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ABSTRACT

Functional logic languages combine nondeterministic search
facilities of logic languages with features of functional lan-
guages, e.g., monadic I/O to provide a declarative method
to deal with I/O actions. Unfortunately, monadic I/O
cannot be used in programs which split the computation
due to nondeterministic reductions. This problem can be
avoided if nondeterministic computations are encapsulated
by search operators which are available, for instance, in the
multi-paradigm language Curry. To support the program-
mer in identifying nondeterministic parts of a program,
we develop a method based on a type and effect system
that will find every possible source of nondeterminism.
Additionally, such information can be exploited in compilers
to optimize deterministically reducible parts of a program.

1. INTRODUCTION

An important feature of logic languages is the ability to deal
with nondeterministic computations to compute solutions
for partially instantiated goals. This can lead to problems
when using I/O operations, because they are usually not
backtrackable. For instance in Prolog, output made by a
failing branch of the search tree will remain on the screen
and disturb the output of a possibly successful computation.
In languages supporting more flexible search strategies in-
stead of backtracking, like Curry [10, 16] or Oz [28], the
problem becomes more serious since different branches of a
nondeterministic computation might be evaluated concur-
rently. Thus, different branches of the search tree would
compete for the input and output devices.

To provide a clean and declarative method of I/O, one can
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use the monadic I/O concept [30] which was developed for
Haskell [27] and adapted in Curry. In this concept, I/O
operations are seen as transformations that act on the out-
side world, which contains the file system, the Internet etc.
Since this world can not be copied, nondeterminism in com-
bination with monadic I/O is not allowed and leads to a
run-time error in Curry. To avoid this problem, Curry al-
lows to encapsulate nondeterministic computations [15, 28],
thus increasing program stability and safety.

The remaining problem is to detect all possible sources for
nondeterminism in a program. This can be very difficult
even for small programs and often also depends on the form
of queries the user may ask. Thus, our aim is to develop a
method to detect all possible sources of nondeterminism.

Additionally, the information computed by our program
analysis can be used for compiler optimizations. For in-
stance, instructions for checking function arguments and de-
ciding if the actual call of this function reduces determin-
istically or not can be eliminated for functions which are
proven to reduce deterministically. If larger program parts
or the complete program do not cause nondeterminism, code
for handling nondeterminism, for instance for spawning new
computation branches, can be dropped (dead code elimina-
tion). Such optimizations can be applied for instance to the
Curry2Java compiler [14] which is part of our Curry system
PAKCS [17] and compiles Curry programs into code for an
abstract machine implemented in Java.

Our analysis is based on a type and effect system (see [23] for
an overview) which can be seen as an extension of classical
type systems known from functional languages. The basic
idea is to annotate function types with some effect to de-
scribe the run-time behavior of the function. In our case we
annotate the names of those functions as an effect that might
cause nondeterministic computations. Then our analysis re-
turns all function names that could split the computation
when applied during the evaluation of a certain expression
(i-e., the goal to be solved).

Note that existing determinism analyses for (functional)
logic languages cannot be directly adapted to Curry be-
cause the same function might reduce deterministically or
not, depending on its arguments. Thus, we need to de-
rive groundness information for arguments in function calls
which is not trivial due to the lazy evaluation mechanism in



Curry. Existing analyses for strict languages will indeed fail
to analyse Curry programs correctly. Consider the following
simple example:

flx=x
f 2 x = x+x
gl=23

and thecall f x (g x). A strict analysis will analyse the call
(g x) before analysing the call to £. Thus, it will consider x
to be bound to 1 by evaluating g and then analyse the call
f 1 3 which would deterministically reduce with the first
rule. But in Curry, (g x) will be evaluated after applying
a rule to £. Thus, in Curry, £ will indeed be called with an
unbound variable as first argument, which will cause a non-
deterministic splitting (see Section 2.1 for an explanation
of the reduction mechanisms in Curry). Therefore, analy-
ses for languages like Prolog [29, 5], Mercury [18], or HAL
[6] do not apply because they do not deal with lazy evalu-
ation. In contrast, analyses proposed for narrowing-based
functional logic languages dealing with lazy evaluation can-
not handle residuation, which additionally exists in Curry,
and rely on the non-ambiguity condition [21] which is too
restrictive for Curry programs. Furthermore, these analyses
are either applied during run time (like in Babel [21] and
partially in K-Leaf [20]), or are unable to derive groundness
information for function calls in arguments (like in K-Leaf).

In the next section we will briefly introduce the language
Curry which is the object language of our analysis. Note
that the analysis itself should be adaptable also to other
(functional) logic languages that suffer from similar prob-
lems. In Section 3 the type and effect system will be de-
scribed together with some examples and an informal de-
scription of a type inference algorithm. Section 4 discusses
some practical results of our first implementation, and Sec-
tion 5 contains our conclusions and points out some future
work. Due to lack of space, some detailed definitions and
the proofs of the results are omitted.

2. OVERVIEW OF CURRY

Curry [10, 16] is a multi-paradigm language combining in a
seamless way features from functional programming (nested
expressions, lazy evaluation, higher-order functions), logic
programming (logical variables, partial data structures,
built-in search), and concurrent programming (concurrent
evaluation of constraints with synchronization on logical
variables). It also amalgamates the most important oper-
ational principles developed in the area of integrated func-
tional logic languages: “residuation” and “narrowing” (see
[9] for a survey on functional logic programming). Thus, var-
ious operational models developed for declarative programs
can be seen as restrictions of Curry’s computation model
(see [10] for a detailed discussion).

A Curry program specifies the semantics of expressions,
where goals, which occur in logic programming, are par-
ticular constraint expressions. Executing a Curry program
means simplifying an expression until a value (or solution)
is computed. To distinguish between values and reducible
expressions, Curry has a strict distinction between (data)
constructors and operations or defined functions on these
data. Hence, a Curry program consists of a set of type
and function declarations. The type declarations define the

computational domains (constructors) and the function dec-
larations the operations on these domains.

Curry combines various features known in declarative pro-
gramming, like higher-order functions, constraints and the
possibility to use constraint solvers for various domains, en-
capsulated search [15, 28], a Hindley/Milner-like polymor-
phic type system [4], monadic I/O [30] and features for com-
munication and distributed programming [11]. A detailed
description of these features can be found in [16]. In the
following we will only outline those which are necessary to
understand the ideas of our analysis.

2.1 Basic Featuresof Curry

Values in Curry are, similarly to functional or logic lan-
guages, data terms constructed from constants and data con-
structors. For instance, the datatype declarations

data Bool = True | False
data List a =[] | a : List a

introduce the datatype Bool with the 0-ary constructors
(constants) True and False, and the polymorphic type
“List a” of lists. Natural numbers, which we will use in the
examples, are represented in Curry by constants (0,1,2,...)
of type Int.

A data term is a well-typed expression containing vari-
ables, constants and data constructors, e.g., 1:2:xs. Func-
tions operate on data terms. Their meaning is specified
by rules (or equations) of the form “I |c¢ = r” (the con-
dition part “|c” is optional) where [ is a pattern, i.e., [
has the form f t¢;...t, with f being a function symbol,
t1,...,t, data terms and each variable occurs only once,
and r is a well-formed ezpression containing function calls,
constants, data constructors and variables from [ and c.
The condition c is a constraint which optionally contains
a list of locally declared variables, i.e., a constraint can have
the form let vi,...,v; free in con where the variables v;
are only visible in the constraint con. Basic constraints are
(strict) equations of the form e; =:=e» which are solvable if
e1 and es are reducible to unifiable data terms. Constraints
can be composed by the concurrent conjunction operator
&, i.e., c1 &c2 will be evaluated by concurrently evaluating
c1 and co. If a local variable v of a condition should be
visible also in the right-hand side, the rule is written as
I | ¢ =r where v free. A rule can be applied if its condi-
tion is solvable. A head mormal form is a variable, a con-
stant, or an expression of the form c e;...e, where c is a
data constructor. A Curry program is a set of data type
declarations and equations.

ExAMPLE 1. The following rules define the concatenation
of lists, a function for computing the last element of a list
and a (partial) square function sq, which we will use in later

examples:
append [] ys = ys
append (x:xs) ys = x : append xs ys

last 1 | let xs free in append xs [x] =:=1 =x
where x free

sq 1 =1

sq 2 =4



If the equation “append xs [x] =:= 1” is solvable, then x
is the last element of the list 1. a

From a functional point of view, we are interested in com-
puting the walue of an expression, i.e., a data term which is
equivalent (w.r.t. the program rules) to the initial expres-
sion. In logic languages, we want to solve goals, i.e., com-
pute bindings for free variables in an initial expression. Since
Curry integrates these two paradigms, it computes answer
pairs consisting of a substitution and an expression. Due to
the nondeterministic features of Curry, an expression may
reduce to more than one answer pair, i.e., a reduction step
has the general form'

e = on,e1 |- | on,en

wheren > 0, e, e1,. .. ,e, are expressions, o1, ..., 0, are sub-
stitutions on the free variables in e, and “|” joins different
alternatives to a disjunction. We call the evaluation step
deterministic if n = 1 and nondeterministic if n > 1. The
case n = 0 corresponds to a failure.

For selecting the next reducible function call (so called re-
dez) in an expression that must be evaluated, Curry uses
a combination of residuation and needed narrowing [1, 10].
This is, roughly speaking, the combination of lazy evalua-
tion with bindings of uninstantiated variables as demanded
by the patterns of left-hand sides in the rules. For instance,
consider the function sq from Example 1: The function call
“sq 27 is reduced to the value 4 like in any functional lan-
guage. However, if the argument is an uninstantiated vari-
able, there are two possibilities:

1. If we evaluate sq by residuation (in this case sq is
called rigid), the call sq x will suspend until x is bound
to some constructor term that will allow to choose
one of the rules for reduction. This is possible by the
concurrent evaluation of constraints where a different
thread can bind x to some value.

2. If we evaluate sq by narrowing, as it will be done in all
following examples (in this case sq is called flexible),
we bind x to all possible patterns of the left-hand sides
and continue with all different computation branches
independently:

sq x = {x=1} 1 | {x=2} 4

Thus, the call sq x causes a nondeterministic step in
our computation.

In Curry, constraints are evaluated by narrowing (since they
correspond to predicates in logic languages), while non-
constraint functions are computed using residuation. This
behavior can be easily changed by annotations [16].

To make the pattern matching and the rigid/flexible status
of functions explicit, we assume that all functions are defined
by one rule which left-hand side contains only variables as
arguments and the right-hand side contains case-expressions
for pattern matching. Thus, expressions have the following

!'See [16] for a definition of the one step relation =>.

form (we assume that lambda abstractions and local decla-
rations are eliminated by lambda lifting [19]):

e = z|fei...en|let x free ine |
caseeofplzel;...;pn:en|
fcaseeofplzel;...;pn:en|61 or es

f is a constructor or defined function and p; are flat patterns
of the form C' z; ...z, where C is a n-ary data constructor.
case and fcase are the rigid and flexible case distinctions,
respectively, and or denotes a don’t-know alternative be-
tween two expressions.

The assumption that each function f is defined by a sin-
gle rule with left-hand side f z; ...z, does not restrict the
class of Curry programs we can handle, since all function
definitions can be transformed into this form (higher-order
features can be translated into first-order using Warren’s
method [31]). For instance, the sq function can be rewrit-
ten as

sq x = (f)case x of 1:1; 2:4

where case is used if sq is defined as rigid (i.e., evaluated
by residuation), and fcase if it is flexible (i.e., evaluated by
narrowing). A precise definition of this transformation can
be found in [13].

The binary or operator is used to translate functions with
overlapping left-hand sides. For instance, the rigid function
defined by

0*xy=0

x*0=0
is translated into the single rule

x ¥ y = (case x of 0:0) or (case y of 0:0)

Nesting the binary or operator allows to encode functions
with more than two overlapping left-hand sides.

2.2 Nondeterminism and /O

Nondeterministic computations are problematic if they ap-
pear in programs that use I/O. A declarative treatment of
input/output, as implemented in Curry, can be obtained by
the monadic I/O concept [30]. In this concept, an inter-
active program is considered as a function computing a se-
quence of actions which are applied to the outside world. An
action changes the state of the world and possibly returns
a result (e.g., a character read from the terminal). For in-
stance, getChar reads a character from the standard input
whenever it is executed, i.e., applied to a world. Several
I/O actions can be composed, e.g., getChar can be com-
posed with the action putChar (which writes a character to
the terminal) by the sequential composition operator >>=,
ie.,

getChar >>= putChar

is a composed action which prints the character typed in the
keyboard to the screen (see [30] for more details).

Since the world cannot be copied (note that the world con-
tains at least the complete file system or the complete In-
ternet in web applications), an interactive program having a
disjunction as a result makes no sense. For instance consider
the program

nonsense file x = writeFile file (sq x)



where writeFile f e is an action that writes the value of
e to the file f. If we call nonsense "dummy" x, a nondeter-
ministic splitting during the evaluation of sq x would result
in two independent computation branches, both trying to
write different values to the same file. This must obviously
be avoided because it could, for instance, lead to an inconsis-
tent file state. Thus, a Curry program that uses I/O actions
will result in a run-time error whenever a nondeterministic
computation is detected. The goal of this paper is to pro-
vide a method to detect such kind of programming errors at
compile time, so that they can be avoided by encapsulating
all possible search between I/O operations (see [15, 28] for
a more detailed description of encapsulated search).

3. THE NONDETERMINISM ANALYSIS

In this section we develop a method based on a non-standard
type system to check expressions for possible nondetermin-
istic evaluation steps. First we sketch the ideas behind our
nondeterminism analysis before we provide and explain the
typing rules in detail.

As we have seen in the examples in Section 2, uninstantiated
variables as arguments may cause nondeterministic steps
when using narrowing. Hence, we propose a type and effect
system that allows us to identify the form of arguments, i.e.,
if they are ground terms or not. This is a non-trivial task
because the arguments can be function calls which are evalu-
ated lazily in Curry. Thus, the type of the arguments cannot
be derived from their actual form but the analysis must take
into account their reduction behavior. We will collect the
names of the functions that might split the computation as
an effect of this computation.

In a first step, the program will be typed, either by hand
or by a type inference algorithm (see also Section 3.4). For
instance, the function definition

f x =sqx

could be given the following type:
i e

This type expresses that f takes Any argument and returns
a Ground term but during the application of £ nondetermin-
istic steps may be raised by the functions f and sq. This
is signalized by the effect {f,sq} which is annotated above
the arrow.

In a second step, we will analyse an expression with re-
spect to the program and obtain results like “the expression
reduces deterministically” or “the reduction of the expres-
sion raises a nondeterminism caused by the evaluation of the
function f.” We will explain this in more detail in the next
sections.

3.1 TheTypesand Effects

Type and effect systems can be seen as an extension of clas-
sical type systems known from functional languages (see [22,
23] for details). The basic idea is to extend the type anno-
tation for a function with an effect that may occur during
the application of this function. For every expression a type
and the effect of its reduction can be approximated. Type
and effect systems provide for powerful analyses like excep-

tion analysis [26], side effect analysis [22] or communication
analysis [23, 24].

Since nondeterminism is mostly caused by uninstantiated
variables in arguments of flexible functions, we use a non-
standard type system to distinguish between ground terms
and any terms. Thus, we define type expressions as follows:

T=G|A|n..Tm>T

G denotes a ground term and A denotes any term. Since
a ground term is also any term, we have subtyping [2], i.e.,
G < A where 11 < 72 means that any term of type 7 has also
type m2. For functions it is important to note that covariance
holds for the result type but contravariance for the argument
types, ie., 1 = 12 < 7 — 75 iff 7 < 7,7 < 75. This
is easy to understand if we think of smaller types as more
precise information. The type A — G is smaller than G — G
and it is more precise, because it provides information about
a larger set of inputs. Thus, the larger the input type, the
more precise the information, i.e., the smaller the function
type. The opposite holds for the output type, i.e., A - G
is smaller than A — A, because the information about the
target set is more precise. Our type system allows several
types for one expression. For instance, for a function defined
by £ x = x the two types G — G and A — A are correct
but not related by subtyping.

As an effect we want to collect the names of functions
which application can cause nondeterministic computations.
Therefore, we define the effect ¢ by

¢ C FU{case,or}

where F is the set of function symbols of a program P. The
effect annotated for a function declaration must contain all
function names that might reduce in a nondeterministic way
during the application of this function. For instance, a type
annotation for a function f could be

foatledd g

if in the right-hand side of f a call to the function g causes a
nondeterminism, whereas g splits the computation because
it calls the function h in its body which raises the nonde-
terminism. Additionally, f could have another type, for
instance

f::GgG

if f does not split the computation when applied to a ground
term.

The aim of our analysis is to calculate type judgements
Erext/p

for an expression e with respect to a program P, where E
is a type environment, i.e., a set of type annotations for
function and constructor symbols from P and for variables.
EF e:: 7/p means that the expression e has type 7, and
during the reduction of e the effect p may occur. For in-
stance, the type judgement

EtF fa:ANf,9,h}

for the expression f x reflects the nondeterministic be-
haviour of f by returning a non-empty effect. In contrast,



the second type G 2 G could be used to analyze f 1 and
the computed type judgement would be

Erf1:G/0,

signalizing that the call f 1 reduces deterministically (be-
cause function symbols that could split the computation
were not found).

The soundness of our approximation, which will be formal-
ized at the end of Section 3.2, ensures that we find every
function which can raise a nondeterminism and that terms
identified as ground by our analysis will actually reduce to
ground terms. Similarly to most program analyses, we can-
not compute precise information for all program parts but
only approximations of the real program behavior. In our
case this means that the computed type might be too impre-
cise, e.g., A instead of G, and the effect might be too large,
i.e., it might contain functions that will never raise a nonde-
terminism. This imprecision can be reduced by refining the
type domain (see Section 5). Nevertheless, our first imple-
mentation has shown that the analysis is already quite ac-
curate even for larger examples which occur in practice and
especially for purely functional programs (cf. Section 4).

3.2 TheTyping Rules
Figure 1 shows the typing rules for our analysis which define
the type judgements E - e :: 7/¢p.

The DECL rule defines when a program rule r is correctly
typed w.r.t. a type annotation A (i.e., E k4 r): The type
annotation A for the function f must be given in the envi-
ronment E, and with the corresponding types for the argu-
ments z; added to the environment? the derived type for the
right-hand side must match the type of f. For the effect, two
cases are distinguished: If ¢ # @ then the right-hand side e
possibly raises a nondeterministic computation step. Thus,
f could also reduce nondeterministically and so the anno-
tated effect must include ¢ and {f}. Otherwise, if ¢ = 0,
1 is completely unrestricted. In both cases ¢ can contain
arbitrary function symbols from the program, because, due
to subeffecting (see below), it is still a safe approximation
to annotate a larger effect.

The VAR rule is common. If a type is given for z in the envi-
ronment, this type and an empty effect can be derived. Note
that x can be a variable, a function symbol, or a constructor
symbol.

The NEWVAR rule handles local (existentially quantified)
variables. The newly introduced variable zfrcsn is unin-
stantiated, and thus must be given the type A for analysing
e. By e[z/t] we denote the replacement of all free occur-
rences of z in e by t. An occurrence of a variable z in e is
free if it does not occur inside a subterm e’ of e with e’ =
let z free in é. A variable z occurs free in e if at least
one occurrence of z in e is free.

2E[m1 % Ti,...,Tn i To| denotes the type environment ob-
tained from FE by deleting all existing type annotations
for z1,...,x, and adding the new type annotations in the

square brackets.

When applying a function f to some e;, the effect ¢ anno-
tated for f might occur. Thus, in the APP rule, ¢ is returned
together with the effects derived for the arguments.

The FCASE rule handles nondeterminism caused by nar-
rowing. If the type A is derived for e and more than two
case branches exist, a non-empty effect must be returned
to signalize the potential nondeterminism. This is ensured
by adding the keyword case (which could be indexed by
the function name from the left-hand side, as we will do
it in subsequent examples) to the effect. Additionally, all
effects from the right-hand sides must be collected. Note
that for analysing the right-hand sides, the pattern variables
are given the type of e: If e reduces to a ground term, so
will the terms that the pattern variables are instantiated to.
Otherwise, they could be uninstantiated in the subsequent
computation and therefore they have the type A. If only
one right-hand side has type A, the entire fcase-expression
might return this type. Thus, the maximum type of all
right-hand sides (w.r.t. the ordering G < A) is the type of
the fcase-expression.

The CASE rule analyses rigid functions. Thus, the case-
expression itself will never split the computation and no ad-
ditional effect is returned.

Nondeterminism which is caused by overlapping left-hand
sides is handled by the OR rule, where the keyword or is
returned. Like in the (F)CASE rules, the effects of the right-
hand sides are collected and the maximal type is returned.
Note that by using case and or keywords, nondeterminism
caused by narrowing and by overlapping left-hand sides can
be distinguished.

The last rule, SUB, defines subtyping and subeffecting [23].
For our type system, the rule expresses that any expression
of type G is also of type A, and that every effect ¢ can be
enlarged without loosing the safety condition. The approx-
imation just becomes more imprecise.

In order to show the correctness of the typing rules, we must
define correct type environments.

DEeFINITION 1. Let P be a Curry program and E a type
environment which contains at least one type annotation for
each function and constructor occurring in P.

1. Let r € P be a program rule with left-hand side
f xi...xn and Ef C E the set of all type annota-
tions for f in E. r is correctly typed w.r.t. E, denoted
by Ev-r, iff E-4r for all A € Ejf.

2. E is a correct type environment for P iff E + r for
all r € P, and for all type annotations c :: 71 ...Tn =

T € E, where c is an n-ary constructor, T; = A implies
T=A.

Thus, a correct type environment E for a program must
contain at least one type for each defined function and con-
structor. Otherwise, the rules that use these constructors
and functions cannot be correctly typed. Note that for a



Typing of rules:
prer, BT Bl en /0 e g e K e g
Etafri...kp = €
DECL Elzi:mi,...,xpnump]Fext/p if o 0, AZfZ:Tl...Tn¢U£§f}TEE
Eryfozi...zpn = €
Typing of expressions:
VAR — ifz: E
Etz:7/0 HeaTe
NEWVAR Elzfresn:: Al b e[z/xfresn] T/
EtFlet © free in e = 7/p
APP Ereiumi/pr ... Erenuta/on EbFfurm...mn 5 7/0
EFfei...en = T/U,piUgp
FCASE Ete:t/p ETimut|Feinn/o1 ... ETnm uT]Fentm/on
Et fcase e of pi1(Tim) :€1;...pn(Tam) ten it mazi(r:)/U; ps Up Uy
r [ {case} ifr=Aandn>1
where ¢ = { 0 otherwise
CASE Etext/o ETimut|Ferumi/o1 .. Elfam 27| Fenita/on
EF case e of pi(Tim) :e1;...pn(Tam) t €n = mazi(ri)/U; pi U
E|—61 ::T1/Lp1 El—eg 4 Tz/Lpg
OR
Etor(er,e2) :: maz(m,m2)/v1 Upz U{or}
Etezt/o . / 1
SUB — 2 ifr <7 -
Etrext'/y =Thw=9
Note: 7;; denotes the sequence z;1,...,x;j;.
Figure 1: Typing rules

constructor c its result type is always the maximum of its
input types (i.e., 0-ary constructors could always have type
G), and it is always correct to annotate ¢ = ) because a
constructor itself is not reduced (only its arguments) and so
does never raise a nondeterministic reduction step.

In the following we use E. as an abbreviation for
Ezi1::A, ... xn:: A] where {z1,...,2,} is the set of vari-
ables which occur free in the expression e.

The following lemma states the correctness of the typing
rules w.r.t. a single reduction step.

LEMMA 1 (SUBJECT REDUCTION). Let E be a correct
type environment for a Curry program and e an expres-
sion. If E. + e 7/ and there is a reduction step
e = on,e1 |- | on,en withn >0, then E, Fe; :: /.

Thus, the type and effect of an expression is invariant under
reduction steps. We can easily prove the following correct-
ness results for our framework with this important prop-
erty:®

3The reduction semantics of Curry can be found in [16] and
(concerning case-expressions) in [13].

THEOREM 1 (CORRECTNESS OF TYPING RULES). Let
E be a correct type environment for a Curry program, e an
expression and E. e :: 7/ .

1. If = G and e reduces in finitely many steps to a value
v (i.e., a term without defined function symbols), then
v is a ground term.

. If e reduces in finitely many steps to an expression
€ and ¢ = oi,e1 |---| on,e, with n > 1, then ¢
contains “case” or “or” depending on the redex of é
which caused the nondeterminism.

From the second property we can directly conclude that e
reduces deterministically if ¢ = (.

Thus, we know that every function that might raise a non-
deterministic computation step during the reduction of e
will be collected in the effect ¢ by our typing rules, i.e., we
will never miss such a function?. This is the meaning of a

*Note that the occurrence of case (or) in the effect guaran-
tees that also the name of the function, in which body the
case (or) expression occurs, is collected in the effect due to
the DECL rule. Thus, we know which function definitions
to consider for detecting the source of nondeterminism.



safe approximation for our analysis. The same holds for the
type, i.e., a term analysed as ground will indeed reduce to
a ground term (if its reduction successfully terminates).

3.3 Examples

We want to clarify the ideas of our analysis by providing
some simple examples. If the type environment E contains
only one type annotation A for the function in the left-hand
side of the rule r, we simply write E I r instead of E 4 r.

ExXAMPLE 2. We want to show that the rule

f::A—Q))G

fx=0
is correctly typed. The type expresses that £ will reduce de-
terministically and return o ground term regardless of its
input argument. It should be obvious that this type is cor-
rect. The initial type environment contains the type for £
and the constructor 0:

E:{f::AgG, 0: G}

The correctness of the type is proven by the following deriva-
tion:

VAR

Ex: AlF0: G/

DECL
Er-fx=0

With E extended by x:: A according to the type annotation
for £, the analysis of the right-hand side returns the ground
type and an empty effect, thus matching the target type of
£ and the empty effect annotated with £. Note that due to
subtyping and subeffecting, there are more correct types for
f,eg., A 2 A G 2 G, G L A and any of these types with
every non-empty effect. However, all these types are larger

than the most precise type A 2a.

Another simple example is the identity function where the
analysis of the right-hand side depends on the results from
the left-hand side:

id:: 6 % @

id x = x
The following derivation, using E = {id = G LA G} as ini-
tial environment, proves that the type annotation is correct:

VAR

Ex:GlFx:G/D

DECL
EtFid x = x

Because E is extended by the type for the input argument of
id (z :: G), we can derive the type G for the right-hand side,
too. O

Due to space limitations, we do not mark the rules with
their names anymore in the following examples.

ExXAMPLE 3. To study an example where nondetermin-
ism occurs, we use the function sq which was defined in
Section 2:

s Q

{sq,casesq}

sq::G—m>
A G

l

sq ::

sq x = fcase x of 1:1; 2:4

Two types are defined for sq, claiming that the function will
reduce deterministically when applied to a ground term, but
might raise a nondeterministic step otherwise. The initial
environment contains the two types together with the types
for the constructors (we identify the two types by A1 and
Az ):

E = {A: sq= G—0>G, As sq::A{sq’Cﬁfsq} G,
1:G, 2::G, 4:: G}
Since we have two types for sq, we must verify two cases

of the DECL rule, one for each type (we drop the VAR
derivation for the constructor 4 because it is the same as

for1):

Ex:GlFx: G/ Ex:GlF1:G/D
El[x:: G]* fcase x of 1:1;2:4 = G/
EtF4, sq x = fcase x of 1:1; 2:4

Ex: Albx: A/D Ex:: AlF1: G/
Elx :: A]F fcase x of 1:1;2:4 :: G/{casesq}
E 4, 5q x = fcase x of 1:1; 2:4

Using the first type of sq, x has type G and therefore the
FCASE rule returns an empty effect for the right-hand side,
thus matching the type of sq. With the second type, E is
extended by x:: A, causing the FCASE rule to return a non-
empty effect. Therefore, the DECL rule demands the effect
annotated with sq to contain sq as well as the effect from
the right-hand side, which is satisfied. Thus, the rule is cor-
rectly typed because it is correctly typed w.r.t. to both type
annotations.

In contrast, the type annotation sq:: A LN G, which claims
that sq will reduce in a deterministic way even if we pass
any term as argument, is wrong (cf. Section 2.1). This is
indeed detected by our analysis:

sq::A—m>G

sq x = fcase x of 1:1; 2:4

Given the initial environment E = {sq : A LN G, 1:G,
2 G, 4 :: G}, the analysis behaves correctly in refuting this
type:

Ex: Al x:G/0 Ex: AlF1: G/
Elx:: Al case x of 1:1;2:4 :: G/0
Elfsq x = case x of 1:1;2:4

Since we cannot derive the type G for x after E has been
extended by x :: A, the FCASE rule is not able to analyse an
empty effect for the right-hand side of sq. But this would be
necessary to match the empty effect annotated for sq. O

The next example shows how to analyse function applica-
tions.

EXAMPLE 4. We define a simple function £ that calls sq,
assuming that the two correct types for sq from Ezample 3
are specified in the initial environment.



£::G 5 G
g4 U g
f x =89 x

)
sq :: G —» G
sq :: A {sq’cﬁfsq} G

sq x = fcase x of 1:1; 2:4
We drop the types for sq and the natural numbers in E to
keep it small:

E={A: £:G l> G, Ax: £ A {f’sqﬂfesq} G}

We must show the correctness of both types for the rule to
be correctly typed:

Ex:GlFx:G/0 Elx :: G]l—sq::GgG/@
Ex:Glksq x:G/0
Ely f x =5sqx

Since x 1 G is added to the environment to match the ar-
gument type of £, we can derive the result type G and an
empty effect for sq x by selecting the first type annotation
for sq (cf. Ezample 3).

If, according to the annotation Az, the type A is assigned to
x, the second type annotation for sq matches and we derive a
non-empty effect that is consistent with the annotation for £:

Elx:AlbFx:A/D E[x::A]l—sq::A{sq’ﬁfsq}G/(Z)
Elx:: A]F sq x :: G/{sq,casesq}
Etby, f x =sqx

So far, we have only shown how to verify given type annota-
tions for program rules. Usually, the first step in analysing a
program will be to find such annotations, either by guessing
and checking them as shown above, or by using a type infer-
ence algorithm. In the second step, we analyse expressions
to be evaluated w.r.t. the program. Very often we might
be interested only in one expression, i.e., a main function,
that starts all calculations. Note that we are finished after
the first step, if the main functions is unparameterized: If
the behaviour of the main function does not depend on ar-
guments, then the type annotation inferred for main in the
first step specifies the runtime behaviour completely.

If we want to evaluate any other expression (e.g., a call to
a parameterized main function), we must derive its type.
Note that we need only the VAR, NEWVAR, APP and SUB
rules in this case, because we only have to analyse func-
tion/constructor applications. The right hand sides of the
rules are not considered anymore, because all information
we need is stored in the type annotation of the function.

ExAMPLE 5. We want to evaluate the expressions
f (sq 1) and £ (sq x) w.r.t. the program and environ-
ment from Example 4. For the first expression, the analysis

computes the following:

Er1:G/0 El—sq::GgG/(Z)
Etsq 1:G/0

El—f::GgG/@
Erf (sq 1) =G/

Since the argument sq 1 of £ reduces to a ground term, the
first type annotation for £ is selected and an empty effect
is returned. Thus, from the type judgement for £ (sq 1)
we conclude that the expression will reduce to a ground
term without splitting the computation. For the second
erpression, the initial environment is extended to contain
the type A for all free variables. Then, with E, := E[x:: A],
the result is different:

E,Fx:A/0 Ezl—sq::A{sq’ﬁfsq}G/@
E, + sq x:: G/{sq,cases}

Er£:G5% G/0
E, £ (sq x) :: A/{sq,casesq}

Here the effect of the computed type judgement is not empty.
Thus, we are warned that nondeterminism might (and in this
case does) occur during the evaluation of this expression. It
18 important to notice that £ is not contained in the com-
puted effect, because the nondeterminism is not caused by
the code of the right-hand side of £ but by the evaluation of
the argument sq x. First, £ is reduced with a non-ground
argument to its right-hand side sq (sq x). But before the
outer call of sq can reduce further, it must evaluate the ar-
gument sq x. This evaluation splits the computation, but
returns only ground terms. Therefore, when the outer sq
is finally reduced, its formerly non-ground argument has be-
come ground, and so the right-hand side is evaluated as if £
was called with a ground term. Thus, not £, but its argument
is the real cause for the nondeterminism, and the APP rule
correctly returns only the effect collected from the argument.
In this way, the effect calculated for (possibly nested) func-
tion calls gives quite precise information about the origin of
the nondeterminism.

Finally we show that our analysis will detect the problem-
atic behaviour of our motivating example, i.e., the nonsense
function.

EXAMPLE 6. The nonsense function was defined as
nonsense file x = writeFile file (sq x)
We already know the type annotations for sq. The smallest

correct type for writeFile is A A 2, G, because writing to
a file will not split a computation, and writeFile is defined
rigid (cf. Section 2.1). Thus, it will wait until its arguments
are instantiated and after writing the file it will return o
special, internal I/O constructor which is a ground term.
With the type forwriteFile given®, the following is a correct

®The type of certain I/O operations cannot be derived, be-



type environment:

E = {uriteFile: A A 2, G,
sq: G 2 G, sq:: A {sq’ﬁfsq} G,
1:G, 2:G, 4:G,
nonsense :: A G G,

{nonsense,sq,casesq}
nonsense :: A A —

G}

Now we analyse the call nonsense "dummy" x with
E. := E[z :: A]. We must chose the second type for
nonsense from E, to match the type A for the parameter x:

E.+-x:: A/D

{nonsense,sq,casesq}
—

E, - nonsense:: A A G

E, - nonsense "dummy" x :: G/{nonsense, sq,casesq}

Thus, the nondeterminism is detected through the non-empty
effect, and a warning due to the combination with I/0O func-
tions can be generated. O

3.4 Typelnference

The goal of this work is the development of a correct
method to derive information about possible nondeterminis-
tic computations in a program. In the previous sections we
have shown how we can check given annotations for a pro-
gram (and afterwards derive type judgements for expressions
which should be evaluated w.r.t. to the program). But for
the practical application it is tedious to add explicitly all
type annotations for the program rules, which demands for
a method to infer them automatically. Due to lack of space,
we cannot present it in detail but we sketch the basic ideas
to construct an inferencer for our type and effect system.

Basically, an inference algorithm can be constructed follow-
ing the standard techniques for polymorphic type inference
[4], i.e., the typing rules in Figure 1 can be also used for
type inference by providing a new type variable for the type
of each syntactic entity whose type is not yet known. Then
the type analysis of an expression leads to the generation of
a set of constraints between type expressions to be solved.
Without subtyping, these type constraints can be solved by
a standard unification procedure for type terms [4]. The
only problem is the subtyping rule SUB which is not induc-
tive on the syntax of expressions. For the purpose of type
inference, this rule can be eliminated by considering the pos-
sibility of subtyping in other rules. In particular, the VAR is
changed so that for z :: 7 € E the type/effect /0 is inferred
for x, where « is a new type variable, and the new subtype
constraint 7 < « is generated. In this way, the type infer-
ence generates a set of equations and inequations between
type expressions. In the same pass, all effects can be in-
ferred but here we must allow conditional effects of the form
“a = case” to consider the fact that an effect in the FCASE
rule depends on the groundness of the fcase-argument. Such

cause they are realized by external functions, i.e., their code
is not visible. The annotations for external functions can be
specified in a prelude and will be accepted by a type checker
and inferencer.

a conditional effect is equivalent to the effect case if o is A
and to the empty effect if o is G.

Since our subtype structure is very simple (G < G, G < A,
A < A, and the contra/covariance rules for function types),
inequations between types can be solved by known meth-
ods for type inference in the presence of subtyping be-
tween basic types [7]: after transforming all inequations
into inequations between basic types (by applying the con-
tra/covariance rules for function types), we instantiate the
free type variables to their least possible types in order to
compute a minimal type and solve all conditional effects.

4. PRACTICAL RESULTS

An implementation of the type inferencer is actually under
construction, whereas a type checker (following the rules in
figure 1) has already been implemented in Curry itself and
is available from the authors. All examples described in this
paper are correctly analysed by this type checker. Moreover,
we have analysed a large set of typical examples, including
complex structures like graphical user interfaces, and have
received very accurate results.

Of course, there are situations where the analysis will pro-
duce imprecise results but the program structures causing
such impreciseness are seldom in real applications. For in-
stance, passing an argument like [x] to a list-processing
function will cause the analysis to consider the argument
of type A due to the free variable x. Thus, for a func-

tion like append, which has the types G G L5 G and

A g lrenecegtamet (among others), the analysis will
derive a possible nondeterministic behaviour for the call
append [x] [1. Such impreciseness occurs only if a flexi-
ble function, i.e., evaluated by narrowing, is considered, its
arguments contain free variables inside data structures and
these free variables will not cause a nondeterminism later
on. Note that especially the last condition will not hold in
most practical examples. For instance, analysing the ex-
pression append (1:2:xs) [] will precisely report a nonde-
terminism, because due to the definition of append the free
variable xs will be passed as first argument to append in a
recursive call and indeed split the computation. The lat-
ter (precisely analysed) situation is more likely to appear,
for instance in logic programs, where free variables occur in
goals and narrowing is used to search for solutions. On the
other hand, the concatenation of two lists containing vari-
ables as elements (or similar situations) occurs very seldom
in the large set of Curry examples which we have studied.

Even in examples where free variables are used in data
structures and bound by narrowing, nondeterminism does
not necessarily occur. For instance, to implement graphi-
cal user interfaces (GUIs) in a high-level declarative style
in Curry [12], the functional features are exploited to de-
fine the graphical structure, while the logical features are
used to specify the logical dependencies of an interface. Fig-
ure 2 shows a simple example (a counter GUI). Note that
the GUI specification is passed as a partially instantiated
data structure in the second parameter of runWidget. In
this data structure, the unbound variable val is used as a
reference (TkRef val) to connect the entry field (TkEntry),
initially containing “42” (TkText "42") with the buttons



runWidget "Counter Demo"

(TkCol [1 [

4z

Increment | Reset | Stop |

where val free

TkEntry [TkRef val, TkText "42"],

TkRow [1 [TkButton (tkUpdate incrText val) [TkText "Increment"],
TkButton (tkSetValue val "O")
TkButton tkExit

[TkText "Reset"],
[TkText "Stop"111)

Figure 2: A specification of a counter GUI

Increment and Reset. When creating the GUI, the variable
val will be set to an internal value pointing to the entry
field. Now by pressing the Increment button, the function
call (tkupdate incrText val) will be executed to update
the value in the counter window by increasing it. At this
point, the reference variable val is used to identify the field
where the value to be increased can be found and where
the increased value should be written to. Thus, val will be
uniquely bound to a pointer value during the setup of the
GUL

The GUI library is completely implemented in Curry [12].
Therefore, programs containing GUI specifications can be
analysed together with the GUI library by our nondeter-
minism analysis. Since the reference variables contained in
GUI structures are uniquely bound by a narrowing step,
our analysis precisely verifies that the program parts han-
dling GUI specifications are deterministic.

This example shows the importance of partially instantiated
data structures which combine in a very powerful way func-
tional and logic features, in this case by providing a much
more declarative specification for GUIs than in other ap-
proaches in functional languages [3]. Unfortunately, it is
often difficult to implement these data structures in mode-
based logic languages which restrict themselves to just in
and out modes. Even in Mercury, where partially instanti-
ated data structures can be handled in principle, it would
require quite difficult and complex structures of nested, pa-
rameterized mode declaration to describe the GUI data type
structures. Moreover, it is for instance not possible to spec-
ify in Mercury that a function works on a list containing
ground terms and free variables at the same time, e.g.,
[x,2]. Similar but much more complex situations occur
in our Tcl/Tk library. Thus, we could not rely on a mode
based analysis to handle any of our GUI-based programs.

A subclass of Curry programs, for which our analysis com-
putes very accurate results, are purely functional subcom-
putations, which take large parts of most functional logic
programs in practice. We consider a computation as purely
functional if it behaves like a Haskell computation, i.e., there
are no unbound variables at run time and functions are de-
fined so that at most one rule is applicable. In our frame-
work, we can characterize a class of such programs as fol-
lows. We call a program purely functional if the rules for all
functions contain neither or-subexpressions (i.e., the orig-
inal rules have no overlapping left-hand sides, or, in the
terminology of [1], they are inductively sequential) nor ex-
pressions of the form let...free in (i.e., free variables are
not introduced at run time). This restriction is satisfied by

typical functional programs (e.g., note that in Haskell rules
with syntactically overlapping left-hand sides are translated
into nested case-expressions rather than nondeterministic
or-expressions [27]).

We define the ground type environment Eq by

Eqc={f:G...G 4a | for all n-ary functions
M or constructors f}

Then we have the following result:

PROPOSITION 1 (PURELY FUNCTIONAL PROGRAMS).
Let P be a purely functional program and Eg a ground
type environment for P.

1. Eq is a correct type environment.

2. For all expressions e without free variables, it is Eq -

e:: G0

Thus, purely functional programs (and, similarly, purely
functional subcomputations in a program) are precisely
analysed as deterministic in our framework.

5. CONCLUSIONSAND FUTURE WORK

We have proposed a method to analyse functional logic pro-
grams in order to identify expressions that might raise non-
deterministic computations during their evaluation. By the
results obtained from such an analysis, the programmer will
be able to change the program to make it more robust. For
instance, to avoid splitting computations she might remove
nondeterminism completely if it was not necessary or a result
of a programming error. Otherwise, she can encapsulate the
affected program parts, if the nondeterminism is necessary
for computing the result. This will avoid run-time errors in
programs that use I/O actions (which is the case for almost
every larger program) and thus increases program stability.
Additionally, compilers can exploit the analysis results to
optimize the code for deterministically reducible parts of a
program. Although we have presented the typing rules and
some examples for the functional logic language Curry, the
analysis should be easily adaptable to other functional logic
languages (or just logic languages).

For future work we will study how the current set of typing
rules needs to be extended to cover features like external
functions or search operators. This should not be difficult
but has just not been considered yet. Another important
point for future work is the efficient implementation of the



type and effect inference algorithm since the goal of this
work is the development of a fully automatic nondetermin-
ism analysis so that the user is not forced to specify the type
and effect annotations by hand (in contrast to mode-based
languages like Mercury). Last but not least, we will consider
to refine the type domain. The simple Ground-Any-domain,
which corresponds to the classical domain used for ground-
ness analysis in logic languages [25], is often sufficient for
computing quite exact groundness information. But espe-
cially the nondeterminism analysis could benefit for instance
from a three element domain, distinguishing between ground
terms, terms in head normal form and any terms, or from
using regular types [32]. To further improve the preciseness
of the analysis, we might also consider to include sharing
information in our analysis. At the moment, all arguments
of a function call are analysed independently. This does not
produce any wrong results, but if the order for analysing
arguments would be fixed in some way (which should be
possible because the evaluation order is encoded in the case
rules), information computed while analysing one argument
could be used for analysing the next one. In some cases,
this could indeed improve the preciseness of the computed
results.
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