
Compiling Logic Programs with Equality

Michael Hanus

Fachbereich Informatik, Universität Dortmund

D-4600 Dortmund 50, W. Germany

e-mail: michael@ls5.informatik.uni-dortmund.de

In Proc. Int. Workshop on Programming Language Implementation and Logic Programming,
pp. 387-401, Springer LNCS 456, 1990

Horn clause logic with equality is an amalgamation of functional and logic programming languages. A
sound and complete operational semantics for logic programs with equality is based on resolution to solve
literals, and rewriting and narrowing to evaluate functional expressions. This paper proposes a technique
for compiling programs with these inference rules into programs of a low-level abstract machine which can
be efficiently executed on conventional architectures. The presented approach is based on an extension of
the Warren abstract machine (WAM). In our approach pure logic programs without function definitions
are compiled in the same way as in the WAM-approach, and for logic programs with function definitions
particular instructions are generated for occurrences of functions inside clause bodies. In order to obtain
an efficient implementation of functional computations, a stack of occurrences of function symbols in goals
is managed by the abstract machine. The compiler generates the necessary instructions for the efficient
manipulation of the occurrence stack from the given equational logic program.

1 Introduction

During recent years, various attempts have been made to amalgamate functional and logic programming
languages (see [DL86] for a collection of proposals). A lot of these integrations are based on Horn clause
logic with equality which consists of predicates and Horn clauses for logic programming and functions and
equations for functional programming. An operational semantics for logic programs with equality is based
on the resolution rule for solving literals where the axiom X = X is added to solve equations, and narrowing
[Fay79] [Hul80] for evaluating functional expressions. This operational semantics is sound and complete
if the equational logic program satisfies the Church-Rosser property [GM86] [Pad88]. Since this general
operational semantics is inefficient and leads to many infinite branches in the computation tree (because the
narrowing rule can be applied to an arbitrary subterm of the goal), several authors have tried to improve
the narrowing procedure. Hullot [Hul80] has shown completeness of basic narrowing for canonical term
rewriting systems where narrowing is only applied at basic occurrences, i.e., occurrences which have not
been introduced by substitutions. Fribourg [Fri85] has shown that narrowing can be restricted to exactly
one innermost position in a narrowing step if all functions are totally defined. Hölldobler [Höl88] has
generalized these results: He has shown completeness of innermost basic narrowing for canonical conditional
term rewriting systems if the innermost reflection rule is added which is needed for incompletely defined
functions. Furthermore, he has shown that this calculus remains complete if the goals are simplified by
rewriting at basic occurrences. Rewriting between narrowing steps may cut an infinite search space to a
finite one. Therefore we want to apply rewriting steps whenever it is possible. As a consequence, flattening
of clauses and executing the flattened program by SLD-resolution [BGM87] [BCM89] is not useful. Thus we
need a direct implementation of basic innermost narrowing.

Narrowing for functions defined by conditional equations can be combined with resolution for predicates
defined by Horn clauses (see [Pad88] and, for a more general result, [Han88b]). Therefore we admit functions
as well as predicates in our programs, i.e., predicates need not be represented as Boolean functions. Our
operational semantics is based on resolution for predicates, basic innermost narrowing and rewriting for
functions, and innermost reflection for incompletely defined functions. Hence our language is a proper
superset of pure Prolog and a first-order functional language.

This paper proposes a technique for compiling programs of this language into programs of a low-level
abstract machine which can be efficiently executed on conventional architectures. The presented approach

1



is based on an extension of the Warren abstract machine (WAM) [War83]. In our approach logic programs
without function definitions are compiled as in the WAM-approach, and for logic programs with function
definitions particular commands are generated for occurrences of functions inside clause bodies. In order
to have an efficient implementation of functional computations, a stack of occurrences of function symbols
in goals is managed by the abstract machine. The compiler generates the necessary instructions for the
efficient manipulation of the occurrence stack from the given equational logic program.

This paper is organized as follows. In the next section we introduce our source language which is
equipped with a module concept and a type system. The operational semantics of the language is presented
in section 3. In the main section 4 the necessary extensions to the WAM are shown. Section 5 outlines
important operational properties of our extended abstract machine. We assume familiarity with the basic
concepts of the WAM.

2 The source language ALF

The source language ALF (“Algebraic Logic Functional language”) is based on Horn clause logic with
equality. Hence it is possible to use functions inside goals and predicates in conditions of functions. Since
we want to have a practical language, ALF has a (simple) module concept and a many-sorted type system.
An ALF-program is a set of modules where one main module exists. Goals are proved w.r.t. this main
module. A module consists of an interface part (export/import declarations), a declaration part containing
the declarations of sorts, constructors, functions and predicates defined by this module, and a body consisting
of all program clauses (relational clauses defining predicates and conditional equations defining functions).
A module may be parameterized by sorts which allows the definition of generic modules, e.g., modules for
lists, trees etc. Modules are imported from other modules by a use-declaration in the interface part. In
case of parameterized modules, actual sorts must be supplied for the parameter sorts. The module and
type concept is purely syntactic, i.e., a preprocessor translates each ALF-program into an equivalent flat-
ALF-program which consists of a list of program clauses, i.e., the intermediate language flat-ALF is the
language of single-sorted Horn clause logic with equality. The preprocessor checks the type consistence of
the ALF-program and adds the module name to function and predicate symbols whenever it is necessary
to resolve name clashes between different modules. Hence the semantics of our language is the same as
Horn clause logic with equality, and in the next section we only describe the compilation of single-sorted
equational logic programs. However it may be interesting to admit richer type structures (order-sorted
[GM86] or polymorphic [Han90]) which influence the operational semantics and must be considered in the
compilation process [HV87], but this is out of the scope of this paper.

The syntax of ALF is similar to Prolog [CM87]. We do not present the formal syntax but give an example
of an ALF-program. The example consists of a module for natural numbers, a parameterized module for
stacks and a main module that uses this two modules:

module natMod.
export 0, s, +.
sort nat.
cons 0: nat; s: nat → nat.
func +: nat, nat → nat total.

N + 0 = N reduction.
N + s(M) = s(N + M) reduction.
0 + N = N onlyreduction.
s(M) + N = s(M + N) onlyreduction.

end natMod.

module stackMod(elem).
export empty, push, top, pop, isEmpty, isNotEmpty.
sort stack.
cons empty: stack;

push: elem, stack → stack.
func pop: stack → stack;

top: stack → elem.
pred isEmpty: stack;

isNotEmpty: stack.

2



pop(push(E,S)) = S reduction.
top(push(E,S)) = E reduction.
isEmpty(empty).
isNotEmpty(push(E,S)).

end stackMod.

module main. % Compute the sum of a stack of natural numbers
use natMod;

stackMod(nat) = natStack.
func sum: stack → nat total.

sum(S) = 0 ← isEmpty(S).
sum(S) = top(S) + sum(pop(S)) ← isNotEmpty(S).

end main.

In ALF-programs constructor and function symbols are distinguished: A constructur must not be the
outermost symbol on the left-hand side of a conditional equation, i.e., constructors are non-reducible function
symbols. This distinction is necessary for the notion of innermost occurrences. Function symbols may be
defined as total if this function symbol is reducible for all ground terms of appropriate sorts. The innermost
reflection rule need not be applied for total functions. Therefore defining functions as total leads to more
efficient programs. For instance, the addition on natural numbers is total in contrast to the functions pop
and top on stacks (e.g., pop(empty) is not reducible).

A (conditional) equation may be applied in a narrowing step to evaluate an expression. If an equation
should also be used in rewriting steps, it must be marked with the keyword reduction. If an equation
should only be used in rewriting steps, it must be marked with onlyreduction. The preprocessor generates
two groups of conditional equations in a flat-ALF-program: equations for narrowing steps and equations
for rewriting steps. These groups need not be disjoint. If the left-hand side of a narrowing equation or the
head of a relational clause contains defined function symbols as arguments, the preprocessor replaces these
function symbols by new variables and adds corresponding equations for these variables to the condition.
For instance, the equation

top(pop(push(E,S))) = top(S).

will be replaced by

top(S1) = top(S) ← S1 = pop(push(E,S)).

This transformation is necessary for the completeness of narrowing [Han88b].

3 Operational Semantics

Since a modularized ALF-program will be translated into a single-sorted equational logic program consisting
of lists of relational clauses, conditional equations for narrowing and conditional equations for rewriting, it is
sufficient to describe the semantics for such flat-ALF-programs. The declarative semantics is the well-known
Horn clause logic with equality [Pad88]. The operational semantics is based on resolution for predicates and
innermost basic narrowing for functions with some further rules to cut infinite computations. In order to
define the operational semantics we represent a goal by a skeleton and an environment part [Höl88]: the
skeleton is a goal and the environment is a substitution which has to be applied to the goal. The initial goal
G is represented by the pair (G; id) where id is the identity substitution. Then the following steps define
the operational semantics (if π is a position in a term t, then t/π denotes the subterm of t at position π and
t[π ← s] denotes the term obtained by replacing the subterm t/π by s in t):

Let (L1, . . . , Ln;σ) be a goal (L1, . . . , Ln are the skeleton literals and σ is the environment).

1. If there is a leftmost-innermost position π in the first skeleton literal L1, i.e., the subterm L1/π has a
defined function symbol at the top and all argument terms consist of variables and constructors (cf.
[Fri85]), then:

(a) If there is a new variant l = r ← C of a program clause and σ(L1/π) and l are unifiable with
mgu σ′, then

(C,L1[π ← r], L2, . . . , Ln;σ
′ ◦ σ)

is the next goal derived by innermost basic narrowing,

3



(b) otherwise let x be a new variable and σ′ be the substitution {x← σ(L1/π)}, then

(L1[π ← x], L2, . . . , Ln;σ
′ ◦ σ)

is the next goal derived by innermost reflection (this corresponds to the elimination of an inner-
most redex [Höl88]).

2. If there is no innermost position in L1, then:

(a) If L1 is an equation s = t and there is a mgu σ′ for σ(s) and σ(t), then

(L2, . . . , Ln;σ
′ ◦ σ)

is the next goal derived by reflection.

(b) If L1 is not an equation and there is a new variant L ← C of a program clause and σ′ is a mgu
for σ(L1) and L, then

(C,L2, . . . , Ln;σ
′ ◦ σ)

is the next goal derived by resolution.

The innermost reflection rule need not be applied to functions declared as total because a narrowing step is
always applicable for such functions. The attribute basic of a narrowing step emphasizes that a narrowing
step is only applied at an occurrence of the original program and not at occurrences introduced by sub-
stitutions. The restriction to basic occurrences is important for an efficient compilation of narrowing (see
below).

This operational semantics corresponds to SLD-resolution if all clauses are flattened [BGM87]. In order
to be more efficient (cutting infinite search spaces) than SLD-resolution, rewriting steps have to be applied
before narrowing steps: Let (L1, . . . , Ln;σ) be a goal, π be a non-variable position in L1, l = r ← C be a
new variant of a rewrite rule and σ′ be a substitution. Then

(L1[π ← σ′(r)], L2, . . . , Ln;σ)

is the next goal derived by rewriting if

1. σ(L1/π) = σ′(l)

2. The goal (C;σ′) can be derived to the empty goal, i.e., there exists at least one solution for this goal.

A further optimization is rejection: The rejection rule immediately fails to prove a goal if the first literal
is an equation and the outermost symbols of the two sides are different constructors. In many cases the
rejection rule avoids infinite narrowing derivations inside arguments if an equation cannot be unified. A
discussion of the advantages of rewriting and rejection in combination with narrowing can be found in [Fri85]
and [Höl88].

This operational semantics (innermost basic narrowing, innermost reflection, reflection, resolution, and
simplification by rewriting and rejection) is sound and complete if the term rewriting relation generated by
the conditional equations is canonical, the condition and the right-hand side of each conditional equation do
not contain extra-variables and the set of rewrite rules is equal to the set of narrowing rules [Höl88]. If these
restrictions are not satisfied, it may be possible to transform the program into an equivalent program for
which this operational semantics is complete. For instance, Bertling and Ganzinger [BG89] have proposed a
method to transform conditional equations with extra-variables such that narrowing and reflection will be
complete. In the next section we present an efficient implementation of this operational semantics based on
an extension of the WAM. Similarly to Prolog, the program clauses in flat-ALF are ordered and the different
choices for clauses in a computation step are implemented by a backtracking strategy.

4 Compiling flat-ALF-programs

We want to implement the above inference rules for equational logic programs by an extension of the WAM.
Therefore we define an abstract machine called A-WAM which is designed for the efficient execution of
flat-ALF-programs. Since pure Prolog is a subset of flat-ALF, the instruction set of the A-WAM is a superset
of the WAM-instructions. Additional data structures and instructions are needed to execute narrowing and
rewriting. First we give a short outline of the main modifications in comparison to the WAM. After that
we explain more details about the implementation.

4



4.1 Implementing the inference rules for equational logic programs

In the following we show the basic implementation schemes for innermost basic narrowing, innermost reflec-
tion, reflection, resolution, rewriting and rejection in the A-WAM.

The resolution rule is the same as in Prolog. Therefore the compilation scheme for relational clause
heads and predicates in conditions is equal to the WAM.

The reflection rule can be implemented as resolution with the axiom X = X. An extension to the WAM
is not necessary for this rule.

For the innermost basic narrowing rule a direct access to the leftmost-innermost subterm of the
first literal is necessary. This subterm must be unified with the left-hand side of a conditional equation.
The position can be found by a dynamic search through the actual arguments of the literal but such an
implementation will be very slow. Fortunately, we can observe that all these positions can be determined by
the compiler since we use a basic narrowing strategy. For instance, if p(f(c(g(Y)))) is a literal in the initial
goal or in the body of some clause (f and g are defined functions and c is a constructor), then g(Y) is an
innermost term and f(c(g(Y))) will be an innermost term after an application of an innermost reflection
step. Therefore the only possible positions for applying the narrowing rule are at the symbols g and f. It is
not necessary to apply narrowing rules inside Y if this variable is bound to a complex term while proving the
goal because we use a basic strategy. Hence the compiler can generate all pointers to the basic narrowing
positions in a literal.

Our solution to an efficient implementation of innermost basic narrowing is the following. The A-
WAM manages a stack of possible occurrences (positions for narrowing). The compiler generates A-WAM-
instructions to push and to pop elements from this occurrence stack. The top element of this stack is always
the leftmost-innermost position in the actual literal. The other stack elements are positions in leftmost-
innermost order. These occurrences are not innermost terms but they become innermost terms after applying
narrowing rules or the innermost reflection rule. For instance, the term f(c(g(Y))) is not innermost in
the literal p(f(c(g(Y)))), but after applying the equation g(a) = a to this goal (a is a constructor), this
(modified) subterm is innermost in the literal p(f(c(a))). Therefore all potentially innermost positions are
stored on the occurrence stack. This ensures a fast access to the next innermost position after an application
of a narrowing or innermost reflection rule.

The A-WAM compilation scheme for literals in clause bodies is similar to the WAM with the difference
that instructions for pushing elements on the occurrence stack are generated. For instance, the literal
p(f(c(g(Y)))) is compiled into the following instruction sequence:

put structure g/1, X1
unify value Y1 % Y was stored in Y1
put structure c/1, X2
unify value X1
put structure f/1, A1
unify value X2
set begin of term A1 % store root of narrowing argument
push occ A1 % store occurrence of f(c(g(Y)))
load occ X1 % store occurrence of g(Y)
save A1, Y2 % save A1 since arg. registers may be altered in narrowing
narrow 2 % call narrowing, arg. is number of permanent variables
put value Y2, A1
call p/1, 1

For the sake of efficiency the top element of the occurrence stack (the actual leftmost-innermost position)
is always stored in a particular register. This element is stored by a load occ-instruction where all other
elements are pushed by push occ-instructions. Rewriting can be applied at an arbitrary basic occurrence in
the literal. Thus a successful application of a rewrite rule makes the contents of the occurrence stack invalid
and a new occurrence stack must be created. For this purpose it is necessary to store the root of the actual
narrowing argument in a particular register which is done by the instruction set begin of term. Rebuilding
the occurrence stack after successful rewriting is started from this register. The narrow-instruction loads
the arguments of the structure at the actual occurrence into the argument registers Ai and tries to apply
rewrite rules (see below). Afterwards it jumps to the narrowing code for the function stored at the actual
occurrence.

Note that all these narrowing-specific instructions are only generated if a defined function symbol occurs
in the argument of the literal. Otherwise the compilation scheme is identical to the WAM-scheme for Prolog,

5



i.e., there is no overhead for narrowing.
A narrowing rule of the form f(t1, . . . , tn) = r ← C is compiled in the following way: First, get-

instructions are generated for the arguments t1, . . . , tn (identical to the WAM), followed by the code for
the body C and instructions for storing the right-hand side at the actual occurrence. This replacement
is implemented by put-instructions with the suffix occ. For instance, the narrowing rule g(a) = a ← is
translated into the instructions

get constant a, A1 % unify argument with constant a
put const occ a % store constant a at actual occurrence
pop occ % pop the next innermost occurrence from the stack
proceed occ % proceed with rewriting and narrowing at new occurrence

The replacement of the subterm at the actual occurrence by the put... occ-instructions must be stored in
the trail stack in order to restore the original terms in case of backtracking. Thus the A-WAM-trail contains
unbound variables and terms. This causes no problem in the implementation because only the outermost
symbol of the replaced term must be stored.

Hence the compilation scheme for narrowing rules is similar to relational clauses, i.e., the indexing
structure for the first argument is identical to the WAM. The additional instructions for the right-hand side
at the end of the body is the only difference to the WAM.

The innermost reflection rule moves the actual occurrence from the skeleton into the environment
part. Therefore we have to distinguish in compound terms the skeleton part from the environment part
(this is also necessary for rebuilding the occurrence stack after a succesful application of a rewrite rule).
Unfortunately, in the original WAM it is impossible to see whether a compound term originally occurred
in a clause body or was created by unification. For instance, consider the goals X=g(Y), p(f(X)) and
p(f(g(Y))). If these goals are proved and the predicate p is called, then the argument of p has the same
representation on the heap in both cases. But in the skeleton/environment representation the subterm g(Y)

belongs to the environment in the first case and to the skeleton in the second case.
Thus the distinction between the skeleton and the environment part of a compound term must be made

explicit in the A-WAM. For this purpose an additional tag field (Boolean value) is added to all terms: All
instructions corresponding to terms occurring in program clauses (get-, put-, unify-instructions) mark the
terms as belonging to the skeleton part whereas the (implicitly called) unification procedure mark a variable
which is bound to another term as belonging to the environment part. With this small modification the
implementation of the innermost reflection rule is very simple: The term at the actual occurrence must be
marked as “environment” and the A-WAM-instructions pop occ and proceed occ have to be executed.

Rewriting is executed before a narrowing step. It can be viewed as narrowing with the difference that
goal variables are not modified by rewriting (the substitution is only applied to the rewrite rule). Therefore
rewrite rules are compiled like narrowing rules with the following modifications:

• The A-WAM contains two additional registers R and HR which point to the local stack and heap,
respectively. Initially, these registers point to the bottom of the stacks. Before rewriting is called, R
is set to the top of the local stack and HR is set to the top of the heap. The WAM-instruction trail,
which is called if a variable is bound to a term in the unification procedure, is extended as follows:
If the variable is in the local stack before address R or if the variable is in the heap before address
HR, then the instruction fail is executed. Hence binding a goal variable while executing a rewrite
rule causes a failure which has the consequence that the next rewrite rule is tried. Therefore each
individual rewrite rule is compiled identically to a narrowing rule. The different behaviour (matching
instead of unification) is implicitly controlled by the registers R and HR. This has the advantage that
no additional instructions for the translation of rewrite rules are needed. It is also possible to compile
rewrite rules with particular get- and unify-instructions for matching, but this needs more work for
the implementation of the abstract machine.

• Since rewriting does not change the actual goal before the right-hand side of the rule is inserted
into the goal, it is not necessary to generate full backtrack points in the indexing scheme for rewrite
rules. It is sufficient to store the address of the next alternative rewrite rule. For this purpose the
A-WAM contains particular indexing instructions for rewrite rules, but the scheme for generating these
instructions is identical to the WAM.

• The body (condition) of a rewrite rule may contain additional variables which do not occur on the
rule’s left-hand side. Therefore a solution for the body must be found by resolution and narrowing,

6



i.e., the body is compiled like the body of a program clause but with the following difference: Since we
assume confluence, it is sufficient to find one solution for the body. Thus a backtrack point is generated
before the body of the rewrite rule is proved and it is deleted after the (possibly unsuccessful) proof.

• If a rewrite rule is applicable and the right-hand side of the rule is inserted into the goal, the occur-
rence stack for narrowing becomes invalid because a rewrite rule can be applied at an arbitrary (basic)
occurrence. Therefore the occurrence stack is marked as invalid in case of a successful application of a
rewrite rule. If the rewriting process is terminated (no more rewrite rules are applicable) and the oc-
currence stack is invalid, then a new occurrence stack must be computed for the subsequent narrowing
process. This computation, started at the root of the actual argument term (this was stored by the
instruction set begin of term, see above), pushes all occurrences of function symbols in the skeleton
part of the term onto the occurrence stack. This is the only reason why the skeleton/environment
information of terms must be stored at run time (see above).

• If no rewrite rule is applicable for a function symbol at the actual occurrence, rewriting has to be tried
at the next (outermost) position. Hence the last alternative in a sequence of rewrite rules for a function
symbol is always: Pop an occurrence from the occurrence stack and proceed with rewriting at this new
occurrence. Therefore rewriting does not fail if no rule is applicable (in contrast to narrowing). The
rewriting process is terminated if the occurrence stack is empty. In this case a new occurrence stack
is computed (if a rewrite rule has been applied) or the old occurrence stack is restored (if no rewrite
rule could be applied), and then computation proceeds by applying narrowing rules.

Rejection is a possibility for cutting infinite unsuccessful narrowing derivations. For instance, let c1 and
c2 be constructors and

f(c1(X)) = c1(f(X)) ←

be a narrowing rule. In order to prove the literal c1(f(Y)) = c2(Z), innermost basic narrowing produces an
infinite derivation. But this literal cannot be true since the constructors at outermost positions are different.
This will be recognized by the rejection rule. The A-WAM-instruction reject A1,A2 causes a failure if the
outermost symbols of the two terms in registers A1 and A2 are different constructors. This instruction is
generated for an equation t1 = t2 in a goal in front of the narrowing instructions if the outermost symbols
of t1 and t2 are variables or constructors. Hence the equation c1(f(Y)) = Z in a condition will be compiled
as follows:

put structure f/1, X1
unify value Y1 % Y was stored in Y1
put structure c1/1, A1
unify value X1
put value Y2, A2 % Z was stored in Y2
reject A1, A2 % apply rejection
set begin of term A1 % store root of narrowing argument
load occ X1
save A1, Y3 % save A1 in Y3
narrow 3 % call narrowing for function f
put value Y3, A1
put value Y2, A2
get value A1, A2 % equivalent to call =/2

4.2 The abstract machine A-WAM

In the last section we have given an outline of the necessary A-WAM-extensions to implement the inference
rules for flat-ALF. Since we are dealing with conditional narrowing and rewrite rules, the actual implemen-
tation of the A-WAM needs more complex data structures:

• If a conditional narrowing rule is applied and defined function symbols occur in the condition, then
these functions must be evaluated by narrowing again. Hence the occurrences of these function symbols
must be pushed onto the occurrence stack, but these new occurrences must be distinguished from the
old occurrences stored on the occurrence stack before proving the condition. Because of this recursive
structure of the narrowing process, the occurrence stack must have a recursive structure too. The
A-WAM contains a list of occurrence stacks. The last element of this list is always the occurrence

7



stack belonging to the actual argument (narrowing instructions are generated for each argument of a
literal which contains defined function symbols).

• Since narrowing and rewriting may be called to prove conditions of rewrite rules, there is a recursive
structure in rewriting too. Therefore the new A-WAM-registers R and HR for rewriting must be set
before starting rewriting (see above) and restored to the old values after finishing rewriting and before
starting narrowing.

There are more details which have to be considered in the implementation. These will be explained below.
In the following we present the registers, data structures and commands of the A-WAM. Since we assume
familiarity with the basic concepts of the WAM, we only explain the differences to the WAM. A detailed
description of the A-WAM together with a formal specification of the operational semantics of all A-WAM-
instructions in the style of [Han88a] can be found in [PIL90].

4.2.1 Data areas and registers of the A-WAM

The main data areas of the A-WAM are the following (there is also a system stack or push-down list for the
recursive implementation of the unification procedure):

Code area: Contains the compiled flat-ALF-program. Note that it must be also stored whether a functor
symbol is a constructor or a defined function (necessary for rebuilding the occurrence stack).

Local stack: Contains environments and backtrack points.

Heap: Contains terms. A term cell has an additional tag (one bit) which shows whether this term belongs
to a skeleton or an environment. Skeleton terms are terms occurring in a program clause and envi-
ronment terms are terms created by unification (or an application of the innermost reflection rule).
Hence environment terms belong to substitutions. The get-, put- and unify-instructions set the
“skeleton”-tag in created terms whereas the unification procedure and the instruction reflection set
the “environment”-tag.

Trail: Contains references to variables that have been bound during unification and old values and references
to function symbols on the heap that have been replaced by an application of a narrowing or rewrite
rule. These values must be restored on backtracking. If a subterm in the heap is replaced by a
narrowing/rewrite rule, then only the outermost function symbol is replaced by a reference to the new
term. Therefore it is sufficient to store the term cell containing this function symbol on the trail. It
is not necessary to store the complete subterm on the trail (this may be false if a garbage collector
reorganizes the heap!).

Occurrence stack: Contains references to subterms in the heap where narrowing or rewriting can be
applied. It is organized as a list of stacks of occurrences. Only the last element is manipulated by
A-WAM-instructions. The last element of this list (the actual occurrence stack) contains a reference to
a previous list element and all occurrences of function symbols in the skeleton of the actual argument
where narrowing and rewriting should be applied. The occurrences are placed in leftmost-innermost
order on this stack where the top element is always stored in the A-WAM-register AO, i.e., the stack is
empty iff AO is undefined. A new actual occurrence stack is created by the instruction allocate occ

if the condition of a narrowing or rewrite rule is executed.

The organization of terms is identical to the WAM, i.e., n-ary structures are stored on the heap in n + 1
consecutive cells where the first cell contains the functor and the next n cells are the arguments. Narrowing
and rewriting is always executed on heap terms. Hence a 0-ary defined function symbol must also be stored
as a term on the heap (in contrast to the WAM where constants are separately treated).

The registers of the A-WAM are summarized in figure 1. The second group of registers are new in
comparison to the WAM. The registers R and HR are used to implement rewriting (see description of rewriting
implementation in the previous section). Register OV indicates the successful application of a rewrite rule.
Register OP points to the top of the actual occurrence stack and OM points to the bottom of the actual
occurrence stack, i.e., the list of occurrence stacks is implemented with backward pointers to previous
elements. The actual occurrence, i.e., the top element of the actual occurrence stack, is always stored in
register AO. Register TS contains the reference to the root of the actual argument term before narrowing is
called. It will be set by the instruction set begin of term.

8



Name Function

P program pointer
CP continuation program pointer
E last environment
B last backtrack point
H top of heap
TR top of trail
S structure pointer
RW read/write mode for unify instructions
A1, A2, . . . argument registers
X1, X2, . . . temporary variables

R rewrite pointer (to the local stack)
HR heap rewrite pointer (to the heap)
OP top of actual occurrence stack
OM bottom of actual occurrence stack
AO actual occurrence
TS term start (root of the actual argument term)
OV Is the actual occurrence stack valid? Will be set to false in case of rewriting.
RFP rewrite fail pointer (to the code area)
TFP try rewrite fail pointer (to the code area)

Figure 1: The registers of the A-WAM

As mentioned in the previous section, a backtrack point need not be generated if a chain of rewrite rules
for a function symbol is executed because rewriting does not affect the actual goal. It is only necessary to
store the address of the next alternative rewrite rule. Therefore the try/retry/trust-instructions for the
indexing scheme for rewrite rules are prefixed by r . The particular r try/r retry/r trust-instructions do
not create or manipulate a backtrack point but set and change the values of the registers RFP and TFP. For
instance, r try me else L sets register RFP to L and r try L sets register TFP to the address of the next
instruction. The instruction fail, which will be executed on failure, examines the values of RFP and TFP:
If TFP is defined, then the program pointer P is set to TFP. If TFP is undefined and RFP is defined, then P is
set to RFP. If both are undefined, the computation state is reset to the last backtrack point.

The values of these registers and the contents of the data areas characterize the computation state of the
A-WAM. In order to reset to an old state in case of failure (backtracking), a backtrack point contains the
following information: contents of the registers P, CP, E, B, H, TR, R, HR, OP, OM, AO, TS, OV, RFP, TFP, where
the component P contains the address of the next alternative clause, and copies of the first n argument
registers (if it is a backtrack point for an n-ary predicate or function) and the actual occurrence stack. It
is sufficient to save the actual occurrence stack and not the whole list of occurrence stacks in the backtrack
point because the A-WAM-instruction deallocate occ deletes the last list element only if a new backtrack
point has not been created (see below; this is due to the same reason why environments need not be saved
in backtrack points in the WAM).

4.2.2 Instructions of the A-WAM

The instruction set of the A-WAM is a superset of the WAM-instructions. Therefore we only describe the
additional A-WAM-instructions.

load occ Ai: Set the actual occurrence register AO to Ai which must contain a reference to a structure
on the heap with a defined function symbol at the top. This instruction may also be used with a
temporary variable Xi instead of Ai.

push occ Ai: Push the reference to the structure Ai onto the actual occurrence stack. This instruction
may also be used with a temporary variable Xi or the actual occurrence register AO instead of Ai.

pop occ: Pop an element from the actual occurrence stack and store the value in register AO. If the actual
occurrence stack is empty, set AO to “undefined”. This instruction is used for a narrowing/rewrite

9



rule which has no occurrences of defined function symbols on the right-hand side. For instance, the
narrowing rule f(a) = b ← is translated into the instruction sequence

get constant a, A1
put const occ b % store constant b at actual occurrence
pop occ % pop the next innermost occurrence from the stack
proceed occ % proceed with narrowing at new occurrence

set begin of term Ai: Set the term start register TS to the structure referenced by Ai. If the occurrence
stack must be rebuilt because of an application of a rewrite rule, the creation of the new occurrence
stack starts at term position TS. If the outermost symbol of this term is a constructor, it is possible
to use this instruction with a temporary variable Xi. In this case Xi is a reference to a subterm of Ai
which contains all basic occurrences of defined function symbols in Ai.

proceed occ: This instruction terminates a narrowing rule. If register AO is undefined (= no more occur-
rences), program pointer P is set to CP, otherwise the narrowing rules for the function at occurrence AO
are executed after loading the argument registers with the components of the structure at occurrence
AO.

r proceed occ: This instruction terminates a rewrite rule. Registers RFP and TFP are set to “fail” (no
alternative rewrite rule must be applied because of confluence). If register AO is undefined, program
pointer P is set to CP, otherwise the rewrite rules for the function at occurrence AO are executed after
loading the argument registers with the components of the structure at occurrence AO.

narrow N: This instruction starts rewriting and narrowing after loading the occurrences of the actual argu-
ment term. It is a macro and equivalent to the following sequence of A-WAM-instructions:

call rewriting AO, N
rebuild occ stack
call narrowing AO, N

These three instructions are only used for the implementation of narrow. call rewriting corresponds
to the WAM-instruction call, i.e., N is the number of permanent variables wich are still in use in the
actual environment. call rewriting AO,N creates a copy of the actual occurrence stack, saves the
values of registers R and HR in the environment, loads the components of the structure at position AO

into the argument registers, sets registers OV, R and HR to true, top of local stack and top of heap,
respectively, and calls the rewrite rules for the function at occurrence AO, i.e., CP is set to the address
of the following instruction (rebuild occ stack) and P is set to the address of the rewrite rules.

Note that in the A-WAM rewriting always returns to the instruction rebuild occ stack because the
last alternative in a sequence of rewrite rules is always r proceed occ and not trust me else fail

(see below). rebuild occ stack deletes the last element from the list of occurrence stacks (that was
the new occurrence stack created by call rewriting) and sets R and HR to their old values stored in
the environment. Then it replaces the actual occurrence stack by a new occurrence stack for the term
at position TS, if OV is false (i.e., a rewrite rule has been applied), otherwise nothing is done.

call narrowing AO,N loads the components of the structure at position AO into the argument registers
and calls the narrowing rules for the function at occurrence AO.

save Ai, Yj: Since narrowing may recursively call narrowing and resolution for proving conditions, the
contents of the argument registers are altered in the narrowing process. Therefore some registers must
be saved which can be done by this instruction. It is equivalent to get variable Yj, Ai. Thus this
instruction is only added for readability reasons. For instance, the goal literal p(f(X),g(Y)) (f and
g are defined functions) is compiled into

put structure f/1, A1
unify value Y1 % X was stored in Y1
set begin of term A1
load occ A1
save A1, Y3 % save A1 in Y3
narrow 4 % narrow the first argument
put structure g/1, A2
unify value Y2 % Y was stored in Y2
set begin of term A2
load occ A2

10



save A2, Y4 % save A2 in Y4
narrow 4 % narrow the second argument
put value Y3, A1
put value Y4, A2
call p/2, 2 % call predicate p/2

reject Ai, Aj: This instruction causes a failure if the outermost symbols of the terms referenced by
registers Ai and Aj are different constructors. Otherwise, no action is taken.

reflection: This is the last alternative in a sequence of narrowing rules for a function which is not total. It
follows the last trust me else fail in the indexing scheme for these narrowing rules and implements
the innermost reflection rule: The term at the actual occurrence AO is marked as “environment” and
the A-WAM-instruction sequence

pop occ
proceed occ

is executed.

put value occ Xi: In order to insert the right-hand side of a narrowing or rewrite rule into a goal, the
A-WAM contains a set of put... occ-instructions. For each put-instruction of the WAM (except for
put unsafe value) there is a corresponding A-WAM-instruction put... occ which substitutes the
argument at the actual occurrence AO and stores the old value at occurrence AO on the trail. For
instance, the narrowing rule f(X) = g(h(X)) ← is compiled into

get variable X1, A1
put structure h/1, X2
unify value X1
put structure occ g/1
unify value X2
push occ AO
load occ X2
proceed occ

put structure occ puts a new structure on the heap and replaces the heap cell at address AO by a
reference to this new structure.

invalid os: This instruction sets register OV to false and indicates the successful application of a rewrite
rule. It is executed before the r proceed occ-instruction in a rewrite rule.

r try me else L: The indexing instructions for rewrite rules are prefixed by r . These different indexing
instructions are executed since it is not necessary to create a backtrack point (see discussion above).
The second difference in the indexing scheme is the last alternative in the sequence of rewrite rules:
Instead of trust me else fail it is always the instruction sequence pop occ/r proceed occ (try
rewriting at the next innermost occurrence).

This instruction sets register RFP to code address L.

r retry me else L: Identical to r try me else L.

r try L: Set register TFP to the address of the following instruction and program pointer P to code address
L.

r retry L: Identical to r try L.

r trust L: Set register TFP to “fail” and program pointer P to code address L.

allocate occ: This instruction saves the occurrences in AO and TS onto the occurrence stack and adds a
new (empty) actual occurrence stack to the list of all occurrence stacks. It is used before a condition
in a narrowing or rewrite rule will be proved. For instance, the narrowing rule f(X) = b ←p(g(X))

is compiled into the following A-WAM-instructions:

allocate
get variable X1, A1
allocate occ % allocate a new occurrence stack to prove the condition
put structure g/1, A1
unify local value X1
set begin of term A1
load occ A1
save A1, Y1 % save A1 in Y1

11



narrow 1 % narrow the term g(X)
put value Y1, A1
call p/1, 0
deallocate occ % deallocate the occurrence stack for the condition
put const occ b % store constant b at actual occurrence
pop occ % pop the next innermost occurrence from the stack
deallocate
proceed occ

deallocate occ: This instruction deletes the last element from the list of occurrence stacks and loads
registers AO and TS from the previous occurrence stack. If a backtrack point has been created after
the corresponding allocate occ-instruction (i.e., if B.OM ≥ OM), it is not allowed to alter previous
elements of the occurrence stack list since only the actual occurrence stack has been saved into the
backtrack point. In this case deallocate occ creates a copy of the previous occurrence stack and
adds this copy to the list of occurrence stacks.

l try me else L, N: The condition of a rewrite rule must be proved by resolution and narrowing but it is
sufficient to compute one solution for the body (cf. section 4.1). Since we do not generate backtrack
points in the indexing scheme for rewrite rules, a backtrack point must be generated for the proof of
the condition of a rewrite rule. Hence the translation scheme for conditional rewrite rules of the form
l = r ←c is the following:

allocate
<get-instructions for l>
allocate occ % create new occurrence stack
l try me else L,n % create new backtrack point for condition

% n is number of perm. variables
<instructions for condition c>
trust me else fail % delete backtrack point for condition
deallocate occ % delete occurrence stack for condition
<put... occ-instructions for r>
<occurrence-stack-instructions for r>
deallocate
invalid os
r proceed occ

L: trust me else fail % delete backtrack point for condition
deallocate occ % delete occurrence stack for condition
deallocate
fail % try next rewrite rule

The instruction l try me else L,N creates a backtrack point similarly to try me else L. The dif-
ference is the additional argument N which contains the size of the actual environment. The WAM
accesses the size of the actual environment via the continuation pointer CP which is not possible in
this context.

Now we have described the data structures and additional instructions of the A-WAM. Moreover, we have
shown the compilation scheme for narrowing and rewrite rules by several examples. Some difficulties in the
compilation scheme are due to the fact that we consider conditional rules. If we restrict flat-ALF programs
to unconditional rules (as done in other approaches for combining resolution and narrowing [Yam87]), a
lot of optimizations are possible in our implementation. For instance, there is no recursive structure in
the narrowing process and hence only one occurrence stack is needed. Therefore the data structure for the
occurrence stack is simpler and the instructions allocate occ and deallocate occ are superfluous.

4.2.3 Treatment of variables

In the WAM variables are classified as temporary or permanent. Permanent variables require space on the
local stack where temporary variables can be stored in registers. A variable is permanent if it occurs in two
different literals in a goal. This is due to the fact that the contents of registers for temporary variables may
be altered during the execution of the WAM-instruction call. In the A-WAM this can also be the case
inside literals if narrowing is applied. Therefore the classification of variables in the A-WAM is different
from the WAM. We do not want to go into details but explain the differences by examples. For instance,
let

12



p(X) ← q(f(X),g(X))

be a program clause. The WAM does not generate an environment during the execution of this clause because
the value of X can be stored in a temporary register. If f and g are defined functions, then narrowing must
be executed for the two arguments of the literal in the body. Hence the value of X cannot be stored in
a temporary register and an environment is necessary to store X, i.e., X is classified as permanent in the
A-WAM. The environment is also necessary to store the references to the argument terms f(X) and g(X).
The above clause is compiled into the instructions

allocate
get variable Y1, A1 % store X in permanent variable Y1
put structure f/1, A1
unify local value Y1
set begin of term A1
load occ A1
save A1, Y2 % save A1 in permanent variable Y2
narrow 2 % narrow the term f(X)
put structure g/1, A2
unify value Y1
set begin of term A2
load occ A2
save A2, Y1 % save A2 in permanent variable Y1
narrow 2 % narrow the term g(X)
put value Y2, A1
put value Y1, A2
deallocate
execute q/2

The variable classification is based on the division of the sequence of A-WAM-instructions into chunks (cf.
[Deb86]). A chunk is an instruction sequence that does not contain the instructions call and narrow. A
variable is permanent if it occurs in two different chunks.

The WAM puts the arguments of a literal from left to right into the registers. It has been observed that
better code can be produced if this fixed order is replaced by an adaptable order [JDM88]. This is also the
case for narrowing in the A-WAM. In order to generate more efficient code, arguments with occurrences
of defined function symbols should be treated before other arguments of a literal. For instance, generating
code for the literal p(c(X),f(X)) (c is a constructor and f is a defined function) in strict left-to-right order
yields

put structure c/1, A1
unify value Y1 % X was stored in Y1
put structure f/1, A2
unify value Y1
set begin of term A2
load occ A2
save A1, Y2 % save A1 in permanent variable Y2
save A2, Y3 % save A2 in permanent variable Y3
narrow 3 % narrow the term f(X)
put value Y2, A1
put value Y3, A2
call p/2, 1

But the save instruction for the first argument is unnecessary if the order of putting arguments is changed:

put structure f/1, A2
unify value Y1
set begin of term A2
load occ A2
save A2, Y2 % save A2 in permanent variable Y2
narrow 2 % narrow the term f(X)
put value Y2, A2
put structure c/1, A1
unify value Y1
call p/2, 1

13



5 Properties of the A-WAM

At the moment we cannot present detailed results on the efficiency of our proposed abstract machine
since the implementation is not finished yet (a bytecode emulator for the A-WAM written in C is under
implementation). But we can discuss the properties of the A-WAM for the execution of particular classes
of equational logic programs. This yields some insight into the expected behaviour of the A-WAM.

• For logic programs without occurrences of defined function symbols there is only a small overhead
in the A-WAM in comparison to the WAM. The A-WAM-code for such programs is identical to the
WAM-code. The only overhead is due to the fact that backtrack points in the A-WAM are bigger
than in the WAM because the additional registers (RFP, TFP, . . .) are saved in backtrack points.

• The other extreme is the class of functional programs where only ground terms have to be evaluated.
Such flat-ALF-program only consists of unconditional rewrite rules. The compiler generates the nec-
essary instructions for loading the occurrences of function symbols onto the occurrence stack, i.e., no
run-time search must be made to find the next occurrence in the term where a rewrite rule should be
applied. The ground term (functional expression) will be evaluated by one narrow-call since the term
is reduced after rewriting and does not contain any occurrences of function symbols.

• Pure functional and pure logic programs will be efficiently executed by the A-WAM. We expect that
programs containing a mixture of functional and logic parts will also be efficient in execution time.
The most interesting class is the set of programs with unconditional narrowing/rewrite rules where
narrowing and rewriting cannot be recursively called. In this case the list of occurrence stacks contains
only one element at run time and the narrowing and rewrite rules are efficiently applied by the A-WAM.

• Another interesting case is the class of programs where the set of rewrite rules is a superset of the
narrowing rules (this is not required in flat-ALF but usually true, see, e.g., SLOG [Fri85]). Since
argument terms are simplified by rewriting before narrowing is applied, function calls with ground
arguments are automatically evaluated by rewriting and not by narrowing. This is more efficient
because rewriting is a deterministic process (no backtrack points are created). Hence in most practical
cases our combined rewriting/narrowing implementation will be more efficient than an implementation
of narrowing by flattening terms and applying SLD-resolution [BGM87].

6 Conclusions

We have presented an approach to compile logic programs with equality. The operational semantics is
based on the rules for resolution, reflection, innermost basic narrowing, innermost reflection, rewriting and
rejection. Related work includes [KLMR90] where an implementation of the language BABEL is presented.
BABEL is a combination of a higher-order functional and a first-order logic language. The operational
semantics uses reflection and innermost narrowing without rewriting. BABEL is implemented by a func-
tional graph reduction machine which is extended to perform unification and backtracking. Josephson and
Dershowitz [JD89] have also proposed an implementation technique for narrowing and rewriting, but they
handle unification and control at the interpretive level. In our approach equational logic programs are com-
piled into code for the abstract machine A-WAM which is an extension of the Warren abstract machine.
One important extension is the management of a stack of occurrences of function symbols in goals. Since a
basic narrowing strategy is used, the compiler can generate particular instructions for the management of
the occurrence stack.

We have mentioned several optimizations for the A-WAM, but there are further possibilities for optimiz-
ing the A-WAM which will be investigated in the future. For instance, rewrite rules can be more efficiently
executed if the compiler generates code for fast pattern matching (see, e.g., [Heu87]). If at least one rewrite
rule is applied, then the occurrence stack is marked as “invalid” and a new occurrence stack must be com-
puted by traversing the term before narrowing starts. But there are a lot of cases where the application of
a rewrite rule changes the occurrence stack only in a few positions. The compiler may generate particular
code for these changes instead of the instruction invalid os. The detailed analysis of such cases and a
better management of the occurrence stack is also a topic for future research.

Acknowledgements: The author is grateful to Renate Schäfers and the members of the project group
“PILS” for many discussions on the design of the A-WAM.

14



References

[BCM89] P.G. Bosco, C. Cecchi, and C. Moiso. An extension of WAM for K-LEAF: a WAM-based compi-
lation of conditional narrowing. In Proc. Sixth International Conference on Logic Programming
(Lisboa), pp. 318–333. MIT Press, 1989.

[BG89] H. Bertling and H. Ganzinger. Completion-Time Optimization of Rewrite-Time Goal Solving.
In Proc. of the Conference on Rewriting Techniques and Applications, pp. 45–58. Springer LNCS
355, 1989.

[BGM87] P.G. Bosco, E. Giovannetti, and C. Moiso. Refined strategies for semantic unification. In Proc.
of the TAPSOFT ’87, pp. 276–290. Springer LNCS 250, 1987.

[CM87] W.F. Clocksin and C.S. Mellish. Programming in Prolog. Springer, third rev. and ext. edition,
1987.

[Deb86] S.K. Debray. Register Allocation in a Prolog Machine. In Proc. IEEE Internat. Symposium on
Logic Programming, pp. 267–275, Salt Lake City, 1986.

[DL86] D. DeGroot and G. Lindstrom, editors. Logic Programming, Functions, Relations, and Equa-
tions. Prentice Hall, 1986.

[Fay79] M.J. Fay. First-Order Unification in an Equational Theory. In Proc. 4th Workshop on Automated
Deduction, pp. 161–167, Austin (Texas), 1979. Academic Press.

[Fri85] L. Fribourg. SLOG: A Logic Programming Language Interpreter Based on Clausal Superposition
and Rewriting. In Proc. IEEE Internat. Symposium on Logic Programming, pp. 172–184, Boston,
1985.

[GM86] J.A. Goguen and J. Meseguer. Eqlog: Equality, Types, and Generic Modules for Logic Program-
ming. In D. DeGroot and G. Lindstrom, editors, Logic Programming, Functions, Relations, and
Equations, pp. 295–363. Prentice Hall, 1986.

[Han88a] M. Hanus. Formal Specification of a Prolog Compiler. In Proc. of the Workshop on Programming
Language Implementation and Logic Programming, pp. 273–282, Orléans, 1988. Springer LNCS
348.

[Han88b] M. Hanus. Horn Clause Specifications with Polymorphic Types. Dissertation, FB Informatik,
Univ. Dortmund, 1988.

[Han90] M. Hanus. A Functional and Logic Language with Polymorphic Types. In Proc. Int. Symposium
on Design and Implementation of Symbolic Computation Systems, pp. 215–224. Springer LNCS
429, 1990.

[Heu87] T. Heuillard. Compiling conditional rewriting systems. In Proc. 1st Int. Workshop on Condi-
tional Term Rewriting Systems, pp. 111–128. Springer LNCS 308, 1987.

[Höl88] S. Hölldobler. From Paramodulation to Narrowing. In Proc. 5th Conference on Logic Program-
ming & 5th Symposium on Logic Programming (Seattle), pp. 327–342, 1988.

[Hul80] J.-M. Hullot. Canonical Forms and Unification. In Proc. 5th Conference on Automated Deduc-
tion, pp. 318–334. Springer LNCS 87, 1980.

[HV87] M. Huber and I. Varsek. Extended Prolog with Order-Sorted Resolution. In Proc. 4th IEEE
Internat. Symposium on Logic Programming, pp. 34–43, San Francisco, 1987.

[JD89] A. Josephson and N. Dershowitz. An Implementation of Narrowing. Journal of Logic Program-
ming (6), pp. 57–77, 1989.

[JDM88] G. Janssens, B. Demoen, and A. Marien. Improving the Register Allocation in WAM by Re-
ordering Unification. In Proc. 5th Conference on Logic Programming & 5th Symposium on Logic
Programming (Seattle), pp. 1388–1402. MIT Press, 1988.

[KLMR90] H. Kuchen, R. Loogen, J.J. Moreno-Navarro, and M. Rodŕıguez-Artalejo. Graph-based Imple-
mentation of a Functional Logic Language. In Proc. ESOP 90, pp. 271–290. Springer LNCS 432,
1990.

[Pad88] P. Padawitz. Computing in Horn Clause Theories, volume 16 of EATCS Monographs on Theo-
retical Computer Science. Springer, 1988.

[PIL90] Projektgruppe PILS. Zwischenbericht der Projektgruppe PILS. Univ. Dortmund, 1990.

[War83] D.H.D. Warren. An Abstract Prolog Instruction Set. Technical Note 309, SRI International,
Stanford, 1983.

[Yam87] A. Yamamoto. A Theoretical Combination of SLD-Resolution and Narrowing. In Proc. Fourth
International Conference on Logic Programming (Melbourne), pp. 470–487. MIT Press, 1987.

15


