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ABSTRACTFun
tional logi
 languages 
ombine nondeterministi
 sear
hfa
ilities of logi
 languages with features of fun
tional lan-guages, e.g., monadi
 I/O to provide a de
larative methodto deal with I/O a
tions. Unfortunately, monadi
 I/O
annot be used in programs whi
h split the 
omputationdue to nondeterministi
 redu
tions. This problem 
an beavoided if nondeterministi
 
omputations are en
apsulatedby sear
h operators whi
h are available, for instan
e, in themulti-paradigm language Curry. To support the program-mer in identifying nondeterministi
 parts of a program,we develop a method based on a type and e�e
t systemthat will �nd every possible sour
e of nondeterminism.Additionally, su
h information 
an be exploited in 
ompilersto optimize deterministi
ally redu
ible parts of a program.
1. INTRODUCTIONAn important feature of logi
 languages is the ability to dealwith nondeterministi
 
omputations to 
ompute solutionsfor partially instantiated goals. This 
an lead to problemswhen using I/O operations, be
ause they are usually notba
ktra
kable. For instan
e in Prolog, output made by afailing bran
h of the sear
h tree will remain on the s
reenand disturb the output of a possibly su

essful 
omputation.In languages supporting more 
exible sear
h strategies in-stead of ba
ktra
king, like Curry [10, 16℄ or Oz [28℄, theproblem be
omes more serious sin
e di�erent bran
hes of anondeterministi
 
omputation might be evaluated 
on
ur-rently. Thus, di�erent bran
hes of the sear
h tree would
ompete for the input and output devi
es.To provide a 
lean and de
larative method of I/O, one 
an�The resear
h des
ribed in this paper has been partiallysupported by the German Resear
h Coun
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use the monadi
 I/O 
on
ept [30℄ whi
h was developed forHaskell [27℄ and adapted in Curry. In this 
on
ept, I/Ooperations are seen as transformations that a
t on the out-side world, whi
h 
ontains the �le system, the Internet et
.Sin
e this world 
an not be 
opied, nondeterminism in 
om-bination with monadi
 I/O is not allowed and leads to arun-time error in Curry. To avoid this problem, Curry al-lows to en
apsulate nondeterministi
 
omputations [15, 28℄,thus in
reasing program stability and safety.The remaining problem is to dete
t all possible sour
es fornondeterminism in a program. This 
an be very diÆ
ulteven for small programs and often also depends on the formof queries the user may ask. Thus, our aim is to develop amethod to dete
t all possible sour
es of nondeterminism.Additionally, the information 
omputed by our programanalysis 
an be used for 
ompiler optimizations. For in-stan
e, instru
tions for 
he
king fun
tion arguments and de-
iding if the a
tual 
all of this fun
tion redu
es determin-isti
ally or not 
an be eliminated for fun
tions whi
h areproven to redu
e deterministi
ally. If larger program partsor the 
omplete program do not 
ause nondeterminism, 
odefor handling nondeterminism, for instan
e for spawning new
omputation bran
hes, 
an be dropped (dead 
ode elimina-tion). Su
h optimizations 
an be applied for instan
e to theCurry2Java 
ompiler [14℄ whi
h is part of our Curry systemPAKCS [17℄ and 
ompiles Curry programs into 
ode for anabstra
t ma
hine implemented in Java.Our analysis is based on a type and e�e
t system (see [23℄ foran overview) whi
h 
an be seen as an extension of 
lassi
altype systems known from fun
tional languages. The basi
idea is to annotate fun
tion types with some e�e
t to de-s
ribe the run-time behavior of the fun
tion. In our 
ase weannotate the names of those fun
tions as an e�e
t that might
ause nondeterministi
 
omputations. Then our analysis re-turns all fun
tion names that 
ould split the 
omputationwhen applied during the evaluation of a 
ertain expression(i.e., the goal to be solved).Note that existing determinism analyses for (fun
tional)logi
 languages 
annot be dire
tly adapted to Curry be-
ause the same fun
tion might redu
e deterministi
ally ornot, depending on its arguments. Thus, we need to de-rive groundness information for arguments in fun
tion 
allswhi
h is not trivial due to the lazy evaluation me
hanism in



Curry. Existing analyses for stri
t languages will indeed failto analyse Curry programs 
orre
tly. Consider the followingsimple example:f 1 x = xf 2 x = x+xg 1 = 3and the 
all f x (g x). A stri
t analysis will analyse the 
all(g x) before analysing the 
all to f. Thus, it will 
onsider xto be bound to 1 by evaluating g and then analyse the 
allf 1 3 whi
h would deterministi
ally redu
e with the �rstrule. But in Curry, (g x) will be evaluated after applyinga rule to f. Thus, in Curry, f will indeed be 
alled with anunbound variable as �rst argument, whi
h will 
ause a non-deterministi
 splitting (see Se
tion 2.1 for an explanationof the redu
tion me
hanisms in Curry). Therefore, analy-ses for languages like Prolog [29, 5℄, Mer
ury [18℄, or HAL[6℄ do not apply be
ause they do not deal with lazy evalu-ation. In 
ontrast, analyses proposed for narrowing-basedfun
tional logi
 languages dealing with lazy evaluation 
an-not handle residuation, whi
h additionally exists in Curry,and rely on the non-ambiguity 
ondition [21℄ whi
h is toorestri
tive for Curry programs. Furthermore, these analysesare either applied during run time (like in Babel [21℄ andpartially in K-Leaf [20℄), or are unable to derive groundnessinformation for fun
tion 
alls in arguments (like in K-Leaf).In the next se
tion we will brie
y introdu
e the languageCurry whi
h is the obje
t language of our analysis. Notethat the analysis itself should be adaptable also to other(fun
tional) logi
 languages that su�er from similar prob-lems. In Se
tion 3 the type and e�e
t system will be de-s
ribed together with some examples and an informal de-s
ription of a type inferen
e algorithm. Se
tion 4 dis
ussessome pra
ti
al results of our �rst implementation, and Se
-tion 5 
ontains our 
on
lusions and points out some futurework. Due to la
k of spa
e, some detailed de�nitions andthe proofs of the results are omitted.
2. OVERVIEW OF CURRYCurry [10, 16℄ is a multi-paradigm language 
ombining in aseamless way features from fun
tional programming (nestedexpressions, lazy evaluation, higher-order fun
tions), logi
programming (logi
al variables, partial data stru
tures,built-in sear
h), and 
on
urrent programming (
on
urrentevaluation of 
onstraints with syn
hronization on logi
alvariables). It also amalgamates the most important oper-ational prin
iples developed in the area of integrated fun
-tional logi
 languages: \residuation" and \narrowing" (see[9℄ for a survey on fun
tional logi
 programming). Thus, var-ious operational models developed for de
larative programs
an be seen as restri
tions of Curry's 
omputation model(see [10℄ for a detailed dis
ussion).A Curry program spe
i�es the semanti
s of expressions,where goals, whi
h o

ur in logi
 programming, are par-ti
ular 
onstraint expressions. Exe
uting a Curry programmeans simplifying an expression until a value (or solution)is 
omputed. To distinguish between values and redu
ibleexpressions, Curry has a stri
t distin
tion between (data)
onstru
tors and operations or de�ned fun
tions on thesedata. Hen
e, a Curry program 
onsists of a set of typeand fun
tion de
larations. The type de
larations de�ne the


omputational domains (
onstru
tors) and the fun
tion de
-larations the operations on these domains.Curry 
ombines various features known in de
larative pro-gramming, like higher-order fun
tions, 
onstraints and thepossibility to use 
onstraint solvers for various domains, en-
apsulated sear
h [15, 28℄, a Hindley/Milner-like polymor-phi
 type system [4℄, monadi
 I/O [30℄ and features for 
om-muni
ation and distributed programming [11℄. A detaileddes
ription of these features 
an be found in [16℄. In thefollowing we will only outline those whi
h are ne
essary tounderstand the ideas of our analysis.
2.1 Basic Features of CurryValues in Curry are, similarly to fun
tional or logi
 lan-guages, data terms 
onstru
ted from 
onstants and data 
on-stru
tors. For instan
e, the datatype de
larationsdata Bool = True | Falsedata List a = [℄ | a : List aintrodu
e the datatype Bool with the 0-ary 
onstru
tors(
onstants) True and False, and the polymorphi
 type\List a" of lists. Natural numbers, whi
h we will use in theexamples, are represented in Curry by 
onstants (0, 1, 2,. . . )of type Int.A data term is a well-typed expression 
ontaining vari-ables, 
onstants and data 
onstru
tors, e.g., 1:2:xs. Fun
-tions operate on data terms. Their meaning is spe
i�edby rules (or equations) of the form \l | 
 = r" (the 
on-dition part \| 
" is optional) where l is a pattern, i.e., lhas the form f t1 : : : tn with f being a fun
tion symbol,t1; : : : ; tn data terms and ea
h variable o

urs only on
e,and r is a well-formed expression 
ontaining fun
tion 
alls,
onstants, data 
onstru
tors and variables from l and 
.The 
ondition 
 is a 
onstraint whi
h optionally 
ontainsa list of lo
ally de
lared variables, i.e., a 
onstraint 
an havethe form let v1; : : : ; vk free in 
on where the variables viare only visible in the 
onstraint 
on. Basi
 
onstraints are(stri
t) equations of the form e1 =:= e2 whi
h are solvable ife1 and e2 are redu
ible to uni�able data terms. Constraints
an be 
omposed by the 
on
urrent 
onjun
tion operator&, i.e., 
1 & 
2 will be evaluated by 
on
urrently evaluating
1 and 
2. If a lo
al variable v of a 
ondition should bevisible also in the right-hand side, the rule is written asl | 
 = r where v free. A rule 
an be applied if its 
ondi-tion is solvable. A head normal form is a variable, a 
on-stant, or an expression of the form 
 e1 : : : en where 
 is adata 
onstru
tor. A Curry program is a set of data typede
larations and equations.Example 1. The following rules de�ne the 
on
atenationof lists, a fun
tion for 
omputing the last element of a listand a (partial) square fun
tion sq, whi
h we will use in laterexamples:append [℄ ys = ysappend (x:xs) ys = x : append xs yslast l | let xs free in append xs [x℄ =:= l = xwhere x freesq 1 = 1sq 2 = 4



If the equation \append xs [x℄ =:= l" is solvable, then xis the last element of the list l. 2From a fun
tional point of view, we are interested in 
om-puting the value of an expression, i.e., a data term whi
h isequivalent (w.r.t. the program rules) to the initial expres-sion. In logi
 languages, we want to solve goals, i.e., 
om-pute bindings for free variables in an initial expression. Sin
eCurry integrates these two paradigms, it 
omputes answerpairs 
onsisting of a substitution and an expression. Due tothe nondeterministi
 features of Curry, an expression mayredu
e to more than one answer pair, i.e., a redu
tion stephas the general form1e ) �1; e1 | � � � | �n; enwhere n � 0, e, e1,. . . ,en are expressions, �1; : : : ; �n are sub-stitutions on the free variables in e, and \|" joins di�erentalternatives to a disjun
tion. We 
all the evaluation stepdeterministi
 if n = 1 and nondeterministi
 if n > 1. The
ase n = 0 
orresponds to a failure.For sele
ting the next redu
ible fun
tion 
all (so 
alled re-dex ) in an expression that must be evaluated, Curry usesa 
ombination of residuation and needed narrowing [1, 10℄.This is, roughly speaking, the 
ombination of lazy evalua-tion with bindings of uninstantiated variables as demandedby the patterns of left-hand sides in the rules. For instan
e,
onsider the fun
tion sq from Example 1: The fun
tion 
all\sq 2" is redu
ed to the value 4 like in any fun
tional lan-guage. However, if the argument is an uninstantiated vari-able, there are two possibilities:1. If we evaluate sq by residuation (in this 
ase sq is
alled rigid), the 
all sq x will suspend until x is boundto some 
onstru
tor term that will allow to 
hooseone of the rules for redu
tion. This is possible by the
on
urrent evaluation of 
onstraints where a di�erentthread 
an bind x to some value.2. If we evaluate sq by narrowing, as it will be done in allfollowing examples (in this 
ase sq is 
alled 
exible),we bind x to all possible patterns of the left-hand sidesand 
ontinue with all di�erent 
omputation bran
hesindependently:sq x �) {x=1} 1 | {x=2} 4Thus, the 
all sq x 
auses a nondeterministi
 step inour 
omputation.In Curry, 
onstraints are evaluated by narrowing (sin
e they
orrespond to predi
ates in logi
 languages), while non-
onstraint fun
tions are 
omputed using residuation. Thisbehavior 
an be easily 
hanged by annotations [16℄.To make the pattern mat
hing and the rigid/
exible statusof fun
tions expli
it, we assume that all fun
tions are de�nedby one rule whi
h left-hand side 
ontains only variables asarguments and the right-hand side 
ontains 
ase-expressionsfor pattern mat
hing. Thus, expressions have the following1See [16℄ for a de�nition of the one step relation ).

form (we assume that lambda abstra
tions and lo
al de
la-rations are eliminated by lambda lifting [19℄):e ::= x j f e1 : : : en j let x free in e j
ase e of p1 : e1; : : : ; pn : en jf
ase e of p1 : e1; : : : ; pn : en j e1 or e2f is a 
onstru
tor or de�ned fun
tion and pi are 
at patternsof the form C x1 : : : xn where C is a n-ary data 
onstru
tor.
ase and f
ase are the rigid and 
exible 
ase distin
tions,respe
tively, and or denotes a don't-know alternative be-tween two expressions.The assumption that ea
h fun
tion f is de�ned by a sin-gle rule with left-hand side f x1 : : : xn does not restri
t the
lass of Curry programs we 
an handle, sin
e all fun
tionde�nitions 
an be transformed into this form (higher-orderfeatures 
an be translated into �rst-order using Warren'smethod [31℄). For instan
e, the sq fun
tion 
an be rewrit-ten assq x = (f)
ase x of 1:1; 2:4where 
ase is used if sq is de�ned as rigid (i.e., evaluatedby residuation), and f
ase if it is 
exible (i.e., evaluated bynarrowing). A pre
ise de�nition of this transformation 
anbe found in [13℄.The binary or operator is used to translate fun
tions withoverlapping left-hand sides. For instan
e, the rigid fun
tionde�ned by0 * y = 0x * 0 = 0is translated into the single rulex * y = (
ase x of 0:0) or (
ase y of 0:0)Nesting the binary or operator allows to en
ode fun
tionswith more than two overlapping left-hand sides.
2.2 Nondeterminism and I/ONondeterministi
 
omputations are problemati
 if they ap-pear in programs that use I/O. A de
larative treatment ofinput/output, as implemented in Curry, 
an be obtained bythe monadi
 I/O 
on
ept [30℄. In this 
on
ept, an inter-a
tive program is 
onsidered as a fun
tion 
omputing a se-quen
e of a
tions whi
h are applied to the outside world. Ana
tion 
hanges the state of the world and possibly returnsa result (e.g., a 
hara
ter read from the terminal). For in-stan
e, getChar reads a 
hara
ter from the standard inputwhenever it is exe
uted, i.e., applied to a world. SeveralI/O a
tions 
an be 
omposed, e.g., getChar 
an be 
om-posed with the a
tion putChar (whi
h writes a 
hara
ter tothe terminal) by the sequential 
omposition operator >>=,i.e., getChar >>= putCharis a 
omposed a
tion whi
h prints the 
hara
ter typed in thekeyboard to the s
reen (see [30℄ for more details).Sin
e the world 
annot be 
opied (note that the world 
on-tains at least the 
omplete �le system or the 
omplete In-ternet in web appli
ations), an intera
tive program having adisjun
tion as a result makes no sense. For instan
e 
onsiderthe programnonsense file x = writeFile file (sq x)



where writeFile f e is an a
tion that writes the value ofe to the �le f. If we 
all nonsense "dummy" x, a nondeter-ministi
 splitting during the evaluation of sq x would resultin two independent 
omputation bran
hes, both trying towrite di�erent values to the same �le. This must obviouslybe avoided be
ause it 
ould, for instan
e, lead to an in
onsis-tent �le state. Thus, a Curry program that uses I/O a
tionswill result in a run-time error whenever a nondeterministi

omputation is dete
ted. The goal of this paper is to pro-vide a method to dete
t su
h kind of programming errors at
ompile time, so that they 
an be avoided by en
apsulatingall possible sear
h between I/O operations (see [15, 28℄ fora more detailed des
ription of en
apsulated sear
h).
3. THE NONDETERMINISM ANALYSISIn this se
tion we develop a method based on a non-standardtype system to 
he
k expressions for possible nondetermin-isti
 evaluation steps. First we sket
h the ideas behind ournondeterminism analysis before we provide and explain thetyping rules in detail.As we have seen in the examples in Se
tion 2, uninstantiatedvariables as arguments may 
ause nondeterministi
 stepswhen using narrowing. Hen
e, we propose a type and e�e
tsystem that allows us to identify the form of arguments, i.e.,if they are ground terms or not. This is a non-trivial taskbe
ause the arguments 
an be fun
tion 
alls whi
h are evalu-ated lazily in Curry. Thus, the type of the arguments 
annotbe derived from their a
tual form but the analysis must takeinto a

ount their redu
tion behavior. We will 
olle
t thenames of the fun
tions that might split the 
omputation asan e�e
t of this 
omputation.In a �rst step, the program will be typed, either by handor by a type inferen
e algorithm (see also Se
tion 3.4). Forinstan
e, the fun
tion de�nitionf x = sq x
ould be given the following type:A ff;sqg�! GThis type expresses that f takes Any argument and returnsaGround term but during the appli
ation of f nondetermin-isti
 steps may be raised by the fun
tions f and sq. Thisis signalized by the e�e
t ff; sqg whi
h is annotated abovethe arrow.In a se
ond step, we will analyse an expression with re-spe
t to the program and obtain results like \the expressionredu
es deterministi
ally" or \the redu
tion of the expres-sion raises a nondeterminism 
aused by the evaluation of thefun
tion f ." We will explain this in more detail in the nextse
tions.
3.1 The Types and EffectsType and e�e
t systems 
an be seen as an extension of 
las-si
al type systems known from fun
tional languages (see [22,23℄ for details). The basi
 idea is to extend the type anno-tation for a fun
tion with an e�e
t that may o

ur duringthe appli
ation of this fun
tion. For every expression a typeand the e�e
t of its redu
tion 
an be approximated. Typeand e�e
t systems provide for powerful analyses like ex
ep-

tion analysis [26℄, side e�e
t analysis [22℄ or 
ommuni
ationanalysis [23, 24℄.Sin
e nondeterminism is mostly 
aused by uninstantiatedvariables in arguments of 
exible fun
tions, we use a non-standard type system to distinguish between ground termsand any terms. Thus, we de�ne type expressions as follows:� = G j A j �1 : : : �n ! �G denotes a ground term and A denotes any term. Sin
ea ground term is also any term, we have subtyping [2℄, i.e.,G < A where �1 < �2 means that any term of type �1 has alsotype �2. For fun
tions it is important to note that 
ovarian
eholds for the result type but 
ontravarian
e for the argumenttypes, i.e., �1 ! �2 � � 01 ! � 02 i� � 01 � �1; �2 � � 02. Thisis easy to understand if we think of smaller types as morepre
ise information. The typeA! G is smaller thanG! Gand it is more pre
ise, be
ause it provides information abouta larger set of inputs. Thus, the larger the input type, themore pre
ise the information, i.e., the smaller the fun
tiontype. The opposite holds for the output type, i.e., A ! Gis smaller than A ! A, be
ause the information about thetarget set is more pre
ise. Our type system allows severaltypes for one expression. For instan
e, for a fun
tion de�nedby f x = x the two types G ! G and A ! A are 
orre
tbut not related by subtyping.As an e�e
t we want to 
olle
t the names of fun
tionswhi
h appli
ation 
an 
ause nondeterministi
 
omputations.Therefore, we de�ne the e�e
t ' by' � F [ f
ase; orgwhere F is the set of fun
tion symbols of a program P . Thee�e
t annotated for a fun
tion de
laration must 
ontain allfun
tion names that might redu
e in a nondeterministi
 wayduring the appli
ation of this fun
tion. For instan
e, a typeannotation for a fun
tion f 
ould bef :: A ff;g;hg�! Aif in the right-hand side of f a 
all to the fun
tion g 
auses anondeterminism, whereas g splits the 
omputation be
auseit 
alls the fun
tion h in its body whi
h raises the nonde-terminism. Additionally, f 
ould have another type, forinstan
e f :: G ;! Gif f does not split the 
omputation when applied to a groundterm.The aim of our analysis is to 
al
ulate type judgementsE ` e :: �='for an expression e with respe
t to a program P , where Eis a type environment, i.e., a set of type annotations forfun
tion and 
onstru
tor symbols from P and for variables.E ` e :: �=' means that the expression e has type � , andduring the redu
tion of e the e�e
t ' may o

ur. For in-stan
e, the type judgementE ` f x :: A=ff; g; hgfor the expression f x re
e
ts the nondeterministi
 be-haviour of f by returning a non-empty e�e
t. In 
ontrast,



the se
ond type G ;! G 
ould be used to analyze f 1 andthe 
omputed type judgement would beE ` f 1 :: G=;;signalizing that the 
all f 1 redu
es deterministi
ally (be-
ause fun
tion symbols that 
ould split the 
omputationwere not found).The soundness of our approximation, whi
h will be formal-ized at the end of Se
tion 3.2, ensures that we �nd everyfun
tion whi
h 
an raise a nondeterminism and that termsidenti�ed as ground by our analysis will a
tually redu
e toground terms. Similarly to most program analyses, we 
an-not 
ompute pre
ise information for all program parts butonly approximations of the real program behavior. In our
ase this means that the 
omputed type might be too impre-
ise, e.g., A instead of G, and the e�e
t might be too large,i.e., it might 
ontain fun
tions that will never raise a nonde-terminism. This impre
ision 
an be redu
ed by re�ning thetype domain (see Se
tion 5). Nevertheless, our �rst imple-mentation has shown that the analysis is already quite a
-
urate even for larger examples whi
h o

ur in pra
ti
e andespe
ially for purely fun
tional programs (
f. Se
tion 4).
3.2 The Typing RulesFigure 1 shows the typing rules for our analysis whi
h de�nethe type judgements E ` e :: �='.The DECL rule de�nes when a program rule r is 
orre
tlytyped w.r.t. a type annotation A (i.e., E `A r): The typeannotation A for the fun
tion f must be given in the envi-ronment E, and with the 
orresponding types for the argu-ments xi added to the environment2 the derived type for theright-hand side must mat
h the type of f . For the e�e
t, two
ases are distinguished: If ' 6= ; then the right-hand side epossibly raises a nondeterministi
 
omputation step. Thus,f 
ould also redu
e nondeterministi
ally and so the anno-tated e�e
t must in
lude ' and ffg. Otherwise, if ' = ;, is 
ompletely unrestri
ted. In both 
ases  
an 
ontainarbitrary fun
tion symbols from the program, be
ause, dueto sube�e
ting (see below), it is still a safe approximationto annotate a larger e�e
t.The VAR rule is 
ommon. If a type is given for x in the envi-ronment, this type and an empty e�e
t 
an be derived. Notethat x 
an be a variable, a fun
tion symbol, or a 
onstru
torsymbol.The NEWVAR rule handles lo
al (existentially quanti�ed)variables. The newly introdu
ed variable xfresh is unin-stantiated, and thus must be given the type A for analysinge. By e[x=t℄ we denote the repla
ement of all free o

ur-ren
es of x in e by t. An o

urren
e of a variable x in e isfree if it does not o

ur inside a subterm e0 of e with e0 =let x free in ~e. A variable x o

urs free in e if at leastone o

urren
e of x in e is free.2E[x1 :: �1; : : : ; xn :: �n℄ denotes the type environment ob-tained from E by deleting all existing type annotationsfor x1; : : : ; xn and adding the new type annotations in thesquare bra
kets.

When applying a fun
tion f to some ei, the e�e
t ' anno-tated for f might o

ur. Thus, in the APP rule, ' is returnedtogether with the e�e
ts derived for the arguments.The FCASE rule handles nondeterminism 
aused by nar-rowing. If the type A is derived for e and more than two
ase bran
hes exist, a non-empty e�e
t must be returnedto signalize the potential nondeterminism. This is ensuredby adding the keyword 
ase (whi
h 
ould be indexed bythe fun
tion name from the left-hand side, as we will doit in subsequent examples) to the e�e
t. Additionally, alle�e
ts from the right-hand sides must be 
olle
ted. Notethat for analysing the right-hand sides, the pattern variablesare given the type of e: If e redu
es to a ground term, sowill the terms that the pattern variables are instantiated to.Otherwise, they 
ould be uninstantiated in the subsequent
omputation and therefore they have the type A. If onlyone right-hand side has type A, the entire f
ase-expressionmight return this type. Thus, the maximum type of allright-hand sides (w.r.t. the ordering G < A) is the type ofthe f
ase-expression.The CASE rule analyses rigid fun
tions. Thus, the 
ase-expression itself will never split the 
omputation and no ad-ditional e�e
t is returned.Nondeterminism whi
h is 
aused by overlapping left-handsides is handled by the OR rule, where the keyword or isreturned. Like in the (F)CASE rules, the e�e
ts of the right-hand sides are 
olle
ted and the maximal type is returned.Note that by using 
ase and or keywords, nondeterminism
aused by narrowing and by overlapping left-hand sides 
anbe distinguished.The last rule, SUB, de�nes subtyping and sube�e
ting [23℄.For our type system, the rule expresses that any expressionof type G is also of type A, and that every e�e
t ' 
an beenlarged without loosing the safety 
ondition. The approx-imation just be
omes more impre
ise.In order to show the 
orre
tness of the typing rules, we mustde�ne 
orre
t type environments.Definition 1. Let P be a Curry program and E a typeenvironment whi
h 
ontains at least one type annotation forea
h fun
tion and 
onstru
tor o

urring in P .1. Let r 2 P be a program rule with left-hand sidef x1 : : : xn and Ef � E the set of all type annota-tions for f in E. r is 
orre
tly typed w.r.t. E, denotedby E ` r, i� E `A r for all A 2 Ef .2. E is a 
orre
t type environment for P i� E ` r forall r 2 P , and for all type annotations 
 :: �1 : : : �n '!� 2 E, where 
 is an n-ary 
onstru
tor, �i = A implies� = A.Thus, a 
orre
t type environment E for a program must
ontain at least one type for ea
h de�ned fun
tion and 
on-stru
tor. Otherwise, the rules that use these 
onstru
torsand fun
tions 
annot be 
orre
tly typed. Note that for a



Typing of rules:DECL E[x1 ::�1; : : : ; xn ::�n℄ ` e ::�=;E `A f x1 : : : xn = e if A = f ::�1 : : : �n  ! � 2 EDECL E[x1 ::�1; : : : ; xn ::�n℄ ` e ::�='E `A f x1 : : : xn = e if ' 6= ;; A=f ::�1 : : : �n  ['[ffg�! � 2ETyping of expressions:VAR E ` x ::�=; if x :: � 2 ENEWVAR E[xfresh :: A℄ ` e[x=xfresh℄ ::�='E ` let x free in e :: �='APP E ` e1 ::�1='1 : : : E ` en ::�n='n E ` f ::�1 : : : �n '! �=;E ` f e1 : : : en :: �=Si 'i [ 'FCASE E ` e ::�=' E[x1m ::� ℄ ` e1 ::�1='1 : : : E[xnm ::� ℄ ` en ::�n='nE ` f
ase e of p1(x1m) : e1; : : : pn(xnm) : en :: maxi(�i)=Si 'i [ ' [ '0where '0 = � f
aseg if � = A and n > 1; otherwiseCASE E ` e ::�=' E[x1m ::� ℄ ` e1 ::�1='1 : : : E[xnm ::� ℄ ` en ::�n='nE ` 
ase e of p1(x1m) : e1; : : : pn(xnm) : en :: maxi(�i)=Si 'i [ 'OR E ` e1 :: �1='1 E ` e2 :: �2='2E ` or(e1; e2) :: max(�1; �2)='1 [ '2 [ forgSUB E ` e ::�='E ` e ::� 0='0 if � � � 0; ' � '0Note: xij denotes the sequen
e xi1; : : : ; xiji .Figure 1: Typing rules
onstru
tor 
 its result type is always the maximum of itsinput types (i.e., 0-ary 
onstru
tors 
ould always have typeG), and it is always 
orre
t to annotate ' = ; be
ause a
onstru
tor itself is not redu
ed (only its arguments) and sodoes never raise a nondeterministi
 redu
tion step.In the following we use Ee as an abbreviation forE [x1 ::A; : : : ; xn ::A℄ where fx1; : : : ; xng is the set of vari-ables whi
h o

ur free in the expression e.The following lemma states the 
orre
tness of the typingrules w.r.t. a single redu
tion step.Lemma 1 (Subje
t redu
tion). Let E be a 
orre
ttype environment for a Curry program and e an expres-sion. If Ee ` e :: �=' and there is a redu
tion stepe ) �1; e1 | � � � | �n; en with n > 0, then Eei ` ei :: �='.Thus, the type and e�e
t of an expression is invariant underredu
tion steps. We 
an easily prove the following 
orre
t-ness results for our framework with this important prop-erty:33The redu
tion semanti
s of Curry 
an be found in [16℄ and(
on
erning 
ase-expressions) in [13℄.

Theorem 1 (Corre
tness of typing rules). LetE be a 
orre
t type environment for a Curry program, e anexpression and Ee ` e :: �='.1. If � = G and e redu
es in �nitely many steps to a valuev (i.e., a term without de�ned fun
tion symbols), thenv is a ground term.2. If e redu
es in �nitely many steps to an expression~e and ~e ) �1; e1 | � � � | �n; en with n > 1, then '
ontains \
ase" or \or" depending on the redex of ~ewhi
h 
aused the nondeterminism.From the se
ond property we 
an dire
tly 
on
lude that eredu
es deterministi
ally if ' = ;.Thus, we know that every fun
tion that might raise a non-deterministi
 
omputation step during the redu
tion of ewill be 
olle
ted in the e�e
t ' by our typing rules, i.e., wewill never miss su
h a fun
tion4. This is the meaning of a4Note that the o

urren
e of 
ase (or) in the e�e
t guaran-tees that also the name of the fun
tion, in whi
h body the
ase (or) expression o

urs, is 
olle
ted in the e�e
t due tothe DECL rule. Thus, we know whi
h fun
tion de�nitionsto 
onsider for dete
ting the sour
e of nondeterminism.



safe approximation for our analysis. The same holds for thetype, i.e., a term analysed as ground will indeed redu
e toa ground term (if its redu
tion su

essfully terminates).
3.3 ExamplesWe want to 
larify the ideas of our analysis by providingsome simple examples. If the type environment E 
ontainsonly one type annotation A for the fun
tion in the left-handside of the rule r, we simply write E ` r instead of E `A r.Example 2. We want to show that the rulef :: A ;! Gf x = 0is 
orre
tly typed. The type expresses that f will redu
e de-terministi
ally and return a ground term regardless of itsinput argument. It should be obvious that this type is 
or-re
t. The initial type environment 
ontains the type for fand the 
onstru
tor 0:E = ff :: A ;! G; 0 :: GgThe 
orre
tness of the type is proven by the following deriva-tion:E[x :: A℄ ` 0 :: G=; VARE ` f x = 0 DECLWith E extended by x ::A a

ording to the type annotationfor f, the analysis of the right-hand side returns the groundtype and an empty e�e
t, thus mat
hing the target type off and the empty e�e
t annotated with f. Note that due tosubtyping and sube�e
ting, there are more 
orre
t types forf, e.g., A ;! A, G ;! G, G ;! A and any of these types withevery non-empty e�e
t. However, all these types are largerthan the most pre
ise type A ;! G.Another simple example is the identity fun
tion where theanalysis of the right-hand side depends on the results fromthe left-hand side:id :: G ;! Gid x = xThe following derivation, using E = fid :: G ;! Gg as ini-tial environment, proves that the type annotation is 
orre
t:E[x :: G℄ ` x :: G=; VARE ` id x = x DECLBe
ause E is extended by the type for the input argument ofid (x :: G), we 
an derive the type G for the right-hand side,too. 2Due to spa
e limitations, we do not mark the rules withtheir names anymore in the following examples.Example 3. To study an example where nondetermin-ism o

urs, we use the fun
tion sq whi
h was de�ned inSe
tion 2:sq :: G ;! Gsq :: A fsq;
asesqg�! G

sq x = f
ase x of 1:1; 2:4Two types are de�ned for sq, 
laiming that the fun
tion willredu
e deterministi
ally when applied to a ground term, butmight raise a nondeterministi
 step otherwise. The initialenvironment 
ontains the two types together with the typesfor the 
onstru
tors (we identify the two types by A1 andA2):E = fA1 : sq :: G ;! G; A2 : sq :: A fsq;
asesqg�! G;1 :: G; 2 :: G; 4 :: GgSin
e we have two types for sq, we must verify two 
asesof the DECL rule, one for ea
h type (we drop the VARderivation for the 
onstru
tor 4 be
ause it is the same asfor 1):E[x :: G℄ ` x :: G=; E[x :: G℄ ` 1 :: G=;E[x :: G℄ ` f
ase x of 1:1;2:4 :: G=;E `A1 sq x = f
ase x of 1:1; 2:4E[x :: A℄ ` x :: A=; E[x :: A℄ ` 1 :: G=;E[x :: A℄ ` f
ase x of 1:1;2:4 :: G=f
asesqgE `A2 sq x = f
ase x of 1:1; 2:4Using the �rst type of sq, x has type G and therefore theFCASE rule returns an empty e�e
t for the right-hand side,thus mat
hing the type of sq. With the se
ond type, E isextended by x ::A, 
ausing the FCASE rule to return a non-empty e�e
t. Therefore, the DECL rule demands the e�e
tannotated with sq to 
ontain sq as well as the e�e
t fromthe right-hand side, whi
h is satis�ed. Thus, the rule is 
or-re
tly typed be
ause it is 
orre
tly typed w.r.t. to both typeannotations.In 
ontrast, the type annotation sq ::A ;�! G, whi
h 
laimsthat sq will redu
e in a deterministi
 way even if we passany term as argument, is wrong (
f. Se
tion 2.1). This isindeed dete
ted by our analysis:sq :: A ;! Gsq x = f
ase x of 1:1; 2:4Given the initial environment E = fsq :: A ;! G; 1 :: G,2 :: G, 4 :: Gg, the analysis behaves 
orre
tly in refuting thistype:E[x :: A℄ 6` x :: G=; E[x :: A℄ ` 1 :: G=;E[x :: A℄ 6` 
ase x of 1:1;2:4 :: G=;E 6` sq x = 
ase x of 1:1;2:4Sin
e we 
annot derive the type G for x after E has beenextended by x :: A, the FCASE rule is not able to analyse anempty e�e
t for the right-hand side of sq. But this would bene
essary to mat
h the empty e�e
t annotated for sq. 2The next example shows how to analyse fun
tion appli
a-tions.Example 4. We de�ne a simple fun
tion f that 
alls sq,assuming that the two 
orre
t types for sq from Example 3are spe
i�ed in the initial environment.



f :: G ;! Gf :: A ff;sq;
asesqg�! Gf x = sq xsq :: G ;! Gsq :: A fsq;
asesqg�! Gsq x = f
ase x of 1:1; 2:4We drop the types for sq and the natural numbers in E tokeep it small:E = fA1 : f :: G ;�! G; A2 : f :: A ff;sq;
asesqg�! GgWe must show the 
orre
tness of both types for the rule tobe 
orre
tly typed:E[x :: G℄ ` x :: G=; E[x :: G℄ ` sq ::G ;! G=;E[x :: G℄ ` sq x :: G=;E `A1 f x = sq xSin
e x :: G is added to the environment to mat
h the ar-gument type of f, we 
an derive the result type G and anempty e�e
t for sq x by sele
ting the �rst type annotationfor sq (
f. Example 3).If, a

ording to the annotation A2, the type A is assigned tox, the se
ond type annotation for sq mat
hes and we derive anon-empty e�e
t that is 
onsistent with the annotation for f:E[x ::A℄ `x ::A=; E[x ::A℄`sq ::Afsq;
asesqg�! G=;E[x :: A℄ ` sq x :: G=fsq; 
asesqgE `A2 f x = sq x 2So far, we have only shown how to verify given type annota-tions for program rules. Usually, the �rst step in analysing aprogram will be to �nd su
h annotations, either by guessingand 
he
king them as shown above, or by using a type infer-en
e algorithm. In the se
ond step, we analyse expressionsto be evaluated w.r.t. the program. Very often we mightbe interested only in one expression, i.e., a main fun
tion,that starts all 
al
ulations. Note that we are �nished afterthe �rst step, if the main fun
tions is unparameterized: Ifthe behaviour of the main fun
tion does not depend on ar-guments, then the type annotation inferred for main in the�rst step spe
i�es the runtime behaviour 
ompletely.If we want to evaluate any other expression (e.g., a 
all toa parameterized main fun
tion), we must derive its type.Note that we need only the VAR, NEWVAR, APP and SUBrules in this 
ase, be
ause we only have to analyse fun
-tion/
onstru
tor appli
ations. The right hand sides of therules are not 
onsidered anymore, be
ause all informationwe need is stored in the type annotation of the fun
tion.Example 5. We want to evaluate the expressionsf (sq 1) and f (sq x) w.r.t. the program and environ-ment from Example 4. For the �rst expression, the analysis


omputes the following:E ` 1 :: G=; E ` sq ::G ;! G=;E ` sq 1 :: G=; E ` f ::G ;! G=;E ` f (sq 1) :: G=;Sin
e the argument sq 1 of f redu
es to a ground term, the�rst type annotation for f is sele
ted and an empty e�e
tis returned. Thus, from the type judgement for f (sq 1)we 
on
lude that the expression will redu
e to a groundterm without splitting the 
omputation. For the se
ondexpression, the initial environment is extended to 
ontainthe type A for all free variables. Then, with Ex := E[x ::A℄,the result is di�erent:Ex `x ::A=; Ex`sq ::Afsq;
asesqg�! G=;Ex ` sq x :: G=fsq; 
asesqgE ` f ::G ;! G=;Ex ` f (sq x) :: A=fsq;
asesqgHere the e�e
t of the 
omputed type judgement is not empty.Thus, we are warned that nondeterminism might (and in this
ase does) o

ur during the evaluation of this expression. Itis important to noti
e that f is not 
ontained in the 
om-puted e�e
t, be
ause the nondeterminism is not 
aused bythe 
ode of the right-hand side of f but by the evaluation ofthe argument sq x. First, f is redu
ed with a non-groundargument to its right-hand side sq (sq x). But before theouter 
all of sq 
an redu
e further, it must evaluate the ar-gument sq x. This evaluation splits the 
omputation, butreturns only ground terms. Therefore, when the outer sqis �nally redu
ed, its formerly non-ground argument has be-
ome ground, and so the right-hand side is evaluated as if fwas 
alled with a ground term. Thus, not f, but its argumentis the real 
ause for the nondeterminism, and the APP rule
orre
tly returns only the e�e
t 
olle
ted from the argument.In this way, the e�e
t 
al
ulated for (possibly nested) fun
-tion 
alls gives quite pre
ise information about the origin ofthe nondeterminism. 2Finally we show that our analysis will dete
t the problem-ati
 behaviour of our motivating example, i.e., the nonsensefun
tion.Example 6. The nonsense fun
tion was de�ned asnonsense file x = writeFile file (sq x)We already know the type annotations for sq. The smallest
orre
t type for writeFile is A A ;! G, be
ause writing toa �le will not split a 
omputation, and writeFile is de�nedrigid (
f. Se
tion 2.1). Thus, it will wait until its argumentsare instantiated and after writing the �le it will return aspe
ial, internal I/O 
onstru
tor whi
h is a ground term.With the type for writeFile given5, the following is a 
orre
t5The type of 
ertain I/O operations 
annot be derived, be-



type environment:E = fwriteFile :: A A ;! G;sq :: G ;! G; sq :: A fsq;
asesqg�! G;1 :: G; 2 :: G; 4 :: G;nonsense :: A G ;! G;nonsense :: A A fnonsense;sq;
asesqg�! GgNow we analyse the 
all nonsense "dummy" x withEx := E[x :: A℄. We must 
hose the se
ond type fornonsense from Ex to mat
h the type A for the parameter x:Ex ` x :: A=;Ex ` nonsense ::A A fnonsense;sq;
asesqg�! GEx ` nonsense "dummy" x :: G=fnonsense; sq;
asesqgThus, the nondeterminism is dete
ted through the non-emptye�e
t, and a warning due to the 
ombination with I/O fun
-tions 
an be generated. 2
3.4 Type InferenceThe goal of this work is the development of a 
orre
tmethod to derive information about possible nondeterminis-ti
 
omputations in a program. In the previous se
tions wehave shown how we 
an 
he
k given annotations for a pro-gram (and afterwards derive type judgements for expressionswhi
h should be evaluated w.r.t. to the program). But forthe pra
ti
al appli
ation it is tedious to add expli
itly alltype annotations for the program rules, whi
h demands fora method to infer them automati
ally. Due to la
k of spa
e,we 
annot present it in detail but we sket
h the basi
 ideasto 
onstru
t an inferen
er for our type and e�e
t system.Basi
ally, an inferen
e algorithm 
an be 
onstru
ted follow-ing the standard te
hniques for polymorphi
 type inferen
e[4℄, i.e., the typing rules in Figure 1 
an be also used fortype inferen
e by providing a new type variable for the typeof ea
h synta
ti
 entity whose type is not yet known. Thenthe type analysis of an expression leads to the generation ofa set of 
onstraints between type expressions to be solved.Without subtyping, these type 
onstraints 
an be solved bya standard uni�
ation pro
edure for type terms [4℄. Theonly problem is the subtyping rule SUB whi
h is not indu
-tive on the syntax of expressions. For the purpose of typeinferen
e, this rule 
an be eliminated by 
onsidering the pos-sibility of subtyping in other rules. In parti
ular, the VAR is
hanged so that for x :: � 2 E the type/e�e
t �=; is inferredfor x, where � is a new type variable, and the new subtype
onstraint � � � is generated. In this way, the type infer-en
e generates a set of equations and inequations betweentype expressions. In the same pass, all e�e
ts 
an be in-ferred but here we must allow 
onditional e�e
ts of the form\�) 
ase" to 
onsider the fa
t that an e�e
t in the FCASErule depends on the groundness of the f
ase-argument. Su
h
ause they are realized by external fun
tions, i.e., their 
odeis not visible. The annotations for external fun
tions 
an bespe
i�ed in a prelude and will be a

epted by a type 
he
kerand inferen
er.

a 
onditional e�e
t is equivalent to the e�e
t 
ase if � is Aand to the empty e�e
t if � is G.Sin
e our subtype stru
ture is very simple (G � G, G � A,A � A, and the 
ontra/
ovarian
e rules for fun
tion types),inequations between types 
an be solved by known meth-ods for type inferen
e in the presen
e of subtyping be-tween basi
 types [7℄: after transforming all inequationsinto inequations between basi
 types (by applying the 
on-tra/
ovarian
e rules for fun
tion types), we instantiate thefree type variables to their least possible types in order to
ompute a minimal type and solve all 
onditional e�e
ts.
4. PRACTICAL RESULTSAn implementation of the type inferen
er is a
tually under
onstru
tion, whereas a type 
he
ker (following the rules in�gure 1) has already been implemented in Curry itself andis available from the authors. All examples des
ribed in thispaper are 
orre
tly analysed by this type 
he
ker. Moreover,we have analysed a large set of typi
al examples, in
luding
omplex stru
tures like graphi
al user interfa
es, and havere
eived very a

urate results.Of 
ourse, there are situations where the analysis will pro-du
e impre
ise results but the program stru
tures 
ausingsu
h impre
iseness are seldom in real appli
ations. For in-stan
e, passing an argument like [x℄ to a list-pro
essingfun
tion will 
ause the analysis to 
onsider the argumentof type A due to the free variable x. Thus, for a fun
-tion like append, whi
h has the types G G ;�! G andA G fappend;
aseappendg�! A (among others), the analysis willderive a possible nondeterministi
 behaviour for the 
allappend [x℄ [℄. Su
h impre
iseness o

urs only if a 
exi-ble fun
tion, i.e., evaluated by narrowing, is 
onsidered, itsarguments 
ontain free variables inside data stru
tures andthese free variables will not 
ause a nondeterminism lateron. Note that espe
ially the last 
ondition will not hold inmost pra
ti
al examples. For instan
e, analysing the ex-pression append (1:2:xs) [℄ will pre
isely report a nonde-terminism, be
ause due to the de�nition of append the freevariable xs will be passed as �rst argument to append in are
ursive 
all and indeed split the 
omputation. The lat-ter (pre
isely analysed) situation is more likely to appear,for instan
e in logi
 programs, where free variables o

ur ingoals and narrowing is used to sear
h for solutions. On theother hand, the 
on
atenation of two lists 
ontaining vari-ables as elements (or similar situations) o

urs very seldomin the large set of Curry examples whi
h we have studied.Even in examples where free variables are used in datastru
tures and bound by narrowing, nondeterminism doesnot ne
essarily o

ur. For instan
e, to implement graphi-
al user interfa
es (GUIs) in a high-level de
larative stylein Curry [12℄, the fun
tional features are exploited to de-�ne the graphi
al stru
ture, while the logi
al features areused to spe
ify the logi
al dependen
ies of an interfa
e. Fig-ure 2 shows a simple example (a 
ounter GUI). Note thatthe GUI spe
i�
ation is passed as a partially instantiateddata stru
ture in the se
ond parameter of runWidget. Inthis data stru
ture, the unbound variable val is used as areferen
e (TkRef val) to 
onne
t the entry �eld (TkEntry),initially 
ontaining \42" (TkText "42") with the buttons



runWidget "Counter Demo"(TkCol [℄ [TkEntry [TkRef val, TkText "42"℄,TkRow [℄ [TkButton (tkUpdate in
rText val) [TkText "In
rement"℄,TkButton (tkSetValue val "0") [TkText "Reset"℄,TkButton tkExit [TkText "Stop"℄℄℄)where val freeFigure 2: A spe
i�
ation of a 
ounter GUIIn
rement and Reset. When 
reating the GUI, the variableval will be set to an internal value pointing to the entry�eld. Now by pressing the In
rement button, the fun
tion
all (tkupdate in
rText val) will be exe
uted to updatethe value in the 
ounter window by in
reasing it. At thispoint, the referen
e variable val is used to identify the �eldwhere the value to be in
reased 
an be found and wherethe in
reased value should be written to. Thus, val will beuniquely bound to a pointer value during the setup of theGUI.The GUI library is 
ompletely implemented in Curry [12℄.Therefore, programs 
ontaining GUI spe
i�
ations 
an beanalysed together with the GUI library by our nondeter-minism analysis. Sin
e the referen
e variables 
ontained inGUI stru
tures are uniquely bound by a narrowing step,our analysis pre
isely veri�es that the program parts han-dling GUI spe
i�
ations are deterministi
.This example shows the importan
e of partially instantiateddata stru
tures whi
h 
ombine in a very powerful way fun
-tional and logi
 features, in this 
ase by providing a mu
hmore de
larative spe
i�
ation for GUIs than in other ap-proa
hes in fun
tional languages [3℄. Unfortunately, it isoften diÆ
ult to implement these data stru
tures in mode-based logi
 languages whi
h restri
t themselves to just inand out modes. Even in Mer
ury, where partially instanti-ated data stru
tures 
an be handled in prin
iple, it wouldrequire quite diÆ
ult and 
omplex stru
tures of nested, pa-rameterized mode de
laration to des
ribe the GUI data typestru
tures. Moreover, it is for instan
e not possible to spe
-ify in Mer
ury that a fun
tion works on a list 
ontainingground terms and free variables at the same time, e.g.,[x,2℄. Similar but mu
h more 
omplex situations o

urin our T
l/Tk library. Thus, we 
ould not rely on a modebased analysis to handle any of our GUI-based programs.A sub
lass of Curry programs, for whi
h our analysis 
om-putes very a

urate results, are purely fun
tional sub
om-putations, whi
h take large parts of most fun
tional logi
programs in pra
ti
e. We 
onsider a 
omputation as purelyfun
tional if it behaves like a Haskell 
omputation, i.e., thereare no unbound variables at run time and fun
tions are de-�ned so that at most one rule is appli
able. In our frame-work, we 
an 
hara
terize a 
lass of su
h programs as fol-lows. We 
all a program purely fun
tional if the rules for allfun
tions 
ontain neither or-subexpressions (i.e., the orig-inal rules have no overlapping left-hand sides, or, in theterminology of [1℄, they are indu
tively sequential) nor ex-pressions of the form let...free in (i.e., free variables arenot introdu
ed at run time). This restri
tion is satis�ed by

typi
al fun
tional programs (e.g., note that in Haskell ruleswith synta
ti
ally overlapping left-hand sides are translatedinto nested 
ase-expressions rather than nondeterministi
or-expressions [27℄).We de�ne the ground type environment EG byEG = ff :: G : : : G| {z }n ;! G j for all n-ary fun
tionsor 
onstru
tors fgThen we have the following result:Proposition 1 (Purely fun
tional programs).Let P be a purely fun
tional program and EG a groundtype environment for P .1. EG is a 
orre
t type environment.2. For all expressions e without free variables, it is EG `e :: G=;.Thus, purely fun
tional programs (and, similarly, purelyfun
tional sub
omputations in a program) are pre
iselyanalysed as deterministi
 in our framework.
5. CONCLUSIONS AND FUTURE WORKWe have proposed a method to analyse fun
tional logi
 pro-grams in order to identify expressions that might raise non-deterministi
 
omputations during their evaluation. By theresults obtained from su
h an analysis, the programmer willbe able to 
hange the program to make it more robust. Forinstan
e, to avoid splitting 
omputations she might removenondeterminism 
ompletely if it was not ne
essary or a resultof a programming error. Otherwise, she 
an en
apsulate thea�e
ted program parts, if the nondeterminism is ne
essaryfor 
omputing the result. This will avoid run-time errors inprograms that use I/O a
tions (whi
h is the 
ase for almostevery larger program) and thus in
reases program stability.Additionally, 
ompilers 
an exploit the analysis results tooptimize the 
ode for deterministi
ally redu
ible parts of aprogram. Although we have presented the typing rules andsome examples for the fun
tional logi
 language Curry, theanalysis should be easily adaptable to other fun
tional logi
languages (or just logi
 languages).For future work we will study how the 
urrent set of typingrules needs to be extended to 
over features like externalfun
tions or sear
h operators. This should not be diÆ
ultbut has just not been 
onsidered yet. Another importantpoint for future work is the eÆ
ient implementation of the



type and e�e
t inferen
e algorithm sin
e the goal of thiswork is the development of a fully automati
 nondetermin-ism analysis so that the user is not for
ed to spe
ify the typeand e�e
t annotations by hand (in 
ontrast to mode-basedlanguages like Mer
ury). Last but not least, we will 
onsiderto re�ne the type domain. The simple Ground-Any-domain,whi
h 
orresponds to the 
lassi
al domain used for ground-ness analysis in logi
 languages [25℄, is often suÆ
ient for
omputing quite exa
t groundness information. But espe-
ially the nondeterminism analysis 
ould bene�t for instan
efrom a three element domain, distinguishing between groundterms, terms in head normal form and any terms, or fromusing regular types [32℄. To further improve the pre
isenessof the analysis, we might also 
onsider to in
lude sharinginformation in our analysis. At the moment, all argumentsof a fun
tion 
all are analysed independently. This does notprodu
e any wrong results, but if the order for analysingarguments would be �xed in some way (whi
h should bepossible be
ause the evaluation order is en
oded in the 
aserules), information 
omputed while analysing one argument
ould be used for analysing the next one. In some 
ases,this 
ould indeed improve the pre
iseness of the 
omputedresults.
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