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Abstra
t. Languages that integrate fun
tional and logi
 programming

styles with a 
omplete operational semanti
s are based on narrowing. In

order to avoid useless 
omputations and to deal with in�nite data stru
-

tures, lazy narrowing strategies have been proposed in the past. This

paper presents an important improvement of lazy narrowing by in
orpo-

rating deterministi
 simpli�
ation steps into lazy narrowing derivations.

These simpli�
ation steps redu
e the sear
h spa
e so that in some 
ases

in�nite sear
h spa
es are redu
ed to �nite ones. We show that the 
om-

pleteness of lazy narrowing is not destroyed by the simpli�
ation pro
ess

and demonstrate the improved operational behavior by means of several

examples.

1 Introdu
tion

In re
ent years, a lot of proposals have been made to amalgamate fun
tional and

logi
 programming languages [19℄. Fun
tional logi
 languages with a sound and


omplete operational semanti
s are based on narrowing, a 
ombination of the

redu
tion prin
iple of fun
tional languages and the resolution prin
iple of logi


languages. Narrowing, originally introdu
ed in automated theorem proving [34℄,

is used to solve equations by �nding appropriate values for variables o

urring

in arguments of fun
tions. This is done by unifying (rather than mat
hing) an

input term with the left-hand side of some rule and then repla
ing the instantiated

input term by the instantiated right-hand side of the rule.

Example 1. Consider the following rules de�ning the addition of two natural num-

bers whi
h are represented by terms built from 0 and s:

0 + N ! N (R

1

)

s(M) + N ! s(M + N) (R

2

)

The equation X+s(0)�s(s(0)) 
an be solved by a narrowing step with rule R

2

followed by a narrowing step with rule R

1

so that X is instantiated to s(0) and

the instantiated equation is redu
ed to the trivial equation s(s(0))�s(s(0)):

X+s(0)�s(s(0)) ;

fX7!s(M)g

s(M+s(0))�s(s(0)) ;

fM 7!0g

s(s(0))�s(s(0))

Hen
e we have found the solution X 7!s(0) to the given equation. 2

?
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In order to ensure 
ompleteness in general, the left-hand side of ea
h rule must

be uni�ed with ea
h non-variable subterm of the given equation. Clearly, this

yields a huge sear
h spa
e. The situation 
an be improved by parti
ular nar-

rowing strategies whi
h restri
t the possible positions for the appli
ation of the

next narrowing step, e.g., basi
 [22℄, innermost [13℄, outermost [10℄, lazy [32℄, or

needed narrowing [2℄. In this paper we 
onsider a lazy narrowing strategy where

narrowing steps are applied at outermost positions in general and at an inner

position only if it is demanded and 
ontributes to some later narrowing step at

an outer position. Similarly to pure fun
tional programming, su
h a lazy strat-

egy avoids some useless steps in 
omparison to an eager strategy. However, in the


ontext of fun
tional logi
 programming a lazy narrowing strategy 
an also have

an unpleasant behavior if a demanded argument term has in�nitely many head

normal forms (i.e., if it 
an be derived to in�nitely many terms with a variable

or 
onstru
tor at the top).

Example 2. Consider the following rules whi
h may be part of a program for

arithmeti
 operations:

0 * N ! 0 (R

3

) one(0) ! s(0) (R

5

)

N * 0 ! 0 (R

4

) one(s(N)) ! one(N) (R

6

)

If we want to 
ompute a solution to the equation one(X)*0�0 by lazy narrowing,

we 
ould try to apply rule R

3

to evaluate the left-hand side. In this 
ase the

�rst argument one(X) is demanded and must be evaluated to a term with a


onstru
tor at the top. Unfortunately, there are in�nitely many possibilities to


ompute a head normal form s(0) of the term one(X) by instantiating X with

s( � � � s

| {z }

n

(0) � � � ) for arbitrary n. Hen
e lazy narrowing has an in�nite sear
h spa
e

in this example and does not 
ompute a solution in a sequential implementation

(see [15℄ for a dis
ussion of problems with sequential implementations of lazy

narrowing). However, we 
ould avoid this in�nite sear
h spa
e by 
omputing the

normal form of both sides of the equation before applying a narrowing step. The

normal form of the initial equation is 0�0 (redu
tion of the left-hand side with

rule R

4

) whi
h is trivially true. 2

The idea of redu
tion to normal form before applying a narrowing step has been

mainly proposed with respe
t to eager narrowing strategies [12, 13, 21, 30, 33℄.

It has been shown that eager narrowing with normalization is a more eÆ
ient


ontrol strategy than left-to-right SLD-resolution for equivalent logi
 programs

[13, 18℄. The main 
ontribution of this paper is the 
ombination of lazy narrowing

with intermediate simpli�
ation steps. We show that this 
ombination does not

destroy the 
ompleteness of lazy narrowing and dis
uss its usefulness for various


lasses of fun
tional logi
 programs. The previous example has shown that the

integration of simpli�
ation 
an improve the operational behavior of lazy narrow-

ing if there are rules with overlapping left-hand sides, but we will also provide

examples where all rules have non-overlapping left-hand sides.

In the next se
tion we re
all basi
 notions from term rewriting and fun
tional

logi
 programming. In Se
tion 3 we show how to in
lude a deterministi
 simpli-

2



�
ation pro
ess into lazy narrowing derivations. Finally, we dis
uss in Se
tion 4

the usefulness of this simpli�
ation pro
ess for di�erent 
lasses of fun
tional logi


programs.

2 Preliminaries

In this se
tion we re
all basi
 notions of term rewriting [7℄ and fun
tional logi


programming [19℄.

A signature is a set F of fun
tion symbols.

2

Every f 2 F is asso
iated with an

arity n, denoted f=n. Let X be a 
ountably in�nite set of variables. Then the set

T (F ;X ) of terms built from F and X is the smallest set 
ontaining X su
h that

f(t

1

; : : : ; t

n

) 2 T (F ;X ) whenever f 2 F has arity n and t

1

; : : : ; t

n

2 T (F ;X ).

We write f instead of f() whenever f has arity 0. The set of variables o

urring

in a term t is denoted by Var(t). A term t is 
alled ground if Var(t) = ;.

Usually, fun
tional logi
 programs are 
onstru
tor-based, i.e., a distin
tion is

made between operation symbols to 
onstru
t data terms, 
alled 
onstru
tors,

and operation symbols to operate on data terms, 
alled de�ned fun
tions or op-

erations (see, for instan
e, the fun
tional logi
 languages ALF [16℄, BABEL [29℄,

K-LEAF [14℄, SLOG [13℄). Hen
e we assume that the signature F is partitioned

into two sets F = C [ D with C \ D = ;. A 
onstru
tor term t is built from


onstru
tors and variables, i.e., t 2 T (C;X ).

A (rewrite) rule l ! r is a pair of terms l and r satisfying Var(r) � Var(l)

where l has the form f(t

1

; : : : ; t

n

) with f 2 D and t

1

; : : : ; t

n

2 T (C;X ). l and

r are 
alled left-hand side and right-hand side, respe
tively.

3

A rule is 
alled a

variant of another rule if it is obtained by a unique repla
ement of variables by

other variables. A term rewriting system R is a set of rules.

The exe
ution of fun
tional logi
 programs requires notions like substitution,

uni�er, position et
. A substitution � is a mapping from X into T (F ;X ) su
h

that the set fx 2 X j �(x) 6= xg is �nite. We frequently identify a substitution

� with the set fx 7! �(x) j �(x) 6= xg. Substitutions are extended to morphisms

on T (F ;X ) by �(f(t

1

; : : : ; t

n

)) = f(�(t

1

); : : : ; �(t

n

)) for every term f(t

1

; : : : ; t

n

).

A uni�er of two terms s and t is a substitution � with �(s) = �(t). A uni�er �

is 
alled most general (mgu) if for every other uni�er �

0

there is a substitution

� with �

0

= � Æ � (
on
atenation of � and �). Most general uni�ers are unique

up to variable renaming. By introdu
ing a total ordering on variables we 
an

uniquely 
hoose the most general uni�er of two terms. A position p in a term t

is represented by a sequen
e of natural numbers, tj

p

denotes the subterm of t at

position p, and t[s℄

p

denotes the result of repla
ing the subterm tj

p

by the term

s (see [7℄ for details).

2

In this paper we 
onsider only single-sorted programs. The extension to many-sorted

signatures is straightforward [31℄. Sin
e sorts are not relevant to the subje
t of this

paper, we omit them for the sake of simpli
ity.

3

For the sake of simpli
ity we 
onsider only un
onditional rules, but our results 
an

easily be extended to 
onditional rules with the restri
tions of the fun
tional logi


language BABEL [29℄.

3



A rewrite step is an appli
ation of a rewrite rule to a term, i.e., t!

R

s if there

exist a position p in t, a rewrite rule l ! r and a substitution � with tj

p

= �(l)

and s = t[�(r)℄

p

. In this 
ase we say t is redu
ible (at position p). A term t is


alled irredu
ible or in normal form if there is no term s with t!

R

s.

!

�

R

denotes the transitive-re
exive 
losure of the rewrite relation !

R

. R is


alled terminating if there are no in�nite rewrite sequen
es t

1

!

R

t

2

!

R

t

3

!

R

� � �. R is 
alled 
on
uent if for all terms t, t

1

, t

2

with t!

�

R

t

1

and t!

�

R

t

2

there

exists a term t

3

with t

1

!

�

R

t

3

and t

2

!

�

R

t

3

.

If R is 
on
uent and terminating, normal forms uniquely exist and we 
an

de
ide the validity of an equation s � t by 
omputing the normal form of both

sides using an arbitrary sequen
e of rewrite steps. In order to solve an equation,

we have to �nd appropriate instantiations for the variables in s and t. This 
an

be done by narrowing. A term t is narrowable into a term t

0

if there exist a

non-variable position p in t (i.e., tj

p

62 X ), a variant l ! r of a rewrite rule with

Var(t) \ Var(l) = ;, a substitution � su
h that � is a most general uni�er of tj

p

and l, and t

0

= �(t[r℄

p

). In this 
ase we write t;

�

t

0

.

4

Narrowing is able to solve equations w.r.t. R by deriving both sides of an

equation to synta
ti
ally uni�able terms [22℄. Due to the huge sear
h spa
e of

simple narrowing, several authors have proposed restri
tions on the admissible

narrowing derivations like basi
 narrowing [22℄, innermost narrowing [13℄, or out-

ermost narrowing [10℄. Lazy narrowing [5, 27, 32℄ is in
uen
ed by the idea of

lazy evaluation in fun
tional programming languages. Lazy narrowing steps are

applied to outermost positions with the ex
eption that arguments are evaluated

by narrowing to their head normal form if their values are demanded for an

outermost narrowing step (see [29℄ for an exa
t de�nition of a lazy narrowing

position). Lazy narrowing has at least two advantages in 
omparison to other

narrowing strategies:

1. Sin
e lazy narrowing applies narrowing steps at inner positions only if it is

demanded by some rule, useless narrowing steps (steps at inner positions

whi
h do not 
ontribute to the result) are avoided.

5

2. Sin
e lazy narrowing evaluates fun
tions only if their results are demanded,

it 
an deal with nonterminating fun
tions and in�nite data stru
tures. The

other narrowing strategies 
ited above require a terminating set of rewrite

rules and 
annot deal with in�nite data stru
tures.

The next example should emphasize the latter point.

Example 3. The following rules de�ne a fun
tion from(N) whi
h 
omputes an

in�nite list of naturals starting from N and a fun
tion first(N,L)whi
h 
omputes

the �rst N elements of the list L:

from(N) ! [N|from(s(N))℄

4

Sin
e the instantiation of the variables in the rule l ! r by � is not relevant for

the 
omputed solution of a narrowing derivation, we will omit this part of � in the

example derivations in this paper.

5

To be pre
ise, the avoidan
e of useless narrowing steps depends on the lazy narrowing

strategy. Although this is one of the motivations of all lazy strategies, the only strategy

for whi
h this property has been formally proved is needed narrowing [2℄.

4



first(0,L) ! [℄

first(s(N),[E|L℄) ! [E|first(N,L)℄

Then lazy evaluation of the expression first(s(s(0)),from(0)) yields the re-

sult [0,s(0)℄ while an eager evaluation does not terminate due to the nontermi-

nating eager evaluation of from(0). Similarly, lazy narrowing applied to the equa-

tion first(X,from(Y))�[0,s(0)℄ 
omputes the solution fX 7!s(s(0)),Y 7!0g

while an eager narrowing strategy runs into an in�nite loop. 2

Sin
e narrowing applies rules only in one dire
tion from left to right, the 
on
u-

en
e of the rewrite relation is an essential requirement for the 
ompleteness of

all narrowing strategies. But 
on
uen
e is an unde
idable property of a rewrite

system if it is not terminating. Therefore fun
tional logi
 languages based on a

lazy evaluation strategy have the following requirements on the rewrite rules in

order to ensure 
ompleteness:

1. Left-linearity: All rules are left-linear, i.e., no variable appears more than

on
e in the left-hand side of any rule.

2. Nonambiguity: If l

1

! r

1

and l

2

! r

2

are two di�erent rules, then l

1

and l

2

are not uni�able (strong nonambiguity), or if l

1

and l

2

have a most general

uni�er �, then �(r

1

) and �(r

2

) are identi
al (weak nonambiguity).

These 
onditions ensure the uniqueness of normal forms if they exist. Due to the

presen
e of nonterminating fun
tions, the 
ompleteness results for lazy strategies

are stated with respe
t to domain-based interpretations of rewrite rules [14, 29℄.

In parti
ular, the equality of two expressions holds only if both sides are redu
ible

to the same ground 
onstru
tor term.

The nonambiguity 
ondition does not ex
lude appli
ations from logi
 pro-

gramming. In fa
t, if we allow also 
onditional rules (as in BABEL [29℄), any

logi
 program 
an be translated into a set of weakly nonambiguous rules by

representing predi
ates as Boolean fun
tions [29℄.

Another important improvement of simple narrowing is normalizing narrow-

ing [12℄ where the term is rewritten to its normal form before a narrowing step

is applied. This optimization is important sin
e it prefers deterministi
 
omputa-

tions: rewriting a term to normal form 
an be done in a deterministi
 way sin
e

every rewriting sequen
e yields the same result (if R is 
on
uent and terminat-

ing). As shown in [13, 18℄, normalizing narrowing has the e�e
t that fun
tional

logi
 programs are more eÆ
iently exe
utable than pure logi
 programs. It has

been shown that normalization 
an also be 
ombined with other eager narrow-

ing strategies. R�ety [33℄ has proved 
ompleteness of normalizing basi
 narrowing,

Fribourg [13℄ has proposed normalizing innermost narrowing and H�olldobler [21℄

has 
ombined innermost basi
 narrowing with normalization. Be
ause of these

advantages, normalizing narrowing is the foundation of several programming lan-

guages whi
h 
ombines fun
tional and logi
 programming like ALF [16℄, LPG [3℄

or SLOG [13℄. However, normalization has not been in
luded in lazy narrowing

strategies. Therefore we will show that deterministi
 simpli�
ation steps 
ould

be performed before nondeterministi
 lazy narrowing steps without destroying

the 
ompleteness of lazy narrowing. The problems of integrating normalization

into basi
 narrowing [33℄ shows that su
h a result is not obvious.

5



3 Integrating Simpli�
ation into Lazy Narrowing

In this se
tion we show that deterministi
 simpli�
ation steps 
an be in
luded

in lazy narrowing derivations without destroying 
ompleteness. Sin
e we are in-

terested in a lazy narrowing strategy, we 
onsider a fun
tional logi
 program


onsisting of a 
onstru
tor-based term rewriting system R whi
h satis�es the

left-linearity and nonambiguity 
ondition.

Loogen and Winkler [26℄ have shown how to in
rease deterministi
 
omputa-

tions in the implementation of su
h programs: if no goal variable has been bound

in a narrowing step, then all attempts to apply alternative rules at the same

position 
an be ignored due to the nonambiguity of the rules. In this 
ase a \
ut"


an be exe
uted to eliminate the 
hoi
e point for alternative rules. Sin
e the ex-

e
ution of this \
ut" depends on the run-time behavior of the program (whether

or not a goal variable has been bound during uni�
ation), it is 
alled dynami



ut in [26℄. The dynami
 
ut 
an be implemented by a spe
ial POP instru
tion

whi
h 
he
ks whether a goal variable has been bound during uni�
ation and, if

this did not happen, removes the last 
hoi
e point. The advantage of this method

is its simple implementation, but it has also two disadvantages:

1. The dynami
 
ut removes 
hoi
e points whi
h have been 
reated but are

not needed in the further 
omputation pro
ess. Hen
e it does not avoid the


reation of 
hoi
e points (one of the most expensive operations in the imple-

mentation of logi
 languages): if a 
hoi
e point is not needed in a deterministi



omputation, it is 
reated and then deleted after the uni�
ation of the rule's

left-hand side.

2. The dete
tion of deterministi
 
omputations depends on the order of the

rules. If a rule whi
h enables a deterministi
 
omputation step is not at the

beginning, nondeterministi
 steps may be performed even if a deterministi


step is possible.

The se
ond disadvantage is dis
ussed in more detail in the following example.

Example 4. Consider the rules of Example 2 and the goal equation 0*one(X)�0.

Using the dynami
 
ut te
hnique, �rst a 
hoi
e point for the rules R

3

and R

4

is


reated, then rule R

3

is applied to narrow the left-hand side yielding the trivial

equation 0�0, and after that the 
hoi
e point is removed sin
e no goal variable

(X) has been bound in the narrowing step (dynami
 
ut). Hen
e the attempt to

apply rule R

4

is avoided by the dynami
 
ut. But if we try to solve the equation

one(X)*0�0, the dynami
 
ut has no e�e
t. As before, �rst a 
hoi
e point for the

rules R

3

and R

4

is 
reated, then an attempt to apply rule R

3

is made.

6

Sin
e it

is ne
essary to evaluate the �rst argument in order to de
ide the appli
ability of

this rule, one(X) is a lazy narrowing redex whi
h is evaluated by applying rules

R

5

or R

6

(this evaluation has an in�nite sear
h spa
e and does not terminate in

a sequential implementation, 
f. Example 2). In any 
ase the goal variable X will

be bound and therefore the dynami
 
ut has no e�e
t. 2

6

Note that we 
onsider a sequential implementation where the rules are applied in the

given textual order.

6



Although the dynami
 
ut has some disadvantages sin
e it is applied after a nar-

rowing attempt, the nonambiguity of the rules is the key to exploit deterministi



omputations in fun
tional logi
 programs. In the following we will show that

we 
an apply deterministi
 rewrite steps before a narrowing step. This te
hnique

avoids the 
reation of super
uous 
hoi
e points and is independent on the order

of rules (if we use all rules also for rewrite steps).

The next lemma is due to Loogen and Winkler [26℄ and shows that it is not

ne
essary to 
onsider alternative rules for narrowing if one rule is appli
able with-

out binding goal variables. This is a 
onsequen
e of the nonambiguity 
ondition

on rewrite rules.

Lemma1. Let R

1

= l

1

! r

1

and R

2

= l

2

! r

2

be two di�erent program rules

and t be a term whi
h has no variables in 
ommon with R

1

and R

2

. If �(l

1

) = t,

i.e., t is narrowable by rule R

1

without instantiating any goal variables, then rule

R

2

does not need to be 
onsidered, be
ause either R

2

is not appli
able or the result

of applying R

2

yields an instan
e of the appli
ation of R

1

.

Hen
e we 
ould try to mat
h the left-hand side of some rule with the 
urrent goal

before applying a narrowing step. If this is possible, we 
an perform the 
orre-

sponding rewrite step and, by the previous lemma, ignore all other rules, i.e., we

perform a deterministi
 
omputation step. Although this solves the problems ex-

empli�ed in Example 4, it is not suÆ
ient to exploit many possible deterministi



omputations. In general, rewrite steps must also be performed at inner positions

in order to enable rewrite steps at outer positions. For instan
e, 
onsider the rules

of Examples 1 and 2 and the goal equation (0+0)*N�0. A rewrite step by apply-

ing rules R

3

or R

4

to the left-hand side of the equation is not possible. Hen
e

we try to perform a narrowing step, i.e., generate a 
hoi
e point for the rules

R

3

or R

4

, and so on. However, if we apply a rewrite step to the subterm (0+0)

before the narrowing attempt, the equation is simpli�ed to 0*N�0 using rule R

1

,

and we 
ould further simplify the equation to the trivial one 0�0 using rule R

3

.

Therefore we 
ould solve the equation without any nondeterministi
 narrowing

step. The following lemma justi�es deterministi
 rewrite steps at inner positions.

Lemma2. Let t; t

0

be terms su
h that t!

R

t

0

is a rewrite step at position p.

1. It is not ne
essary to 
onsider alternative rules applied to t at position p.

2. All narrowing rules whi
h are appli
able to t at a position p

0

, where p

0

6= p is

a position not below p, are also appli
able to t

0

.

The appli
ability of narrowing rules at positions below p does not need to be


onsidered: Due to the lazy narrowing strategy, narrowing steps at su
h posi-

tions would only be performed in order to apply some step at position p, but

Proposition 1 of this lemma states that this is unne
essary sin
e alternative rules

do not need to be 
onsidered at position p.

Proof. Proposition 1 follows from Lemma 1 applied to position p. Proposition 2

is a 
onsequen
e of the requirement for 
onstru
tor-based rules: the subterm tj

p

must have a de�ned fun
tion symbol at the top sin
e t !

R

t

0

is a rewrite step

at position p. If a narrowing rule is appli
able to t at position p

0

, i.e., there is

7



a rule l ! r and a mgu � of tj

p

0

and l, and p

0

is a position above p (the 
ase

of independent positions is trivial sin
e variables in t are not instantiated by the

rewrite step), then there must be a variable position p

00

in l (i.e., lj

p

00

2 X ) su
h

that �(l)j

p

00


ontains the subterm tj

p

(sin
e all proper subterms of l 
ontain only


onstru
tors and variables). But then there is also a uni�er �

0

of t

0

j

p

0

and l whi
h


an be obtained by modifying � for the variable lj

p

00

(note that l has no multiple

o

urren
es of variables). Hen
e we 
an apply rule l ! r to t

0

at position p

0

. ut

As a 
onsequen
e of this lemma we 
an deterministi
ally apply rewrite rules at

any position before a narrowing step. The simpli�
ation of the goal by rewrite

rules 
an be done in any order and in any depth. For instan
e, if the set of

rewrite rules is terminating, normal forms uniquely exist and 
an be 
omputed

by repeated appli
ation of rewrite steps in any order until no more rewrite steps

are appli
able. This approa
h has been taken in normalizing narrowing [12, 13,

21, 30, 33℄ and in the fun
tional logi
 languages ALF [16℄, LPG [3℄ and SLOG [13℄.

However, in the presen
e of nonterminating fun
tions, an arbitrary simpli�
ation

pro
ess 
ould destroy the 
ompleteness of lazy narrowing as the following example

shows.

Example 5. Consider the rules of Example 3 and the term first(s(0),from(0)).

Lazy narrowing redu
es this goal term to the term [0℄. If we allow arbitrary

simpli�
ation steps, we 
ould apply in�nitely many rewrite steps to evaluate the

subterm from(0):

first(s(0),from(0)) !

R

first(s(0),[0|from(s(0))℄)

!

R

first(s(0),[0,s(0)|from(s(s(0)))℄)

!

R

� � �

Hen
e we would run into an in�nite loop instead of 
omputing the normal form

of the initial term. 2

In order to avoid su
h problems and to do not introdu
e additional super
uous

work by the simpli�
ation pro
ess, we require to perform simpli�
ation steps

lazily with the same strategy as narrowing, i.e., we 
onsider the 
ombination

of lazy narrowing with lazy simpli�
ation. Sin
e rewrite steps are also parti
ular

narrowing steps, an in�nite loop 
aused by simpli�
ation o

urs in lazy narrowing

derivations without simpli�
ation, too. The only di�eren
e is that the order of

rule appli
ations in simpli�
ation steps may be di�erent from the order of rule

appli
ations in narrowing steps. Hen
e it may be the 
ase that the simpli�
ation

pro
ess runs into an in�nite loop while lazy narrowing without simpli�
ation �rst


omputes an answer and then runs into an in�nite loop.

Example 6. Consider the rules of Example 2 and the following rule de�ning a

nonterminating fun
tion:

f(0) ! f(0)

If the goal equation X*f(0)�0 should be solved, a lazy simpli�
ation strategy

tries to evaluate the subterm f(0) to the 
onstru
tor 0 in order to apply rule

8



R

4

to the left-hand side of the equation. Sin
e the evaluation of f(0) loops, the

simpli�
ation pro
ess does not terminate and no solution is 
omputed. On the

other hand, lazy narrowing without simpli�
ation narrows the left-hand side of

the equation by applying rule R

3

. This binds goal variable X to 0 and yields the

trivial equation 0�0. However, after the 
omputation of this solution an attempt

to apply the alternative rule R

4

to the left-hand side is made whi
h yields the

same in�nite loop as in the simpli�
ation pro
ess. 2

Note that this di�erent behavior is due to a parti
ular sequential implementation

of the strategy. In an implementation whi
h 
olle
ts all answers until the entire

sear
h spa
e has been examined we would obtain no answer in both 
ases due to

the in�nite sear
h spa
e.

A simple solution to avoid a nonterminating simpli�
ation pro
ess is the in-


lusion of a terminating subset of the program rules for simpli�
ation. Sin
e lazy

narrowing is already 
omplete without simpli�
ation, it is not ne
essary to per-

form rewrite steps with all possible program rules but we 
an arbitrarily restri
t

the set of rules used for rewrite steps. In the light of the previous example it is a

reasonable de
ision to in
lude a rule set with a terminating rewrite relation for

simpli�
ation. This ensures the termination of the simpli�
ation pro
ess. The se-

le
tion of this subset of rewrite rules 
ould be done by the programmer or by the

system (e.g., in
lude only those rewrite rules for whi
h a termination proof 
an

be 
onstru
ted). We have made the experien
e that for most pra
ti
al examples

termination proofs 
an be automati
ally 
onstru
ted using synta
ti
 termination

orderings from term rewriting [6℄. This is the 
ase for all rules presented so far (of


ourse, ex
ept for the first-rule of Example 3 and the f-rule of Example 6). An

example where a terminating subset of all program rules is used for simpli�
ation

will be given in Se
tion 4.3.

4 Appli
ation to Fun
tional Logi
 Programs

In this se
tion we dis
uss the usefulness of integrating simpli�
ation into lazy

narrowing derivations with respe
t to di�erent 
lasses of fun
tional logi
 pro-

grams. In general, we 
onsider 
onstru
tor-based rewrite systems satisfying the

left-linearity and nonambiguity 
onditions. However, there are important sub-


lasses of su
h rewrite systems with di�erent impli
ations on the usefulness of

integrating simpli�
ation. In this se
tion we 
onsider the following three sub-


lasses in more detail: indu
tively sequential systems [1℄ where the rules for ea
h

fun
tion 
an be organized in a hierar
hi
al stru
ture, orthogonal systems satisfy-

ing the strong nonambiguity 
ondition (no overlapping in the left-hand sides of

the rules), and weakly orthogonal systems with overlapping left-hand sides.

4.1 Indu
tively Sequential Programs

In many fun
tional as well as fun
tional logi
 programs fun
tions are de�ned

by a 
ase distin
tion on the di�erent 
onstru
tors o

urring in the data type of

9



the arguments. For instan
e, the de�nition of the addition fun
tion on natural

numbers (
f. Example 1) is based on a 
ase distin
tion for the �rst argument with

respe
t to the 
onstru
tors 0 and s. As another example 
onsider the following

rules de�ning a less-or-equal fun
tion on naturals:

0 � X ! true (R

1

)

s(X) � 0 ! false (R

2

)

s(X) � s(Y) ! X � Y (R

3

)

Here is the main 
ase distin
tion on the 
onstru
tors of the �rst argument: if this

argument is 0, then only ruleR

1

is appli
able. If this argument has the 
onstru
tor

s at the top, then a further 
ase distin
tion on the se
ond argument is ne
essary to

distinguish between rules R

2

and R

3

. Altogether, the rules 
an be organized in a

hierar
hi
al stru
ture representing the various 
ase distin
tions. Su
h hierar
hi
al

stru
tures have been introdu
ed by Antoy [1℄ under the name de�nitional trees.

A program for whi
h the rules of ea
h fun
tion symbol 
an be organized in a

de�nitional tree is 
alled indu
tively sequential. Antoy, E
hahed and Hanus [2℄

have de�ned for indu
tively sequential programs a narrowing strategy, 
alled

needed narrowing, whi
h is optimal in the following sense: (1) it redu
es only

needed subterms in a narrowing step, i.e., subterms whi
h must be redu
ed in any

possible su

essful narrowing derivation, (2) it 
omputes the shortest narrowing

derivations if 
ommon subterms are shared, and (3) the solutions 
omputed by

two di�erent narrowing derivations are independent. The needed narrowing steps

are 
omputed using the stru
ture of de�nitional trees. Thus it 
an be eÆ
iently

implemented by pattern mat
hing, and the strategy has an outermost (lazy)

behavior.

Due to the optimality of needed narrowing the natural question arises whether

the in
lusion of simpli�
ation has an e�e
t for this 
lass of programs. To answer

this question we re
all the appli
ability 
onditions for a rewrite step. A fun
tional

expression 
an be redu
ed by a rewrite step if the arguments of the fun
tion 
all

are suÆ
iently instantiated su
h that the left-hand side of some rule 
an be

mat
hed with the 
urrent 
all. Sin
e the program is indu
tively sequential, there

is always at most one rule mat
hing the 
urrent 
all and this rule will be sele
ted

in the next narrowing step without instantiating any goal variables (see [2℄ for

a detailed des
ription of the strategy). Therefore a possible lazy redu
tion step

is also 
omputed by the needed narrowing strategy as a narrowing step, i.e., the

in
lusion of simpli�
ation steps has no e�e
t. This is formally justi�ed by the

following proposition.

Proposition 3. Let R be a set of indu
tively sequential rules. Then the integra-

tion of simpli�
ation does not shorten any needed narrowing derivation.

Proof. By de�nition, rewrite steps are also parti
ular narrowing steps. Thus any

narrowing derivation with intermediate simpli�
ation steps is also a pure narrow-

ing derivation. Sin
e needed narrowing 
omputes the shortest narrowing deriva-

tions [2℄, simpli�
ation 
annot shorten any needed narrowing derivation. ut

Hen
e it is unne
essary to integrate simpli�
ation in narrowing derivations for

the 
lass of indu
tively sequential programs.
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4.2 Orthogonal Programs

The main example where we have demonstrated the improvements of simpli�
a-

tion with respe
t to lazy narrowing (Example 2) has the property that two rules

have overlapping left-hand sides. In the following we will show that the in
lusion

of simpli�
ation is useful even if there are no overlapping rules.

Example 7. Consider the following rewrite rules:

f(0,s(M),N) ! 0 (R

1

) one(0) ! s(0) (R

4

)

f(s(M),N,0) ! 0 (R

2

) one(s(N)) ! one(N) (R

5

)

f(N,0,s(M)) ! 0 (R

3

)

This is a orthogonal term rewriting system sin
e all rules are left-linear and do

not overlap in the left-hand sides. However, it is not indu
tively sequential sin
e

there is no argument whi
h represents a 
ase distin
tion on the 
onstru
tors 0 and

s. In fa
t, simpli�
ation has an important e�e
t if we 
onsider the goal equation

f(one(X),0,s(0))�0. Naive lazy narrowing �rst tries to apply rule R

1

to the

left-hand side of this equation. Sin
e the �rst argument of the rule's left-hand side

is 0, the evaluation of the a
tual argument one(X) is required in order to de
ide

the uni�ability of the �rst argument.

7

Similarly to Example 2, the evaluation

of one(X) has an in�nite sear
h spa
e and a sequential implementation does not


ompute any result sin
e all evaluations of one(X) yields s(0) as the result whi
h

is not uni�able with the demanded value 0. But if we simplify the goal equation

before the attempt to apply a narrowing step, we use rule R

3

for a rewrite step

whi
h yields the trivial equation 0�0. Hen
e the in�nite sear
h spa
e is avoided.

2

4.3 Weakly Orthogonal Programs

In Se
tions 4.1 and 4.2 we have shown that the boundary of the usefulness of

simpli�
ation in lazy narrowing derivations is between indu
tively sequential and

orthogonal systems. We 
onje
ture that for pra
ti
al appli
ations the most in-

teresting 
lass where simpli�
ation is useful is the 
lass of weakly orthogonal

programs whi
h have rules with overlapping left-hand sides. Example 2 
ontains

su
h a simple program, but the re
ursively de�ned 
onstant fun
tion one may

not 
onvin
e the reader. Therefore we will demonstrate the positive e�e
ts of

simpli�
ation by a more natural example.

Example 8. [20℄ Consider the following rules de�ning the Boolean operator _ and

the predi
ate even on natural numbers:

true _ B ! true (R

1

) even(0) ! true (R

4

)

B _ true ! true (R

2

) even(s(0)) ! false (R

5

)

false _ false ! false (R

3

) even(s(s(X))) ! even(X) (R

6

)

This rewrite system is weakly orthogonal sin
e rules R

1

and R

2

overlap. Now


onsider the goal equation even(Z)_true�true (note that this goal equation

7

We assume that arguments are uni�ed from left to right, otherwise a similar example


an be 
onstru
ted.
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ould also be the result of the more general equation even(Z)_B�true where

the Boolean variable B has been bound to true in the pre
eding 
omputation).

Naive lazy narrowing without simpli�
ation tries to apply a narrowing step with

rule R

1

. Sin
e the value of the �rst _-argument is demanded by this rule, the

subterm even(Z) is evaluated to a 
onstru
tor-headed term by narrowing. There

are in�nitely many possibilities to do this, in parti
ular the 
onstru
tor true is

derived by instantiating variable Z with the values s

2�i

(0), i � 0. Therefore lazy

narrowing without simpli�
ation has an in�nite sear
h spa
e and 
omputes the

additional spe
ial solutions fZ 7!s

2�i

(0)g. On the other hand, if the equation is

�rst simpli�ed by applying rule R

2

to the left-hand side, we immediately obtain

the trivial equation true�true and avoid the in�nite sear
h spa
e. 2

We have mentioned that our method is 
omplete even in the presen
e of non-

terminating fun
tions if a terminating subset of the program rules is used for

simpli�
ation. This is demonstrated by a modi�
ation of the previous example.

Example 9. Consider the rules for _ of Example 8 (R

1

; R

2

; R

3

) and the following

new rules for not, even and odd:

not(true) ! false (R

4

) even(X) ! not(odd(X)) (R

6

)

not(false) ! true (R

5

) odd(X) ! not(even(X)) (R

7

)

Although even and odd are nonterminating fun
tions, it is an admissible program.

We use the terminating subset of the rules fR

1

; R

2

; R

3

; R

4

; R

5

g for simpli�
ation.

8

Consider the goal equation even(Z)_not(false)�true. Lazy narrowing with-

out simpli�
ation tries to 
ompute the head normal form of the subterm even(Z)

sin
e its value is demanded by rule R

1

. Sin
e this 
omputation is nonterminating,

naive lazy narrowing has an in�nite sear
h spa
e. The same holds for lazy narrow-

ing with the dynami
 
ut operator [26℄. But lazy narrowing with simpli�
ation

tries to apply rewrite steps �rst. No simpli�
ation rule is appli
able to the entire

left-hand side of the goal equation sin
e the arguments are not in head normal

form. Due to the lazy simpli�
ation strategy, we try to evaluate the arguments

by simpli�
ation steps. The subterm even(Z) 
annot be further simpli�ed sin
e

rule R

6

is not in
luded in the set of simpli�
ation rules. The se
ond argument

not(false) 
an be simpli�ed to true by R

5

whi
h 
auses the simpli�
ation of

the 
omplete left-hand side to true by R

2

. Hen
e we obtain the trivial equation

true�true. Thus the in�nite sear
h spa
e is avoided. 2

5 Con
lusions and Related Work

In this paper we have shown how to improve the exe
ution me
hanism of fun
-

tional logi
 programs. The basi
 idea is the integration of a deterministi
 sim-

pli�
ation pro
ess into lazy narrowing derivations. This 
an be done in a simple

way by using the program rules or a terminating subset of the program rules as

simpli�
ation rules. The simpli�
ation strategy should be identi
al to the narrow-

ing strategy. For parti
ular and pra
ti
ally important 
lasses of fun
tional logi


8

Note that the termination property of this subset 
an be automati
ally 
he
ked.
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programs (orthogonal and weakly orthogonal programs) this has the positive ef-

fe
t that the sear
h spa
e is redu
ed without destroying 
ompleteness. Although

we have emphasized the e�e
t of simpli�
ation to the sear
h spa
e, the in
lu-

sion of simpli�
ation 
an also have an e�e
t on the run time even if the sear
h

spa
e is not redu
ed. For instan
e, if all program rules are used for simpli�
ation,

ground goals are evaluated by simpli�
ation without generating any 
hoi
e point

while a lazy narrowing implementation would generate (and afterwards delete)


hoi
e points. Hen
e lazy narrowing with simpli�
ation 
ombines the features

from fun
tional and logi
 programming also from an implementational point of

view.

We have mentioned in the introdu
tion and in Se
tion 2 that the idea of

exploiting deterministi
 
omputations by in
luding simpli�
ation in fun
tional

logi
 languages has been proposed mainly for eager narrowing strategies like ba-

si
 [30, 33℄, innermost [13℄ or innermost basi
 narrowing [21℄. E
hahed [11℄ has

shown how to integrate normalization (with indu
tive 
onsequen
es) in any nar-

rowing strategy, but he requires strong restri
tions on the set of rules (termination

and uniformity, whi
h is stronger than indu
tive sequentiality). The in
lusion of

simpli�
ation into lazy strategies has been 
onsidered only in the 
ontext of

lazy uni�
ation.

9

In [8, 20℄ lazy uni�
ation 
al
uli are proposed where terms are

redu
ed to their normal form before a nondeterministi
 transformation step is

applied to the equation system. But these approa
hes require a terminating set

of rules in order to ensure the existen
e of normal forms and the 
ompleteness of

the 
al
uli.

As far as we know, the present paper is the �rst attempt to in
lude simpli�
a-

tion into narrowing derivations even in the presen
e of nonterminating fun
tions.

The only related work for this 
lass of programs is the paper of Loogen and

Winkler [26℄ whi
h proposes the dynami
 
ut to dete
t deterministi
 narrowing

steps after the uni�
ation phase. As dis
ussed at the beginning of Se
tion 3, this

does not avoid the generation of 
hoi
e points, and the 
ut of in�nite derivation

paths depends on the order of rules. The basi
 di�eren
e of our method is that

we 
he
k the appli
ability of a deterministi
 
omputation step before we apply

a nondeterministi
 step. Hen
e we prefer deterministi
 
omputations to nonde-

terministi
 
omputations. This quali�es our exe
ution method as the operational

prin
iple of eÆ
ient fun
tional logi
 languages.

Loogen et al. [25℄ have proposed to improve lazy narrowing strategies by re-

ordering the uni�
ation steps in rule appli
ations. For this purpose they use a

version of de�nitional trees [1℄ extended to weakly orthogonal rewrite systems. In

order to handle partial overlapping left-hand sides, they introdu
e nondetermin-

isti
 
hoi
e nodes in de�nitional trees. But these 
hoi
e nodes have the e�e
t that

possible deterministi
 
omputations are not dete
ted. For instan
e, the in�nite

9

The 
ombination of lazy narrowing with deterministi
 redu
tion steps has been also


onsidered by Josephson and Dershowitz [23℄. However, they provide no 
ompleteness

proof but refer to [9℄ where only the 
ompleteness of naive narrowing without simpli-

�
ation and without a parti
ular lazy strategy is proved for terminating 
onditional

rules.
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sear
h spa
es of naive lazy narrowing in Examples 2, 7 and 8 would also o

ur

with respe
t to their improved strategy.

Another alternative to improve lazy narrowing has been proposed by Moreno-

Navarro et al. [28℄. They use information about demanded arguments to avoid

reevaluations of expressions during uni�
ation with di�erent rules. Sin
e they do

not 
hange the order of argument evaluations and rules, the in�nite sear
h spa
es

avoided by simpli�
ation still o

ur in their approa
h.

The integration of simpli�
ation into lazy narrowing derivations requires new

implementation te
hniques for fun
tional logi
 languages. Current eÆ
ient im-

plementations of lazy narrowing are mainly based on extensions of redu
tion

ma
hines used for the implementation of fun
tional languages [4, 15, 24, 27℄.

The in
lusion of simpli�
ation requires the implementation of an intermediate

redu
tion pro
ess. This 
ould be done by te
hniques proposed for the eÆ
ient

implementation of normalizing narrowing [16, 17℄ or by the implementation of

demons waiting for the suÆ
ient instantiation of fun
tion arguments [23℄.
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