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Abstract. This paper shows the advantages of amalgamating functional
and logic programming languages. In comparison with pure functional lan-
guages, an amalgamated functional logic language has more expressive power.
In comparison with pure logic languages, functional logic languages have a
better control behaviour. The latter will be shown by presenting methods
to translate logic programs into a functional logic language with a narrow-
ing/rewriting semantics. The translated programs produce the same set of
answers and have at least the same efficiency as the original programs. But
in many cases the control behaviour of the translated programs is improved.
This requires the addition of further knowledge to the programs. We discuss
methods for this and show the gain in efficiency by means of several examples.

1 Introduction

Many proposals have been made to integrate functional and logic programming lan-
guages during the last years (see [3, 11] for surveys). Recently, these proposals be-
came relevant for practical applications because efficient implementations have been
developed [5, 8, 19, 33, 35, 48]. This raises the natural question for the advantages of
such amalgamated languages. In comparison with pure functional languages, func-
tional logic languages have more expressive power due to the availability of features
like function inversion, partial data structures and logic variables [42]. In compari-
son with pure logic languages, functional logic languages allow to specify functional
dependencies and to use nested functional expressions. Although this improves the
readability of logic programs, it is not clear whether this is only a minor syntactic
improvement (which can be added to logic languages by a simple preprocessor [37])
or there is a genuine advantage of functional logic languages compared to pure logic
languages. In this paper we show that the latter is true: functional logic languages
have a better operational behaviour than logic languages. We show this by presenting
methods to translate logic programs into a functional logic language. These methods
ensure that the translated programs produce the same set of answers and have at
least the same efficiency as the original programs. But in many cases the translation
improves the control behaviour of logic programs which will be demonstrated by
several examples.



sort(L,M) :- perm(L,M), ord(M).

perm([1,[1).
perm([EIL], [FIM]) :- del(F,[E|L],N), perm(N,M).

del(E,[EIL],L).
del(E,[FIL],[FIM]) :- del(E,L,M).

ord([1).
ord([E]).
ord([E,FIL]) :- le(E,F), ord([FIL]).

1le(0,E).
le(s(E),s(F)) :- le(E,F).

Figure 1. Permutation sort (natural numbers are represented by s-terms)

Logic programming allows the specification of problems at an abstract level and
permits the execution of the specifications. However, these specifications are often
very slowly executed because a lot of search is performed under the standard Prolog
computation rule. For instance, Figure 1 specifies the notion of a sorted list (cf.
[44], p. 55): a list M is a sorted version of a list L if M is a permutation of L and
all elements of M are in ascending order. We can use this Prolog program to sort
the list [4,3,2,1] by solving the query ?- sort([4,3,2,1],S). But this runs very
inefficiently under the standard computation rule because all permutations must be
enumerated and tested in order to solve this goal.

Therefore several proposals have been made in order to improve the control
of Prolog programs. Naish [36] has extended the standard computation model of
Prolog by a coroutining mechanism. He allows the addition of “wait” declarations to
predicates. Such declarations have the effect that the resolution of a literal is delayed
until the arguments are sufficiently instantiated. If a variable of a delayed literal is
bound to a non-variable term, this literal is woken and executed in the next step if
it is now sufficiently instantiated. In the permutation sort example, the programmer
can add a wait declaration to the predicate ord and change the ordering in the first
clause into

sort(L,M) :- ord(M), perm(L,M).

Now the goal 7- sort([3,2,1],8) is executed in the following way: After the ap-
plication of the first clause to this goal the literal ord(S) is delayed and the literal
perm([3,2,1],S) will be executed. If S is bound to the first part of a permutation
of [3,2,1] (i.e., a list with two elements and a variable at the tail), then ord(S) is
activated. If the first two elements of S are in the wrong order, then the computation
fails and another permutation is tried, otherwise ord is delayed again until the next
part of the permutation is generated. Thus with this modification not all permu-
tations are completely computed and therefore the execution time is better than
in the naive approach. Naish has also presented an algorithm which generates the
wait declarations from a given program and transforms the program by reordering
the goals in a clause. Although this approach seems to be attractive, it has some



problems. For instance, the generation of wait declarations is based on heuristics
and therefore it is unclear whether these heuristics are generally successful. More-
over, it is possible that the annotated program flounders, i.e., all goals are delayed
which is considered as a run-time error. Hence completeness of SLD-resolution can
be lost when transforming a logic program into a program with wait declarations
(see example at the end of Section 3.3 or the goodpath example in [46]).

Another approach to improve control has been developed by Bruynooghe’s group
[7]. They try to avoid the overhead of coroutining execution by transforming a logic
program with coroutining into a logic program with an equivalent behaviour exe-
cuted under the standard computation rule. The transformation is done in several
steps. In the first step a symbolic trace tree of a goal is created where the user has
to decide which literal is selected and whether a literal is completely executed or
only a single resolution step is made, i.e., the user must supply the system with
a good computation rule. If a goal in the trace tree is a renaming of a goal in an
ancestor node, an arc from this goal to the ancestor node is inserted. This results in
a symbolic trace graph which is then reduced and in the last step translated into a
logic program simulating the symbolic trace under the standard computation rule.
The crucial point in this approach is to find a good computation rule for the program
with respect to the initial goal. In a recent paper [46] a method for the automated
generation of an efficient computation rule is presented. The method is based on
a global analysis of the program by abstract interpretation techniques in order to
derive the necessary information. Since the arguments for choosing a “good” com-
putation rule are heuristics, it is unclear whether the transformed programs are in
any case more efficient than the original ones. Another problem is due to the fact
that their method uses a given call pattern for the initial goal. Therefore different
versions of the program are generated for different call modes of the goal.

In this paper we propose a much simpler method to improve control of logic
programs. This method ensures that the new programs have at least the same effi-
ciency as the original ones. But for a large class of programs (“generate-and-test”
programs like permutation sort) we obtain a better efficiency similar to other ap-
proaches to improve control. The basic idea is to use a functional logic language
and to translate logic programs into functional programs (without considering the
initial goal). The motivation for the integration of functional and logic program-
ming languages is to combine the advantages of both programming paradigms in
one language: the possibility of solving predicates and equations between terms to-
gether with the efficient reduction paradigm of functional languages. A lot of the
proposed amalgamations of functional and logic languages are based on Horn clause
logic with equality [40] where the user can define predicates by Horn clauses and
functions by (conditional) equations. Predicates are often omitted because they can
be represented as Boolean functions. A complete operational semantics is based on
the narrowing rule [14, 29, 30]: narrowing combines unification of logic languages
with rewriting of functional languages, i.e., a narrowing step consists of the unifica-
tion of a subterm of the goal with the left-hand side of an equation, replacing this
subterm by the right-hand side of the equation and applying the unifier to the whole



goal. Since we have to take into account all subterms of a goal in the next narrowing
step, this naive strategy produces a large search space and is less efficient than SLD-
resolution (SLD stands for selecting one literal in the next resolution step). Also the
advantage of functional languages, namely the deterministic reduction principle, is
lost by this naive approach.

Therefore a lot of research has been done to improve the narrowing strategy
without loosing completeness. Hullot [29] has shown that the restriction to basic
subterms, i.e., subterms which are not created during unification, is complete. Fri-
bourg [15] has proved that the restriction to subterms at innermost positions is also
complete provided that all functions are reducible on all ground terms. Finally, Holl-
dobler [28] has proved completeness of the combination of basic and innermost nar-
rowing where a so-called innermost reflection rule must be added for partially defined
functions. But innermost basic narrowing is not better than SLD-resolution since it
has been shown that innermost basic narrowing corresponds to SLD-resolution if a
functional program is translated into a logic program by flattening [6]. On the other
hand, we can also translate a logic program into a functional one without loosing
efficiency if we use the innermost basic narrowing strategy. But now we are able to
improve the execution by simplifying the goal by deterministic rewriting before a
narrowing step is applied (rewriting is similar to reduction in functional languages
with the difference that rewriting is also applied to terms containing variables).
The simplification phase cuts down the search space without loosing completeness
[28, 39].

We will see in the next sections that the operational behaviour of innermost basic
narrowing combined with simplification is similar to SLD-resolution with a particular
dynamic control rule. Hence we get an improvement in the execution comparable to
previous approaches [7, 36] but with the following advantages:

— The translation technique from logic programs into functional logic programs is
simple.

— It is ensured that the translated programs have at least the same efficiency as
the original ones. For many programs the efficiency is much better.

— It is ensured that we do not loose completeness: there exists an answer w.r.t. the
translated program iff there exists an answer w.r.t. the original program.

The last remark is only true if we use a fair computation strategy. If we use a
backtracking implementation of SLD-resolution as in Prolog, the completeness may
be lost because of infinite computations. However, infinite paths in the search tree
can be cut by the simplification process [15], i.e., it is also possible that we obtain
an answer from the functional logic program where the original logic program does
not terminate.

These theoretical considerations are only relevant if there is an implementation
of the functional logic language which has the same efficiency as current Prolog
implementations. Fortunately, this is the case. In [19, 21, 24] it has been shown
that it is possible to implement a functional logic language very efficiently by ex-
tending the currently known Prolog implementation techniques [47]. The language



ALF (“Algebraic Logic Functional language”) is based on the operational seman-
tics sketched above. Innermost basic narrowing and simplification is implemented
without overhead in comparison to Prolog’s computation strategy, i.e., functional
programs are executed with the same efficiency as their relational equivalents by
SLD-resolution (see [21] for benchmarks). Therefore it is justified to improve the
control of logic programs by translation into a functional logic language.

In the next section we give a precise description of ALF’s operational semantics
and in Section 3 we present our approach to improve control of logic programs in
more detail.

2 Operational semantics of ALF

As mentioned in the previous section, we want to improve the control behaviour of
logic programs by translating them into a functional logic language. We have also
mentioned that in order to compete with SLD-resolution we have to use a functional
logic language with a refined operational semantics, namely innermost basic nar-
rowing and simplification. Hence the target language of the translation process is
the language ALF [19, 21] which is based on this semantics. ALF has more features
than actually used in this paper, e.g., a module system with parameterization, a
type system based on many-sorted logic, predicates which are resolved by resolution
etc. (see [25] for details). In the following we outline the operational semantics of
ALF in order to understand the translation scheme presented in the next sections.

ALF is a constructor-based language, i.e., the user must specify for each symbol
whether it is a constructor or a defined function. Constructors must not be the
outermost symbol of the left-hand side of a defining equation, i.e., constructor terms
are always irreducible. Hence constructors are used to build data types, and defined
functions are operations on these data types (similarly to functional languages like
ML [27] or Miranda [45]). The distinction between constructors and defined function
symbols is necessary to define the notion of an innermost position [15].

An ALF program consists of a set of (conditional) equations which are used
in two ways. In a narrowing step an equation is applied to compute a solution of
a goal (i.e., variables in the goal may be bound to terms), whereas in a rewrite
step an equation is applied to simplify a goal (i.e., without binding goal variables).
Therefore we distinguish between narrowing rules (equations applied in narrowing
steps) and rewrite rules (equations applied in rewrite steps). Usually, all conditional
equations of an ALF program are used as narrowing and rewrite rules, but it is
also possible to specify rules which are only used for rewriting. Typically, these
rules are inductive axioms or CWA-valid axioms (see below). The application of
such rules for simplification can reduce the search space and is justified if we are
interested in ground-valid answers [15, 39] (i.e., answers which are valid for each
ground substitution applied to it).

Figure 2 shows an ALF module to sort a list of naturals. Naturals are represented
by the constructors 0 and s, true and false are the constructors of the data type



module isort.

datatype bool = { true ; false }.
datatype nat = { 0 ; s(nat) }.
datatype list = { ’.’(nat,list) ; [1 }.

func isort : list -> list;
insert: nat, list -> list;

le : nat, nat -> bool.
rules.
isort([1) = [].
isort ([E|L]) = insert(E,isort(L)).
insert (E, [1) = [E].
insert (E,[FIL]) = [E,FIL] :- 1le(E,F) = true.
insert(E,[FIL]) = [Flinsert(E,L)] :- le(E,F) = false.
le(0,N) = true.
le(s(N),0) = false.
le(s(M),s(N)) = le(M,N).

end isort.

Figure 2. ALF program for insertion sort

bool and lists are defined as in Prolog. The defined functions of this module are
isort to sort a list of naturals, insert to insert an element in an ordered list, and
le to compare two naturals.

The declarative semantics of ALF is the well-known Horn clause logic with equal-
ity as to be found in [40]. The operational semantics of ALF is based on innermost
basic narrowing and rewriting.! Before a narrowing step is applied, the goal is sim-
plified to normal form by applying rewrite rules. We will distinguish two kinds of
nondeterminism by the keywords “don’t know” and “don’t care”: don’t know indi-
cates a branching point in the computation where all alternatives must be explored
(in parallel or by a backtracking strategy in a concrete implementation); don’t care
indicates a branching point where it is sufficient to select (nondeterministically) one
alternative and disregard all other possibilities.

In order to give a precise definition of the operational semantics, we represent
a goal (a list of equations to be solved) by a skeleton and an environment part
[28, 39]: the skeleton is a list of equations composed of terms occurring in the original
program, and the environment is a substitution which has to be applied to the
equations in order to obtain the actual goal. The initial goal G is represented by the
pair (G;id) where id is the identity substitution. The following scheme describes the
operational semantics (if 7 is a position in a term ¢, then ¢|, denotes the subterm of ¢
at position 7 and ¢[s], denotes the term obtained by replacing the subterm ¢|, by s in
t [12]; 7 is called an innermost position of t if the subterm ¢|, has a defined function

! Similarly to EQLOG [18], ALF allows also the definition of predicates which are solved
by resolution, but we omit this aspect in the current paper.



symbol at the top and all argument terms consist of variables and constructors). Let
(E1,...,E, ; o) be agiven goal (Ei, ..., E, are the skeleton equations and ¢ is the
environment):

1. Select don’t care a non-variable position 7 in F; and a new variant [ = r + C
of a rewrite rule such that o’ is a substitution with o(F|,) = o'(l) and the goal
(C ; &'y can be derived to the empty goal without instantiating any variables
from o(Fy). Then

(Ei[0'(r)]x, B2, ..., Epn ; o)

is the next goal derived by rewriting; go to 1.2 Otherwise go to 2.

2. If the two sides of equation E; have different constructors at the same outer
position (a position not belonging to arguments of functions), then the whole
goal is rejected, i.e., the proof fails. Otherwise go to 3.

3. Let 7 be the leftmost-innermost position in E; (if there exists no such position
in Ey, go to 4). Select don’t know (a) or (b):

(a) Select don’t know a new variant [ = r < C of a narrowing rule such that
o(E1|x) and [ are unifiable with mgu ¢’. Then

C,E\[r)«,Es,....E,; 0 o0
(

is the next goal derived by innermost basic narrowing; go to 1. Otherwise:
fail.
(b) Let = be a new variable and ¢’ be the substitution {z — o(Ei|)}. Then

Elfﬂ-Eg...En'O',OO'
(Erl2le, Bz, En

is the next goal derived by innermost reflection; go to 3 (this corresponds
to the elimination of an innermost redex [28] and is called “null narrowing
step” in [6]).

4. If E; is the equation s =t and there is a mgu ¢’ for o(s) and o(¢), then

<E27-'-7En 7 0-100->
is the next goal derived by reflection; go to 1. Otherwise: fail.

The attribute basic of a narrowing step emphasizes that a narrowing step is only
applied at a position of the original program and not at positions introduced by
substitutions [29]. The innermost reflection rule need not be applied to completely
defined functions, i.e., functions which are reducible on all ground terms of appro-
priate sorts [15, 28]. Therefore the innermost reflection rule can be avoided by using
types and checking whether each function is sufficiently defined for all constructors
of their argument types. Since ALF is a typed language and allows such tests, we
implicitly assume in this paper that the sufficiently definedness tests are performed

2 Rewriting is only applied to the first literal, but this is no restriction since a conjunction
like E1, E2, E3 can also be written as an equation and(FE1,and(E2, Es)) = true. This
technique will be used in the following sections.



at compile time in order to avoid unnecessary applications of the innermost reflection
rule at run time.

This operational semantics is sound and complete if the term rewriting relation
generated by the conditional equations is canonical (i.e., confluent and terminat-
ing [12]) and the condition and the right-hand sides of the conditional equations
do not contain extra-variables [28]. Moreover, the conditional equations must be
reductive, i.e., the conditions must be smaller than the left-hand side w.r.t. some
termination ordering (otherwise basic conditional narrowing may be incomplete as
Middeldorp and Hamoen [34] have pointed out).? If a program has conditional equa-
tions with extra-variables, there may be other criteria to ensure completeness (e.g.,
level-confluence [17] or decreasing rules [13]) or it may be possible to transform the
program into an equivalent program for which this operational semantics is complete
(e.g., Bertling and Ganzinger [4] have proposed such a method). Therefore we al-
low extra-variables in conditional equations which is the reason for the instantiation
condition in the rewrite step.

Rewriting in ALF is applied from innermost to outermost positions, i.e., rewrit-
ing corresponds to eager evaluation in functional languages. Similarly to Prolog,
ALF uses a backtracking strategy to implement the choices of different clauses in a
narrowing step. Hence the theoretical completeness will be lost due to infinite com-
putations, but for finite search trees the operational semantics is complete. Due to
the requirement for a canonical and reductive set of equations, the normal form of a
term uniquely exists and can be computed by rewriting with an arbitrary matching
equation in a rewrite step. Therefore the creation of choice points is only necessary
in narrowing steps.

We have mentioned in the introduction that it is also possible to translate func-
tional programs into logic programs by flattening and to execute these programs
by SLD-resolution [6]. ALF’s operational semantics has the following advantages in
comparison to that and other techniques:

e Since rewriting is a deterministic process (or it can be also seen as “don’t care”
nondeterminism) and rewriting is done before narrowing, deterministic compu-
tations are performed whenever it is possible. This avoids superfluous creation
of choice points. Nondeterministic computations are only performed if it is nec-
essary, i.e., if a solution (binding of a goal variable) must be guessed by an
application of a narrowing rule.

e A similar behaviour can be achieved in Prolog by inserting delays [36, 37]. But
this has the disadvantage that the program with delays may flounder which
corresponds to incompleteness. This cannot be the case in ALF because of ALF’s
complete operational semantics.

e The residuation principle of Le Fun [1] is also related to ALF’s operational
semantics: If a Le Fun function is applied to a variable argument, the application
is delayed until the variable becomes bound to a non-variable term. But this

% The requirement for reductive conditional equations is not a real restriction since tools
for checking canonicity of conditional equations usually have this requirement [16].



semantics is also incomplete in some cases. For instance, if append is a function
that concatenates two lists, we can extract the last element E of a given list L
by solving the equation

append(_, [E]) = L

Residuation will delay this computation (since the first argument is always un-
bound) and we obtain no result for E. But ALF will solve this goal by narrowing
and rewriting and delivers the unique solution for E. Moreover, the residuation
principle of Le Fun may produce an infinite search space for examples where
ALF’s or Prolog’s operational semantics has a finite search space [23].

e Similarly to ALF, the Andorra computation model [26] prefers deterministic
computations before nondeterministic ones. However, the rewriting mechanism
of ALF yields deterministic computations also when more than one clause
matches (see max example in section 3.3) and may delete goals with infinite or
nondeterministic computations. E.g., if X*0=0 is a defining equation for the func-
tion *, then a term like ¢t*0 will be simplified to 0, i.e., the entire subterm ¢ will
be deleted. This is important if ¢ contains unevaluated functions with variable
arguments. The same is true for the relation of ALF and Prolog with Simplifica-
tion [9]: ALF’s rewriting mechanism is more general than simplification because
unifiable (but confluent) equations, equations with deleting left-hand side vari-
ables and conditional equations are admissible rewrite rules in ALF.

e It is also important to note that ALF’s operational semantics can be implemented
with the same efficiency as current Prolog implementations [21]. The overhead
of searching the next innermost subterm can be avoided by using a stack of
references to subterms in the goal (see [19] and [21] for details).

These arguments gives us the feeling that the computation principle of ALF is more
efficient than Prolog’s SLD-resolution. In the next section we will show how logic
programs can be translated into ALF programs and what we gain from such a
translation.

3 Translating logic programs into functional programs

There are two principle ways to translate a logic program into a functional one:

1. We consider each predicate as a Boolean function and translate the Horn clauses
of each predicate into a functional expression over the Booleans.

2. We try to find out functional dependencies between the arguments of a predicate.
If there is such a dependency, we transform the predicate into function from
input to output arguments, otherwise we transform the predicate into a Boolean
function.

The second method is clearly an extension of the first one. The first method is
very simple and always applicable, but we will also show techniques for the second
translation method.



Example: The predicates member and append are defined by the following logic
program:

member (E, [EIL]).

member (E, [F|L]) :- member(E,L).

append ([1,L,L).

append ([EIR],L, [EIRL]) :- append(R,L,RL).

We can translate this program into a functional program by the first method:

func member: term, term — bool

member (E, [EIL]) = true.

member (E, [FIL]) = true :- member(E,L) = true.

func append: term, term, term — bool

append ([1,L,L) = true.

append([E|R],L,[EIRL]) = true :- append(R,L,RL) = true.

But we can also perceive that the first and the second argument of append determine
the value of the third argument, i.e., there is a functional dependency between the
arguments of append. Therefore it is possible to translate append into the following
function definition:

func append: term, term — term
append ([1,L) = L.
append([E|R],L) = [E|append(R,L)].

In the following we will discuss both methods in more detail.

3.1 Translating all predicates into Boolean functions

In this section we discuss the simple approach where each n-ary predicate is trans-
lated into an n-ary Boolean function. We define the translation of logic programs
into functional programs by the following rules:

Facts: L. = L = true.
Clauses: L :- L{,...,L,. = L = true :- (4 and --- and L,) = true.
Goals: ?- Ly,...,L,. = ?- (L; and -+ and L,) = true.

The Boolean values together with the function and are defined in Figure 3.* Since

the right-hand side of each equation in the translated program is the constant true,
5

we get immediately the following property of the translated programs:
* The declaration “infixright 650” defines the symbol “and” as a right-associative infix
operator with priority 650. This has the similar effect as the declaration op (650,xfy,and)
in Prolog.

In this paper we do not deal with the problem of proving termination of the narrow-
ing/rewrite rules since ALF’s operational semantics does also work for nonterminating
programs. Moreover, the correspondence of narrowing and resolution derivations [6] is
also valid for nonterminating programs. But note that the operational semantics may be
incomplete for some nonterminating programs and therefore we implicitly assume that
the rewrite relation is terminating and all conditional rules are reductive.

10



module bool.

datatype bool = { true ; false }.
func and : bool, bool -> bool infixright 650.

rules.
false and B = false.
true and B = B.
B and false = false.
B and true = B.
end bool.

Figure 3. Module for Boolean values

Proposition 1. If R is the set of conditional equations obtained by translating a
logic program with the above translation scheme, then R is confluent.

Hence we can use the translated equations as narrowing rules and solve the translated
goals by innermost basic narrowing. But what is the relation between narrowing
derivations of the functional program and resolution derivations of the original logic
programs? Bosco et al. [6] have shown that there is a strong relationship between
these derivations, i.e., every innermost basic narrowing derivation of a functional
program corresponds to an SLD-resolution derivation with the leftmost selection rule
if the functional program is appropriately flattened into a logic program. Applying
their result to our framework we obtain the following proposition (actually, they
have proved the correspondence for unconditional equations but it is not difficult to
extend it to the conditional case):

Proposition 2. Let P be a logic program and R be the set of conditional equations
obtained by translating P. For each goal G and each SLD-resolution with the leftmost
selection rule there is a corresponding innermost basic narrowing sequence for the
translated goal G' where each resolution step corresponds to an innermost basic nar-
rowing step together with at most one application of the equation “true and B =B”.

Hence the logic program and its functional version have the same efficiency (if we
neglect the simple application of the equation “true and B = B”) and produce the
same set of answers. But the efficiency of the functional version can be improved by
adding rewrite rules. We know from Section 2 that we can add the narrowing rules
also as rewrite rules and perform rewriting between narrowing steps without loosing
completeness. Rewriting can be done in a deterministic way, i.e., it is not necessary
to generate choice points during rewriting and therefore rewriting may reduce the
search space. For instance, if the functional program contains the equations

member (E, [E|IL]) = true.
member (E, [FIL]) = true :- member(E,L) = true.

both as narrowing rules and rewrite rules, the goal

?- member(2,[1,2,3]) = true.

11



is proved by rewriting without generating any choice point. Note that two choice
points are generated during the corresponding SLD-resolution (using standard im-
plementation techniques [47]).

Since rewriting cannot bind any goal variable (a rewrite rule is applicable if the
left-hand side of the equation matches the current subterm), it can only be applied
as a test and then it avoids the search for alternative proofs of this test. This is a
slight improvement and does not justify the translation from the well-known Prolog
framework into the new functional logic framework. For instance, if we translate the
permutation sort program in Figure 1, the functional version is executed in the same
slow way as the relational version. The improvement of the control behaviour in the
framework of Naish [36] or Bruynooghe [7] is due to the fact that the failure of a goal
is detected early in the computation. Therefore we must add negative information
to our functional program. This will be outlined in the next section.

3.2 Adding negative information

For the case that we are interested in valid answers w.r.t. the least Herbrand model,
which is a natural assumption in logic programming [32], Fribourg [15] has shown
that we can add equations which are valid w.r.t. the so-called “Closed World As-
sumption” (CWA-valid) as rewrite rules to our program. The operational semantics
is still sound w.r.t. ground-valid answers, i.e., answers which are valid for each ground
substitution applied to it. A conditional equation

L = false :- Ly and --- and L, = true.

is called CWA-valid w.r.t. a set of conditional equations R if for any ground con-
structor substitution o

R E o(L) = true :- o(Ly) and --- and o(L,) = true

does not hold (later we will also allow equations of the form L=false in the condition
part; CWA-validity of such clauses is similarly defined). If we rewrite a literal L=true
to the equation false=true by CWA-valid rewrite rules, we can immediately reject
the whole goal (compare the “rejection” rule in Section 2). This technique does not
affect the completeness of the operational semantics but can be an essential improve-
ment. For instance, consider the following clauses [15] (a, b and c are constructors):

on(a,b)
on(b,c) = true.

above (X,Y) = true :- on(X,Y) = true.

above(X,Y) = true :- above(X,Z) and on(Z,Y) = true.

true.

The execution of the goal 7- above(a,a) = true leads to an infinite loop. If the
CWA-valid equation above(X,X) = false is inserted into the set of rewrite rules,
the goal 7- above(a,a) = true is first rewritten into ?- false = true and then
it fails by the rejection rule.

12



As a further example, consider the following set of rules defining the predicates
even and le (less-or-equal):

even(0) = true.
even(s(s(N))) = true :- even(N)
1le(0,N) = true.
le(s(M),s(N)) = true :- 1le(M,N) = true.

true.

The execution of the goal 7- even(N) and le(N,s(s(0))) = true leads to an
infinite loop after producing the answers N=0 and N=s(s(0) ), because the predicate
even generates an infinite number of even naturals. In order to avoid this loop, we
may add the CWA-valid equation 1e(s(N),0) = false. But this does not solve the
problem because there is the following infinite derivation (the narrowed subterms
are underlined):

?7- even(N) and le(N,s(s(0))) = true.
?- even(N1) = true, true and le(s(s(N1)),s(s(0))) = true.
?- even(N2) = true, true = true,
true and le(s(s(s(s(N2)))),s(s(0))) = true.

The reason for this infinite derivation is that only the first literal of a goal is simplified
by rewriting (cf. Section 2).6 But this is no real problem since we can also translate
the original logic program for even and le in the following way:

even(0) = true.
even(s(s(N))) = even(N).
1le(0,N) = true.
le(s(M),s(N)) = 1le(M,N).

Now we obtain the following derivation with the additional CWA-valid rewrite rule
le(s(N),0) = false:

?7- even(N) and 1le(N,s(s(0))) = true.
narrowing with the second equation for even
?7- even(N1) and le(s(s(N1)),s(s(0))) = true.
simplifying the goal
?- even(N1) and le(N1,0) = true.
narrowing with the second equation for even
?7- even(N2) and le(s(s(N2)),0) = true.
simplifying the goal:
7- false = true.
failure by rejection

Hence the search space of this goal is finite in contrast to the original Prolog program.
In order to implement the improved proof strategy, we simply modify our translation
scheme for clauses:

® This is for the sake of an efficient implementation [21] because rewriting the whole goal
allows less optimizations during the compilation phase.
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sort(L,M) = perm(L,M) and ord(M).

perm([],[]) = true.

perm([EIL], [FIM]) = del(F,[EIL],N) and perm(N,M).
del(E,[EIL],L) = true.

del(E, [FIL],[FIM]) = del(E,L,M).

ord([1) = true.

ord ([E]) = true.

ord([E,F|L]) = 1le(E,F) and ord([FIL]).

le(0,E) = true.

le(s(E),s(F)) = le(E,F).

Figure 4. Functional version of permutation sort

Translation of clauses: Let L :- Lq,...,L, be a clause for which one of the
following conditions holds:
1. L is not unifiable with the head of any variant of another clause of the logic

program.

2. If there are a variant of another clause L' :- L{,...,L! and a unifier
o for L and L', then the goals ?- o(L; and --- and L,) = true and
?7- o(L} and --- and L!,) = true can be rewritten to the same goal using

the rewrite rules corresponding to the logic program w.r.t. the old translation
scheme (confluence of clauses).
Then the clause is translated into the equation

L = (L; and --- and L,).
otherwise it is translated into the conditional equation

L = true :- (L and --- and L,) = true.

Note that this modified translation is only necessary because of the restricted rewrit-
ing in ALF. If we use another functional logic language which performs rewriting
on the whole goal (like SLOG [15]), this modification is superfluous. The conditions
guarantee that the translated program is confluent, i.e., Proposition 1 holds also for
the modified translation scheme. Figure 4 shows the translation of the logic permu-
tation sort program of Figure 1. Note that this is nearly the same program which
Fribourg [15] has presented in a rather ad-hoc manner.

The final problem is the generation of CWA-valid rules for rewriting. For instance,
from the given rules

1le(0,E) = true.
le(s(E),s(F)) = 1le(E,F).

we have to generate the CWA-valid rule
le(s(E),0) = false.

In this case it can be done by inspecting the constructors of the argument terms of the
left-hand side, and then generating false rules for all constructor terms on which
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le is not reducible. Fortunately, there is also a systematic method for doing this
in general. Intensional negation [2] is a transformation technique which synthesizes
clauses for new predicates p; from a given logic program for the predicates p;. The
new predicates p; describe the finite failure set of the original predicates p; and hence
they are a computable approximation of the CWA-valid literals [32]. E.g., given the
clauses

even(0).
even(s(s(X))) :- even(X).

intensional negation generates the new clauses

even’ (s(0)).
even’ (s(s(X))) :- even’(X).

which define the odd numbers. If we translate the predicate even’(---) into
even(---) = false, we obtain the CWA-valid rewrite rule used in our even ex-
ample above.

We do not propose to compute the intensional negation of all defined predicates
since this leads to a large number of additional rewrite rules. Moreover, intensional
negation does not generate Horn clauses for the negated predicates if the original
clauses contain local variables in their bodies (see [2] for details). But in most cases
it is possible and sufficient to compute the negation of some base predicates. For
instance, from the given definition of the less-or-equal predicate le in Figure 1 we
obtain by intensional negation the CWA-valid rule

le(s(X),0) = false.

If we add this single rule as a rewrite rule to the narrowing/rewrite rules of Figure 4,
the computation is automatically optimized without control instructions: as soon as
the variable M in the goal perm([---],M) and ord(M) = true is bound to a partial
list [a,bIL] with a greater than b, the goal is simplified by rewriting as follows:

perm([---1,[a,bIL]) and ord([a,b|IL]) = true
perm([---1,[a,bIL]) and le(a,b) and ord([b|L]) = true
perm([---1,[a,blL]) and false and ord([b|L]) = true
perm([---]1,[a,blL]) and false = true

false = true

LELy

Hence not all permutations are enumerated but the computation of a permutation
immediately stops if two consecutive elements are in the wrong order. Thus we have
obtained the same improved operational behaviour as in related approaches [7, 36]
in a simple and declarative way. The following table shows the execution times in
seconds to sort the list [n,...,2,1] for different values of n:

Length of the list: 5 6 7 8 9 10 |

Original logic program (Figure 1) 0.10 0.65 4.63 37.92 348.70 3569.50
Translated functional program (Figure 4) |0.100.270.61 1.43 3.28  7.43

Both the original logic version and the functional version were executed by the ALF
system since ALF also allows the definition of predicates which are executed as in
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Prolog (pure logic ALF programs are translated into code of an abstract machine as
described in [47]).

Using our method we can translate arbitrary logic programs into functional pro-
grams. An essential speeding up will be obtained for the class of “generate-and-test”
programs like the permutation sort above, the classical 8-queens problem or the
goodpath program of [46].

3.3 A more sophisticated translation scheme

Until now we have simply translated predicates into Boolean functions. But it is
often the case that a programmer has a function in mind but must write it down
as a predicate in a logic program. Any n-ary function can be expressed as a (n +
1)-ary relation by adding the result as an additional argument. For instance, the
concatenation of two lists is a function from two list arguments into another list. It
can be defined in a functional language with pattern-matching by the equations

conc([],L)
conc([E|R],L)

L.
[Elconc(R,L)].

Since Prolog does not allow the definition of functions and nested expressions, a Pro-
log programmer must express the concatenation as a predicate with three arguments
and writes down the following clauses:

append ([1,L,L).
append([E|R],L,[EIRL]) :- append(R,L,RL).

Innermost basic narrowing execution of the first program is equivalent to the Prolog
execution of the append clauses. But the additional simplification mechanism of
the functional evaluation can avoid infinite loops which may occur in the relational
evaluation. For instance, Naish [36] has noted that the following goal causes an
infinite loop under the standard Prolog evaluation rule for any order of literals and
clauses:

?- append([1]V],W,X), append(X,Y,[2]Z]).
But the evaluation of the equivalent conc equation causes a fail and does not loop:

?- conc(conc([1IV],W),Y) = [2]Z].
simplifying the goal by two applications of the second conc rule:
?- [1|conc(conc(V,W),Y)] = [2]Z].
failure by rejection since 1 and 2 are different constructor terms

Note that the failure situation is detected without any additional CWA-valid rule.
The only knowledge used here is the fact that constructor terms are irreducible and
therefore different constructor terms cannot denote the same object. This knowledge
is expressed by the rejection rule (Section 2).

We see from this example that it is desirable to declare predicates with functional
dependencies between arguments as functions from input to output arguments and
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not as Boolean functions. Since we use a functional logic language with a complete
operational semantics, this does not restrict the class of evaluable goals.

If a programmer writes down a program, he has the functional dependencies
between data in mind. Thus he can directly define the functions if he uses a func-
tional logic language like ALF. But it is also possible to find functional dependencies
in a given Prolog program. In general, a functional dependency is an undecidable
property of a logic program [38]. However, in particular cases one can find sufficient
criteria for that. For instance, Reddy [41] has proposed a technique for transforming
logic programs into functional ones. However, his technique is based on modes for
the predicates in the logic program which obviously restricts the application of his
method (e.g., if a predicate is called in two different modes, two different functions
are generated for that predicate). Debray and Warren [10] have proposed a technique
to detect functional computations in logic programs. It is also based on modes and
tries to find out mutual exclusions between different clauses of a predicate. We do
not want to discuss the detection of functional dependencies in more detail but give
another sufficient criterion for this property.

Let p be an n-ary predicate. If we suppose that the first n—1 arguments determine
the value of the last argument (the generalization to other argument combinations
is straightforward), we modify our translation scheme of Section 3.1 in the following
way. Instead of defining p as an n-ary Boolean function, we define p as an (n —1)-ary
function and perform the following transformation steps:

1. Every literal p(t1,...,t,) in a clause or in the goal is replaced by the equation
p(tl, ey tnfl) = tn.

2. If we have generated an equation p(t1,...,t,—1) = X in the body of a clause
and X is a variable which does not occur in the left-hand side of the clause head,
all occurrences of X in the clause are replaced by the term p(t,...,t,-1) and
the equation is deleted

3. If we have generated an equation p(t,...,t,—1) = X in the goal and X is a vari-
able, then all occurrences of X in the goal are replaced by the term p(t1,...,tn—1)
and the equation is deleted.

It is easy to see that this transformation is the inverse of flattening the clauses (com-
pare [6]). Since Bosco et al. [6] have shown the correspondence of innermost basic
narrowing derivations and SLD-resolution derivations w.r.t. the flattened clauses, we
immediately obtain the following proposition:”

Proposition 3. If the set of rules after the transformation steps is canonical and
reductive, then the functional program has the same set of answers as the original
logic program.?

" The requirement for canonical and reductive rules is not essential for the correspondence
of narrowing and resolution derivations, but it is important for the unique termination
of the rewriting process between the narrowing steps.

& Actually, the functional program may compute more answers than the original logic
program since it can “skip” calls to partially defined functions by the innermost reflection
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Hence, if we have a supposition about the functional dependencies of the arguments
of the predicates, we apply the above transformation and then check the resulting
program for canonicity which can often be done by simple syntactic criteria (e.g.,
the arguments of the left-hand side are constructor terms and two different left-hand
sides are not unifiable) or by special completion procedures for conditional equations
[16]. For instance, the logic program of append is transformed into the functional
conc program above which is obviously canonical. As a further example take the
following logic program:

max(X,Y,Y) :- le(X,Y).
max (X,Y,X) :- ge(X,Y).
1e(0,X).

le(s(X),s(Y)) :- le(X,Y).
ge(X,0).

ge(s(X),s(Y)) :- ge(X,Y).

The clauses for max are not mutually exclusive and therefore the algorithm in [10]
does not detect a functionality in these clauses. However, if we suppose that the
third argument of predicate max is functional dependent on the first and the second
argument, we apply our transformation above and obtain the following rules:

max(X,Y) =Y :- le(X,Y) true.
max (X,Y) = X :- ge(X,Y) = true.
1e(0,X) = true.

le(s(X),s(Y)) = 1le(X,Y).
ge(X,0) = true.

ge(s(X),s(Y)) = ge(X,Y).

Now we can construct a successful proof of the canonicity of these rules using the
completion procedure in [16] (this can be easily done since there is an interface
between the ALF system and the completion system). Hence the canonicity criterion
is more general than other more syntactically oriented criteria [10, 41].

The transformation of predicates into functions has at least two advantages.
Firstly, the search space can be reduced because more terms can be evalu-
ated by rewriting (e.g., the term conc([1],[2]) is evaluable by rewriting where
append ([1], [2],L) must be evaluated by narrowing/resolution) and thus the re-
jection rule is applicable in more cases (see the above example for conc and append).
Secondly, the execution is more efficient because less nondeterminism must be imple-
mented. For instance, the execution of the goal add(s(s(s(0))),s(s(s(0)))) = L
w.r.t. the functional program

add(0,N) = N. add(s (M) ,N) = s(add(M,N))
add(N,0) = N. add(N,s(M)) = s(add(N,M))
rule. An innermost reflection step for the subterm p(t1,...,tx) corresponds to resolution

with the unit clause p(Xi,..., Xk, p(X1,...,Xk)) in the logic program. To state the
exact equivalence of the functional and the logic program, these facts must be added to
the logic program for functions which are not completely defined.
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does not create any choice point since the goal is fully evaluated by rewrit-
ing and not by nondeterministic narrowing, whereas the execution of the goal
add(s(s(s(0))),s(s(s(0))),L) w.r.t. the Prolog program

add (0,N,N) . add(s(M) ,N,s(L)) :- add(M,N,L).
add(N,0,N) . add(N,s(M),s(L)) :- add(N,M,L).

creates at least three choice points. The concrete effect of this behaviour on the
execution time and memory usage can be found in [21].

Our final example demonstrates the advantage of our approach in comparison
to other proposals to improve control. In this example we combine the advanced
translation scheme with the addition of negative information. Consider the following
Prolog program for the definition of mobiles (a mobile is a fish with a fixed positive
weight, or a bridge of weight 1 (=s(0)) where two mobiles of the same weight hang
at the left and right end):

mobile(fish(_)).
mobile(bridge(M1,M2)) :-

mobile(M1), mobile(M2),

weight (M1,W1), weight(M2,W2), equal(Wl,W2).
weight (fish(s(W)),s(W)). % a fish has a positive weight
weight (bridge (M1,M2),s(W)) :-

weight (M1,W1), weight (M2,W2), add(Wi,wWw2,W).

add (N,0,N) .
add(0,N,N).
add(N,s(M),s(Z)) :- add(N,M,Z).
add(s(M),N,s(Z)) :- add(M,N,Z).
equal(0,0).
equal(s(M),s(N)) :- equal(M,N).

If we want to know whether a given fish/bridge-structure is a mobile, we prove
the goal

?- mobile(bridge(fish(s(s(s(0)))),bridge(fish(s(0)),fish(s(0))))).
which yields the answer yes. If we want to get all mobiles of weight 3, we prove
?- mobile(M), weight(M,s(s(s(0)))).

This query goes into an infinite loop after enumerating all solutions because it gen-
erates bigger and bigger mobiles which are not of weight 3. If we want to avoid this
under the standard computation rule, we have to restructure the whole program.’
Hence we need another program for another mode of predicate mobile which is

® Note that Naish’s algorithm for generating wait declarations [36] does not help because it
generates waits for the first arguments of mobile and weight; hence the goal immediately
flounders. The method of [46] depends on a given call pattern of the initial goal, i.e., it
would generate two programs for the two modes of mobile. Generally, if the modes of
the initial goal are not known in advance, it is necessary to generate a program for each
possible mode of the goal.
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clearly unsatisfactory from a logical point of view. This problem can be avoided us-
ing our translation scheme. It is easy to see that weight and add are functions where
the last argument depends on the other arguments. Hence we obtain the following
functional program using our translation method:

mobile(fish(_)) = true.
mobile(bridge(M1,M2)) =
mobile(M1) and mobile(M2) and equal(weight(M1),weight(M2)).

weight (fish(s(W))) = s(W).

weight (bridge (M1,M2)) = s(add(weight (M1) ,weight(M2))).
add(N,0) = N.

add(0,N) = N.

add(N,s(M)) = s(add(N,M)).
add(s(M),N) = s(add(M,N)).
equal(0,0) = true.
equal(s(M),s(N)) = equal(M,N).

This program is canonical which can be easily checked by standard completion pro-
cedures for equational specifications. In order to avoid the infinite loop, we simply
add negative information about unequal numbers. Intensional negation generates
the following rules (among others):

equal(0,s(M)) = false.
equal(s(M),0) = false.

After adding these equations as rewrite rules, mobile has a finite search tree for all
modes, i.e., the following queries terminate after enumerating all solutions:

?- mobile(bridge(fish(s(s(s(0)))),bridge(fish(s(0)),fish(s(0)))))=B.
7- mobile(M) and equal(weight(M),s(s(s(0)))) = true.

The termination of the last goal is due to the fact that the generation of mobiles M
with weight greater than 3 is prevented by rewriting

equal (weight (M) ,s(s(s(0))))

to false.

4 Conclusions

We have presented a technique to translate logic programs into programs of the
functional logic language ALF. This translation ensures that the set of answers to a
goal remains the same and the translated programs have at least the same efficiency
(search space) as the original programs. This is due to the correspondence between
SLD-derivations and innermost basic narrowing derivations. However, in many cases
the search space is reduced by simplifying goals (rewriting) and comparing both sides
of an equation (rejection) which is effective for the class of generate-and-test pro-
grams. This improved control behaviour requires the addition of negative knowledge
or the transformation of predicates into functions between arguments. Fortunately,
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there are well-known tools for both tasks. The necessary negative knowledge can
be derived by intensional negation of the program, and the validity of a functional
transformation can be checked by completion procedures for equational specifica-
tions.

Of course, similar effects or, in some cases, better effects can be obtained by
other methods to influence the control of logic programs, e.g., delay declarations
for predicates or inserting cuts. But the advantage of our transformation method is
the declarative nature of the approach. Since ALF’s proof strategy is complete, any
solution to the original logic program is also computed w.r.t. the new strategy. This
may be not the case in other methods where goals can flounder (because of delay
declarations) or solutions are lost (because of inserting “red” cuts).

We do not propose to use our method for the automatic translation of logic
programs into functional logic programs. The motivation for our method was to show
that functional logic languages are superior to pure logic languages since it is possible
to translate any logic program into a functional equivalent which has the same set
of answers but is often more efficient. Hence we should directly use functional logic
languages instead of pure logic languages. Nevertheless, the presented transformation
techniques point to important aspects for improving the efficiency of functional logic
programs: functional dependencies reduce the number of possible search paths, and
negative knowledge supports the early detection of failures.

In order to increase the power of logic programming, it is necessary to improve
the operational behaviour in a declarative way such that logic programs become
more deterministic without loosing logically important answers. The integration of
functions is one possibility as shown in this paper. Further improvements can be
achieved by including constraints over specific domains [31] or type information
which influences the search space [20, 22, 43].
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