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Abstract. Languages that integrate functional and logic programming
styles with a complete operational semantics are based on narrowing. In
order to avoid useless computations and to deal with infinite data struc-
tures, lazy narrowing strategies have been proposed in the past. This
paper presents an important improvement of lazy narrowing by incorpo-
rating deterministic simplification steps into lazy narrowing derivations.
These simplification steps reduce the search space so that in some cases
infinite search spaces are reduced to finite ones. We show that the com-
pleteness of lazy narrowing is not destroyed by the simplification process
and demonstrate the improved operational behavior by means of several
examples.

1 Introduction

In recent years, a lot of proposals have been made to amalgamate functional and
logic programming languages [19]. Functional logic languages with a sound and
complete operational semantics are based on marrowing, a combination of the
reduction principle of functional languages and the resolution principle of logic
languages. Narrowing, originally introduced in automated theorem proving [34],
is used to solve equations by finding appropriate values for variables occurring
in arguments of functions. This is done by unifying (rather than matching) an
input term with the left-hand side of some rule and then replacing the instantiated
input term by the instantiated right-hand side of the rule.

Ezxample 1. Consider the following rules defining the addition of two natural num-
bers which are represented by terms built from 0 and s:

0O0+N — N (Rl)
s(M) + N — s(M + N) (R2)
The equation X+s(0)=s(s(0)) can be solved by a narrowing step with rule Rs
followed by a narrowing step with rule R; so that X is instantiated to s(0) and
the instantiated equation is reduced to the trivial equation s(s(0))~s(s(0)):
X+s(0)ms(s(0)) ~x san)y sM+s(0))=s(s(0)) ~ iy ,0y s(s(0))=s(s(0))
Hence we have found the solution X+s(0) to the given equation. a
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In order to ensure completeness in general, the left-hand side of each rule must
be unified with each non-variable subterm of the given equation. Clearly, this
yields a huge search space. The situation can be improved by particular nar-
rowing strategies which restrict the possible positions for the application of the
next narrowing step, e.g., basic [22], innermost [13], outermost [10], lazy [32], or
needed narrowing [2]. In this paper we consider a lazy narrowing strategy where
narrowing steps are applied at outermost positions in general and at an inner
position only if it is demanded and contributes to some later narrowing step at
an outer position. Similarly to pure functional programming, such a lazy strat-
egy avoids some useless steps in comparison to an eager strategy. However, in the
context of functional logic programming a lazy narrowing strategy can also have
an unpleasant behavior if a demanded argument term has infinitely many head
normal forms (i.e., if it can be derived to infinitely many terms with a variable
or constructor at the top).

Example 2. Consider the following rules which may be part of a program for
arithmetic operations:

0O*xN —=0 (R3) one(0) — s(0) (Rs)
N*x0—=0 (R4) one(s(N)) — one(N) (Rs)

If we want to compute a solution to the equation one (X) *0x0 by lazy narrowing,
we could try to apply rule Rz to evaluate the left-hand side. In this case the
first argument one(X) is demanded and must be evaluated to a term with a
constructor at the top. Unfortunately, there are infinitely many possibilities to
compute a head normal form s(0) of the term one(X) by instantiating X with
s(---s(0) ---) for arbitrary n. Hence lazy narrowing has an infinite search space

in tnhis example and does not compute a solution in a sequential implementation
(see [15] for a discussion of problems with sequential implementations of lazy
narrowing). However, we could avoid this infinite search space by computing the
normal form of both sides of the equation before applying a narrowing step. The
normal form of the initial equation is 0x0 (reduction of the left-hand side with
rule Ry) which is trivially true. O

The idea of reduction to normal form before applying a narrowing step has been
mainly proposed with respect to eager narrowing strategies [12, 13, 21, 30, 33].
It has been shown that eager narrowing with normalization is a more efficient
control strategy than left-to-right SLD-resolution for equivalent logic programs
[13, 18]. The main contribution of this paper is the combination of lazy narrowing
with intermediate simplification steps. We show that this combination does not
destroy the completeness of lazy narrowing and discuss its usefulness for various
classes of functional logic programs. The previous example has shown that the
integration of simplification can improve the operational behavior of lazy narrow-
ing if there are rules with overlapping left-hand sides, but we will also provide
examples where all rules have non-overlapping left-hand sides.

In the next section we recall basic notions from term rewriting and functional
logic programming. In Section 3 we show how to include a deterministic simpli-



fication process into lazy narrowing derivations. Finally, we discuss in Section 4
the usefulness of this simplification process for different classes of functional logic
programs.

2 Preliminaries

In this section we recall basic notions of term rewriting [7] and functional logic
programming [19].

A signature is a set F of function symbols.? Every f € F is associated with an
arity n, denoted f/n. Let X be a countably infinite set of variables. Then the set
T (F,X) of terms built from F and X is the smallest set containing X such that
f(t1,-..,ty) € T(F,X) whenever f € F has arity n and ¢1,...,t, € T(F,X).
We write f instead of f() whenever f has arity 0. The set of variables occurring
in a term ¢ is denoted by Var(t). A term ¢ is called ground if Var(t) = 0.

Usually, functional logic programs are constructor-based, i.e., a distinction is
made between operation symbols to construct data terms, called constructors,
and operation symbols to operate on data terms, called defined functions or op-
erations (see, for instance, the functional logic languages ALF [16], BABEL [29],
K-LEAF [14], SLOG [13]). Hence we assume that the signature F is partitioned
into two sets F = CUD with CND = 0. A constructor term t is built from
constructors and variables, i.e., t € T(C, X).

A (rewrite) rule | — r is a pair of terms [ and r satisfying Var(r) C Var(l)
where [ has the form f(t1,...,t,) with f € D and t1,...,t, € T(C,X). | and
r are called left-hand side and right-hand side, respectively.> A rule is called a
variant of another rule if it is obtained by a unique replacement of variables by
other variables. A term rewriting system R is a set of rules.

The execution of functional logic programs requires notions like substitution,
unifier, position etc. A substitution o is a mapping from X into T (F,X) such
that the set {x € X | o(z) # x} is finite. We frequently identify a substitution
o with the set {z — o(x) | o(z) # z}. Substitutions are extended to morphisms
on T(F,X) by o(f(tr,...,tn)) = f(o(t1),...,0(tn)) for every term f(t1,...,tn).
A wunifier of two terms s and ¢ is a substitution o with o(s) = o(t). A unifier o
is called most general (mgu) if for every other unifier ¢’ there is a substitution
¢ with ¢/ = ¢ o o (concatenation of o and ¢). Most general unifiers are unique
up to variable renaming. By introducing a total ordering on variables we can
uniquely choose the most general unifier of two terms. A position p in a term ¢
is represented by a sequence of natural numbers, #|, denotes the subterm of ¢ at
position p, and t[s], denotes the result of replacing the subterm t|, by the term
s (see [7] for details).

2 In this paper we consider only single-sorted programs. The extension to many-sorted
signatures is straightforward [31]. Since sorts are not relevant to the subject of this
paper, we omit them for the sake of simplicity.

3 For the sake of simplicity we consider only unconditional rules, but our results can
easily be extended to conditional rules with the restrictions of the functional logic
language BABEL [29].



A rewrite step is an application of a rewrite rule to a term, i.e., t =5 s if there
exist a position p in ¢, a rewrite rule I — r and a substitution o with ¢|, = o(I)
and s = t[o(r)],. In this case we say t is reducible (at position p). A term t is
called irreducible or in normal form if there is no term s with ¢t = s.

—% denotes the transitive-reflexive closure of the rewrite relation —%. R is
called terminating if there are no infinite rewrite sequences t| =g t2 =R t3 =>r
---. R is called confluent if for all terms ¢, ¢, to with t =% ¢; and t =% o there
exists a term t3 with £, =% t3 and £, =% 3.

If R is confluent and terminating, normal forms uniquely exist and we can
decide the validity of an equation s = t by computing the normal form of both
sides using an arbitrary sequence of rewrite steps. In order to solve an equation,
we have to find appropriate instantiations for the variables in s and ¢. This can
be done by narrowing. A term t is marrowable into a term t' if there exist a
non-variable position p in ¢ (i.e., t|, € X'), a variant | — r of a rewrite rule with
Var(t) N Var(l) = B, a substitution ¢ such that o is a most general unifier of ¢|,
and [, and ¢’ = o(t[r],). In this case we write t ~», t'.4

Narrowing is able to solve equations w.r.t. R by deriving both sides of an
equation to syntactically unifiable terms [22]. Due to the huge search space of
simple narrowing, several authors have proposed restrictions on the admissible
narrowing derivations like basic narrowing [22], innermost narrowing [13], or out-
ermost narrowing [10]. Lazy narrowing [5, 27, 32] is influenced by the idea of
lazy evaluation in functional programming languages. Lazy narrowing steps are
applied to outermost positions with the exception that arguments are evaluated
by narrowing to their head normal form if their values are demanded for an
outermost narrowing step (see [29] for an exact definition of a lazy narrowing
position). Lazy narrowing has at least two advantages in comparison to other
narrowing strategies:

1. Since lazy narrowing applies narrowing steps at inner positions only if it is
demanded by some rule, useless narrowing steps (steps at inner positions
which do not contribute to the result) are avoided.?

2. Since lazy narrowing evaluates functions only if their results are demanded,
it can deal with nonterminating functions and infinite data structures. The
other narrowing strategies cited above require a terminating set of rewrite
rules and cannot deal with infinite data structures.

The next example should emphasize the latter point.

Example 3. The following rules define a function from(N) which computes an
infinite list of naturals starting from N and a function first (N,L) which computes
the first N elements of the list L:

from(N) — [N|from(s(N))]

* Since the instantiation of the variables in the rule [ — r by o is not relevant for
the computed solution of a narrowing derivation, we will omit this part of o in the
example derivations in this paper.

® To be precise, the avoidance of useless narrowing steps depends on the lazy narrowing
strategy. Although this is one of the motivations of all lazy strategies, the only strategy
for which this property has been formally proved is needed narrowing [2].



first(0,L) — []
first(s(N),[EIL]) — [Elfirst(N,L)]

Then lazy evaluation of the expression first(s(s(0)),from(0)) yields the re-
sult [0,s(0)] while an eager evaluation does not terminate due to the nontermi-
nating eager evaluation of from(0). Similarly, lazy narrowing applied to the equa-
tion first(X,from(Y))=[0,s(0)] computes the solution {X—s(s(0)),Y—0}
while an eager narrowing strategy runs into an infinite loop. |

Since narrowing applies rules only in one direction from left to right, the conflu-
ence of the rewrite relation is an essential requirement for the completeness of
all narrowing strategies. But confluence is an undecidable property of a rewrite
system if it is not terminating. Therefore functional logic languages based on a
lazy evaluation strategy have the following requirements on the rewrite rules in
order to ensure completeness:

1. Left-linearity: All rules are left-linear, i.e., no variable appears more than
once in the left-hand side of any rule.

2. Nonambiguity: If Iy — r1 and Il — 72 are two different rules, then [y and I
are not unifiable (strong nonambiguity), or if I; and Iy have a most general
unifier o, then o(r;) and o(rs) are identical (weak nonambiguity).

These conditions ensure the uniqueness of normal forms if they exist. Due to the
presence of nonterminating functions, the completeness results for lazy strategies
are stated with respect to domain-based interpretations of rewrite rules [14, 29].
In particular, the equality of two expressions holds only if both sides are reducible
to the same ground constructor term.

The nonambiguity condition does not exclude applications from logic pro-
gramming. In fact, if we allow also conditional rules (as in BABEL [29]), any
logic program can be translated into a set of weakly nonambiguous rules by
representing predicates as Boolean functions [29].

Another important improvement of simple narrowing is normalizing narrow-
ing [12] where the term is rewritten to its normal form before a narrowing step
is applied. This optimization is important since it prefers deterministic computa-
tions: rewriting a term to normal form can be done in a deterministic way since
every rewriting sequence yields the same result (if R is confluent and terminat-
ing). As shown in [13, 18], normalizing narrowing has the effect that functional
logic programs are more efficiently executable than pure logic programs. It has
been shown that normalization can also be combined with other eager narrow-
ing strategies. Réty [33] has proved completeness of normalizing basic narrowing,
Fribourg [13] has proposed normalizing innermost narrowing and Hoélldobler [21]
has combined innermost basic narrowing with normalization. Because of these
advantages, normalizing narrowing is the foundation of several programming lan-
guages which combines functional and logic programming like ALF [16], LPG [3]
or SLOG [13]. However, normalization has not been included in lazy narrowing
strategies. Therefore we will show that deterministic simplification steps could
be performed before nondeterministic lazy narrowing steps without destroying
the completeness of lazy narrowing. The problems of integrating normalization
into basic narrowing [33] shows that such a result is not obvious.



3 Integrating Simplification into Lazy Narrowing

In this section we show that deterministic simplification steps can be included
in lazy narrowing derivations without destroying completeness. Since we are in-
terested in a lazy narrowing strategy, we consider a functional logic program
consisting of a constructor-based term rewriting system R which satisfies the
left-linearity and nonambiguity condition.

Loogen and Winkler [26] have shown how to increase deterministic computa-
tions in the implementation of such programs: if no goal variable has been bound
in a narrowing step, then all attempts to apply alternative rules at the same
position can be ignored due to the nonambiguity of the rules. In this case a “cut”
can be executed to eliminate the choice point for alternative rules. Since the ex-
ecution of this “cut” depends on the run-time behavior of the program (whether
or not a goal variable has been bound during unification), it is called dynamic
cut in [26]. The dynamic cut can be implemented by a special POP instruction
which checks whether a goal variable has been bound during unification and, if
this did not happen, removes the last choice point. The advantage of this method
is its simple implementation, but it has also two disadvantages:

1. The dynamic cut removes choice points which have been created but are
not needed in the further computation process. Hence it does not avoid the
creation of choice points (one of the most expensive operations in the imple-
mentation of logic languages): if a choice point is not needed in a deterministic
computation, it is created and then deleted after the unification of the rule’s
left-hand side.

2. The detection of deterministic computations depends on the order of the
rules. If a rule which enables a deterministic computation step is not at the
beginning, nondeterministic steps may be performed even if a deterministic
step is possible.

The second disadvantage is discussed in more detail in the following example.

Example 4. Consider the rules of Example 2 and the goal equation 0O*one (X)=0.
Using the dynamic cut technique, first a choice point for the rules R3 and Ry is
created, then rule Rj3 is applied to narrow the left-hand side yielding the trivial
equation 0x0, and after that the choice point is removed since no goal variable
(X) has been bound in the narrowing step (dynamic cut). Hence the attempt to
apply rule Ry is avoided by the dynamic cut. But if we try to solve the equation
one (X) *0~0, the dynamic cut has no effect. As before, first a choice point for the
rules R3 and Ry is created, then an attempt to apply rule Rs is made.® Since it
is necessary to evaluate the first argument in order to decide the applicability of
this rule, one(X) is a lazy narrowing redex which is evaluated by applying rules
R; or Rg (this evaluation has an infinite search space and does not terminate in
a sequential implementation, cf. Example 2). In any case the goal variable X will
be bound and therefore the dynamic cut has no effect. |

 Note that we consider a sequential implementation where the rules are applied in the
given textual order.



Although the dynamic cut has some disadvantages since it is applied after a nar-
rowing attempt, the nonambiguity of the rules is the key to exploit deterministic
computations in functional logic programs. In the following we will show that
we can apply deterministic rewrite steps before a narrowing step. This technique
avoids the creation of superfluous choice points and is independent on the order
of rules (if we use all rules also for rewrite steps).

The next lemma is due to Loogen and Winkler [26] and shows that it is not
necessary to consider alternative rules for narrowing if one rule is applicable with-
out binding goal variables. This is a consequence of the nonambiguity condition
on rewrite rules.

Lemmal. Let Ry =11 — r1 and Re = lo — 19 be two different program rules
and t be a term which has no variables in common with Ry and Rs. If (1) = t,
i.e., t is narrowable by rule Ry without instantiating any goal variables, then rule
Ry does not need to be considered, because either Ry is not applicable or the result
of applying Ry yields an instance of the application of R;.

Hence we could try to match the left-hand side of some rule with the current goal
before applying a narrowing step. If this is possible, we can perform the corre-
sponding rewrite step and, by the previous lemma, ignore all other rules, i.e., we
perform a deterministic computation step. Although this solves the problems ex-
emplified in Example 4, it is not sufficient to exploit many possible deterministic
computations. In general, rewrite steps must also be performed at inner positions
in order to enable rewrite steps at outer positions. For instance, consider the rules
of Examples 1 and 2 and the goal equation (0+0)*N=0. A rewrite step by apply-
ing rules R3 or R4 to the left-hand side of the equation is not possible. Hence
we try to perform a narrowing step, i.e., generate a choice point for the rules
R3 or Ry, and so on. However, if we apply a rewrite step to the subterm (0+0)
before the narrowing attempt, the equation is simplified to 0%N=20 using rule Ry,
and we could further simplify the equation to the trivial one 0=0 using rule R3.
Therefore we could solve the equation without any nondeterministic narrowing
step. The following lemma, justifies deterministic rewrite steps at inner positions.

Lemma2. Let t,t' be terms such that t —x t' is a rewrite step at position p.

1. It is not necessary to consider alternative rules applied to t at position p.
2. All narrowing rules which are applicable to t at a position p', where p' # p is
a position not below p, are also applicable to t'.

The applicability of narrowing rules at positions below p does not need to be
considered: Due to the lazy narrowing strategy, narrowing steps at such posi-
tions would only be performed in order to apply some step at position p, but
Proposition 1 of this lemma states that this is unnecessary since alternative rules
do not need to be considered at position p.

Proof. Proposition 1 follows from Lemma 1 applied to position p. Proposition 2
is a consequence of the requirement for constructor-based rules: the subterm ¢,
must have a defined function symbol at the top since t —x t' is a rewrite step
at position p. If a narrowing rule is applicable to ¢ at position p', i.e., there is



arule I — r and a mgu o of t|,y and I, and p' is a position above p (the case
of independent positions is trivial since variables in ¢ are not instantiated by the
rewrite step), then there must be a variable position p” in [ (i.e., I|,» € &) such
that ()|, contains the subterm ¢|, (since all proper subterms of | contain only
constructors and variables). But then there is also a unifier ¢’ of #'|,, and [ which
can be obtained by modifying o for the variable [|,» (note that ! has no multiple
occurrences of variables). Hence we can apply rule I — r to ¢’ at position p’. O

As a consequence of this lemma we can deterministically apply rewrite rules at
any position before a narrowing step. The simplification of the goal by rewrite
rules can be done in any order and in any depth. For instance, if the set of
rewrite rules is terminating, normal forms uniquely exist and can be computed
by repeated application of rewrite steps in any order until no more rewrite steps
are applicable. This approach has been taken in normalizing narrowing [12, 13,
21, 30, 33] and in the functional logic languages ALF [16], LPG [3] and SLOG [13].
However, in the presence of nonterminating functions, an arbitrary simplification
process could destroy the completeness of lazy narrowing as the following example
shows.

Example 5. Consider the rules of Example 3 and the term first(s(0) ,from(0)).
Lazy narrowing reduces this goal term to the term [0]. If we allow arbitrary
simplification steps, we could apply infinitely many rewrite steps to evaluate the
subterm from(0):

first(s(0),from(0)) —x first(s(0),[0|from(s(0))])
—r first(s(0),[0,s(0) [from(s(s(0)))]1)
%R PR

Hence we would run into an infinite loop instead of computing the normal form
of the initial term. |

In order to avoid such problems and to do not introduce additional superfluous
work by the simplification process, we require to perform simplification steps
lazily with the same strategy as narrowing, i.e., we consider the combination
of lazy narrowing with lazy simplification. Since rewrite steps are also particular
narrowing steps, an infinite loop caused by simplification occurs in lazy narrowing
derivations without simplification, too. The only difference is that the order of
rule applications in simplification steps may be different from the order of rule
applications in narrowing steps. Hence it may be the case that the simplification
process runs into an infinite loop while lazy narrowing without simplification first
computes an answer and then runs into an infinite loop.

Example 6. Consider the rules of Example 2 and the following rule defining a
nonterminating function:

£(0) — £(0)

If the goal equation X*f (0)=0 should be solved, a lazy simplification strategy
tries to evaluate the subterm f(0) to the constructor 0 in order to apply rule



R4 to the left-hand side of the equation. Since the evaluation of £ (0) loops, the
simplification process does not terminate and no solution is computed. On the
other hand, lazy narrowing without simplification narrows the left-hand side of
the equation by applying rule R3. This binds goal variable X to 0 and yields the
trivial equation 0~0. However, after the computation of this solution an attempt
to apply the alternative rule R4 to the left-hand side is made which yields the
same infinite loop as in the simplification process. O

Note that this different behavior is due to a particular sequential implementation
of the strategy. In an implementation which collects all answers until the entire
search space has been examined we would obtain no answer in both cases due to
the infinite search space.

A simple solution to avoid a nonterminating simplification process is the in-
clusion of a terminating subset of the program rules for simplification. Since lazy
narrowing is already complete without simplification, it is not necessary to per-
form rewrite steps with all possible program rules but we can arbitrarily restrict
the set of rules used for rewrite steps. In the light of the previous example it is a
reasonable decision to include a rule set with a terminating rewrite relation for
simplification. This ensures the termination of the simplification process. The se-
lection of this subset of rewrite rules could be done by the programmer or by the
system (e.g., include only those rewrite rules for which a termination proof can
be constructed). We have made the experience that for most practical examples
termination proofs can be automatically constructed using syntactic termination
orderings from term rewriting [6]. This is the case for all rules presented so far (of
course, except for the first-rule of Example 3 and the f-rule of Example 6). An
example where a terminating subset of all program rules is used for simplification
will be given in Section 4.3.

4 Application to Functional Logic Programs

In this section we discuss the usefulness of integrating simplification into lazy
narrowing derivations with respect to different classes of functional logic pro-
grams. In general, we consider constructor-based rewrite systems satisfying the
left-linearity and nonambiguity conditions. However, there are important sub-
classes of such rewrite systems with different implications on the usefulness of
integrating simplification. In this section we consider the following three sub-
classes in more detail: inductively sequential systems [1] where the rules for each
function can be organized in a hierarchical structure, orthogonal systems satisfy-
ing the strong nonambiguity condition (no overlapping in the left-hand sides of
the rules), and weakly orthogonal systems with overlapping left-hand sides.

4.1 Inductively Sequential Programs

In many functional as well as functional logic programs functions are defined
by a case distinction on the different constructors occurring in the data type of



the arguments. For instance, the definition of the addition function on natural
numbers (cf. Example 1) is based on a case distinction for the first argument with
respect to the constructors 0 and s. As another example consider the following
rules defining a less-or-equal function on naturals:

0 <X — true (Ry)
s(X) <0 — false (R2)
s(X) <s(Y) > xX<Y (R3)

Here is the main case distinction on the constructors of the first argument: if this
argument is 0, then only rule R; is applicable. If this argument has the constructor
s at the top, then a further case distinction on the second argument is necessary to
distinguish between rules R> and Rj3. Altogether, the rules can be organized in a
hierarchical structure representing the various case distinctions. Such hierarchical
structures have been introduced by Antoy [1] under the name definitional trees.
A program for which the rules of each function symbol can be organized in a
definitional tree is called inductively sequential. Antoy, Echahed and Hanus [2]
have defined for inductively sequential programs a narrowing strategy, called
needed narrowing, which is optimal in the following sense: (1) it reduces only
needed subterms in a narrowing step, i.e., subterms which must be reduced in any
possible successful narrowing derivation, (2) it computes the shortest narrowing
derivations if common subterms are shared, and (3) the solutions computed by
two different narrowing derivations are independent. The needed narrowing steps
are computed using the structure of definitional trees. Thus it can be efficiently
implemented by pattern matching, and the strategy has an outermost (lazy)
behavior.

Due to the optimality of needed narrowing the natural question arises whether
the inclusion of simplification has an effect for this class of programs. To answer
this question we recall the applicability conditions for a rewrite step. A functional
expression can be reduced by a rewrite step if the arguments of the function call
are sufficiently instantiated such that the left-hand side of some rule can be
matched with the current call. Since the program is inductively sequential, there
is always at most one rule matching the current call and this rule will be selected
in the next narrowing step without instantiating any goal variables (see [2] for
a detailed description of the strategy). Therefore a possible lazy reduction step
is also computed by the needed narrowing strategy as a narrowing step, i.e., the
inclusion of simplification steps has no effect. This is formally justified by the
following proposition.

Proposition 3. Let R be a set of inductively sequential rules. Then the integra-
tion of simplification does not shorten any needed narrowing derivation.

Proof. By definition, rewrite steps are also particular narrowing steps. Thus any
narrowing derivation with intermediate simplification steps is also a pure narrow-
ing derivation. Since needed narrowing computes the shortest narrowing deriva-
tions [2], simplification cannot shorten any needed narrowing derivation. ad

Hence it is unnecessary to integrate simplification in narrowing derivations for
the class of inductively sequential programs.

10



4.2 Orthogonal Programs

The main example where we have demonstrated the improvements of simplifica-
tion with respect to lazy narrowing (Example 2) has the property that two rules
have overlapping left-hand sides. In the following we will show that the inclusion
of simplification is useful even if there are no overlapping rules.

Example 7. Consider the following rewrite rules:

£(0,s(M),N) — 0 (Ry) one(0) — s(0) (R4)
f(s(M),N,0) — O (R2) one(s(N)) — one(N) (R5)
f(N,0,s(M)) — O (R3)

This is a orthogonal term rewriting system since all rules are left-linear and do
not overlap in the left-hand sides. However, it is not inductively sequential since
there is no argument which represents a case distinction on the constructors 0 and
s. In fact, simplification has an important effect if we consider the goal equation
f (one (X),0,s(0))~0. Naive lazy narrowing first tries to apply rule R; to the
left-hand side of this equation. Since the first argument of the rule’s left-hand side
is 0, the evaluation of the actual argument one (X) is required in order to decide
the unifiability of the first argument.” Similarly to Example 2, the evaluation
of one (X) has an infinite search space and a sequential implementation does not
compute any result since all evaluations of one (X) yields s(0) as the result which
is not unifiable with the demanded value 0. But if we simplify the goal equation
before the attempt to apply a narrowing step, we use rule Rz for a rewrite step
which yields the trivial equation 0~0. Hence the infinite search space is avoided.

O

4.3 Weakly Orthogonal Programs

In Sections 4.1 and 4.2 we have shown that the boundary of the usefulness of
simplification in lazy narrowing derivations is between inductively sequential and
orthogonal systems. We conjecture that for practical applications the most in-
teresting class where simplification is useful is the class of weakly orthogonal
programs which have rules with overlapping left-hand sides. Example 2 contains
such a simple program, but the recursively defined constant function one may
not convince the reader. Therefore we will demonstrate the positive effects of
simplification by a more natural example.

Ezample 8. [20] Consider the following rules defining the Boolean operator V and
the predicate even on natural numbers:

true V B — true (Ry) even(0) — true (R4)
B V true — true (R») even(s(0)) — false (Rs)
false V false — false (R3) even(s(s(X))) — even(X) (Rs)

This rewrite system is weakly orthogonal since rules Ry and Ry overlap. Now
consider the goal equation even(Z)Vtrue~true (note that this goal equation

T We assume that arguments are unified from left to right, otherwise a similar example
can be constructed.
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could also be the result of the more general equation even(Z)VB~true where
the Boolean variable B has been bound to true in the preceding computation).
Naive lazy narrowing without simplification tries to apply a narrowing step with
rule R;. Since the value of the first V-argument is demanded by this rule, the
subterm even(Z) is evaluated to a constructor-headed term by narrowing. There
are infinitely many possibilities to do this, in particular the constructor true is
derived by instantiating variable Z with the values s2**(0), i > 0. Therefore lazy
narrowing without simplification has an infinite search space and computes the
additional special solutions {Z++s2*(0)}. On the other hand, if the equation is
first simplified by applying rule Rs to the left-hand side, we immediately obtain
the trivial equation trueatrue and avoid the infinite search space. O

We have mentioned that our method is complete even in the presence of non-
terminating functions if a terminating subset of the program rules is used for
simplification. This is demonstrated by a modification of the previous example.

Ezample 9. Consider the rules for V of Example 8 (R1, Rz, R3) and the following
new rules for not, even and odd:

not(true) — false (R4) even(X) — not(odd(X)) (Rs)
not (false) — true (Rs) 0dd(X) — not(even(X)) (Ry)

Although even and odd are nonterminating functions, it is an admissible program.
We use the terminating subset of the rules { Ry, R2, R3, R4, R5} for simplification.®
Consider the goal equation even(Z)Vnot (false)=~true. Lazy narrowing with-
out simplification tries to compute the head normal form of the subterm even(Z)
since its value is demanded by rule R;. Since this computation is nonterminating,
naive lazy narrowing has an infinite search space. The same holds for lazy narrow-
ing with the dynamic cut operator [26]. But lazy narrowing with simplification
tries to apply rewrite steps first. No simplification rule is applicable to the entire
left-hand side of the goal equation since the arguments are not in head normal
form. Due to the lazy simplification strategy, we try to evaluate the arguments
by simplification steps. The subterm even(Z) cannot be further simplified since
rule Rg is not included in the set of simplification rules. The second argument
not (false) can be simplified to true by Rs; which causes the simplification of
the complete left-hand side to true by R». Hence we obtain the trivial equation
true~true. Thus the infinite search space is avoided. O

5 Conclusions and Related Work

In this paper we have shown how to improve the execution mechanism of func-
tional logic programs. The basic idea is the integration of a deterministic sim-
plification process into lazy narrowing derivations. This can be done in a simple
way by using the program rules or a terminating subset of the program rules as
simplification rules. The simplification strategy should be identical to the narrow-
ing strategy. For particular and practically important classes of functional logic

& Note that the termination property of this subset can be automatically checked.
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programs (orthogonal and weakly orthogonal programs) this has the positive ef-
fect that the search space is reduced without destroying completeness. Although
we have emphasized the effect of simplification to the search space, the inclu-
sion of simplification can also have an effect on the run time even if the search
space is not reduced. For instance, if all program rules are used for simplification,
ground goals are evaluated by simplification without generating any choice point
while a lazy narrowing implementation would generate (and afterwards delete)
choice points. Hence lazy narrowing with simplification combines the features
from functional and logic programming also from an implementational point of
view.

We have mentioned in the introduction and in Section 2 that the idea of
exploiting deterministic computations by including simplification in functional
logic languages has been proposed mainly for eager narrowing strategies like ba-
sic [30, 33], innermost [13] or innermost basic narrowing [21]. Echahed [11] has
shown how to integrate normalization (with inductive consequences) in any nar-
rowing strategy, but he requires strong restrictions on the set of rules (termination
and uniformity, which is stronger than inductive sequentiality). The inclusion of
simplification into lazy strategies has been considered only in the context of
lazy unification.’ In [8, 20] lazy unification calculi are proposed where terms are
reduced to their normal form before a nondeterministic transformation step is
applied to the equation system. But these approaches require a terminating set
of rules in order to ensure the existence of normal forms and the completeness of
the calculi.

As far as we know, the present paper is the first attempt to include simplifica-
tion into narrowing derivations even in the presence of nonterminating functions.
The only related work for this class of programs is the paper of Loogen and
Winkler [26] which proposes the dynamic cut to detect deterministic narrowing
steps after the unification phase. As discussed at the beginning of Section 3, this
does not avoid the generation of choice points, and the cut of infinite derivation
paths depends on the order of rules. The basic difference of our method is that
we check the applicability of a deterministic computation step before we apply
a nondeterministic step. Hence we prefer deterministic computations to nonde-
terministic computations. This qualifies our execution method as the operational
principle of efficient functional logic languages.

Loogen et al. [25] have proposed to improve lazy narrowing strategies by re-
ordering the unification steps in rule applications. For this purpose they use a
version of definitional trees [1] extended to weakly orthogonal rewrite systems. In
order to handle partial overlapping left-hand sides, they introduce nondetermin-
istic choice nodes in definitional trees. But these choice nodes have the effect that
possible deterministic computations are not detected. For instance, the infinite

® The combination of lazy narrowing with deterministic reduction steps has been also
considered by Josephson and Dershowitz [23]. However, they provide no completeness
proof but refer to [9] where only the completeness of naive narrowing without simpli-
fication and without a particular lazy strategy is proved for terminating conditional
rules.
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search spaces of naive lazy narrowing in Examples 2, 7 and 8 would also occur
with respect to their improved strategy.

Another alternative to improve lazy narrowing has been proposed by Moreno-
Navarro et al. [28]. They use information about demanded arguments to avoid
reevaluations of expressions during unification with different rules. Since they do
not change the order of argument evaluations and rules, the infinite search spaces
avoided by simplification still occur in their approach.

The integration of simplification into lazy narrowing derivations requires new
implementation techniques for functional logic languages. Current efficient im-
plementations of lazy narrowing are mainly based on extensions of reduction
machines used for the implementation of functional languages [4, 15, 24, 27].
The inclusion of simplification requires the implementation of an intermediate
reduction process. This could be done by techniques proposed for the efficient
implementation of normalizing narrowing [16, 17] or by the implementation of
demons waiting for the sufficient instantiation of function arguments [23].
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