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Abstra
t. This paper shows the advantages of amalgamating fun
tional

and logi
 programming languages. In 
omparison with pure fun
tional lan-

guages, an amalgamated fun
tional logi
 language has more expressive power.

In 
omparison with pure logi
 languages, fun
tional logi
 languages have a

better 
ontrol behaviour. The latter will be shown by presenting methods

to translate logi
 programs into a fun
tional logi
 language with a narrow-

ing/rewriting semanti
s. The translated programs produ
e the same set of

answers and have at least the same eÆ
ien
y as the original programs. But

in many 
ases the 
ontrol behaviour of the translated programs is improved.

This requires the addition of further knowledge to the programs. We dis
uss

methods for this and show the gain in eÆ
ien
y by means of several examples.

1 Introdu
tion

Many proposals have been made to integrate fun
tional and logi
 programming lan-

guages during the last years (see [3, 11℄ for surveys). Re
ently, these proposals be-


ame relevant for pra
ti
al appli
ations be
ause eÆ
ient implementations have been

developed [5, 8, 19, 33, 35, 48℄. This raises the natural question for the advantages of

su
h amalgamated languages. In 
omparison with pure fun
tional languages, fun
-

tional logi
 languages have more expressive power due to the availability of features

like fun
tion inversion, partial data stru
tures and logi
 variables [42℄. In 
ompari-

son with pure logi
 languages, fun
tional logi
 languages allow to spe
ify fun
tional

dependen
ies and to use nested fun
tional expressions. Although this improves the

readability of logi
 programs, it is not 
lear whether this is only a minor synta
ti


improvement (whi
h 
an be added to logi
 languages by a simple prepro
essor [37℄)

or there is a genuine advantage of fun
tional logi
 languages 
ompared to pure logi


languages. In this paper we show that the latter is true: fun
tional logi
 languages

have a better operational behaviour than logi
 languages. We show this by presenting

methods to translate logi
 programs into a fun
tional logi
 language. These methods

ensure that the translated programs produ
e the same set of answers and have at

least the same eÆ
ien
y as the original programs. But in many 
ases the translation

improves the 
ontrol behaviour of logi
 programs whi
h will be demonstrated by

several examples.



sort(L,M) :- perm(L,M), ord(M).

perm([℄,[℄).

perm([E|L℄,[F|M℄) :- del(F,[E|L℄,N), perm(N,M).

del(E,[E|L℄,L).

del(E,[F|L℄,[F|M℄) :- del(E,L,M).

ord([℄).

ord([E℄).

ord([E,F|L℄) :- le(E,F), ord([F|L℄).

le(0,E).

le(s(E),s(F)) :- le(E,F).

Figure 1. Permutation sort (natural numbers are represented by s-terms)

Logi
 programming allows the spe
i�
ation of problems at an abstra
t level and

permits the exe
ution of the spe
i�
ations. However, these spe
i�
ations are often

very slowly exe
uted be
ause a lot of sear
h is performed under the standard Prolog


omputation rule. For instan
e, Figure 1 spe
i�es the notion of a sorted list (
f.

[44℄, p. 55): a list M is a sorted version of a list L if M is a permutation of L and

all elements of M are in as
ending order. We 
an use this Prolog program to sort

the list [4,3,2,1℄ by solving the query ?- sort([4,3,2,1℄,S). But this runs very

ineÆ
iently under the standard 
omputation rule be
ause all permutations must be

enumerated and tested in order to solve this goal.

Therefore several proposals have been made in order to improve the 
ontrol

of Prolog programs. Naish [36℄ has extended the standard 
omputation model of

Prolog by a 
oroutining me
hanism. He allows the addition of \wait" de
larations to

predi
ates. Su
h de
larations have the e�e
t that the resolution of a literal is delayed

until the arguments are suÆ
iently instantiated. If a variable of a delayed literal is

bound to a non-variable term, this literal is woken and exe
uted in the next step if

it is now suÆ
iently instantiated. In the permutation sort example, the programmer


an add a wait de
laration to the predi
ate ord and 
hange the ordering in the �rst


lause into

sort(L,M) :- ord(M), perm(L,M).

Now the goal ?- sort([3,2,1℄,S) is exe
uted in the following way: After the ap-

pli
ation of the �rst 
lause to this goal the literal ord(S) is delayed and the literal

perm([3,2,1℄,S) will be exe
uted. If S is bound to the �rst part of a permutation

of [3,2,1℄ (i.e., a list with two elements and a variable at the tail), then ord(S) is

a
tivated. If the �rst two elements of S are in the wrong order, then the 
omputation

fails and another permutation is tried, otherwise ord is delayed again until the next

part of the permutation is generated. Thus with this modi�
ation not all permu-

tations are 
ompletely 
omputed and therefore the exe
ution time is better than

in the naive approa
h. Naish has also presented an algorithm whi
h generates the

wait de
larations from a given program and transforms the program by reordering

the goals in a 
lause. Although this approa
h seems to be attra
tive, it has some
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problems. For instan
e, the generation of wait de
larations is based on heuristi
s

and therefore it is un
lear whether these heuristi
s are generally su

essful. More-

over, it is possible that the annotated program 
ounders, i.e., all goals are delayed

whi
h is 
onsidered as a run-time error. Hen
e 
ompleteness of SLD-resolution 
an

be lost when transforming a logi
 program into a program with wait de
larations

(see example at the end of Se
tion 3.3 or the goodpath example in [46℄).

Another approa
h to improve 
ontrol has been developed by Bruynooghe's group

[7℄. They try to avoid the overhead of 
oroutining exe
ution by transforming a logi


program with 
oroutining into a logi
 program with an equivalent behaviour exe-


uted under the standard 
omputation rule. The transformation is done in several

steps. In the �rst step a symboli
 tra
e tree of a goal is 
reated where the user has

to de
ide whi
h literal is sele
ted and whether a literal is 
ompletely exe
uted or

only a single resolution step is made, i.e., the user must supply the system with

a good 
omputation rule. If a goal in the tra
e tree is a renaming of a goal in an

an
estor node, an ar
 from this goal to the an
estor node is inserted. This results in

a symboli
 tra
e graph whi
h is then redu
ed and in the last step translated into a

logi
 program simulating the symboli
 tra
e under the standard 
omputation rule.

The 
ru
ial point in this approa
h is to �nd a good 
omputation rule for the program

with respe
t to the initial goal. In a re
ent paper [46℄ a method for the automated

generation of an eÆ
ient 
omputation rule is presented. The method is based on

a global analysis of the program by abstra
t interpretation te
hniques in order to

derive the ne
essary information. Sin
e the arguments for 
hoosing a \good" 
om-

putation rule are heuristi
s, it is un
lear whether the transformed programs are in

any 
ase more eÆ
ient than the original ones. Another problem is due to the fa
t

that their method uses a given 
all pattern for the initial goal. Therefore di�erent

versions of the program are generated for di�erent 
all modes of the goal.

In this paper we propose a mu
h simpler method to improve 
ontrol of logi


programs. This method ensures that the new programs have at least the same eÆ-


ien
y as the original ones. But for a large 
lass of programs (\generate-and-test"

programs like permutation sort) we obtain a better eÆ
ien
y similar to other ap-

proa
hes to improve 
ontrol. The basi
 idea is to use a fun
tional logi
 language

and to translate logi
 programs into fun
tional programs (without 
onsidering the

initial goal). The motivation for the integration of fun
tional and logi
 program-

ming languages is to 
ombine the advantages of both programming paradigms in

one language: the possibility of solving predi
ates and equations between terms to-

gether with the eÆ
ient redu
tion paradigm of fun
tional languages. A lot of the

proposed amalgamations of fun
tional and logi
 languages are based on Horn 
lause

logi
 with equality [40℄ where the user 
an de�ne predi
ates by Horn 
lauses and

fun
tions by (
onditional) equations. Predi
ates are often omitted be
ause they 
an

be represented as Boolean fun
tions. A 
omplete operational semanti
s is based on

the narrowing rule [14, 29, 30℄: narrowing 
ombines uni�
ation of logi
 languages

with rewriting of fun
tional languages, i.e., a narrowing step 
onsists of the uni�
a-

tion of a subterm of the goal with the left-hand side of an equation, repla
ing this

subterm by the right-hand side of the equation and applying the uni�er to the whole

3



goal. Sin
e we have to take into a

ount all subterms of a goal in the next narrowing

step, this naive strategy produ
es a large sear
h spa
e and is less eÆ
ient than SLD-

resolution (SLD stands for sele
ting one literal in the next resolution step). Also the

advantage of fun
tional languages, namely the deterministi
 redu
tion prin
iple, is

lost by this naive approa
h.

Therefore a lot of resear
h has been done to improve the narrowing strategy

without loosing 
ompleteness. Hullot [29℄ has shown that the restri
tion to basi


subterms, i.e., subterms whi
h are not 
reated during uni�
ation, is 
omplete. Fri-

bourg [15℄ has proved that the restri
tion to subterms at innermost positions is also


omplete provided that all fun
tions are redu
ible on all ground terms. Finally, H�oll-

dobler [28℄ has proved 
ompleteness of the 
ombination of basi
 and innermost nar-

rowing where a so-
alled innermost re
e
tion rule must be added for partially de�ned

fun
tions. But innermost basi
 narrowing is not better than SLD-resolution sin
e it

has been shown that innermost basi
 narrowing 
orresponds to SLD-resolution if a

fun
tional program is translated into a logi
 program by 
attening [6℄. On the other

hand, we 
an also translate a logi
 program into a fun
tional one without loosing

eÆ
ien
y if we use the innermost basi
 narrowing strategy. But now we are able to

improve the exe
ution by simplifying the goal by deterministi
 rewriting before a

narrowing step is applied (rewriting is similar to redu
tion in fun
tional languages

with the di�eren
e that rewriting is also applied to terms 
ontaining variables).

The simpli�
ation phase 
uts down the sear
h spa
e without loosing 
ompleteness

[28, 39℄.

We will see in the next se
tions that the operational behaviour of innermost basi


narrowing 
ombined with simpli�
ation is similar to SLD-resolution with a parti
ular

dynami
 
ontrol rule. Hen
e we get an improvement in the exe
ution 
omparable to

previous approa
hes [7, 36℄ but with the following advantages:

{ The translation te
hnique from logi
 programs into fun
tional logi
 programs is

simple.

{ It is ensured that the translated programs have at least the same eÆ
ien
y as

the original ones. For many programs the eÆ
ien
y is mu
h better.

{ It is ensured that we do not loose 
ompleteness: there exists an answer w.r.t. the

translated program i� there exists an answer w.r.t. the original program.

The last remark is only true if we use a fair 
omputation strategy. If we use a

ba
ktra
king implementation of SLD-resolution as in Prolog, the 
ompleteness may

be lost be
ause of in�nite 
omputations. However, in�nite paths in the sear
h tree


an be 
ut by the simpli�
ation pro
ess [15℄, i.e., it is also possible that we obtain

an answer from the fun
tional logi
 program where the original logi
 program does

not terminate.

These theoreti
al 
onsiderations are only relevant if there is an implementation

of the fun
tional logi
 language whi
h has the same eÆ
ien
y as 
urrent Prolog

implementations. Fortunately, this is the 
ase. In [19, 21, 24℄ it has been shown

that it is possible to implement a fun
tional logi
 language very eÆ
iently by ex-

tending the 
urrently known Prolog implementation te
hniques [47℄. The language
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ALF (\Algebrai
 Logi
 Fun
tional language") is based on the operational seman-

ti
s sket
hed above. Innermost basi
 narrowing and simpli�
ation is implemented

without overhead in 
omparison to Prolog's 
omputation strategy, i.e., fun
tional

programs are exe
uted with the same eÆ
ien
y as their relational equivalents by

SLD-resolution (see [21℄ for ben
hmarks). Therefore it is justi�ed to improve the


ontrol of logi
 programs by translation into a fun
tional logi
 language.

In the next se
tion we give a pre
ise des
ription of ALF's operational semanti
s

and in Se
tion 3 we present our approa
h to improve 
ontrol of logi
 programs in

more detail.

2 Operational semanti
s of ALF

As mentioned in the previous se
tion, we want to improve the 
ontrol behaviour of

logi
 programs by translating them into a fun
tional logi
 language. We have also

mentioned that in order to 
ompete with SLD-resolution we have to use a fun
tional

logi
 language with a re�ned operational semanti
s, namely innermost basi
 nar-

rowing and simpli�
ation. Hen
e the target language of the translation pro
ess is

the language ALF [19, 21℄ whi
h is based on this semanti
s. ALF has more features

than a
tually used in this paper, e.g., a module system with parameterization, a

type system based on many-sorted logi
, predi
ates whi
h are resolved by resolution

et
. (see [25℄ for details). In the following we outline the operational semanti
s of

ALF in order to understand the translation s
heme presented in the next se
tions.

ALF is a 
onstru
tor-based language, i.e., the user must spe
ify for ea
h symbol

whether it is a 
onstru
tor or a de�ned fun
tion. Constru
tors must not be the

outermost symbol of the left-hand side of a de�ning equation, i.e., 
onstru
tor terms

are always irredu
ible. Hen
e 
onstru
tors are used to build data types, and de�ned

fun
tions are operations on these data types (similarly to fun
tional languages like

ML [27℄ or Miranda [45℄). The distin
tion between 
onstru
tors and de�ned fun
tion

symbols is ne
essary to de�ne the notion of an innermost position [15℄.

An ALF program 
onsists of a set of (
onditional) equations whi
h are used

in two ways. In a narrowing step an equation is applied to 
ompute a solution of

a goal (i.e., variables in the goal may be bound to terms), whereas in a rewrite

step an equation is applied to simplify a goal (i.e., without binding goal variables).

Therefore we distinguish between narrowing rules (equations applied in narrowing

steps) and rewrite rules (equations applied in rewrite steps). Usually, all 
onditional

equations of an ALF program are used as narrowing and rewrite rules, but it is

also possible to spe
ify rules whi
h are only used for rewriting. Typi
ally, these

rules are indu
tive axioms or CWA-valid axioms (see below). The appli
ation of

su
h rules for simpli�
ation 
an redu
e the sear
h spa
e and is justi�ed if we are

interested in ground-valid answers [15, 39℄ (i.e., answers whi
h are valid for ea
h

ground substitution applied to it).

Figure 2 shows an ALF module to sort a list of naturals. Naturals are represented

by the 
onstru
tors 0 and s, true and false are the 
onstru
tors of the data type
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module isort.

datatype bool = f true ; false g.

datatype nat = f 0 ; s(nat) g.

datatype list = f '.'(nat,list) ; [℄ g.

fun
 isort : list -> list;

insert: nat, list -> list;

le : nat, nat -> bool.

rules.

isort([℄) = [℄.

isort([E|L℄) = insert(E,isort(L)).

insert(E,[℄) = [E℄.

insert(E,[F|L℄) = [E,F|L℄ :- le(E,F) = true.

insert(E,[F|L℄) = [F|insert(E,L)℄ :- le(E,F) = false.

le(0,N) = true.

le(s(N),0) = false.

le(s(M),s(N)) = le(M,N).

end isort.

Figure 2. ALF program for insertion sort

bool and lists are de�ned as in Prolog. The de�ned fun
tions of this module are

isort to sort a list of naturals, insert to insert an element in an ordered list, and

le to 
ompare two naturals.

The de
larative semanti
s of ALF is the well-known Horn 
lause logi
 with equal-

ity as to be found in [40℄. The operational semanti
s of ALF is based on innermost

basi
 narrowing and rewriting.

1

Before a narrowing step is applied, the goal is sim-

pli�ed to normal form by applying rewrite rules. We will distinguish two kinds of

nondeterminism by the keywords \don't know" and \don't 
are": don't know indi-


ates a bran
hing point in the 
omputation where all alternatives must be explored

(in parallel or by a ba
ktra
king strategy in a 
on
rete implementation); don't 
are

indi
ates a bran
hing point where it is suÆ
ient to sele
t (nondeterministi
ally) one

alternative and disregard all other possibilities.

In order to give a pre
ise de�nition of the operational semanti
s, we represent

a goal (a list of equations to be solved) by a skeleton and an environment part

[28, 39℄: the skeleton is a list of equations 
omposed of terms o

urring in the original

program, and the environment is a substitution whi
h has to be applied to the

equations in order to obtain the a
tual goal. The initial goal G is represented by the

pair hG; idi where id is the identity substitution. The following s
heme des
ribes the

operational semanti
s (if � is a position in a term t, then tj

�

denotes the subterm of t

at position � and t[s℄

�

denotes the term obtained by repla
ing the subterm tj

�

by s in

t [12℄; � is 
alled an innermost position of t if the subterm tj

�

has a de�ned fun
tion

1

Similarly to EQLOG [18℄, ALF allows also the de�nition of predi
ates whi
h are solved

by resolution, but we omit this aspe
t in the 
urrent paper.
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symbol at the top and all argument terms 
onsist of variables and 
onstru
tors). Let

hE

1

; : : : ; E

n

; �i be a given goal (E

1

; : : : ; E

n

are the skeleton equations and � is the

environment):

1. Sele
t don't 
are a non-variable position � in E

1

and a new variant l = r  C

of a rewrite rule su
h that �

0

is a substitution with �(E

1

j

�

) = �

0

(l) and the goal

hC ; �

0

i 
an be derived to the empty goal without instantiating any variables

from �(E

1

). Then

hE

1

[�

0

(r)℄

�

; E

2

; : : : ; E

n

; �i

is the next goal derived by rewriting; go to 1.

2

Otherwise go to 2.

2. If the two sides of equation E

1

have di�erent 
onstru
tors at the same outer

position (a position not belonging to arguments of fun
tions), then the whole

goal is reje
ted, i.e., the proof fails. Otherwise go to 3.

3. Let � be the leftmost-innermost position in E

1

(if there exists no su
h position

in E

1

, go to 4). Sele
t don't know (a) or (b):

(a) Sele
t don't know a new variant l = r  C of a narrowing rule su
h that

�(E

1

j

�

) and l are uni�able with mgu �

0

. Then

hC;E

1

[r℄

�

; E

2

; : : : ; E

n

; �

0

Æ �i

is the next goal derived by innermost basi
 narrowing; go to 1. Otherwise:

fail.

(b) Let x be a new variable and �

0

be the substitution fx 7! �(E

1

j

�

)g. Then

hE

1

[x℄

�

; E

2

; : : : ; E

n

; �

0

Æ �i

is the next goal derived by innermost re
e
tion; go to 3 (this 
orresponds

to the elimination of an innermost redex [28℄ and is 
alled \null narrowing

step" in [6℄).

4. If E

1

is the equation s = t and there is a mgu �

0

for �(s) and �(t), then

hE

2

; : : : ; E

n

; �

0

Æ �i

is the next goal derived by re
e
tion; go to 1. Otherwise: fail.

The attribute basi
 of a narrowing step emphasizes that a narrowing step is only

applied at a position of the original program and not at positions introdu
ed by

substitutions [29℄. The innermost re
e
tion rule need not be applied to 
ompletely

de�ned fun
tions, i.e., fun
tions whi
h are redu
ible on all ground terms of appro-

priate sorts [15, 28℄. Therefore the innermost re
e
tion rule 
an be avoided by using

types and 
he
king whether ea
h fun
tion is suÆ
iently de�ned for all 
onstru
tors

of their argument types. Sin
e ALF is a typed language and allows su
h tests, we

impli
itly assume in this paper that the suÆ
iently de�nedness tests are performed

2

Rewriting is only applied to the �rst literal, but this is no restri
tion sin
e a 
onjun
tion

like E

1

; E

2

; E

3


an also be written as an equation and(E

1

; and(E

2

; E

3

)) = true. This

te
hnique will be used in the following se
tions.
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at 
ompile time in order to avoid unne
essary appli
ations of the innermost re
e
tion

rule at run time.

This operational semanti
s is sound and 
omplete if the term rewriting relation

generated by the 
onditional equations is 
anoni
al (i.e., 
on
uent and terminat-

ing [12℄) and the 
ondition and the right-hand sides of the 
onditional equations

do not 
ontain extra-variables [28℄. Moreover, the 
onditional equations must be

redu
tive, i.e., the 
onditions must be smaller than the left-hand side w.r.t. some

termination ordering (otherwise basi
 
onditional narrowing may be in
omplete as

Middeldorp and Hamoen [34℄ have pointed out).

3

If a program has 
onditional equa-

tions with extra-variables, there may be other 
riteria to ensure 
ompleteness (e.g.,

level-
on
uen
e [17℄ or de
reasing rules [13℄) or it may be possible to transform the

program into an equivalent program for whi
h this operational semanti
s is 
omplete

(e.g., Bertling and Ganzinger [4℄ have proposed su
h a method). Therefore we al-

low extra-variables in 
onditional equations whi
h is the reason for the instantiation


ondition in the rewrite step.

Rewriting in ALF is applied from innermost to outermost positions, i.e., rewrit-

ing 
orresponds to eager evaluation in fun
tional languages. Similarly to Prolog,

ALF uses a ba
ktra
king strategy to implement the 
hoi
es of di�erent 
lauses in a

narrowing step. Hen
e the theoreti
al 
ompleteness will be lost due to in�nite 
om-

putations, but for �nite sear
h trees the operational semanti
s is 
omplete. Due to

the requirement for a 
anoni
al and redu
tive set of equations, the normal form of a

term uniquely exists and 
an be 
omputed by rewriting with an arbitrary mat
hing

equation in a rewrite step. Therefore the 
reation of 
hoi
e points is only ne
essary

in narrowing steps.

We have mentioned in the introdu
tion that it is also possible to translate fun
-

tional programs into logi
 programs by 
attening and to exe
ute these programs

by SLD-resolution [6℄. ALF's operational semanti
s has the following advantages in


omparison to that and other te
hniques:

� Sin
e rewriting is a deterministi
 pro
ess (or it 
an be also seen as \don't 
are"

nondeterminism) and rewriting is done before narrowing, deterministi
 
ompu-

tations are performed whenever it is possible. This avoids super
uous 
reation

of 
hoi
e points. Nondeterministi
 
omputations are only performed if it is ne
-

essary, i.e., if a solution (binding of a goal variable) must be guessed by an

appli
ation of a narrowing rule.

� A similar behaviour 
an be a
hieved in Prolog by inserting delays [36, 37℄. But

this has the disadvantage that the program with delays may 
ounder whi
h


orresponds to in
ompleteness. This 
annot be the 
ase in ALF be
ause of ALF's


omplete operational semanti
s.

� The residuation prin
iple of Le Fun [1℄ is also related to ALF's operational

semanti
s: If a Le Fun fun
tion is applied to a variable argument, the appli
ation

is delayed until the variable be
omes bound to a non-variable term. But this

3

The requirement for redu
tive 
onditional equations is not a real restri
tion sin
e tools

for 
he
king 
anoni
ity of 
onditional equations usually have this requirement [16℄.
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semanti
s is also in
omplete in some 
ases. For instan
e, if append is a fun
tion

that 
on
atenates two lists, we 
an extra
t the last element E of a given list L

by solving the equation

append(_,[E℄) = L

Residuation will delay this 
omputation (sin
e the �rst argument is always un-

bound) and we obtain no result for E. But ALF will solve this goal by narrowing

and rewriting and delivers the unique solution for E. Moreover, the residuation

prin
iple of Le Fun may produ
e an in�nite sear
h spa
e for examples where

ALF's or Prolog's operational semanti
s has a �nite sear
h spa
e [23℄.

� Similarly to ALF, the Andorra 
omputation model [26℄ prefers deterministi



omputations before nondeterministi
 ones. However, the rewriting me
hanism

of ALF yields deterministi
 
omputations also when more than one 
lause

mat
hes (see max example in se
tion 3.3) and may delete goals with in�nite or

nondeterministi
 
omputations. E.g., if X*0=0 is a de�ning equation for the fun
-

tion *, then a term like t*0 will be simpli�ed to 0, i.e., the entire subterm t will

be deleted. This is important if t 
ontains unevaluated fun
tions with variable

arguments. The same is true for the relation of ALF and Prolog with Simpli�
a-

tion [9℄: ALF's rewriting me
hanism is more general than simpli�
ation be
ause

uni�able (but 
on
uent) equations, equations with deleting left-hand side vari-

ables and 
onditional equations are admissible rewrite rules in ALF.

� It is also important to note that ALF's operational semanti
s 
an be implemented

with the same eÆ
ien
y as 
urrent Prolog implementations [21℄. The overhead

of sear
hing the next innermost subterm 
an be avoided by using a sta
k of

referen
es to subterms in the goal (see [19℄ and [21℄ for details).

These arguments gives us the feeling that the 
omputation prin
iple of ALF is more

eÆ
ient than Prolog's SLD-resolution. In the next se
tion we will show how logi


programs 
an be translated into ALF programs and what we gain from su
h a

translation.

3 Translating logi
 programs into fun
tional programs

There are two prin
iple ways to translate a logi
 program into a fun
tional one:

1. We 
onsider ea
h predi
ate as a Boolean fun
tion and translate the Horn 
lauses

of ea
h predi
ate into a fun
tional expression over the Booleans.

2. We try to �nd out fun
tional dependen
ies between the arguments of a predi
ate.

If there is su
h a dependen
y, we transform the predi
ate into fun
tion from

input to output arguments, otherwise we transform the predi
ate into a Boolean

fun
tion.

The se
ond method is 
learly an extension of the �rst one. The �rst method is

very simple and always appli
able, but we will also show te
hniques for the se
ond

translation method.

9



Example: The predi
ates member and append are de�ned by the following logi


program:

member(E,[E|L℄).

member(E,[F|L℄) :- member(E,L).

append([℄,L,L).

append([E|R℄,L,[E|RL℄) :- append(R,L,RL).

We 
an translate this program into a fun
tional program by the �rst method:

fun
 member: term, term ! bool

member(E,[E|L℄) = true.

member(E,[F|L℄) = true :- member(E,L) = true.

fun
 append: term, term, term ! bool

append([℄,L,L) = true.

append([E|R℄,L,[E|RL℄) = true :- append(R,L,RL) = true.

But we 
an also per
eive that the �rst and the se
ond argument of append determine

the value of the third argument, i.e., there is a fun
tional dependen
y between the

arguments of append. Therefore it is possible to translate append into the following

fun
tion de�nition:

fun
 append: term, term ! term

append([℄,L) = L.

append([E|R℄,L) = [E|append(R,L)℄.

In the following we will dis
uss both methods in more detail.

3.1 Translating all predi
ates into Boolean fun
tions

In this se
tion we dis
uss the simple approa
h where ea
h n-ary predi
ate is trans-

lated into an n-ary Boolean fun
tion. We de�ne the translation of logi
 programs

into fun
tional programs by the following rules:

Fa
ts: L. ) L = true.

Clauses: L :- L

1

,: : :,L

n

. ) L = true :- (L

1

and � � � and L

n

) = true.

Goals: ?- L

1

,: : :,L

n

. ) ?- (L

1

and � � � and L

n

) = true.

The Boolean values together with the fun
tion and are de�ned in Figure 3.

4

Sin
e

the right-hand side of ea
h equation in the translated program is the 
onstant true,

we get immediately the following property of the translated programs:

5

4

The de
laration \infixright 650" de�nes the symbol \and" as a right-asso
iative in�x

operator with priority 650. This has the similar e�e
t as the de
laration op(650,xfy,and)

in Prolog.

5

In this paper we do not deal with the problem of proving termination of the narrow-

ing/rewrite rules sin
e ALF's operational semanti
s does also work for nonterminating

programs. Moreover, the 
orresponden
e of narrowing and resolution derivations [6℄ is

also valid for nonterminating programs. But note that the operational semanti
s may be

in
omplete for some nonterminating programs and therefore we impli
itly assume that

the rewrite relation is terminating and all 
onditional rules are redu
tive.

10



module bool.

datatype bool = f true ; false g.

fun
 and : bool, bool -> bool infixright 650.

rules.

false and B = false.

true and B = B.

B and false = false.

B and true = B.

end bool.

Figure 3. Module for Boolean values

Proposition 1. If R is the set of 
onditional equations obtained by translating a

logi
 program with the above translation s
heme, then R is 
on
uent.

Hen
e we 
an use the translated equations as narrowing rules and solve the translated

goals by innermost basi
 narrowing. But what is the relation between narrowing

derivations of the fun
tional program and resolution derivations of the original logi


programs? Bos
o et al. [6℄ have shown that there is a strong relationship between

these derivations, i.e., every innermost basi
 narrowing derivation of a fun
tional

program 
orresponds to an SLD-resolution derivation with the leftmost sele
tion rule

if the fun
tional program is appropriately 
attened into a logi
 program. Applying

their result to our framework we obtain the following proposition (a
tually, they

have proved the 
orresponden
e for un
onditional equations but it is not diÆ
ult to

extend it to the 
onditional 
ase):

Proposition 2. Let P be a logi
 program and R be the set of 
onditional equations

obtained by translating P . For ea
h goal G and ea
h SLD-resolution with the leftmost

sele
tion rule there is a 
orresponding innermost basi
 narrowing sequen
e for the

translated goal G

0

where ea
h resolution step 
orresponds to an innermost basi
 nar-

rowing step together with at most one appli
ation of the equation \true and B = B".

Hen
e the logi
 program and its fun
tional version have the same eÆ
ien
y (if we

negle
t the simple appli
ation of the equation \true and B = B") and produ
e the

same set of answers. But the eÆ
ien
y of the fun
tional version 
an be improved by

adding rewrite rules. We know from Se
tion 2 that we 
an add the narrowing rules

also as rewrite rules and perform rewriting between narrowing steps without loosing


ompleteness. Rewriting 
an be done in a deterministi
 way, i.e., it is not ne
essary

to generate 
hoi
e points during rewriting and therefore rewriting may redu
e the

sear
h spa
e. For instan
e, if the fun
tional program 
ontains the equations

member(E,[E|L℄) = true.

member(E,[F|L℄) = true :- member(E,L) = true.

both as narrowing rules and rewrite rules, the goal

?- member(2,[1,2,3℄) = true.

11



is proved by rewriting without generating any 
hoi
e point. Note that two 
hoi
e

points are generated during the 
orresponding SLD-resolution (using standard im-

plementation te
hniques [47℄).

Sin
e rewriting 
annot bind any goal variable (a rewrite rule is appli
able if the

left-hand side of the equation mat
hes the 
urrent subterm), it 
an only be applied

as a test and then it avoids the sear
h for alternative proofs of this test. This is a

slight improvement and does not justify the translation from the well-known Prolog

framework into the new fun
tional logi
 framework. For instan
e, if we translate the

permutation sort program in Figure 1, the fun
tional version is exe
uted in the same

slow way as the relational version. The improvement of the 
ontrol behaviour in the

framework of Naish [36℄ or Bruynooghe [7℄ is due to the fa
t that the failure of a goal

is dete
ted early in the 
omputation. Therefore we must add negative information

to our fun
tional program. This will be outlined in the next se
tion.

3.2 Adding negative information

For the 
ase that we are interested in valid answers w.r.t. the least Herbrand model,

whi
h is a natural assumption in logi
 programming [32℄, Fribourg [15℄ has shown

that we 
an add equations whi
h are valid w.r.t. the so-
alled \Closed World As-

sumption" (CWA-valid) as rewrite rules to our program. The operational semanti
s

is still sound w.r.t. ground-valid answers, i.e., answers whi
h are valid for ea
h ground

substitution applied to it. A 
onditional equation

L = false :- L

1

and � � � and L

n

= true.

is 
alled CWA-valid w.r.t. a set of 
onditional equations R if for any ground 
on-

stru
tor substitution �

R j= �(L) = true :- �(L

1

) and � � � and �(L

n

) = true

does not hold (later we will also allow equations of the form L=false in the 
ondition

part; CWA-validity of su
h 
lauses is similarly de�ned). If we rewrite a literal L=true

to the equation false=true by CWA-valid rewrite rules, we 
an immediately reje
t

the whole goal (
ompare the \reje
tion" rule in Se
tion 2). This te
hnique does not

a�e
t the 
ompleteness of the operational semanti
s but 
an be an essential improve-

ment. For instan
e, 
onsider the following 
lauses [15℄ (a, b and 
 are 
onstru
tors):

on(a,b) = true.

on(b,
) = true.

above(X,Y) = true :- on(X,Y) = true.

above(X,Y) = true :- above(X,Z) and on(Z,Y) = true.

The exe
ution of the goal ?- above(a,a) = true leads to an in�nite loop. If the

CWA-valid equation above(X,X) = false is inserted into the set of rewrite rules,

the goal ?- above(a,a) = true is �rst rewritten into ?- false = true and then

it fails by the reje
tion rule.

12



As a further example, 
onsider the following set of rules de�ning the predi
ates

even and le (less-or-equal):

even(0) = true.

even(s(s(N))) = true :- even(N) = true.

le(0,N) = true.

le(s(M),s(N)) = true :- le(M,N) = true.

The exe
ution of the goal ?- even(N) and le(N,s(s(0))) = true leads to an

in�nite loop after produ
ing the answers N=0 and N=s(s(0)), be
ause the predi
ate

even generates an in�nite number of even naturals. In order to avoid this loop, we

may add the CWA-valid equation le(s(N),0) = false. But this does not solve the

problem be
ause there is the following in�nite derivation (the narrowed subterms

are underlined):

?- even(N) and le(N,s(s(0))) = true.

?- even(N1) = true, true and le(s(s(N1)),s(s(0))) = true.

?- even(N2) = true, true = true,

true and le(s(s(s(s(N2)))),s(s(0))) = true.

: : :

The reason for this in�nite derivation is that only the �rst literal of a goal is simpli�ed

by rewriting (
f. Se
tion 2).

6

But this is no real problem sin
e we 
an also translate

the original logi
 program for even and le in the following way:

even(0) = true.

even(s(s(N))) = even(N).

le(0,N) = true.

le(s(M),s(N)) = le(M,N).

Now we obtain the following derivation with the additional CWA-valid rewrite rule

le(s(N),0) = false:

?- even(N) and le(N,s(s(0))) = true.

narrowing with the se
ond equation for even

?- even(N1) and le(s(s(N1)),s(s(0))) = true.

simplifying the goal

?- even(N1) and le(N1,0) = true.

narrowing with the se
ond equation for even

?- even(N2) and le(s(s(N2)),0) = true.

simplifying the goal:

?- false = true.

failure by reje
tion

Hen
e the sear
h spa
e of this goal is �nite in 
ontrast to the original Prolog program.

In order to implement the improved proof strategy, we simply modify our translation

s
heme for 
lauses:

6

This is for the sake of an eÆ
ient implementation [21℄ be
ause rewriting the whole goal

allows less optimizations during the 
ompilation phase.
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sort(L,M) = perm(L,M) and ord(M).

perm([℄,[℄) = true.

perm([E|L℄,[F|M℄) = del(F,[E|L℄,N) and perm(N,M).

del(E,[E|L℄,L) = true.

del(E,[F|L℄,[F|M℄) = del(E,L,M).

ord([℄) = true.

ord([E℄) = true.

ord([E,F|L℄) = le(E,F) and ord([F|L℄).

le(0,E) = true.

le(s(E),s(F)) = le(E,F).

Figure 4. Fun
tional version of permutation sort

Translation of 
lauses: Let L :- L

1

,: : :,L

n

be a 
lause for whi
h one of the

following 
onditions holds:

1. L is not uni�able with the head of any variant of another 
lause of the logi


program.

2. If there are a variant of another 
lause L

0

:- L

0

1

,: : : ,L

0

m

and a uni�er

� for L and L

0

, then the goals ?- �(L

1

and � � � and L

n

) = true and

?- �(L

0

1

and � � � and L

0

m

) = true 
an be rewritten to the same goal using

the rewrite rules 
orresponding to the logi
 program w.r.t. the old translation

s
heme (
on
uen
e of 
lauses).

Then the 
lause is translated into the equation

L = (L

1

and � � � and L

n

).

otherwise it is translated into the 
onditional equation

L = true :- (L

1

and � � � and L

n

) = true.

Note that this modi�ed translation is only ne
essary be
ause of the restri
ted rewrit-

ing in ALF. If we use another fun
tional logi
 language whi
h performs rewriting

on the whole goal (like SLOG [15℄), this modi�
ation is super
uous. The 
onditions

guarantee that the translated program is 
on
uent, i.e., Proposition 1 holds also for

the modi�ed translation s
heme. Figure 4 shows the translation of the logi
 permu-

tation sort program of Figure 1. Note that this is nearly the same program whi
h

Fribourg [15℄ has presented in a rather ad-ho
 manner.

The �nal problem is the generation of CWA-valid rules for rewriting. For instan
e,

from the given rules

le(0,E) = true.

le(s(E),s(F)) = le(E,F).

we have to generate the CWA-valid rule

le(s(E),0) = false.

In this 
ase it 
an be done by inspe
ting the 
onstru
tors of the argument terms of the

left-hand side, and then generating false rules for all 
onstru
tor terms on whi
h

14



le is not redu
ible. Fortunately, there is also a systemati
 method for doing this

in general. Intensional negation [2℄ is a transformation te
hnique whi
h synthesizes


lauses for new predi
ates p

0

i

from a given logi
 program for the predi
ates p

i

. The

new predi
ates p

0

i

des
ribe the �nite failure set of the original predi
ates p

i

and hen
e

they are a 
omputable approximation of the CWA-valid literals [32℄. E.g., given the


lauses

even(0).

even(s(s(X))) :- even(X).

intensional negation generates the new 
lauses

even'(s(0)).

even'(s(s(X))) :- even'(X).

whi
h de�ne the odd numbers. If we translate the predi
ate even'(� � �) into

even(� � �) = false, we obtain the CWA-valid rewrite rule used in our even ex-

ample above.

We do not propose to 
ompute the intensional negation of all de�ned predi
ates

sin
e this leads to a large number of additional rewrite rules. Moreover, intensional

negation does not generate Horn 
lauses for the negated predi
ates if the original


lauses 
ontain lo
al variables in their bodies (see [2℄ for details). But in most 
ases

it is possible and suÆ
ient to 
ompute the negation of some base predi
ates. For

instan
e, from the given de�nition of the less-or-equal predi
ate le in Figure 1 we

obtain by intensional negation the CWA-valid rule

le(s(X),0) = false.

If we add this single rule as a rewrite rule to the narrowing/rewrite rules of Figure 4,

the 
omputation is automati
ally optimized without 
ontrol instru
tions: as soon as

the variable M in the goal perm([� � �℄,M) and ord(M) = true is bound to a partial

list [a,b|L℄ with a greater than b, the goal is simpli�ed by rewriting as follows:

perm([� � �℄,[a,b|L℄) and ord([a,b|L℄) = true

=) perm([� � �℄,[a,b|L℄) and le(a,b) and ord([b|L℄) = true

=) perm([� � �℄,[a,b|L℄) and false and ord([b|L℄) = true

=) perm([� � �℄,[a,b|L℄) and false = true

=) false = true

Hen
e not all permutations are enumerated but the 
omputation of a permutation

immediately stops if two 
onse
utive elements are in the wrong order. Thus we have

obtained the same improved operational behaviour as in related approa
hes [7, 36℄

in a simple and de
larative way. The following table shows the exe
ution times in

se
onds to sort the list [n,: : :,2,1℄ for di�erent values of n:

Length of the list: 5 6 7 8 9 10

Original logi
 program (Figure 1) 0.10 0.65 4.63 37.92 348.70 3569.50

Translated fun
tional program (Figure 4) 0.10 0.27 0.61 1.43 3.28 7.43

Both the original logi
 version and the fun
tional version were exe
uted by the ALF

system sin
e ALF also allows the de�nition of predi
ates whi
h are exe
uted as in
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Prolog (pure logi
 ALF programs are translated into 
ode of an abstra
t ma
hine as

des
ribed in [47℄).

Using our method we 
an translate arbitrary logi
 programs into fun
tional pro-

grams. An essential speeding up will be obtained for the 
lass of \generate-and-test"

programs like the permutation sort above, the 
lassi
al 8-queens problem or the

goodpath program of [46℄.

3.3 A more sophisti
ated translation s
heme

Until now we have simply translated predi
ates into Boolean fun
tions. But it is

often the 
ase that a programmer has a fun
tion in mind but must write it down

as a predi
ate in a logi
 program. Any n-ary fun
tion 
an be expressed as a (n +

1)-ary relation by adding the result as an additional argument. For instan
e, the


on
atenation of two lists is a fun
tion from two list arguments into another list. It


an be de�ned in a fun
tional language with pattern-mat
hing by the equations


on
([℄,L) = L.


on
([E|R℄,L) = [E|
on
(R,L)℄.

Sin
e Prolog does not allow the de�nition of fun
tions and nested expressions, a Pro-

log programmer must express the 
on
atenation as a predi
ate with three arguments

and writes down the following 
lauses:

append([℄,L,L).

append([E|R℄,L,[E|RL℄) :- append(R,L,RL).

Innermost basi
 narrowing exe
ution of the �rst program is equivalent to the Prolog

exe
ution of the append 
lauses. But the additional simpli�
ation me
hanism of

the fun
tional evaluation 
an avoid in�nite loops whi
h may o

ur in the relational

evaluation. For instan
e, Naish [36℄ has noted that the following goal 
auses an

in�nite loop under the standard Prolog evaluation rule for any order of literals and


lauses:

?- append([1|V℄,W,X), append(X,Y,[2|Z℄).

But the evaluation of the equivalent 
on
 equation 
auses a fail and does not loop:

?- 
on
(
on
([1|V℄,W),Y) = [2|Z℄.

simplifying the goal by two appli
ations of the se
ond 
on
 rule:

?- [1|
on
(
on
(V,W),Y)℄ = [2|Z℄.

failure by reje
tion sin
e 1 and 2 are di�erent 
onstru
tor terms

Note that the failure situation is dete
ted without any additional CWA-valid rule.

The only knowledge used here is the fa
t that 
onstru
tor terms are irredu
ible and

therefore di�erent 
onstru
tor terms 
annot denote the same obje
t. This knowledge

is expressed by the reje
tion rule (Se
tion 2).

We see from this example that it is desirable to de
lare predi
ates with fun
tional

dependen
ies between arguments as fun
tions from input to output arguments and
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not as Boolean fun
tions. Sin
e we use a fun
tional logi
 language with a 
omplete

operational semanti
s, this does not restri
t the 
lass of evaluable goals.

If a programmer writes down a program, he has the fun
tional dependen
ies

between data in mind. Thus he 
an dire
tly de�ne the fun
tions if he uses a fun
-

tional logi
 language like ALF. But it is also possible to �nd fun
tional dependen
ies

in a given Prolog program. In general, a fun
tional dependen
y is an unde
idable

property of a logi
 program [38℄. However, in parti
ular 
ases one 
an �nd suÆ
ient


riteria for that. For instan
e, Reddy [41℄ has proposed a te
hnique for transforming

logi
 programs into fun
tional ones. However, his te
hnique is based on modes for

the predi
ates in the logi
 program whi
h obviously restri
ts the appli
ation of his

method (e.g., if a predi
ate is 
alled in two di�erent modes, two di�erent fun
tions

are generated for that predi
ate). Debray and Warren [10℄ have proposed a te
hnique

to dete
t fun
tional 
omputations in logi
 programs. It is also based on modes and

tries to �nd out mutual ex
lusions between di�erent 
lauses of a predi
ate. We do

not want to dis
uss the dete
tion of fun
tional dependen
ies in more detail but give

another suÆ
ient 
riterion for this property.

Let p be an n-ary predi
ate. If we suppose that the �rst n�1 arguments determine

the value of the last argument (the generalization to other argument 
ombinations

is straightforward), we modify our translation s
heme of Se
tion 3.1 in the following

way. Instead of de�ning p as an n-ary Boolean fun
tion, we de�ne p as an (n�1)-ary

fun
tion and perform the following transformation steps:

1. Every literal p(t

1

; : : : ; t

n

) in a 
lause or in the goal is repla
ed by the equation

p(t

1

; : : : ; t

n�1

) = t

n

.

2. If we have generated an equation p(t

1

; : : : ; t

n�1

) = X in the body of a 
lause

and X is a variable whi
h does not o

ur in the left-hand side of the 
lause head,

all o

urren
es of X in the 
lause are repla
ed by the term p(t

1

; : : : ; t

n�1

) and

the equation is deleted

3. If we have generated an equation p(t

1

; : : : ; t

n�1

) = X in the goal and X is a vari-

able, then all o

urren
es ofX in the goal are repla
ed by the term p(t

1

; : : : ; t

n�1

)

and the equation is deleted.

It is easy to see that this transformation is the inverse of 
attening the 
lauses (
om-

pare [6℄). Sin
e Bos
o et al. [6℄ have shown the 
orresponden
e of innermost basi


narrowing derivations and SLD-resolution derivations w.r.t. the 
attened 
lauses, we

immediately obtain the following proposition:

7

Proposition 3. If the set of rules after the transformation steps is 
anoni
al and

redu
tive, then the fun
tional program has the same set of answers as the original

logi
 program.

8

7

The requirement for 
anoni
al and redu
tive rules is not essential for the 
orresponden
e

of narrowing and resolution derivations, but it is important for the unique termination

of the rewriting pro
ess between the narrowing steps.

8

A
tually, the fun
tional program may 
ompute more answers than the original logi


program sin
e it 
an \skip" 
alls to partially de�ned fun
tions by the innermost re
e
tion
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Hen
e, if we have a supposition about the fun
tional dependen
ies of the arguments

of the predi
ates, we apply the above transformation and then 
he
k the resulting

program for 
anoni
ity whi
h 
an often be done by simple synta
ti
 
riteria (e.g.,

the arguments of the left-hand side are 
onstru
tor terms and two di�erent left-hand

sides are not uni�able) or by spe
ial 
ompletion pro
edures for 
onditional equations

[16℄. For instan
e, the logi
 program of append is transformed into the fun
tional


on
 program above whi
h is obviously 
anoni
al. As a further example take the

following logi
 program:

max(X,Y,Y) :- le(X,Y).

max(X,Y,X) :- ge(X,Y).

le(0,X).

le(s(X),s(Y)) :- le(X,Y).

ge(X,0).

ge(s(X),s(Y)) :- ge(X,Y).

The 
lauses for max are not mutually ex
lusive and therefore the algorithm in [10℄

does not dete
t a fun
tionality in these 
lauses. However, if we suppose that the

third argument of predi
ate max is fun
tional dependent on the �rst and the se
ond

argument, we apply our transformation above and obtain the following rules:

max(X,Y) = Y :- le(X,Y) = true.

max(X,Y) = X :- ge(X,Y) = true.

le(0,X) = true.

le(s(X),s(Y)) = le(X,Y).

ge(X,0) = true.

ge(s(X),s(Y)) = ge(X,Y).

Now we 
an 
onstru
t a su

essful proof of the 
anoni
ity of these rules using the


ompletion pro
edure in [16℄ (this 
an be easily done sin
e there is an interfa
e

between the ALF system and the 
ompletion system). Hen
e the 
anoni
ity 
riterion

is more general than other more synta
ti
ally oriented 
riteria [10, 41℄.

The transformation of predi
ates into fun
tions has at least two advantages.

Firstly, the sear
h spa
e 
an be redu
ed be
ause more terms 
an be evalu-

ated by rewriting (e.g., the term 
on
([1℄,[2℄) is evaluable by rewriting where

append([1℄,[2℄,L) must be evaluated by narrowing/resolution) and thus the re-

je
tion rule is appli
able in more 
ases (see the above example for 
on
 and append).

Se
ondly, the exe
ution is more eÆ
ient be
ause less nondeterminism must be imple-

mented. For instan
e, the exe
ution of the goal add(s(s(s(0))),s(s(s(0)))) = L

w.r.t. the fun
tional program

add(0,N) = N. add(s(M),N) = s(add(M,N))

add(N,0) = N. add(N,s(M)) = s(add(N,M))

rule. An innermost re
e
tion step for the subterm p(t

1

; : : : ; t

k

) 
orresponds to resolution

with the unit 
lause p(X

1

; : : : ; X

k

; p(X

1

; : : : ; X

k

)) in the logi
 program. To state the

exa
t equivalen
e of the fun
tional and the logi
 program, these fa
ts must be added to

the logi
 program for fun
tions whi
h are not 
ompletely de�ned.

18



does not 
reate any 
hoi
e point sin
e the goal is fully evaluated by rewrit-

ing and not by nondeterministi
 narrowing, whereas the exe
ution of the goal

add(s(s(s(0))),s(s(s(0))),L) w.r.t. the Prolog program

add(0,N,N). add(s(M),N,s(L)) :- add(M,N,L).

add(N,0,N). add(N,s(M),s(L)) :- add(N,M,L).


reates at least three 
hoi
e points. The 
on
rete e�e
t of this behaviour on the

exe
ution time and memory usage 
an be found in [21℄.

Our �nal example demonstrates the advantage of our approa
h in 
omparison

to other proposals to improve 
ontrol. In this example we 
ombine the advan
ed

translation s
heme with the addition of negative information. Consider the following

Prolog program for the de�nition of mobiles (a mobile is a �sh with a �xed positive

weight, or a bridge of weight 1 (=s(0)) where two mobiles of the same weight hang

at the left and right end):

mobile(fish(_)).

mobile(bridge(M1,M2)) :-

mobile(M1), mobile(M2),

weight(M1,W1), weight(M2,W2), equal(W1,W2).

weight(fish(s(W)),s(W)). % a fish has a positive weight

weight(bridge(M1,M2),s(W)) :-

weight(M1,W1), weight(M2,W2), add(W1,W2,W).

add(N,0,N).

add(0,N,N).

add(N,s(M),s(Z)) :- add(N,M,Z).

add(s(M),N,s(Z)) :- add(M,N,Z).

equal(0,0).

equal(s(M),s(N)) :- equal(M,N).

If we want to know whether a given fish/bridge-stru
ture is a mobile, we prove

the goal

?- mobile(bridge(fish(s(s(s(0)))),bridge(fish(s(0)),fish(s(0))))).

whi
h yields the answer yes. If we want to get all mobiles of weight 3, we prove

?- mobile(M), weight(M,s(s(s(0)))).

This query goes into an in�nite loop after enumerating all solutions be
ause it gen-

erates bigger and bigger mobiles whi
h are not of weight 3. If we want to avoid this

under the standard 
omputation rule, we have to restru
ture the whole program.

9

Hen
e we need another program for another mode of predi
ate mobile whi
h is

9

Note that Naish's algorithm for generating wait de
larations [36℄ does not help be
ause it

generates waits for the �rst arguments of mobile and weight; hen
e the goal immediately


ounders. The method of [46℄ depends on a given 
all pattern of the initial goal, i.e., it

would generate two programs for the two modes of mobile. Generally, if the modes of

the initial goal are not known in advan
e, it is ne
essary to generate a program for ea
h

possible mode of the goal.
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learly unsatisfa
tory from a logi
al point of view. This problem 
an be avoided us-

ing our translation s
heme. It is easy to see that weight and add are fun
tions where

the last argument depends on the other arguments. Hen
e we obtain the following

fun
tional program using our translation method:

mobile(fish(_)) = true.

mobile(bridge(M1,M2)) =

mobile(M1) and mobile(M2) and equal(weight(M1),weight(M2)).

weight(fish(s(W))) = s(W).

weight(bridge(M1,M2)) = s(add(weight(M1),weight(M2))).

add(N,0) = N.

add(0,N) = N.

add(N,s(M)) = s(add(N,M)).

add(s(M),N) = s(add(M,N)).

equal(0,0) = true.

equal(s(M),s(N)) = equal(M,N).

This program is 
anoni
al whi
h 
an be easily 
he
ked by standard 
ompletion pro-


edures for equational spe
i�
ations. In order to avoid the in�nite loop, we simply

add negative information about unequal numbers. Intensional negation generates

the following rules (among others):

equal(0,s(M)) = false.

equal(s(M),0) = false.

After adding these equations as rewrite rules, mobile has a �nite sear
h tree for all

modes, i.e., the following queries terminate after enumerating all solutions:

?- mobile(bridge(fish(s(s(s(0)))),bridge(fish(s(0)),fish(s(0)))))=B.

?- mobile(M) and equal(weight(M),s(s(s(0)))) = true.

The termination of the last goal is due to the fa
t that the generation of mobiles M

with weight greater than 3 is prevented by rewriting

equal(weight(M),s(s(s(0))))

to false.

4 Con
lusions

We have presented a te
hnique to translate logi
 programs into programs of the

fun
tional logi
 language ALF. This translation ensures that the set of answers to a

goal remains the same and the translated programs have at least the same eÆ
ien
y

(sear
h spa
e) as the original programs. This is due to the 
orresponden
e between

SLD-derivations and innermost basi
 narrowing derivations. However, in many 
ases

the sear
h spa
e is redu
ed by simplifying goals (rewriting) and 
omparing both sides

of an equation (reje
tion) whi
h is e�e
tive for the 
lass of generate-and-test pro-

grams. This improved 
ontrol behaviour requires the addition of negative knowledge

or the transformation of predi
ates into fun
tions between arguments. Fortunately,

20



there are well-known tools for both tasks. The ne
essary negative knowledge 
an

be derived by intensional negation of the program, and the validity of a fun
tional

transformation 
an be 
he
ked by 
ompletion pro
edures for equational spe
i�
a-

tions.

Of 
ourse, similar e�e
ts or, in some 
ases, better e�e
ts 
an be obtained by

other methods to in
uen
e the 
ontrol of logi
 programs, e.g., delay de
larations

for predi
ates or inserting 
uts. But the advantage of our transformation method is

the de
larative nature of the approa
h. Sin
e ALF's proof strategy is 
omplete, any

solution to the original logi
 program is also 
omputed w.r.t. the new strategy. This

may be not the 
ase in other methods where goals 
an 
ounder (be
ause of delay

de
larations) or solutions are lost (be
ause of inserting \red" 
uts).

We do not propose to use our method for the automati
 translation of logi


programs into fun
tional logi
 programs. The motivation for our method was to show

that fun
tional logi
 languages are superior to pure logi
 languages sin
e it is possible

to translate any logi
 program into a fun
tional equivalent whi
h has the same set

of answers but is often more eÆ
ient. Hen
e we should dire
tly use fun
tional logi


languages instead of pure logi
 languages. Nevertheless, the presented transformation

te
hniques point to important aspe
ts for improving the eÆ
ien
y of fun
tional logi


programs: fun
tional dependen
ies redu
e the number of possible sear
h paths, and

negative knowledge supports the early dete
tion of failures.

In order to in
rease the power of logi
 programming, it is ne
essary to improve

the operational behaviour in a de
larative way su
h that logi
 programs be
ome

more deterministi
 without loosing logi
ally important answers. The integration of

fun
tions is one possibility as shown in this paper. Further improvements 
an be

a
hieved by in
luding 
onstraints over spe
i�
 domains [31℄ or type information

whi
h in
uen
es the sear
h spa
e [20, 22, 43℄.
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