
Controlling Sear
h in De
larative Programs?Mi
hael Hanus and Frank SteinerRWTH Aa
hen, Informatik II, D-52056 Aa
hen, Germanyfhanus,steinerg�i2.informatik.rwth-aa
hen.de

Springer-VerlagIn Pro
. of the Joint International Symposium PLILP/ALP'98,Pisa (Italy). Springer LNCS 1490, pp. 374{390, 1998

Abstra
t. Logi
 languages
an deal with non-deterministi

omputationsvia built-in sear
h fa
ilities. However, standard sear
h methods like globalba
ktra
king are often not suÆ
ient and a sour
e of many programmingerrors. Therefore, we propose the addition of a single primitive to logi
-oriented languages to
ontrol non-deterministi

omputation steps. Basedon this primitive, a number of di�erent sear
h strategies
an be easilyimplemented. These sear
h operators
an be applied if the standard sear
hfa
ilities are not su

essful or to en
apsulate sear
h. The latter is importantif logi
 programs intera
t with the (non-ba
ktra
kable) outside world.We de�ne the sear
h
ontrol primitive based on an abstra
t notion of
om-putation steps so that it
an be integrated into various logi
-oriented lan-guages, but to provide
on
rete examples we also present the integrationof su
h a
ontrol primitive into the multi-paradigm de
larative languageCurry. The lazy evaluation strategy of Curry simpli�es the implementa-tion of sear
h strategies, whi
h also shows the advantages of integratingfun
tions into logi
 languages.1 Introdu
tionComputing solutions to partially instantiated goals and dealing with non-deterministi

omputations via built-in sear
h fa
ilities is one of the most import-ant features of logi
 languages. Standard logi
 languages like Prolog use a globalba
ktra
king strategy to explore the di�erent alternatives of a
omputation. Thisis often not suÆ
ient and a sour
e of many problems:{ If a top-level predi
ate fails, all alternatives of previously
alled predi
atesare also explored. This may lead to an unexpe
ted behavior and makes thedete
tion of programming errors diÆ
ult (e.g., if the ba
ktra
king is
aused bya missing alternative in the top-level predi
ate). This problem is often solvedby inserting \
uts" whi
h, however, de
reases the readability of programs.{ Depth-�rst sear
h is an in
omplete strategy. Although this drawba
k
an bemanaged by experien
ed programmers, it
auses diÆ
ulties for beginners (whofrequently use predi
ates like
ommutativity or left-re
ursive
lauses in thebeginning). As a
onsequen
e, one is for
ed to talk about Prolog's depth-�rst sear
h strategy too early in logi
 programming
ourses. This
an have anegative impa
t on the de
larative style of programming.{ In larger appli
ation programs (e.g.,
ombinatorial problems), other strategiesthan the standard depth-�rst sear
h are often ne
essary. In su
h
ases theprogrammer is for
ed to program her own strategies (e.g., by using meta-? This resear
h has been partially supported by the German Resear
h Coun
il (DFG)under grant Ha 2457/1-1.

programming te
hniques). The possible intera
tion with the standard strategy
an lead to errors whi
h are diÆ
ult to �nd.These problems
an be solved if there is a simple way to repla
e the standardsear
h strategy by other strategies and to implement new sear
h strategies fairlyeasy. In this paper we show that this is possible by adding a single primitiveoperation to
ontrol non-deterministi

omputation steps. This primitive, whi
his a generalization of Oz's sear
h operator [15℄, evaluates the program as usualbut immediately stops if a non-deterministi
 step o

urs. In the latter
ase, thedi�erent alternatives are returned so that the programmer
an determine the wayto pro
eed the
omputation. Based on this primitive, a number of di�erent sear
hoperators, like depth-�rst sear
h, breadth-�rst sear
h, findall, or the Prolog shell,
an be easily implemented. These operators also allow the en
apsulation of possiblesear
h in lo
al predi
ates. This feature is important if logi
 programs intera
t withthe (non-ba
ktra
kable) outside world, like �le a

esses or Internet appli
ations.In
ontrast to Oz's sear
h operator [15℄, whi
h is dire
tly
onne
ted to a syn-ta
ti

onstru
t of the language (disjun
tions), our
ontrol operator is based onan abstra
t notion of basi

omputation steps. Thus, it
an be
onsidered as ameta-level
onstru
t to
ontrol (don't know) non-deterministi

omputation stepswhi
h
ould be added to logi
-oriented languages provided that they o�er
on-straints or equations to represent variable bindings and existential quanti�
ationto distinguish variables whi
h
an be bound in a lo
al
omputation. Moreover, weprovide a formal
onne
tion between the sear
h trees of the base language and theresults
omputed by our sear
h operators. Hen
e, soundness and
ompleteness res-ults for the base language
arry over to
orresponding results for parti
ular sear
hstrategies based on our
ontrol operator.The next se
tion introdu
es our notion of
omputation steps of the base lan-guage. The primitive to
ontrol non-deterministi

omputations is des
ribed inSe
tion 3. Based on this primitive, we show the implementation of di�erent sear
hstrategies in Se
tion 4. The relations of these sear
h strategies with the sear
htrees of the base language are established in Se
tion 5. We show the advantages ofa base language with lazy evaluation to provide a simple implementation of sear
hstrategies in Se
tion 6. Se
tion 7
ompares our te
hniques with related work, andSe
tion 8
ontains our
on
lusions. Due to la
k of spa
e, we omit some details andthe proofs of the theorems whi
h
an be found in [4, 5℄.2 Operational Semanti
s of the Base LanguageAs mentioned above, the sear
h primitive should
ontrol the di�erent non-deterministi
 steps o

urring in a derivation. To abstra
t from the operationalmodel of the
on
rete base language, we only assume that a
omputation stepof the base language redu
es an expression (goal) to a disjun
tion
onsisting ofa sequen
e of pairs of substitutions (bindings) and expressions (goals), i.e, theoperational semanti
s of the base language is de�ned by a one step relatione) �1; e1 | � � � | �n; en 2

where n � 0, e, e1,. . . ,en are expressions, �1; : : : ; �n are substitutions on the freevariables in e, and \|" joins di�erent alternatives to a disjun
tion. A substitution isa mapping from variables into terms and we denote it by � = fx1 7! t1; : : : ; xn 7!tng. Dom(�) = fx1; : : : ; xng is the domain of � and VRan(�) = Var(t1) [: : : [Var(tn) is its variable range, where Var(e) denotes the set of all free variableso

urring in an expression e. The identity substitution (i.e., the substitution idwith Dom(id) = ;) is often omitted in
omputation steps. We
all the evaluationstep deterministi
 if n = 1 and non-deterministi
 if n > 1. The
ase n = 0
orresponds to a failure and is also written as e) fail.This notion of a
omputation step makes the possible don't know non-determinism of the base language expli
it whi
h will be
ontrolled by our sear
hprimitive. A possible don't
are non-determinism (e.g., in a
on
urrent base lan-guage)
orresponds to an indeterminate de�nition of \)" and will not be
on-trolled by our sear
h primitive. Furthermore, note that this notion of a
ompu-tation step
overs a variety of de
larative languages. In fun
tional programming,n is at most 1 (i.e., no non-deterministi
 step o

urs) and all substitutions arethe identity sin
e unbound variables do not o

ur during a
omputation. In logi
programming, e is a goal, e1; : : : ; en are all resolvents of this goal and �1; : : : ; �nare the
orresponding uni�ers restri
ted to the goal variables (for
onstraint logi
programming, the notion of substitutions must be repla
ed by
onstraints).Sin
e our sear
h
ontrol operator will be based on this abstra
t notion of a
omputation step of the base language (in
ontrast to Oz [15℄), it is appli
able toa variety of (fun
tional,
onstraint) logi
 languages. To provide
on
rete examplesand to show the advantages of integrating lazily evaluated fun
tions into a logi
language, we present the addition of the sear
h
ontrol operator to Curry [3, 5℄,a multi-paradigm de
larative language aiming to amalgamate fun
tional, logi
,and
on
urrent programming paradigms. Therefore, we outline in the rest of thisse
tion Curry's
omputation model (details
an be found in [3, 5℄).Values in Curry are, similarly to fun
tional or logi
 languages, data terms
onstru
ted from
onstants and data
onstru
tors. These are introdu
ed throughdata type de
larations like1data bool = true | falsedata nat = z | s(nat)data list(A) = [℄ | [A|list(A)℄true and false are the Boolean
onstants, z and s are the zero value and thesu

essor fun
tion to
onstru
t natural numbers,2 and polymorphi
 lists (A is atype variable ranging over all types) are de�ned as in Prolog.A data term is a well-typed3 expression
ontaining variables,
onstants and data
onstru
tors, e.g., s(s(z)), [true|Z℄ et
. Fun
tions (predi
ates are
onsidered asBoolean fun
tions for the sake of simpli
ity) operate on data terms. Their mean-1 In the following we use a Prolog-like syntax whi
h is slightly di�erent from the a
tualCurry syntax.2 Curry has also built-in integer values and arithmeti
 fun
tions. We use here the expli
itde�nition of naturals only to provide some simple and self-
ontained examples.3 The
urrent type system of Curry is a Hindley/Milner-like system with parametri
polymorphism, e.g., a term like s(true) is ill-typed and thus ex
luded.3

ing is spe
i�ed by rules (or equations) of the form l | f
g = r (the
ondition part\| f
g" is optional) where l is a pattern, i.e., l has the form f(t1; : : : ; tn) with fbeing a fun
tion, t1; : : : ; tn data terms and ea
h variable o

urs only on
e, and ris a well-formed expression
ontaining fun
tion
alls,
onstants, data
onstru
torsand variables from l and
. The
ondition
 is a
onstraint whi
h
onsists of a
onjun
tion of equations and optionally
ontains a list of lo
ally de
lared vari-ables, i.e., a
onstraint
an have the form let v1; : : : ; vk free in feq1; : : : ; eqngwhere the variables vi are only visible in the equations eq1; : : : ; eqn. If a lo
alvariable v of a
ondition should be visible also in the right-hand side, the ruleis written as l | f
g = r where v free. A rule
an be applied if its
ondition issatis�able. A head normal form is a variable, a
onstant, or an expression of theform
(e1; : : : ; en) where
 is a data
onstru
tor. A Curry program is a set of datatype de
larations and equations.Example 1. The addition on natural numbers (type nat above) is de�ned byadd(z ,Y) = Yadd(s(X),Y) = s(add(X,Y))The following rules de�ne the
on
atenation of lists and fun
tions for
omputingthe �rst and the last element of a list (_" denotes an anonymous variable):append([℄ ,Ys) = Ysappend([X|Xs℄,Ys) = [X|append(Xs,Ys)℄first([X|_℄) = Xlast(Xs) | fappend(_,[X℄)=Xsg = X where X freeIf the equation append(_,[X℄)=Xs is solvable, then X is the last element of Xs. 2From a fun
tional point of view, we are interested in
omputing the value of anexpression, i.e., a data term whi
h is equivalent (w.r.t. the program rules) to theinitial expression. The value
an be
omputed by applying rules from left to right.For instan
e, to
ompute the value of add(s(z),s(z)), we apply the rules foraddition to this expression:add(s(z),s(z))) s(add(z,s(z)))) s(s(z))A strategy sele
ts a single fun
tion
all for redu
tion in the next step. Curry isbased on a lazy (leftmost outermost) strategy. This also allows the
omputationwith in�nite data stru
tures and provides more modularity, as we will see in Se
-tion 6. Thus, to evaluate the expression add(add(z,s(z)),z), the �rst subtermadd(z,s(z)) is evaluated to head normal form (in this
ase: s(z)) sin
e its value isrequired by all rules de�ning add (su
h an argument is also
alled demanded). Onthe other hand, the evaluation of the subterm append([z℄,[℄) is not needed inthe expression first([z|append([z℄,[℄)℄) sin
e it is not demanded by first.Therefore, this expression is redu
ed to z by one outermost redu
tion step.Sin
e Curry subsumes logi
 programming, it is possible that the initial expres-sion may
ontain variables. In this
ase the expression might not be redu
ible to asingle value. For instan
e, a logi
 programming system should �nd values for thevariables in a goal su
h that it is redu
ible to true. Fortunately, it requires onlya slight extension of the lazy redu
tion strategy to
over non-ground expressionsand variable instantiation: if the value of a variable argument is demanded by the4

left-hand sides of program rules in order to pro
eed the
omputation, the variableis non-deterministi
ally bound to the di�erent demanded values.Example 2. Consider the fun
tion f de�ned by the rulesf(a) =
f(b) = d(a, b,
, d are
onstants). Then the expression f(X) with the variable argument X isevaluated to
 or d by binding X to a or b, respe
tively. Thus, this non-deterministi

omputation step
an be denoted as follows: f(X)) fX 7! ag
 | fX 7! bg d. 2A single
omputation step in Curry performs a redu
tion in exa
tly one (unsolved)expression of a disjun
tion. For indu
tively sequential programs [1℄ (these are,roughly speaking, fun
tion de�nitions without overlapping left-hand sides), thisstrategy,
alled needed narrowing [1℄,
omputes the shortest possible su

essfulderivations (if
ommon subterms are shared) and a minimal set of solutions, andit is fully deterministi
 if variables do not o

ur.4Fun
tional logi
 languages are often used to solve equations between ex-pressions
ontaining de�ned fun
tions. For instan
e,
onsider the equationfadd(X,z)=s(z)g w.r.t. Example 1. It
an be solved by evaluating the left-handside add(X,z) to the answer expression fX 7! s(z)gs(z) (here we omit the otheralternatives). Sin
e the resulting equation is trivial, the equation is valid w.r.t. the
omputed answer fX 7! s(z)g. In general, an equation or equational
onstraintfe1=e2g is satis�ed if both sides e1 and e2 are redu
ible to the same data term.Operationally, an equational
onstraint fe1=e2g is solved by evaluating e1 and e2to uni�able data terms where the lazy evaluation of the expressions is interleavedwith the binding of variables to
onstru
tor terms [10℄. Thus, an equational
on-straint fe1=e2g without o

urren
es of de�ned fun
tions has the same meaning(uni�
ation) as in Prolog.5 Note that
onstraints are solved when they appear in
onditions of program rules in order to apply this rule or when a sear
h oper-ator is applied (see Se
tion 3). Conjun
tions of
onstraints
an also be evaluated
on
urrently but we omit this aspe
t here (see [3, 5℄ for more details).3 Controlling Non-deterministi
 Computation StepsMost of the
urrent logi
 languages are based on global sear
h implemented byba
ktra
king, i.e., disjun
tions distribute to the top-level (i.e., a goal A^B, whereA is de�ned by A $ A1 _ A2, is logi
ally repla
ed by (A1 ^ B) _ (A2 ^ B)). Asdis
ussed in Se
tion 1, this must be avoided in some situations in order to
ontrolthe exploration of the sear
h spa
e.For instan
e,
onsider the problem of doing input/output. I/O is implementedin most logi
 languages by side e�e
ts. To handle I/O in a de
larative way, as done4 These properties also show some of the advantages of integrating fun
tions into logi
programs, sin
e similar properties for purely logi
 programs are not known.5 We often use the general notion of a
onstraint instead of equations sin
e it is
on-
eptually fairly easy to add other
onstraint stru
tures than equations over Herbrandterms. 5

in Curry, one
an use the monadi
 I/O
on
ept [18℄ where an intera
tive programis
onsidered as a fun
tion
omputing a sequen
e of a
tions whi
h are applied tothe outside world. An a
tion
hanges the state of the world and possibly returnsa result (e.g., a
hara
ter read from the terminal). Thus, a
tions are fun
tions ofthe typeWorld ! pair(�;World)(where World denotes the type of all states of the outside world). This fun
tiontype is also abbreviated by IO(�). If an a
tion of type IO(�) is applied to a par-ti
ular world, it yields a value of type � and a new (
hanged) world. For instan
e,getChar of type IO(Char) is an a
tion whi
h reads a
hara
ter from the standardinput whenever it is exe
uted, i.e., applied to a world. The important point is thatvalues of type World are not a

essible to the programmer | she/he
an only
reate and
ompose a
tions on the world. For instan
e, the a
tion getChar
an be
omposed with the a
tion putChar (whi
h writes a
hara
ter to the terminal) bythe sequential
omposition operator >>=, i.e., \getChar >>= putChar" is a
om-posed a
tion whi
h prints the
hara
ter typed in the keyboard to the s
reen (see[18℄ for more details).An a
tion, obtained as a result of a program, is exe
uted when the programis exe
uted. Sin
e the world
annot be
opied (note that the world
ontains atleast the
omplete �le system or the
omplete Internet in web appli
ations), anintera
tive program having a disjun
tion as a result makes no sense. Therefore, allpossible sear
h must be en
apsulated between I/O operations. In the following, wedes
ribe a primitive operation to get
ontrol over non-deterministi

omputationsso that one
an en
apsulate the ne
essary sear
h for solving goals.3.1 Sear
h Goals and a Control PrimitiveSin
e sear
h is used to �nd solutions to some
onstraint, we assume that sear
his always initiated by a
onstraint
ontaining a sear
h variable for whi
h a solu-tion should be
omputed.6 A diÆ
ulty is that the sear
h variable may be boundto di�erent solutions (by di�erent alternatives in non-deterministi
 steps) whi
hshould be represented in a single expression for further pro
essing. As a solution,we adapt the idea of Oz [15℄ and abstra
t the sear
h variable w.r.t. the
onstraintto be solved, whi
h is possible in a language providing fun
tions as �rst-
lass ob-je
ts.7 Therefore, a sear
h goal has the fun
tion type �! Constraint where � isthe type of the values whi
h we are sear
hing for and Constraint is the type ofall
onstraints (e.g., an equation like fadd(X,z)=s(z)g is an expression of typeConstraint,
f. [5℄). In parti
ular, if
 is a
onstraint
ontaining a variable x andwe are interested in solutions for x, i.e., values for x su
h that
 is satis�ed, thenthe
orresponding sear
h goal has the form \x->
 (this is the notation for lambda6 The generalization to more than one sear
h variable is straightforward by the use oftuples.7 If the base language does not provide fun
tions as �rst-
lass obje
ts, one has to intro-du
e a spe
ial language
onstru
t to denote the sear
h variable, like in Prolog's setofor findall predi
ate. 6

abstra
tions, e.g., \X->3*X denotes an anonymous fun
tion whi
h multiplies its ar-gument with 3). For instan
e, if we are interested in values for the variable X su
hthat the equation append([1℄,X)=[1,2℄holds, then the
orresponding sear
h goalis \X->fappend([1℄,X)=[1,2℄g.To
ontrol the non-deterministi
 steps performed to �nd solutions to sear
hgoals, we introdu
e a fun
tion8 try of type(� ! Constraint) ! list(� ! Constraint)i.e., try takes a sear
h goal as an argument and produ
es a list of sear
h goals.The idea is that try attempts to evaluate the
onstraint of the sear
h goal untilthe
omputation �nishes or does a non-deterministi
 step. In the latter
ase, the
omputation is immediately stopped and the di�erent
onstraints obtained by thenon-deterministi
 step are returned. Thus, an expression of the form try(g)
anhave the following out
omes:try(g) = [℄: The empty list indi
ates that the sear
h goal g has no solution. Forinstan
e, the expressiontry(\X -> f1=2g)redu
es to [℄. Note that a failure of the sear
h
an now be handled expli
itlybe
ause it does not lead to a failure of the whole
omputation as it would dowithout the sear
h operator.try(g) = [g0℄: A one-element list indi
ates that the sear
h goal g has a singlesolution represented by the element of this list. For instan
e, the expressiontry(\X -> f[X℄=[0℄g)redu
es to [\X->fX=0g℄. Note that a solution, i.e., a binding for the sear
hvariable like a substitution fx 7! tg,
an always be represented as an equational
onstraint fx=tg. In the following, we denote by � the equational representationof the substitution �.try(g) = [g1,...,gn℄, n > 1: If the result list
ontains more than one element,the evaluation of the sear
h goal g requires a non-deterministi

omputationstep. The di�erent alternatives immediately after this non-deterministi
 stepare represented as elements of this list, where the di�erent bindings of thesear
h variable are added as
onstraints. For instan
e, if the fun
tion f isde�ned as in Example 2, then the expressiontry(\X -> ff(X)=dg)redu
es to the list [\X->fX=a,
=dg, \X->fX=b,d=dg℄. This example alsoshows why the sear
h variable must be abstra
ted: the alternative bindings
an-not be a
tually performed (sin
e a variable is only bound to at most one valuein ea
h
omputation thread) but are represented as equational
onstraints inthe sear
h goal. Note that the sear
h goals in the result list are not furtherevaluated. The further evaluation
an be done by a subsequent appli
ationof try to the list elements. This allows the expli
it
ontrol of the strategy toexplore the sear
h tree. It will be dis
ussed in more detail in Se
tion 4.8 If the base language does not provide fun
tions, like Prolog, we
an also implementtry as a binary predi
ate where the se
ond argument denotes the result.7

try(g) =
8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

[℄ if f
g) fail[g0℄ if f
g) � fg (i.e., � is a mgu for all equations in
) withDom(�) � fx; x1; : : : ; xng, g0 = \x->letx1; : : : ; xn free in f�gtry(g0) if f
g) � f
0g with Dom(�) � fx; x1; : : : ; xngand g0 = \x->let x1; : : : ; xn; y1; : : : ; ym free in f�;
0gwhere fy1; : : : ; ymg = VRan(�) n (fx; x1; : : : ; xng [Var(g))[g1,...,gk℄ if f
g) �1 f
1g| � � � |�k f
kg, k > 1, and, for i = 1; : : : ; k,Dom(�i) � fx; x1; : : : ; xng andgi = \x->let x1; : : : ; xn; y1; : : : ; ymi free in f�i;
igwhere fy1; : : : ; ymig = VRan(�i) n (fx; x1; : : : ; xng [Var(g))suspend otherwiseFig. 1. Operational semanti
s of the try operator for g = \x->letx1; : : : ; xn free in f
g3.2 Lo
al VariablesSome
are is ne
essary if free variables o

ur in a sear
h goal, as in\E -> fappend(L,[E℄)=[3,4,5℄g (�)To
ompute the last element E of the list [3,4,5℄ with this goal, the variable Lmust be instantiated whi
h is problemati
 sin
e L is free. There are di�erent possib-ilities to deal with this
ase. In Prolog's bagof/setof predi
ates, free variables are(possibly non-deterministi
ally!) instantiated and then remain instantiated withthis value, whi
h does not help to really en
apsulate all sear
h and sometimes leadsto unexpe
ted results. Another ad-ho
 method is to
onsider a try appli
ation toa sear
h goal
ontaining free variables as a run-time error. Sin
e Curry as wellas most Prolog systems is equipped with
oroutining fa
ilities, we take anothersolution and require that the try operator never binds free variables of its sear
hgoal. If it is ne
essary to bind a free variable in order to pro
eed a try evaluation,the
omputation suspends. Thus, a try appli
ation to the sear
h goal (�)
annotbe evaluated and suspends until the variable L is bound.To allow possible bindings of unbound variables during a lo
al sear
h, they
anbe de
lared as lo
al to the
onstraint so that they might have di�erent bindingsin di�erent bran
hes of the sear
h. For instan
e, we start the evaluation oftry(\E -> let L free in fappend(L,[E℄)=[3,4,5℄g) (��)to
ompute the last element of the list [3,4,5℄. Now the variable L is only visibleinside the
onstraint (i.e., existentially quanti�ed) and
an be bound to di�erentvalues in di�erent bran
hes. Therefore, the expression (��) evaluates to[\E -> let L free in fL=[℄, [E℄=[3,4,5℄g,\E -> let L,X,Xs free in fL=[X|Xs℄, [X|append(Xs,[E℄)℄=[3,4,5℄g℄The new variables X and Xs (introdu
ed by uni�
ation) are also added to the listof lo
al variables so that they
an be further instantiated in subsequent steps.The exa
t behavior of the try operator is spe
i�ed in Figure 1. Thus, thesear
h goal is solved (se
ond
ase) if the
onstraint is solvable without bindings ofglobal variables. In a deterministi
 step (third
ase), we apply the try operator8

again after adding the newly introdu
ed variables to the list of lo
al variables.Note that the free variables Var(g) o

urring in g must not be de
lared as lo
albe
ause they
an appear also outside of g, and therefore they have to be removedfrom VRan(�). In a non-deterministi
 step (fourth
ase), we return the di�erentalternatives as the result. If a
omputation step on the
onstraint tries to bind afree variable, the evaluation of the try operator suspends. In order to ensure thatan en
apsulated sear
h will not be suspended due to ne
essary bindings of freevariables, the sear
h goal should be a
losed expression when a sear
h operator isapplied to it, i.e., the sear
h variable is bound by the lambda abstra
tion and allother variables are existentially quanti�ed by lo
al de
larations.Note that the operational semanti
s of the try operator depends only on themeaning of
omputation steps of the underlying language. Thus, it
an be intro-du
ed in a similar way to other logi
-oriented languages than Curry.9 Althoughthe management and testing of lo
al variable bindings look
ompli
ated, it
an beeÆ
iently implemented by de
orating ea
h variable with a de
laration level and
he
king the level in binding attempts (similarly to the implementation of s
op-ing
onstru
ts in logi
 languages [12℄). Moreover, the equational representations�i of the substitutions need not be expli
itly implemented but
an be impli
itlyrepresented by binding lists for the variables.4 Sear
h StrategiesThe sear
h
ontrol operator try introdu
ed in the previous se
tion is a basis to im-plement powerful and easily appli
able sear
h strategies. This se
tion demonstratesthe use of try to implement some sear
h strategies in Curry. These strategies
anbe de�ned in a similar way in other de
larative languages. However, we will showin Se
tion 6 that Curry's lazy evaluation strategy
an be exploited to simplify theappli
ation of sear
h operators.The following fun
tion de�nes a depth-�rst sear
h strategy whi
h
olle
tsall solutions of a sear
h goal in a list:all(G) =
olle
t(try(G))where
olle
t([℄) = [℄
olle
t([G℄) = [G℄
olle
t([G1,G2|Gs℄) =
on
at(map(all,[G1,G2|Gs℄))The auxiliary fun
tion
olle
t applies re
ursively all to all resulting alternat-ives of a non-deterministi
 step and appends all solutions in a single list (
on
at
on
atenates a list of lists to a single list and map applies a fun
tion to all elementsof a list). Thus, the expressionall(\L->fappend(L,[1℄)=[0,1℄g)redu
es to [\L->fL=[0℄g℄.Due to the laziness of Curry, sear
h goals with in�nitely many solutions
auseno problems if one is interested only in �nitely many of them. A fun
tion whi
h9 For
on
urrent languages, one
ould modify the de�nition of try su
h that non-deter-ministi
 steps lead to a suspension as long as a deterministi
 step might be enabled byanother
omputation thread. This
orresponds to stability in AKL [8℄ and Oz [15℄.9

omputes only the �rst solution w.r.t. a depth-�rst sear
h strategy
an be simplyde�ned byon
e(G) = first(all(G))Note that on
e is a partial fun
tion, i.e., it is unde�ned if G has no solution.The value
omputed for the sear
h variable in a sear
h goal
an be easilya

essed by applying it to an unbound variable. For instan
e, the evaluation of theappli
ative expressionon
e(\L->fappend(L,[1℄)=[0,1℄g)� X(F�E denotes the appli
ation of a fun
tion F to some E, where F and E
an bearbitrary expressions) binds the variable X to the value [0℄, sin
e the �rst subex-pression evaluates to \L->fL=[0℄g and the
onstraint fX=[0℄g obtained by theappli
ation of this expression to X
an only be solved by this binding. Based onthis idea, we
an de�ne a fun
tion unpa
k that takes a list of solved sear
h goalsand
omputes the list of the
orresponding values for the sear
h variable:unpa
k([℄) = [℄unpa
k([G|Gs℄) | fG�Xg = [X|unpa
k(Gs)℄ where X freeNow it is simple to de�ne a fun
tion similarly to Prolog's findall predi
ate:findall(G) = unpa
k(all(G))For a sear
h goal without free variables, findall explores the sear
h tree (depth�rst) and
olle
ts all
omputed values for the sear
h variable in a list.A bounded sear
h strategy, where sear
h is performed only up to a givendepth n in the sear
h tree,
an also be easily implemented when we
onsider sear
htrees
ontaining only the nodes for non-deterministi
 steps. This means that sear
hwill not end after n arbitrary redu
tion steps but only after n non-deterministi
steps. The following fun
tion is very similar to the fun
tion all but explores thesear
h goal G only up to depth N.all_bounded(N,G) = if N>1 then
olle
t(try(G)) else [℄ where
olle
t([℄) = [℄
olle
t([G℄) = [G℄
olle
t([G1,G2|Gs℄) =
on
at(map(all_bounded(N-1),[G1,G2|Gs℄))Note that the algorithm may not terminate if an in�nite deterministi
 redu
tiono

urs (whi
h is seldom in pra
ti
al sear
h problems) be
ause the sear
h operatorwill never return a result in this
ase. The same
an happen with the next algorithmimplementing a breadth-�rst sear
h strategy that traverses the sear
h tree levelby level and ea
h level from left to right, regarding as level n all goals obtainedfrom the sear
h goal after n non-deterministi
 steps.all_bfs(G) = trygoals([G℄) wheretrygoals([℄) = [℄trygoals([G|Gs℄) = splitgoals(map(try,[G|Gs℄),[℄)splitgoals([℄ ,Ugs) = trygoals(Ugs)splitgoals([[℄|Gs℄ ,Ugs) = splitgoals(Gs,Ugs)splitgoals([[G℄|Gs℄ ,Ugs) = [G|splitgoals(Gs,Ugs)℄splitgoals([[G1,G2|G3℄|Gs℄,Ugs) = splitgoals(Gs,append(Ugs,[G1,G2|G3℄))10

The fun
tion trygoals applies the sear
h operator to the list of remaining altern-atives and s
ans the result (a list of lists) using the fun
tion splitgoals, whi
hremoves failures and returns all solutions
omputed so far. Then the remaininggoals, whi
h result from non-deterministi
 steps, are re
ursively explored further.Similarly, one
an also implement other sear
h strategies like depth-�rst iterativedeepening or best solution sear
h with bran
h and bound [15℄. Moreover, a par-allel fair sear
h for the �rst or all solutions
an be implemented with our sear
hprimitive and a
ommitted
hoi
e [15℄ (whi
h is also available in Curry). To showthe use of en
apsulated sear
h to
ontrol the failure of
omputations, we de�nea fun
tion on
onstraints whi
h implements negation as �nite failure knownfrom logi
 programming:naf(C) = fall(_->fCg) = [℄gThus, if C is a
onstraint where all variables are existentially quanti�ed, thennaf(C) is solvable i� the sear
h spa
e of solving C is �nite and does not
ontainany solution.5 Sear
h Trees and Sear
h OperatorsIn this se
tion we sket
h the
onne
tion between the sear
h trees of the baselanguage and the results
omputed by some of the sear
h operators de�ned above.More details
an be found in [4℄.The notion of a sear
h tree w.r.t.)
an be de�ned as in logi
 programming[9℄, i.e., ea
h node is marked with a
onstraint, and if an inner node N is markedwith
 and
) �1;
1| � � � |�k;
k is a
omputation step of the base language, thenN has k sons N1; : : : ; Nk where Ni is marked with
i and the edge from
 to
i ismarked with �i (i = 1; : : : ; k). In
ase of logi
 programming, where) denotes aresolution step with all resolvents for a goal, sear
h trees w.r.t.) are similar toSLD-trees [9℄. Leaves are nodes marked with a
onstraint
 that
annot be furtherderived. The leaf is su

essful if
 is the empty
onstraint (in this
ase we
all the
omposition of all substitutions marked along the bran
h from the root to this leafa)-
omputed answer for the
onstraint at the root of the tree). The leaf is failedif f
g) fail. All other leaves are suspended.The following theorems relate sear
h trees w.r.t.) to results
omputed bysome of the sear
h operators (here we assume the fun
tional de�nition as givenin the previous se
tion, but these properties
an be also transferred to otherde�nitions, e.g., in a relational style). To simplify the formulation of the theor-ems, we represent a sear
h goal as a triple (V; �;
) where V = fx1; : : : ; xng isa set of variables, � is a substitution and
 is a
onstraint. This
orresponds to_->let x1; : : : ; xn free in f�,
g in the representation introdu
ed in Se
tion 3,i.e., here we ignore the spe
ial rôle of the sear
h variable sin
e it is not importantfor the results in this se
tion. In order to avoid the problem of suspension due tone
essary bindings of free variables, we
onsider only initial sear
h goals where allvariables are existentially quanti�ed.The �rst theorem states the soundness of the all operator.11

Theorem 1 (Soundness of \all"). Let
 be a
onstraint and g = (Var(
); id;
).If all(g) evaluates to a list [(V1; �1;
1),(V2; �2;
2),...℄, then ea
h
i is anempty
onstraint, ea
h �i is a)-
omputed answer for
 and Var(
)[VRan(�i) �Vi.The
onverse result does not hold in general due to in�nite bran
hes in the sear
htree, sin
e all implements a depth-�rst sear
h through the tree. However, we
anstate a
ompleteness result for the
ase of �nite sear
h trees.Theorem 2 (Completeness of \all" for �nite sear
h trees). Let
 be a
onstraint and � be a)-
omputed answer for
. If the sear
h tree with root
 is�nite, then all((Var(
); id;
)) evaluates to a list [(V1; �1;
1),...,(Vn; �n;
n)℄,where �i = � for some i 2 f1; : : : ; ng.A
orollary of this theorem is the
ompleteness of the negation-as-failure operator.Corollary 1 (Completeness of \naf" for �nite sear
h trees). Let
 be a
onstraint. If the sear
h tree with root
 is �nite and
ontains only failed leaves,then naf(
) is a solvable
onstraint.A further interesting result is the
ompleteness of the breadth-�rst sear
h strategyall_bfs. As already dis
ussed, this strategy may be in
omplete in
ase of in�nitedeterministi
 evaluations. Therefore, we
all a sear
h tree deterministi
ally termin-ating if there is no in�nite bran
h where ea
h inner node has exa
tly one su

essor.Ex
luding this
ase, whi
h is seldom in pra
ti
al sear
h problems, we
an state thefollowing
ompleteness result.Theorem 3 (Completeness of \all_bfs"). Let
 be a
onstraint and � bea)-
omputed answer for
. If the sear
h tree with root
 is deterministi
allyterminating, then all_bfs((Var(
); id;
)) evaluates to a (possibly in�nite) list[(V1; �1;
1),(V2; �2;
2),...℄, where �i = � for some i > 0.6 Exploiting LazinessWe already exploited the advantages of Curry's lazy evaluation strategy by de�ningthe sear
h for the �rst solution (on
e) based on the general depth-�rst sear
hstrategy all. This shows that lazy evaluation
an redu
e the programming e�orts.Furthermore, it is well known from fun
tional programming that lazy evaluationprovides more modularity by separating
ontrol aspe
ts [7℄. We want to emphasizethis advantage by an implementation of Prolog's top-level shell with our sear
hoperator.The intera
tive
ommand shell of a Prolog interpreter roughly behaves as fol-lows. If the user types in a goal, a solution for this goal is
omputed by the standarddepth-�rst sear
h strategy. If a solution is found, it is presented to the user who
an de
ide to
ompute the next solution (by typing `;' and <return>) or to ignorefurther solutions (by typing <return>). This behavior
an be easily implementedwith our sear
h operator: 12

prolog(G) = printloop(all(G))printloop([℄) = putStr("no") >> newlineprintloop([A|As℄) = browse(A) >> putStr("? ")>> getChar >>= evalAnswer(As)evalAnswer(As,';') = newline >> printloop(As)evalAnswer(As,'\n') = newline >> putStr("yes") >> newlineHere we make use of the monadi
 I/O
on
ept dis
ussed at the beginning of Se
-tion 3. The result of browse(A) is an a
tion whi
h prints a solution on the s
reen.Similarly, putStr and newline are a
tions to print a string or an end-of-line. >>and >>= are the sequential
omposition operators for a
tions [18℄. The se
ond argu-ment of >>= must be a fun
tion whi
h takes the result value of the �rst a
tion andmaps this value to another a
tion. The expression \evalAnswer(As)" is a partiallyapplied fun
tion
all, i.e., it is a fun
tion whi
h takes a further argument (a
hara
-ter) and produ
es an a
tion: if the
hara
ter is ';', the next solution is
omputedby a
all to printloop(As), and if the
hara
ter is a <return> ('\n'), then the
omputation �nishes with an a
tion to print the string "yes". Note that disjun
-tions do not o

ur in the printloop evaluation sin
e potential non-deterministi

omputation steps of the goal G are en
apsulated with all(G).Sin
e the solutions for the goal are evaluated by all in a lazy manner, onlythose solutions are
omputed whi
h are requested by the user. This has the advant-age that the user interfa
e to present the solutions (printloop)
an be implemen-ted independently of the me
hanism to
ompute solutions. In an eager languagelike Prolog, the
omputation of the next solution must be interweaved with theprint loop, otherwise all solutions are
omputed (whi
h may not terminate) beforethe print loop is
alled, or only one standard strategy
an be used. Our imple-mentation is independent of the parti
ular sear
h strategy, sin
e the followingfun
tions use the same top-level shell but bounded and breadth-�rst sear
h to �ndthe solutions:prolog_bounded(N,G) = printloop(all_bounded(N,G))prolog_bfs(G) = printloop(all_bfs(G))7 Related WorkThis se
tion brie
y
ompares our operator for
ontrolling non-deterministi

om-putations with some related methods.Prolog provides built-in predi
ates for
omputing all solutions, like bagof,setof, or findall. As shown in Se
tion 4, they
an be easily implemented withour
ontrol primitive, provided that all variables are existentially quanti�ed. Onthe other hand, the sear
h strategy in these predi
ates is �xed to Prolog's depth-�rst sear
h and they always
ompute all solutions, i.e., they do not terminate ifthere are in�nitely many solutions. In parti
ular, they
annot be used in situationswhere not all solutions are immediately pro
essed, like in an intera
tive shell wherea demand-driven
omputation be
omes important (
f. Se
tion 6).The lazy fun
tional language Haskell [6℄ supports the use of list
omprehen-sions to deal with sear
h problems. List
omprehensions allow the implementation13

of many generate-and-test programs, sin
e logi
 programs with a stri
t data
ow(\well-moded programs")
an be translated into fun
tional programs by the use oflist
omprehensions [17℄. On the other hand, list
omprehensions are mu
h morerestri
ted than our sear
h operators, sin
e purely fun
tional programs do not allowthe use of partially instantiated stru
tures, and list
omprehensions �xes a par-ti
ular sear
h strategy (diagonalization of the generators) so that other strategies(like best solution sear
h)
annot be applied.The higher-order
on
urrent
onstraint language Oz [16℄ provides a primit-ive operator to
ontrol sear
h [15℄ similarly to ours. A
tually, our operator trygeneralizes Oz's operator sin
e try is not
onne
ted to a
onstru
t of the lan-guage (like or expressions in Oz) but its semanti
s is de�ned on the meaning of
omputation steps of the base language. This has an important
onsequen
e of theprogramming style and
auses a signi�
ant di�eren
e between both
on
epts whi
hshould be explained in the following. An Oz programmer must expli
itly spe
ifyin the program whether a sear
h operator should later be appli
able or not. Anon-deterministi
 step
an be performed in Oz only if an expli
it disjun
tion (oror
hoi
e, see [14, 15℄) o

urs in a pro
edure. As a
onsequen
e, programs must bewritten in di�erent ways depending on the use of sear
h operators. The followingsimpli�ed example explains this fundamental di�eren
e to our approa
h in moredetail. Consider the multipli
ation with zero de�ned by the following rules:mult(X,z) = zmult(z,X) = zThen expressions like mult(z,z) or mult(add(z,z),z)
an be redu
ed to z withone deterministi
 redu
tion step using the �rst rule.10In Oz, there are two implementation
hoi
es by using a
onditional (mult
) ora disjun
tion (multd):pro
 fmult
 A B Cg pro
 fmultd A B Cgif B=z then C=z or B=z then C=z[℄ A=z then C=z [℄ A=z then C=zfi roend endConditionals
ommit to single
omputation bran
hes, e.g., fmult
 z z Xg redu
esto the
onstraint X=z. However, we
annot use mult
 if we want to
ompute solu-tions to a goal like fmult
 X Y zg sin
e the
onditions in an if are only
he
kedfor entailment. Thus, we have to take the disjun
tive formulation multd wherewe
an
ompute a solution using some sear
h operator [15℄. On the other hand,the advantages of deterministi
 redu
tions are lost in multd, sin
e the expressionfmultd z z Xg is only
omputable with a sear
h operator (a disjun
tion is notredu
ed until all but at most one
lause fails [15℄). Therefore, one has to implementmult twi
e to
ombine the deterministi
 redu
tion and sear
h possibilities.10 Although one
ould also apply the se
ond rule in this situation, sophisti
ated oper-ational models for fun
tional logi
 programming exploit the determinism property offun
tions: if a fun
tion
all is redu
ible (i.e., a rule is appli
able without instantiatingarguments), then all other alternative rules
an be ignored [2, 11℄.14

In
ontrast to Oz, the de�nition of our
ontrol operator is based on the meaningof
omputation steps, i.e., the possible appli
ation of sear
h operators does notin
uen
e the way how the basi
 fun
tions or predi
ates are de�ned. This propertykeeps the de
larative style of programming, i.e., fun
tion de�nitions des
ribe themeaning of fun
tions and
ontrol aspe
ts are
overed by sear
h operators. Thus,fun
tions or predi
ates
an be de�ned independently of their later appli
ation,and expli
it disjun
tions are not ne
essary. The latter property also allows to writemore predi
ates as fun
tions whi
h leads to potentially more eÆ
ient exe
utions ofprograms. Furthermore, the laziness of Curry allows the implementation of sear
hstrategies independently of their appli
ation, e.g., demand-driven variants of sear
hstrategies (see [15℄) are not ne
essary in our framework sin
e the user interfa
e
anbe implemented independently of the sear
h strategy, as shown in Se
tion 6.8 Con
lusionsWe have presented a new primitive whi
h
an be added to logi
 languages in orderto
ontrol the exploration of the sear
h tree. This operator, whi
h
an be seen as ageneralization of Oz's sear
h operator [15℄,
an be added to any logi
-oriented lan-guage whi
h supports equational
onstraints and existential quanti�
ation. In thispaper, we have added it to the multi-paradigm language Curry and we have shownthe advantages of Curry's lazy evaluation strategy to simplify the implementationof the di�erent sear
h operators. Sin
e the sear
h operators
an be applied to anyexpression (en
apsulated in a
onstraint), there is no need to translate fun
tionsinto predi
ates or to use expli
it disjun
tions as in other approa
hes.Sin
e the de�nition of our
ontrol primitive is only based on an abstra
t view of
omputation steps (deterministi
 vs. non-deterministi
 steps), it
an be applied toa variety of programming languages with a non-deterministi

omputation model,like pure logi
 or
onstraint logi
 languages (extended by existential quanti�erslike in Prolog's bagof/setof
onstru
t), higher-order logi
 languages like �Prolog[13℄ whi
h already has expli
it s
oping
onstru
ts for variables, or the variousfun
tional logi
 languages whi
h often di�er only in the de�nition of a
omputationstep. The general
onne
tion between sear
h trees of the base language and theresults
omputed by the sear
h operators, whi
h is also provided in this paper,supports the transfer of soundness and
ompleteness results for the base languageto
orresponding results for the sear
h operators.The use of sear
h operators supports the embedding of logi
 programs intoother appli
ation programs where ba
ktra
king is not possible or too
ompli
ated(e.g., programs with side e�e
ts, input/output) sin
e sear
h operators allow thelo
al en
apsulation of sear
h. Furthermore, they
ontribute to an old idea of logi
programming by separating logi
 and
ontrol: the spe
i�
ation of fun
tions orpredi
ates be
omes more independent of their use sin
e the same fun
tion
an beused for evaluation (
omputing values) or for sear
hing (
omputing solutions) withvarious strategies without the ne
essity to de�ne them in di�erent ways. As shownin Se
tion 6, this feature enables to simply repla
e the standard depth-�rst sear
hby a bounded or breadth-�rst sear
h in the user interfa
e. This is quite useful totea
h logi
 programming without talking about ba
ktra
king too early.15

Referen
es1. S. Antoy, R. E
hahed, and M. Hanus. A Needed Narrowing Strategy. In Pro
. 21stACM Symposium on Prin
iples of Programming Languages, pp. 268{279, Portland,1994.2. M. Hanus. Lazy Narrowing with Simpli�
ation. Computer Languages, Vol. 23, No. 2{4, pp. 61{85, 1997.3. M. Hanus. A Uni�ed Computation Model for Fun
tional and Logi
 Programming. InPro
. of the 24th ACM Symposium on Prin
iples of Programming Languages (Paris),pp. 80{93, 1997.4. M. Hanus and F. Steiner. Controlling Sear
h in De
larative Programs. Te
hni
alReport, RWTH Aa
hen, 19985. M. Hanus (ed.). Curry: An Integrated Fun
tional Logi
 Language. Available athttp://www-i2.informatik.rwth-aa
hen.de/~hanus/
urry, 1998.6. P. Hudak, S. Peyton Jones, and P. Wadler. Report on the Programming LanguageHaskell (Version 1.2). SIGPLAN Noti
es, Vol. 27, No. 5, 1992.7. J. Hughes. Why Fun
tional Programming Matters. In D.A. Turner, editor, Resear
hTop
is in Fun
tional Programming, pp. 17{42. Addison Wesley, 1990.8. S. Janson and S. Haridi. Programming Paradigms of the Andorra Kernel Language.In Pro
. 1991 International Logi
 Programming Symposium, pp. 167{183. MIT Press,1991.9. J.W. Lloyd. Foundations of Logi
 Programming. Springer, se
ond, extended edition,1987.10. R. Loogen, F. Lopez Fraguas, and M. Rodr��guez Artalejo. A Demand Driven Com-putation Strategy for Lazy Narrowing. In Pro
. of the 5th International Symposiumon Programming Language Implementation and Logi
 Programming, pp. 184{200.Springer LNCS 714, 1993.11. R. Loogen and S. Winkler. Dynami
 Dete
tion of Determinism in Fun
tional Logi
Languages. Theoreti
al Computer S
ien
e 142, pp. 59{87, 1995.12. G. Nadathur, B. Jayaraman, and K. Kwon. S
oping Constru
ts in Logi
 Program-ming: Implementation Problems and their Solution. Journal of Logi
 Programming,Vol. 25, No. 2, pp. 119{161, 1995.13. G. Nadathur and D. Miller. An overview of �Prolog. In Pro
. 5th Conferen
e onLogi
 Programming & 5th Symposium on Logi
 Programming (Seattle), pages 810{827. MIT Press, 1988.14. C. S
hulte. Programming Constraint Inferen
e Engines. In Pro
. of the Third In-ternational Conferen
e on Prin
iples and Pra
ti
e of Constraint Programming, pp.519{533. Springer LNCS 1330, 1997.15. C. S
hulte and G. Smolka. En
apsulated Sear
h for Higher-Order Con
urrent Con-straint Programming. In Pro
. of the 1994 International Logi
 Programming Sym-posium, pp. 505{520. MIT Press, 1994.16. G. Smolka. The Oz Programming Model. In J. van Leeuwen, editor, ComputerS
ien
e Today: Re
ent Trends and Developments, pp. 324{343. Springer LNCS 1000,1995.17. P. Wadler. How to Repla
e Failure by a List of Su

esses. In Fun
tional Programmingand Computer Ar
hite
ture. Springer LNCS 201, 1985.18. P. Wadler. How to De
lare an Imperative. In Pro
. of the 1995 International Logi
Programming Symposium, pp. 18{32. MIT Press, 1995.16

