutions might not befound due to in�nite derivation paths) sin
e they are basedon Prolog's depth-�rst sear
h me
hanism. The same draw-ba
k also o

urs in implementations of fun
tional logi
 lan-guages based on abstra
t ma
hines (e.g., [11, 26, 29, 22℄)sin
e these abstra
t ma
hines use ba
ktra
king to implementnon-determinism.An ex
eption is the Curry2Java 
ompiler [19℄ whi
h isbased on an abstra
t ma
hine implementation in Java butuses independent threads to implement non-deterministi

hoi
es. If these threads are fairly evaluated (whi
h 
an beensured by spe
i�
 instru
tions), in�nite derivations in onebran
h do not prevent �nding solutions in other bran
hes.Our approa
h is more 
exible sin
e it does not depend onthreads, but it 
an 
ontrol to any degree of granularity thes
heduling of steps in distin
t 
omputations. This eases theimplementation of problem-spe
i�
 sear
h strategies at thetop level, whereas Curry2Java is restri
ted to en
apsulated



sear
h [20℄.Our implementation is the subje
t of a
tive investigationin several dire
tions. Thus, we are not spe
i�
ally 
on
ernedwith its eÆ
ien
y at this time. Rather, we are studyingar
hite
tures that easily integrate 
on
epts and ideas thathave been proposed for fun
tional logi
 programming. Ef-�
ien
y is an important issue, though, and we expe
t thatit will be a strong point of our implementation due to thedire
t translation into an imperative language without theadditional 
ontrol layers of an abstra
t ma
hine. While wehave attempted to sele
t an eÆ
ient ar
hite
ture, we havenot paid mu
h attention to detailed optimization of our im-plementation, and we do not expe
t top speed as long as we
ompile to Java. We performed only a limited number ofben
hmarks to get a feel for where we stand.For the fun
tional evaluation, we evaluated the naive re-verse of a list of 1200 elements (400 only for 
omparingCurry2Java). To ben
hmark non-determinism we evalu-ated add x y =:= peano300, where peano300 de-notes the term en
oding 300 in unary notation and the in�xoperator =:= denotes the stri
t equality with uni�
ation.This goal is solved by 
reating 301 parallel 
omputations bynarrowing on the add operation.The two fastest available implementations of needed nar-rowing, to the best of our knowledge, are the Curry2Prolog
ompiler of the PAKCS system and theM�unster Curry Com-piler (MCC) [29℄. The Curry2Java ba
k end (C2J), in
ludedin the PAKCS system, is not as fast, but is the fastest avail-able 
orre
t and 
omplete implementation of needed narrow-ing. We have also 
ompared our approa
h to a Java-basedimplementation of Prolog: Jinni [33℄ is the fastest engine inthe naive reverse ben
hmark among the Java-based Prologimplementations 
ompared in [13℄. Table 1 shows exe
utiontimes, in se
onds, for simple ben
hmarks on a PIII-900 MHzLinux ma
hine. These results show that our engine is 
ur-rently the fastest 
omplete implementation of narrowing. Inall likelihood, its speed is partially due to the elimination ofthe overhead paid by Curry2Java for 
omputing with an ab-stra
t ma
hine. In 
omparison with Jinni, we perform betterin the rev1200 ben
hmark, where the number of redu
tionsteps is more or less the same for needed narrowing and SLD-resolution. For the add ben
hmark, we evaluate the goal
add(X,Y,peano300) in Jinni. Due to the rules for stri
tequality with uni�
ation, even an optimized implementationof needed narrowing will perform at least twi
e as many re-du
tion steps for add x y =:= peano300 as a SLD-resolution of add(X,Y,peano300). However, we arestill faster than Jinni in this ben
hmark, too. Curry2Prologand MCC are faster than our approa
h by a fa
tor 8 for
rev and by fa
tor 20 for add. This is to be expe
ted.Ba
ktra
king-based implementations are simpler and fasterbe
ause they sa
ri�
e 
ompleteness. Additionally, Curry2-Prolog is exe
uted by the highly optimized SICStus Prolog
ompiler, and the abstra
t ma
hine of MCC is written inC, while our implementation is exe
uted by the JVM. Weexpe
t that if our implementation were optimized and/or
oded in C, it would o�er performan
e 
ompetitive withthese in
omplete systems while retaining 
ompleteness.A fa
tor of 8-20 speedup over Java for a C implemen-tation is reasonable and supported by the results of [19℄.The authors have shown that a C++ implementation of theCurry2Java abstra
t ma
hine was more than 50 times fasterthan the same implementation in Java. We do not expe
t a

Table 1: Exe
ution times for simple ben
hmarks onseveral FLP enginesOurs C2J MCC PAKCS Jinni
rev400 0.69 2.6
rev1200 5.5 N/A 0.69 0.68 45.9
add300 2.1 16.2 0.12 0.09 2.5similar improvement be
ause we have already eliminated theinterpretation layer of the abstra
t ma
hine, and be
ause theresults of [19℄ were obtained with JDK 1.1 while we use JDK1.3. The latter is more eÆ
ient. However, we are 
on�dentthat there are still 
onsiderable opportunities for improvingthe eÆ
ien
y of our implementation. We plan to work onthis aspe
t, but only after resolving the ar
hite
tural issuesrelated to the in
lusion of sear
h and 
on
urren
y featureswhi
h are dis
ussed in the next se
tion.

7. FURTHER EXTENSIONSA very interesting feature for modern fun
tional logi
 lan-guages is en
apsulated sear
h [20℄. Although this feature isnot yet in
luded in our implementation, our ar
hite
ture isready to a

ommodate it.En
apsulated sear
h uses a sear
h operator to expli
itly
ontrol di�erent bran
hes of a non-deterministi
 
omputa-tion. It relies on a data stru
ture to en
ode sear
h goalsand their non-deterministi
 splitting. This stru
ture sup-ports di�erent sear
h strategies and 
ontrols failures. Ad-ditionally, it prevents non-determinism from splitting theglobal 
omputation, whi
h is 
ru
ial to avoid 
on
i
ts withirreversible I/O operations. Complete en
apsulated sear
hstrategies rely on another key feature, 
ommitted 
hoi
e [24℄.Losely speaking, di�erent bran
hes of a 
omputation areevaluated in parallel. When one bran
h �nds a solution,the other bran
hes are dis
arded. The 
ombination of thesear
h operator and 
ommitted 
hoi
e is ne
essary for im-plementing 
omplete en
apsulated sear
h strategies [31, 20℄.To ensure 
ompleteness, it is ne
essary to distinguish be-tween lo
al and global 
omputations in three aspe
ts. Non-deterministi
 steps of a goal 
annot split the global 
ompu-tation. If a goal either fails or su

eeds we must take spe
iala
tions like en
oding the result in a data stru
ture or killingsome other lo
al 
omputations (if the 
ommitted 
hoi
e is in-volved). The third aspe
t 
on
erns variable binding. Globalvariables, i.e., variables not introdu
ed by sear
h, 
annotbe bound by sear
h, be
ause di�erent lo
al 
omputations
an share a global variable. Di�erent bindings of any su
hvariable in lo
al 
omputations would be in
onsistent in theglobal 
omputation.We know of only two attempts at narrowing-based im-plementations of en
apsulated sear
h. The M�unster CurryCompiler implements the sear
h operator, but it la
ks 
om-mitted 
hoi
e. Thus, 
omplete sear
h algorithms 
annot be
oded in MCC. Curry2Java provides both the sear
h oper-ator and 
ommitted 
hoi
e. Curry2Java employs threadsfor non-deterministi
 sear
h, thus it fa
es the problem ofintegrating lo
al sear
h into an ar
hite
ture whi
h was notdesigned for expli
it 
ontrol. This problem has not yet beensolved and its solution is not near.In our ar
hite
ture, it should be mu
h easier to implementand integrate en
apsulated sear
h and 
ommitted 
hoi
e be-




ause we have expli
it and dire
t 
ontrol of 
omputation.Computations are designed to be nested, whi
h eases intro-du
ing lo
al 
omputations. A 
ru
ial aspe
t of the imple-mentation of en
apsulated sear
h is the distin
tion betweenlo
al and global variables. This 
an be solved by makinga 
omputation log a variable as lo
al when it is introdu
edinside this 
omputation, e.g., by evaluating a lo
al de
lara-tion of a free variable. This method was su

essfully usedin Curry2Java.The implementation of 
ommitted 
hoi
e should be eveneasier than the sear
h operator. While the sear
h operatormust en
ode all possible bran
hes after a non-deterministi
step in a data stru
ture, 
ommitted 
hoi
e 
an dis
ard allother possibilities if it has found one su

essful bran
h. If the
omputation en
ounters a fun
tion 
all whi
h should be eval-uated by 
ommitted 
hoi
e, a new queue of 
omputations(Se
tion 4.5) is 
reated for goals to be evaluated in paral-lel. These lo
al 
omputations follow the rules for lo
al vari-able bindings des
ribed above. When a non-deterministi
step o

urs in one of the 
omputations, we just add new
omputations to the queue. This lo
al queue is similar tothe global one, ex
ept that when a 
omputation su

eeds,we delete the entire lo
al queue and 
ontinue with a singlegoal. Thus, the expli
it 
ontrol of 
omputation in our ar-
hite
ture allows us to implement both en
apsulated sear
hand 
ommitted 
hoi
e with modest extensions.Another advantage of our model is the potential for aneÆ
ient 
omplete en
apsulated sear
h strategy. The sear
hoperator and 
ommitted 
hoi
e must be 
ombined to real-ize a 
omplete en
apsulated sear
h strategy, but su
h algo-rithms are highly ineÆ
ient be
ause 
ommitted 
hoi
e willrepeatedly spawn many lo
al 
omputations whi
h are soonkilled again. In our model, we 
ould realize an eÆ
ient al-gorithm with minimal e�ort. We just need to 
reate a lo
alqueue of 
omputations in whi
h we evaluate a sear
h goal.In 
ontrast to the global queue, we need to take 
are of lo
alvariable bindings, and we must return the solutions as a listof sear
h goals, whi
h 
an be done lazily. However, theseare all just 
hanges to the global queue. Thus, we 
ouldprovide a lazy, eÆ
ient and 
omplete en
apsulated sear
halgorithm whi
h avoids the ineÆ
ien
y of 
ombining sear
hoperators and 
ommitted 
hoi
e, i.e., the repeated spawningand killing of lo
al 
omputations.
8. CONCLUSIONWe des
ribed the ar
hite
ture of an engine for fun
tionallogi
 
omputations. Our engine implements an eÆ
ient,sound and 
omplete narrowing strategy, INS, and integratesthis strategy with other features, e.g., residuation and and-parallelism, desirable in fun
tional logi
 programming. Ourimplementation is operationally 
omplete, easy to extend(e.g., by external resour
es like 
onstraint libraries) and gen-eral enough to be used as a ba
k end for a variety of lan-guages. Although our work is still evolving, simple ben
h-marks show that it is the fastest 
omplete implementationof narrowing 
urrently available: it has strong potential forfurther improvement in both performan
e and fun
tionality.
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