(©Springer-Verlag
In Proc. of the Joint International Symposium PLILP/ALP’98,
Pisa (Italy). Springer LNCS 1490, pp. 374-390, 1998

Controlling Search in Declarative Programs*

Michael Hanus and Frank Steiner
RWTH Aachen, Informatik IT, D-52056 Aachen, Germany

{hanus,steiner}@i2.informatik.rwth-aachen.de

Abstract. Logic languages can deal with non-deterministic computations
via built-in search facilities. However, standard search methods like global
backtracking are often not sufficient and a source of many programming
errors. Therefore, we propose the addition of a single primitive to logic-
oriented languages to control non-deterministic computation steps. Based
on this primitive, a number of different search strategies can be easily
implemented. These search operators can be applied if the standard search
facilities are not successful or to encapsulate search. The latter is important
if logic programs interact with the (non-backtrackable) outside world.

We define the search control primitive based on an abstract notion of com-
putation steps so that it can be integrated into various logic-oriented lan-
guages, but to provide concrete examples we also present the integration
of such a control primitive into the multi-paradigm declarative language
Curry. The lazy evaluation strategy of Curry simplifies the implementa-
tion of search strategies, which also shows the advantages of integrating
functions into logic languages.

1 Introduction

Computing solutions to partially instantiated goals and dealing with non-
deterministic computations via built-in search facilities is one of the most import-
ant features of logic languages. Standard logic languages like Prolog use a global
backtracking strategy to explore the different alternatives of a computation. This
is often not sufficient and a source of many problems:

— If a top-level predicate fails, all alternatives of previously called predicates
are also explored. This may lead to an unexpected behavior and makes the
detection of programming errors difficult (e.g., if the backtracking is caused by
a missing alternative in the top-level predicate). This problem is often solved
by inserting “cuts” which, however, decreases the readability of programs.

— Depth-first search is an incomplete strategy. Although this drawback can be
managed by experienced programmers, it causes difficulties for beginners (who
frequently use predicates like commutativity or left-recursive clauses in the
beginning). As a consequence, one is forced to talk about Prolog’s depth-
first search strategy too early in logic programming courses. This can have a
negative impact on the declarative style of programming.

— In larger application programs (e.g., combinatorial problems), other strategies
than the standard depth-first search are often necessary. In such cases the
programmer is forced to program her own strategies (e.g., by using meta-

* This research has been partially supported by the German Research Council (DFG)
under grant Ha 2457/1-1.

programming techniques). The possible interaction with the standard strategy
can lead to errors which are difficult to find.

These problems can be solved if there is a simple way to replace the standard
search strategy by other strategies and to implement new search strategies fairly
easy. In this paper we show that this is possible by adding a single primitive
operation to control non-deterministic computation steps. This primitive, which
is a generalization of Oz’s search operator [15], evaluates the program as usual
but immediately stops if a non-deterministic step occurs. In the latter case, the
different alternatives are returned so that the programmer can determine the way
to proceed the computation. Based on this primitive, a number of different search
operators, like depth-first search, breadth-first search, findall, or the Prolog shell,
can be easily implemented. These operators also allow the encapsulation of possible
search in local predicates. This feature is important if logic programs interact with
the (non-backtrackable) outside world, like file accesses or Internet applications.

In contrast to Oz’s search operator [15], which is directly connected to a syn-
tactic construct of the language (disjunctions), our control operator is based on
an abstract notion of basic computation steps. Thus, it can be considered as a
meta-level construct to control (don’t know) non-deterministic computation steps
which could be added to logic-oriented languages provided that they offer con-
straints or equations to represent variable bindings and existential quantification
to distinguish variables which can be bound in a local computation. Moreover, we
provide a formal connection between the search trees of the base language and the
results computed by our search operators. Hence, soundness and completeness res-
ults for the base language carry over to corresponding results for particular search
strategies based on our control operator.

The next section introduces our notion of computation steps of the base lan-
guage. The primitive to control non-deterministic computations is described in
Section 3. Based on this primitive, we show the implementation of different search
strategies in Section 4. The relations of these search strategies with the search
trees of the base language are established in Section 5. We show the advantages of
a base language with lazy evaluation to provide a simple implementation of search
strategies in Section 6. Section 7 compares our techniques with related work, and
Section 8 contains our conclusions. Due to lack of space, we omit some details and
the proofs of the theorems which can be found in [4, 5].

2 Operational Semantics of the Base Language

As mentioned above, the search primitive should control the different non-
deterministic steps occurring in a derivation. To abstract from the operational
model of the concrete base language, we only assume that a computation step
of the base language reduces an expression (goal) to a disjunction consisting of
a sequence of pairs of substitutions (bindings) and expressions (goals), i.e, the
operational semantics of the base language is defined by a one step relation

e = op,e1 |1 op,en

where n > 0, e, eq,...,e, are expressions, oy, ...,0, are substitutions on the free
variables in e, and “|” joins different alternatives to a disjunction. A substitution is
a mapping from variables into terms and we denote it by o0 = {z1 — t1,..., 2, —
tn}. Dom(o) = {z1,...,2,} is the domain of ¢ and VRan(o) = Var(t;)U...U
Var(ty) is its variable range, where Var(e) denotes the set of all free variables
occurring in an expression e. The identity substitution (i.e., the substitution id
with Dom(id) = () is often omitted in computation steps. We call the evaluation
step deterministic if n = 1 and non-deterministic if n > 1. The case n = 0
corresponds to a failure and is also written as e = fail.

This notion of a computation step makes the possible don’t know non-
determinism of the base language explicit which will be controlled by our search
primitive. A possible don’t care non-determinism (e.g., in a concurrent base lan-
guage) corresponds to an indeterminate definition of “=" and will not be con-
trolled by our search primitive. Furthermore, note that this notion of a compu-
tation step covers a variety of declarative languages. In functional programming,
n is at most 1 (i.e., no non-deterministic step occurs) and all substitutions are
the identity since unbound variables do not occur during a computation. In logic
programming, e is a goal, ey, ..., e, are all resolvents of this goal and oy,...,0,
are the corresponding unifiers restricted to the goal variables (for constraint logic
programming, the notion of substitutions must be replaced by constraints).

Since our search control operator will be based on this abstract notion of a
computation step of the base language (in contrast to Oz [15]), it is applicable to
a variety of (functional, constraint) logic languages. To provide concrete examples
and to show the advantages of integrating lazily evaluated functions into a logic
language, we present the addition of the search control operator to Curry [3,5],
a multi-paradigm declarative language aiming to amalgamate functional, logic,
and concurrent programming paradigms. Therefore, we outline in the rest of this
section Curry’s computation model (details can be found in [3, 5]).

Values in Curry are, similarly to functional or logic languages, data terms
constructed from constants and data constructors. These are introduced through
data type declarations like'

data bool = true | false
data nat =z | s(nat)
data list(A) 1 | [Allist(A)]

true and false are the Boolean constants, z and s are the zero value and the
successor function to construct natural numbers,? and polymorphic lists (A is a
type variable ranging over all types) are defined as in Prolog.

A data term is a well-typed?® expression containing variables, constants and data
constructors, e.g., s(s(z)), [truelZ] etc. Functions (predicates are considered as
Boolean functions for the sake of simplicity) operate on data terms. Their mean-

! In the following we use a Prolog-like syntax which is slightly different from the actual
Curry syntax.

2 Curry has also built-in integer values and arithmetic functions. We use here the explicit
definition of naturals only to provide some simple and self-contained examples.

® The current type system of Curry is a Hindley/Milner-like system with parametric
polymorphism, e.g., a term like s(true) is ill-typed and thus excluded.

ing is specified by rules (or equations) of the form I | {c} =r (the condition part
“| {c}” is optional) where [is a pattern, i.e., | has the form f(t,...,t,) with f
being a function, t1,...,t, data terms and each variable occurs only once, and r
is a well-formed ezpression containing function calls, constants, data constructors
and variables from [and ¢. The condition ¢ is a constraint which consists of a
conjunction of equations and optionally contains a list of locally declared vari-
ables, i.e., a constraint can have the form let vy,...,v; free in {eqi,...,eqn}
where the variables v; are only visible in the equations eqq,...,eq,. If a local
variable v of a condition should be visible also in the right-hand side, the rule
is written as [| {¢} =r where v free. A rule can be applied if its condition is
satisfiable. A head normal form is a variable, a constant, or an expression of the
form c(eq, ..., e,) where ¢ is a data constructor. A Curry program is a set of data
type declarations and equations.

Ezample 1. The addition on natural numbers (type nat above) is defined by
add(z ,Y) = Y
add(s(X),Y) s(add(X,Y))
The following rules define the concatenation of lists and functions for computing
the first and the last element of a list (“_” denotes an anonymous variable):
append ([] ,Ys) = Ys
append ([X|Xs],Ys) [X|append (Xs,Ys)]
first([XI_]) = X
last(Xs) | {append(_,[X])=Xs} = X where X free
If the equation append (_, [X])=Xs is solvable, then X is the last element of Xs. O

From a functional point of view, we are interested in computing the value of an
expression, i.e., a data term which is equivalent (w.r.t. the program rules) to the
initial expression. The value can be computed by applying rules from left to right.
For instance, to compute the value of add(s(z),s(z)), we apply the rules for
addition to this expression:
add(s(z),s(z)) = s(add(z,s(z))) = s(s(2))

A strategy selects a single function call for reduction in the next step. Curry is
based on a lazy (leftmost outermost) strategy. This also allows the computation
with infinite data structures and provides more modularity, as we will see in Sec-
tion 6. Thus, to evaluate the expression add(add(z,s(z)),z), the first subterm
add(z,s(z)) is evaluated to head normal form (in this case: s (z)) since its value is
required by all rules defining add (such an argument is also called demanded). On
the other hand, the evaluation of the subterm append([z], []) is not needed in
the expression first([z|append([z], [1)]) since it is not demanded by first.
Therefore, this expression is reduced to z by one outermost reduction step.

Since Curry subsumes logic programming, it is possible that the initial expres-
sion may contain variables. In this case the expression might not be reducible to a
single value. For instance, a logic programming system should find values for the
variables in a goal such that it is reducible to true. Fortunately, it requires only
a slight extension of the lazy reduction strategy to cover non-ground expressions
and variable instantiation: if the value of a variable argument is demanded by the

left-hand sides of program rules in order to proceed the computation, the variable
is non-deterministically bound to the different demanded values.

Ezxample 2. Consider the function £ defined by the rules
f(a) = ¢
f(b) = d
(a, b, c, d are constants). Then the expression f (X) with the variable argument X is

evaluated to c or d by binding X to a or b, respectively. Thus, this non-deterministic
computation step can be denoted as follows: £(X) = {X+—a}c | {X—b}d. O

A single computation step in Curry performs a reduction in exactly one (unsolved)
expression of a disjunction. For inductively sequential programs [1] (these are,
roughly speaking, function definitions without overlapping left-hand sides), this
strategy, called needed narrowing [1], computes the shortest possible successful
derivations (if common subterms are shared) and a minimal set of solutions, and
it is fully deterministic if variables do not occur.*

Functional logic languages are often used to solve equations between ex-
pressions containing defined functions. For instance, consider the equation
{add(X,z)=s(z)} w.r.t. Example 1. It can be solved by evaluating the left-hand
side add (X, z) to the answer expression {X — s(z)}s(z) (here we omit the other
alternatives). Since the resulting equation is trivial, the equation is valid w.r.t. the
computed answer {X — s(z)}. In general, an equation or equational constraint
{e1=es} is satisfied if both sides e; and ey are reducible to the same data term.
Operationally, an equational constraint {e;=es} is solved by evaluating e; and e
to unifiable data terms where the lazy evaluation of the expressions is interleaved
with the binding of variables to constructor terms [10]. Thus, an equational con-
straint {e;=es} without occurrences of defined functions has the same meaning
(unification) as in Prolog.> Note that constraints are solved when they appear in
conditions of program rules in order to apply this rule or when a search oper-
ator is applied (see Section 3). Conjunctions of constraints can also be evaluated
concurrently but we omit this aspect here (see [3, 5] for more details).

3 Controlling Non-deterministic Computation Steps

Most of the current logic languages are based on global search implemented by
backtracking, i.e., disjunctions distribute to the top-level (i.e., a goal AA B, where
A is defined by A < A; V As, is logically replaced by (4; A B) V (A3 A B)). As
discussed in Section 1, this must be avoided in some situations in order to control
the exploration of the search space.

For instance, consider the problem of doing input/output. I/O is implemented
in most logic languages by side effects. To handle I/0O in a declarative way, as done

* These properties also show some of the advantages of integrating functions into logic
programs, since similar properties for purely logic programs are not known.

® We often use the general notion of a constraint instead of equations since it is con-
ceptually fairly easy to add other constraint structures than equations over Herbrand
terms.

in Curry, one can use the monadic I/O concept [18] where an interactive program
is considered as a function computing a sequence of actions which are applied to
the outside world. An action changes the state of the world and possibly returns
a result (e.g., a character read from the terminal). Thus, actions are functions of
the type

World — pair(a, World)

(where World denotes the type of all states of the outside world). This function
type is also abbreviated by IO(«). If an action of type IO(«) is applied to a par-
ticular world, it yields a value of type o and a new (changed) world. For instance,
getChar of type IO(Char) is an action which reads a character from the standard
input whenever it is executed, i.e., applied to a world. The important point is that
values of type World are not accessible to the programmer — she/he can only
create and compose actions on the world. For instance, the action getChar can be
composed with the action putChar (which writes a character to the terminal) by
the sequential composition operator >>=, i.e., “getChar >>= putChar” is a com-
posed action which prints the character typed in the keyboard to the screen (see
[18] for more details).

An action, obtained as a result of a program, is executed when the program
is executed. Since the world cannot be copied (note that the world contains at
least the complete file system or the complete Internet in web applications), an
interactive program having a disjunction as a result makes no sense. Therefore, all
possible search must be encapsulated between I/O operations. In the following, we
describe a primitive operation to get control over non-deterministic computations
so that one can encapsulate the necessary search for solving goals.

3.1 Search Goals and a Control Primitive

Since search is used to find solutions to some constraint, we assume that search
is always initiated by a constraint containing a search wvariable for which a solu-
tion should be computed.® A difficulty is that the search variable may be bound
to different solutions (by different alternatives in non-deterministic steps) which
should be represented in a single expression for further processing. As a solution,
we adapt the idea of Oz [15] and abstract the search variable w.r.t. the constraint
to be solved, which is possible in a language providing functions as first-class ob-
jects.” Therefore, a search goal has the function type o — Constraint where a is
the type of the values which we are searching for and Constraint is the type of
all constraints (e.g., an equation like {add(X,z)=s(z)} is an expression of type
Constraint, cf. [5]). In particular, if ¢ is a constraint containing a variable z and
we are interested in solutions for z, i.e., values for x such that c is satisfied, then
the corresponding search goal has the form \z->c (this is the notation for lambda

® The generalization to more than one search variable is straightforward by the use of
tuples.

7 If the base language does not provide functions as first-class objects, one has to intro-
duce a special language construct to denote the search variable, like in Prolog’s setof
or findall predicate.

abstractions, e.g., \X->3*X denotes an anonymous function which multiplies its ar-
gument with 3). For instance, if we are interested in values for the variable X such
that the equation append ([1],X)=[1,2] holds, then the corresponding search goal
is \X->{append ([1],X)=[1,2]1}.

To control the non-deterministic steps performed to find solutions to search
goals, we introduce a function® try of type

(= Constraint) — list(a — Constraint)

i.e., try takes a search goal as an argument and produces a list of search goals.
The idea is that try attempts to evaluate the constraint of the search goal until
the computation finishes or does a non-deterministic step. In the latter case, the
computation is immediately stopped and the different constraints obtained by the
non-deterministic step are returned. Thus, an expression of the form try(g) can
have the following outcomes:

try(g) = [1: The empty list indicates that the search goal ¢ has no solution. For
instance, the expression
try (\X -> {1=2})
reduces to [1. Note that a failure of the search can now be handled explicitly
because it does not lead to a failure of the whole computation as it would do
without the search operator.
try(g) = [¢']: A one-element list indicates that the search goal g has a single
solution represented by the element of this list. For instance, the expression
try(\X -> {[X]=[01})
reduces to [\X->{X=0}]. Note that a solution, i.e., a binding for the search
variable like a substitution {x — ¢}, can always be represented as an equational
constraint {z=t}. In the following, we denote by & the equational representation
of the substitution o.
try(g) = [g1,...5,9n], n > 1: If the result list contains more than one element,
the evaluation of the search goal g requires a non-deterministic computation
step. The different alternatives immediately after this non-deterministic step
are represented as elements of this list, where the different bindings of the
search variable are added as constraints. For instance, if the function f is
defined as in Example 2, then the expression
try(\X -> {£(X)=d})
reduces to the list [\X->{X=a,c=d}, \X->{X=b,d=d}]. This example also
shows why the search variable must be abstracted: the alternative bindings can-
not be actually performed (since a variable is only bound to at most one value
in each computation thread) but are represented as equational constraints in
the search goal. Note that the search goals in the result list are not further
evaluated. The further evaluation can be done by a subsequent application
of try to the list elements. This allows the explicit control of the strategy to
explore the search tree. It will be discussed in more detail in Section 4.

8 If the base language does not provide functions, like Prolog, we can also implement
try as a binary predicate where the second argument denotes the result.

| if {c} = fail
[g'] if {c¢} = o {} (i.e., o is a mgu for all equations in ¢) with
Dom(o) C {z,z1,...,2n}, ¢ = \z->letm1,..., T, free in {7}
try(g’) if {c} = o {c'} with Dom(c) C {z,x1,...,7n}
and ¢’ = \z->let 1,...,ZTn,Y1,...,Ym free in {o7,c'}
try(g) = where {y1,...,ym} = VRan(o) \ ({z,z1,...,zo} U Var(g))
[gis...s9k] if{c} = a1 {ci}| - lor{ck}, k> 1, and, fori=1,... k,
Dom(o;) C {z,z1,...,2,} and
gi = \z->let Z1,...,Tn,Y1,-..,Ym; free in {7y, ¢}
where {y1,...,ym; } = VRan(o;) \ ({z,z1,-..,2.} UVar(g))
\ suspend otherwise
Fig. 1. Operational semantics of the try operator for g = \z->let z1,...,z, free in {c}

3.2 Local Variables

Some care is necessary if free variables occur in a search goal, as in

\E -> {append (L, [E])=[3,4,5]} (%)
To compute the last element E of the list [3,4,5] with this goal, the variable L
must be instantiated which is problematic since L is free. There are different possib-
ilities to deal with this case. In Prolog’s bagof/setof predicates, free variables are
(possibly non-deterministically!) instantiated and then remain instantiated with
this value, which does not help to really encapsulate all search and sometimes leads
to unexpected results. Another ad-hoc method is to consider a try application to
a search goal containing free variables as a run-time error. Since Curry as well
as most Prolog systems is equipped with coroutining facilities, we take another
solution and require that the try operator never binds free variables of its search
goal. If it is necessary to bind a free variable in order to proceed a try evaluation,
the computation suspends. Thus, a try application to the search goal () cannot
be evaluated and suspends until the variable L is bound.

To allow possible bindings of unbound variables during a local search, they can
be declared as local to the constraint so that they might have different bindings
in different branches of the search. For instance, we start the evaluation of

try(\E -> let L free in {append(L,[E])=[3,4,51}) (xx)
to compute the last element of the list [3,4,5]. Now the variable L is only visible
inside the constraint (i.e., existentially quantified) and can be bound to different
values in different branches. Therefore, the expression (xx) evaluates to

[\E -> let L free in {L=[1, [E]=[3,4,5]1},

\E -> let L,X,Xs free in {L=[X|Xs], [X|append(Xs,[E])]1=[3,4,5]}]
The new variables X and Xs (introduced by unification) are also added to the list
of local variables so that they can be further instantiated in subsequent steps.

The exact behavior of the try operator is specified in Figure 1. Thus, the
search goal is solved (second case) if the constraint is solvable without bindings of
global variables. In a deterministic step (third case), we apply the try operator

again after adding the newly introduced variables to the list of local variables.
Note that the free variables Var(g) occurring in ¢ must not be declared as local
because they can appear also outside of g, and therefore they have to be removed
from VRan(o). In a non-deterministic step (fourth case), we return the different
alternatives as the result. If a computation step on the constraint tries to bind a
free variable, the evaluation of the try operator suspends. In order to ensure that
an encapsulated search will not be suspended due to necessary bindings of free
variables, the search goal should be a closed expression when a search operator is
applied to it, i.e., the search variable is bound by the lambda abstraction and all
other variables are existentially quantified by local declarations.

Note that the operational semantics of the try operator depends only on the
meaning of computation steps of the underlying language. Thus, it can be intro-
duced in a similar way to other logic-oriented languages than Curry.?® Although
the management and testing of local variable bindings look complicated, it can be
efficiently implemented by decorating each variable with a declaration level and
checking the level in binding attempts (similarly to the implementation of scop-
ing constructs in logic languages [12]). Moreover, the equational representations
o; of the substitutions need not be explicitly implemented but can be implicitly
represented by binding lists for the variables.

4 Search Strategies

The search control operator try introduced in the previous section is a basis to im-
plement powerful and easily applicable search strategies. This section demonstrates
the use of try to implement some search strategies in Curry. These strategies can
be defined in a similar way in other declarative languages. However, we will show
in Section 6 that Curry’s lazy evaluation strategy can be exploited to simplify the
application of search operators.
The following function defines a depth-first search strategy which collects
all solutions of a search goal in a list:
all(G) = collect(try(G))
where collect([]) 1
collect ([G]) = [G]
collect([G1,G2]|Gs]) concat (map(all, [G1,G2]|Gs]))
The auxiliary function collect applies recursively all to all resulting alternat-
ives of a non-deterministic step and appends all solutions in a single list (concat
concatenates a list of lists to a single list and map applies a function to all elements
of a list). Thus, the expression

all(\L->{append (L, [1])=[0,11})
reduces to [\L->{L=[0]}].

Due to the laziness of Curry, search goals with infinitely many solutions cause
no problems if one is interested only in finitely many of them. A function which

% For concurrent languages, one could modify the definition of try such that non-deter-
ministic steps lead to a suspension as long as a deterministic step might be enabled by
another computation thread. This corresponds to stability in AKL [8] and Oz [15].

computes only the first solution w.r.t. a depth-first search strategy can be simply
defined by

once(G) = first(all(G))

Note that once is a partial function, i.e., it is undefined if G has no solution.

The value computed for the search variable in a search goal can be easily
accessed by applying it to an unbound variable. For instance, the evaluation of the
applicative expression

once (\L->{append (L, [1]1)=[0,1]1}) @X
(FOE denotes the application of a function F to some E, where F and E can be
arbitrary expressions) binds the variable X to the value [0], since the first subex-
pression evaluates to \L->{L=[0]} and the constraint {X=[0]} obtained by the
application of this expression to X can only be solved by this binding. Based on
this idea, we can define a function unpack that takes a list of solved search goals
and computes the list of the corresponding values for the search variable:

unpack([1) = []
unpack([G|Gs]) | {GeX} = [X|unpack(Gs)] where X free
Now it is simple to define a function similarly to Prolog’s findall predicate:
findall(G) = unpack(all(G))
For a search goal without free variables, findall explores the search tree (depth
first) and collects all computed values for the search variable in a list.

A bounded search strategy, where search is performed only up to a given
depth n in the search tree, can also be easily implemented when we consider search
trees containing only the nodes for non-deterministic steps. This means that search
will not end after n arbitrary reduction steps but only after n non-deterministic
steps. The following function is very similar to the function all but explores the
search goal G only up to depth N.

all_bounded(N,G) = if N>1 then collect(try(G)) else [] where
collect([1) =[]
collect ([G]) = [G]
collect([G1,G2|Gs]) concat (map(all_bounded(N-1),[G1,G2]|Gs]))

Note that the algorithm may not terminate if an infinite deterministic reduction
occurs (which is seldom in practical search problems) because the search operator
will never return a result in this case. The same can happen with the next algorithm
implementing a breadth-first search strategy that traverses the search tree level
by level and each level from left to right, regarding as level n all goals obtained
from the search goal after n non-deterministic steps.

all_bfs(G) = trygoals([G]) where

trygoals([1) =0

trygoals([G|Gs]) = splitgoals(map(try, [GIGs]),[])
splitgoals([] ,Ugs) = trygoals(Ugs)
splitgoals([[]1Gs] ,Ugs) = splitgoals(Gs,Ugs)
splitgoals([[G] |Gs] ,Ugs) = [G|splitgoals(Gs,Ugs)]
splitgoals([[G1,G2]|G3]|Gs],Ugs) = splitgoals(Gs,

append (Ugs, [G1,G2]G3]))

10

The function trygoals applies the search operator to the list of remaining altern-
atives and scans the result (a list of lists) using the function splitgoals, which
removes failures and returns all solutions computed so far. Then the remaining
goals, which result from non-deterministic steps, are recursively explored further.
Similarly, one can also implement other search strategies like depth-first iterative
deepening or best solution search with branch and bound [15]. Moreover, a par-
allel fair search for the first or all solutions can be implemented with our search
primitive and a committed choice [15] (which is also available in Curry). To show
the use of encapsulated search to control the failure of computations, we define
a function on constraints which implements negation as finite failure known
from logic programming:
naf(C) = {all(_->{c}) = [1}
Thus, if C is a constraint where all variables are existentially quantified, then

naf (C) is solvable iff the search space of solving C is finite and does not contain
any solution.

5 Search Trees and Search Operators

In this section we sketch the connection between the search trees of the base
language and the results computed by some of the search operators defined above.
More details can be found in [4].

The notion of a search tree w.r.t. = can be defined as in logic programming
[9], i.e., each node is marked with a constraint, and if an inner node N is marked

with cand ¢ = o1,¢1| - - log, ¢ is a computation step of the base language, then
N has k sons Ny, ..., N where N; is marked with ¢; and the edge from ¢ to ¢; is
marked with o; (i = 1,...,k). In case of logic programming, where = denotes a

resolution step with all resolvents for a goal, search trees w.r.t. = are similar to
SLD-trees [9]. Leaves are nodes marked with a constraint ¢ that cannot be further
derived. The leaf is successful if ¢ is the empty constraint (in this case we call the
composition of all substitutions marked along the branch from the root to this leaf
a =-computed answer for the constraint at the root of the tree). The leaf is failed
if {¢} = fail. All other leaves are suspended.

The following theorems relate search trees w.r.t. = to results computed by
some of the search operators (here we assume the functional definition as given
in the previous section, but these properties can be also transferred to other
definitions, e.g., in a relational style). To simplify the formulation of the theor-
ems, we represent a search goal as a triple (V,o,c) where V. = {z1,...,z,} is
a set of variables, o is a substitution and ¢ is a constraint. This corresponds to
_->let z1,...,z, free in {7@,c} in the representation introduced in Section 3,
i.e., here we ignore the special role of the search variable since it is not important
for the results in this section. In order to avoid the problem of suspension due to
necessary bindings of free variables, we consider only initial search goals where all
variables are existentially quantified.

The first theorem states the soundness of the all operator.

11

Theorem 1 (Soundness of “all”). Let ¢ be a constraint and g = (Var(c),id, c).
If al1(g) evaluates to a list [(V1,01,¢1),(Va,00,¢2),...1, then each c; is an
empty constraint, each o; is a =-computed answer for ¢ and Var(c)UVRan(o;) C
Vi.

The converse result does not hold in general due to infinite branches in the search
tree, since all implements a depth-first search through the tree. However, we can
state a completeness result for the case of finite search trees.

Theorem 2 (Completeness of “all” for finite search trees). Let ¢ be a
constraint and o be a =-computed answer for c. If the search tree with root c is
finite, then all((Var(c),id,c)) evaluates to a list [(Vi,01,¢1), ...y (Va,on,cn)],
where o; = o for some i € {1,...,n}.

A corollary of this theorem is the completeness of the negation-as-failure operator.

Corollary 1 (Completeness of “naf” for finite search trees). Let ¢ be a
constraint. If the search tree with root c is finite and contains only failed leaves,
then naf (¢) is a solvable constraint.

A further interesting result is the completeness of the breadth-first search strategy
all_bfs. As already discussed, this strategy may be incomplete in case of infinite
deterministic evaluations. Therefore, we call a search tree deterministically termin-
ating if there is no infinite branch where each inner node has exactly one successor.
Excluding this case, which is seldom in practical search problems, we can state the
following completeness result.

Theorem 3 (Completeness of “all_bfs”). Let ¢ be a constraint and o be
a =-computed answer for c. If the search tree with root c is deterministically
terminating, then all_bfs((Var(c),id,c)) evaluates to a (possibly infinite) list
[(Vi,01,¢1) (Va,09,¢2),...1, where o; = o for some i > 0.

6 Exploiting Laziness

We already exploited the advantages of Curry’s lazy evaluation strategy by defining
the search for the first solution (once) based on the general depth-first search
strategy all. This shows that lazy evaluation can reduce the programming efforts.
Furthermore, it is well known from functional programming that lazy evaluation
provides more modularity by separating control aspects [7]. We want to emphasize
this advantage by an implementation of Prolog’s top-level shell with our search
operator.

The interactive command shell of a Prolog interpreter roughly behaves as fol-
lows. If the user types in a goal, a solution for this goal is computed by the standard
depth-first search strategy. If a solution is found, it is presented to the user who
can decide to compute the next solution (by typing ‘;’ and <return>) or to ignore
further solutions (by typing <return>). This behavior can be easily implemented
with our search operator:

12

prolog(G) = printloop(all(G))

printloop([]) = putStr("no") >> newline
printloop([AlAs]) = browse(A) >> putStr("? ")
>> getChar >>= evalAnswer (As)

evalAnswer(As,’;’) = newline >> printloop(As)
evalAnswer (As,’\n’) = newline >> putStr("yes") >> newline

Here we make use of the monadic I/O concept discussed at the beginning of Sec-
tion 3. The result of browse(A) is an action which prints a solution on the screen.
Similarly, putStr and newline are actions to print a string or an end-of-line. >>
and >>= are the sequential composition operators for actions [18]. The second argu-
ment of >>= must be a function which takes the result value of the first action and
maps this value to another action. The expression “evalAnswer (As)” is a partially
applied function call, i.e., it is a function which takes a further argument (a charac-
ter) and produces an action: if the character is ’; ’, the next solution is computed
by a call to printloop(As), and if the character is a <return> (’\n’), then the
computation finishes with an action to print the string "yes". Note that disjunc-
tions do not occur in the printloop evaluation since potential non-deterministic
computation steps of the goal G are encapsulated with all(G).

Since the solutions for the goal are evaluated by all in a lazy manner, only
those solutions are computed which are requested by the user. This has the advant-
age that the user interface to present the solutions (printloop) can be implemen-
ted independently of the mechanism to compute solutions. In an eager language
like Prolog, the computation of the next solution must be interweaved with the
print loop, otherwise all solutions are computed (which may not terminate) before
the print loop is called, or only one standard strategy can be used. Our imple-
mentation is independent of the particular search strategy, since the following
functions use the same top-level shell but bounded and breadth-first search to find
the solutions:

prolog_bounded(N,G)
prolog_bfs(G)

printloop(all_bounded(N,G))
printloop(all_bfs(G))

7 Related Work

This section briefly compares our operator for controlling non-deterministic com-
putations with some related methods.

Prolog provides built-in predicates for computing all solutions, like bagof,
setof, or findall. As shown in Section 4, they can be easily implemented with
our control primitive, provided that all variables are existentially quantified. On
the other hand, the search strategy in these predicates is fixed to Prolog’s depth-
first search and they always compute all solutions, i.e., they do not terminate if
there are infinitely many solutions. In particular, they cannot be used in situations
where not all solutions are immediately processed, like in an interactive shell where
a demand-driven computation becomes important (cf. Section 6).

The lazy functional language Haskell [6] supports the use of list comprehen-
sions to deal with search problems. List comprehensions allow the implementation

13

of many generate-and-test programs, since logic programs with a strict data flow
(“well-moded programs”) can be translated into functional programs by the use of
list comprehensions [17]. On the other hand, list comprehensions are much more
restricted than our search operators, since purely functional programs do not allow
the use of partially instantiated structures, and list comprehensions fixes a par-
ticular search strategy (diagonalization of the generators) so that other strategies
(like best solution search) cannot be applied.

The higher-order concurrent constraint language Oz [16] provides a primit-
ive operator to control search [15] similarly to ours. Actually, our operator try
generalizes Oz’s operator since try is not connected to a construct of the lan-
guage (like or expressions in Oz) but its semantics is defined on the meaning of
computation steps of the base language. This has an important consequence of the
programming style and causes a significant difference between both concepts which
should be explained in the following. An Oz programmer must explicitly specify
in the program whether a search operator should later be applicable or not. A
non-deterministic step can be performed in Oz only if an explicit disjunction (or
or choice, see [14, 15]) occurs in a procedure. As a consequence, programs must be
written in different ways depending on the use of search operators. The following
simplified example explains this fundamental difference to our approach in more
detail. Consider the multiplication with zero defined by the following rules:

mult(X,z) = z

mult(z,X) = z
Then expressions like mult(z,z) or mult (add(z,z),z) can be reduced to z with
one deterministic reduction step using the first rule.'®

In Oz, there are two implementation choices by using a conditional (multc) or
a disjunction (multd):

proc {multc A B C} proc {multd A B C}
if B=z then C=z or B=z then C=z
[1 A=z then C=z [1 A=z then C=z
fi ro

end end

Conditionals commit to single computation branches, e.g., {multc z z X} reduces
to the constraint X=z. However, we cannot use multc if we want to compute solu-
tions to a goal like {multc X Y z} since the conditions in an if are only checked
for entailment. Thus, we have to take the disjunctive formulation multd where
we can compute a solution using some search operator [15]. On the other hand,
the advantages of deterministic reductions are lost in multd, since the expression
{multd z z X} is only computable with a search operator (a disjunction is not
reduced until all but at most one clause fails [15]). Therefore, one has to implement
mult twice to combine the deterministic reduction and search possibilities.

10 Although one could also apply the second rule in this situation, sophisticated oper-
ational models for functional logic programming exploit the determinism property of
functions: if a function call is reducible (i.e., a rule is applicable without instantiating
arguments), then all other alternative rules can be ignored [2,11].

14

In contrast to Oz, the definition of our control operator is based on the meaning
of computation steps, i.e., the possible application of search operators does not
influence the way how the basic functions or predicates are defined. This property
keeps the declarative style of programming, i.e., function definitions describe the
meaning of functions and control aspects are covered by search operators. Thus,
functions or predicates can be defined independently of their later application,
and explicit disjunctions are not necessary. The latter property also allows to write
more predicates as functions which leads to potentially more efficient executions of
programs. Furthermore, the laziness of Curry allows the implementation of search
strategies independently of their application, e.g., demand-driven variants of search
strategies (see [15]) are not necessary in our framework since the user interface can
be implemented independently of the search strategy, as shown in Section 6.

8 Conclusions

We have presented a new primitive which can be added to logic languages in order
to control the exploration of the search tree. This operator, which can be seen as a
generalization of Oz’s search operator [15], can be added to any logic-oriented lan-
guage which supports equational constraints and existential quantification. In this
paper, we have added it to the multi-paradigm language Curry and we have shown
the advantages of Curry’s lazy evaluation strategy to simplify the implementation
of the different search operators. Since the search operators can be applied to any
expression (encapsulated in a constraint), there is no need to translate functions
into predicates or to use explicit disjunctions as in other approaches.

Since the definition of our control primitive is only based on an abstract view of
computation steps (deterministic vs. non-deterministic steps), it can be applied to
a variety of programming languages with a non-deterministic computation model,
like pure logic or constraint logic languages (extended by existential quantifiers
like in Prolog’s bagof/setof construct), higher-order logic languages like AProlog
[13] which already has explicit scoping constructs for variables, or the various
functional logic languages which often differ only in the definition of a computation
step. The general connection between search trees of the base language and the
results computed by the search operators, which is also provided in this paper,
supports the transfer of soundness and completeness results for the base language
to corresponding results for the search operators.

The use of search operators supports the embedding of logic programs into
other application programs where backtracking is not possible or too complicated
(e.g., programs with side effects, input/output) since search operators allow the
local encapsulation of search. Furthermore, they contribute to an old idea of logic
programming by separating logic and control: the specification of functions or
predicates becomes more independent of their use since the same function can be
used for evaluation (computing values) or for searching (computing solutions) with
various strategies without the necessity to define them in different ways. As shown
in Section 6, this feature enables to simply replace the standard depth-first search
by a bounded or breadth-first search in the user interface. This is quite useful to
teach logic programming without talking about backtracking too early.

15

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. In Proc. 21st
ACM Symposium on Principles of Programming Languages, pp. 268-279, Portland,
1994.

M. Hanus. Lazy Narrowing with Simplification. Computer Languages, Vol. 23, No. 2—
4, pp. 61-85, 1997.

M. Hanus. A Unified Computation Model for Functional and Logic Programming. In
Proc. of the 24th ACM Symposium on Principles of Programming Languages (Paris),
pp. 80-93, 1997.

M. Hanus and F. Steiner. Controlling Search in Declarative Programs. Technical
Report, RWTH Aachen, 1998

M. Hanus (ed.). Curry: An Integrated Functional Logic Language. Available at
http://www-i2.informatik.rwth-aachen.de/“hanus/curry, 1998.

P. Hudak, S. Peyton Jones, and P. Wadler. Report on the Programming Language
Haskell (Version 1.2). SIGPLAN Notices, Vol. 27, No. 5, 1992.

J. Hughes. Why Functional Programming Matters. In D.A. Turner, editor, Research
Topcis in Functional Programming, pp. 17-42. Addison Wesley, 1990.

S. Janson and S. Haridi. Programming Paradigms of the Andorra Kernel Language.
In Proc. 1991 International Logic Programming Symposium, pp. 167-183. MIT Press,
1991.

J.W. Lloyd. Foundations of Logic Programming. Springer, second, extended edition,
1987.

R. Loogen, F. Lopez Fraguas, and M. Rodriguez Artalejo. A Demand Driven Com-
putation Strategy for Lazy Narrowing. In Proc. of the 5th International Symposium
on Programming Language Implementation and Logic Programming, pp. 184-200.
Springer LNCS 714, 1993.

R. Loogen and S. Winkler. Dynamic Detection of Determinism in Functional Logic
Languages. Theoretical Computer Science 142, pp. 59-87, 1995.

G. Nadathur, B. Jayaraman, and K. Kwon. Scoping Constructs in Logic Program-
ming: Implementation Problems and their Solution. Journal of Logic Programming,
Vol. 25, No. 2, pp. 119-161, 1995.

G. Nadathur and D. Miller. An overview of AProlog. In Proc. 5th Conference on
Logic Programming € 5th Symposium on Logic Programming (Seattle), pages 810—
827. MIT Press, 1988.

C. Schulte. Programming Constraint Inference Engines. In Proc. of the Third In-
ternational Conference on Principles and Practice of Constraint Programming, pp-
519-533. Springer LNCS 1330, 1997.

C. Schulte and G. Smolka. Encapsulated Search for Higher-Order Concurrent Con-
straint Programming. In Proc. of the 1994 International Logic Programming Sym-
posium, pp. 505-520. MIT Press, 1994.

G. Smolka. The Oz Programming Model. In J. van Leeuwen, editor, Computer
Science Today: Recent Trends and Developments, pp. 324-343. Springer LNCS 1000,
1995.

P. Wadler. How to Replace Failure by a List of Successes. In Functional Programming
and Computer Architecture. Springer LNCS 201, 1985.

P. Wadler. How to Declare an Imperative. In Proc. of the 1995 International Logic
Programming Symposium, pp. 18-32. MIT Press, 1995.

16

