
Formal Specification of a Prolog Compiler

Michael Hanus
Fachbereich Informatik, Universität Dortmund

D-4600 Dortmund 50, W. Germany

(uucp: michael@unidoi5)

In Proc. Int. Workshop on Programming Language Implementation and Logic Programming,
Orléans, May 1988. Springer LNCS 348, pp. 273-282

This paper presents an outline of a formal specification of a compiler and a virtual machine
for the programming language Prolog. The specification of the compiler can be transformed
into an equivalent Prolog program. The specification of the virtual machine is the basis of
an implementation of the virtual machine as an interpreter written in a low-level language.
Moreover, the specification may be used for correctness proofs of a Prolog system.

1 Introduction

Many compilers for the programming language Prolog are based on the so-called “Warren Abstract

Machine” (WAM) presented in [Warren 83]. The WAM is a virtual machine with specific operations

for executing logic programs (unify operations, indexing for clauses etc.). The execution of a Prolog

program is done in two steps in a WAM-based implementation:

1. Compilation of the program into a sequence of WAM instructions.

2. Execution of the WAM program by an interpreter or compilation of the WAM program into

another language, e.g., machine language.

Although there are several formal descriptions of the operational semantics of Prolog and Pro-

log interpreters [Arbab/Berry 87] [Debray/Mishra 88] [Deransart/Ferrand 87] [Jones/Mycroft 84]

[Nilsson 84], there is no formal specification of the translation of Prolog programs into WAM pro-

grams and the semantics of the WAM. [Warren 83] is a good foundation for the implementation of

the compiler and the WAM. But there are many problems if we go into details, because it is only a

proposal for the implementation of pure Prolog (without cut, disjunction and non-logical predicates)

based on an informal description. From a practical point of view a formal specification is very useful

for an implementation of a Prolog compiler, because it is a precise description of the implementor’s

tasks and the interfaces between different modules. On the other hand, it is necessary for a correct-

ness proof of the Prolog implementation. [Kursawe 86] has shown that the unify instructions of a

WAM program can be derived from the source program by partial evaluation, but his method covers

only a small part of the WAM.

In the following we present an outline of a full specification of the translation of Prolog programs into

WAM programs and the operational semantics of the WAM. These specifications are the basis of a

Prolog system developed at the University of Dortmund (see [ProCom 87]). We assume the reader

is familiar with the basic concepts of the WAM (for details, the reader is referred to [Warren 83]).

2 Specification of the Prolog compiler

The compilation of Prolog programs into WAM programs is a complex task [Van Roy 84] and there-

fore it is desirable to divide the specification into several subtasks. We use the ideas of attribute

coupled grammars [Ganzinger/Giegerich 84] and specify the compilation as the composition of trans-

lations between abstract syntax trees:

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✲ ✲ ✲AST1 AST2 ASTn-1 ASTn

AST1 is the abstract syntax tree corresponding to the given clauses of a predicate and ASTn is

the abstract syntax tree corresponding to the translated WAM program. The signatures of the

intermediate trees AST2, ..., ASTn−1 are enriched with informations that are computed in a preceding

translation step and may be used in a subsequent translation step. We give some examples from the

compiler specification.

The signature of the abstract syntax of Prolog programs is specified in the following way:

sorts: Prog, Clauses, Clause, Terms, Term, String

operations:
prog: Clauses → Prog

csequ: Clause, Clauses → Clauses

empty csequ: → Clauses

clause: Term, Term → Clause

tsequ: Term, Terms → Terms

empty tsequ: → Terms

var: String → Term

structure: String, Terms → Term

A Prolog program is a list of clauses. A clause is a pair of terms consisting of the head and the body

of the clause. A term is either a variable or a structure with a (possibly empty) list of subterms. The

sort String is assumed to be a basic sort. Note that the subdivision of a clause body into disjunction

and conjunction of literals is done in subsequent translation steps. The term corresponding to the

clauses

append([],L,L).

append([E|R],L,[E|RL]) :- append(R,L,RL).

for the predicate append is

prog([

clause(append([],var(L),var(L)) , true),

clause(append([var(E)|var(R)],var(L),[var(E)|var(RL)]) ,

append(var(R),var(L),var(RL))

])

(We use the usual Prolog notations for lists of clauses and structured terms [Clocksin/Mellish 81]

and omit operators like “structure”, “csequ” etc.)

In the first translation step a term of sort Prog will be enriched with the following informations:

• Is there a cut in one clause? This will be used for generating instructions for handling the cut.

• Name and arity of the predicate which is defined by the clauses.

• Number of the clauses.

• List of the first arguments in each clause. This will be used to generate the indexing instructions.

The signature of the abstract syntax tree after the first translation step is the following:

sorts: Prog2, Clauses, Clause, Terms, Term, Args, Arg, String, Nat, Bool

operations:
prog2: Bool, String, Nat, Nat, Args, Clauses → Prog2
var arg: String → Arg

struct arg: String, Terms → Arg

asequ: Arg, Args → Args

empty asequ: → Args

csequ: Clause, Clauses → Clauses

empty csequ: → Clauses

clause: Term, Term → Clause

tsequ: Term, Terms → Terms

empty tsequ: → Terms

var: String → Term

structure: String, Terms → Term

If there is a term of the form

prog2(C,F,A,N,As, Cs)

then the following conditions holds after the first translation step:

• C is true iff the clauses Cs contain a cut.

• F is the name and A the arity of the predicate defined by the clauses Cs.

• N is the number of elements in the clause list Cs.

• As is the list of the first arguments in the heads of Cs.

Hence the term corresponding to the clauses of append is translated into the term

prog2(false, append, 3, 2,

[struct arg([]) , struct arg([var(E)|var(R)])],

[

clause(append([],var(L),var(L)) , true),

clause(append([var(E)|var(R)],var(L),[var(E)|var(RL)]) ,

append(var(R),var(L),var(RL))

])

in the first translation step. In subsequent translation steps program terms are enriched with the

following informations:

• Classification of cuts in the clauses.

• Elimination of disjunctions by introducing new predicates.

• Numbering of the literals in each clause.

• Numbering of the arguments in each literal.

• Classification of arguments: Subargument or head argument (this is important for generating

unify, get and put instructions).

• Classification of variables (permanent or temporary).

With this information it is possible to generate the WAM code for each clause. The complete code

for all clauses consists of the code for each clause and an indexing scheme which filters out a subset

of clauses that could match a given procedure call. The creation of this indexing scheme can also be

specified by several translation steps. The last translation step of the specification merges the code

for the indexing scheme with the code for each clause.

Each translation step is formally specified as a mapping from terms of the preceding signature into

terms of the next signature. For the description of these mappings we use no specific formalism as

in [Ganzinger/Giegerich 84], but the mappings are inductively defined on the structure of the terms

using usual mathematical notations.

This description of the compiler has several advantages:

• All details of the compilation are described. It is clear how to translate a given Prolog program

into a WAM program.

• It can be proofed that a WAM program is the translation of a Prolog program.

• The complexity of the compilation is divided into several simple translation steps.

• The description is a good basis for implementing a Prolog compiler. Several authors have shown

the advantages of logic programming for compiler writing ([Warren 80] [Ganzinger/Hanus 85],

among others) and therefore we have used Prolog as an implementation language of the com-

piler: The abstract syntax trees are Prolog terms and the implementation of the translation

steps is a simple coding of the specification into Prolog. The performance of the compiler is

acceptable (it translates approximate 30 clauses per second on a Sun-3).

3 Specification of the Warren abstract machine

We give an operational semantics of the WAM. The WAM is defined as an abstract interpreter for

WAM instructions. The interpreter has an initial state and each interpretation of a WAM instruction

maps a state into a new state. The state of the WAM interpreter consists of the values of all registers

and the contents of the memory (code area, heap, local stack and trail stack). For example, the heap

contains all terms created during a computation of a program. Hence we model a particular state of

the heap as a function from the domain of heap addresses into the domain of terms.

In detail, the following domains are defined:

Code address = <an infinite denumerable set with a linear ordering, i.e. there ex-
ists a successor succ(e) for each element e and there exists a pre-
decessor pred(e) for each element e except for the least element
min(Code address) >

Heap address = <similar definition as Code address >

Local stack address = <similar definition as Code address >

Trail address = <similar definition as Code address >

The Y-, X-, and A-registers of the WAM are addressed by natural numbers (the first components

are used for disjunctive unions of the register domains):

Y register = reg : {Y } × nr : Nat

X register = reg : {X} × nr : Nat

A register = reg : {A} × nr : Nat

We use cartesian products with a tag for each component. This allows us to identify a component by

dot notation: If r is an element of type X register, then r.reg denotes the first and r.nr the second

component of that element.

If we denote by “+” the disjunctive union, we can define the domain of terms as

Term = tag : {int} × cont : Integer
+ tag : {atom} × cont : (Atom+ func : Atom × ar : Nat)
+ Trail element

+ tag : {var} × (adr : Heap address +
eadr : Local stack address × ereg : Nat)

+ tag : {structure} × adr : Heap address

+ tag : {list} × adr : Heap address

(Atom is the domain of all Prolog atoms), where a Trail element represents an unbound variable:

Trail element = tag : {undef} × (adr : Heap address +
eadr : Local stack address × ereg : Nat)

Hence a term is either an integer value, an atom or functor (atoms have arity zero whereas functors

have an arity greater than zero), an unbound variable, a variable bound to a term on the heap or

local stack, or a reference to a structure or list stored on the heap.

The local stack of the WAM contains two kinds of objects: environments and backtrack points. “An

environment consists of a vector of value cells for variables occuring in the body of some clause,

together with a continuation comprising a pointer into the body of another clause and its associated

environment” [Warren 83]. Therefore the domain of environments is defined as

Environment = ee : Local stack address × ecp : Code address × y : [Nat→ Term]

([A→ B] denotes the domain of all functions from domain A into domain B). A backtrack point

“contains all the information necessary to restore an earlier state of computation in the event of

backtracking” [Warren 83]. Thus a backtrack point consists of the values of the relevant registers of

the WAM (see below) and a reference to alternative clauses (component bp):

Backtrackpoint = ba : [Nat→ Term] ×
bce : Local stack address ×
bcp : Code address ×
bb : Local stack address ×
bp : Code address ×
btr : Trail address ×
bh : Heap address ×
nr : Nat

For example, if b is an element of Backtrackpoint, then b.ba denotes the contents of all A-registers

stored in b and b.ba[0] is the contents of the first A-register stored in b. The component nr contains

the arity of the predicate in which the backtrack point is created. Now it is easy to define the memory

areas of the WAM:

Local stack element = Environment+ Backtrackpoint

Local stack = [Local stack address→ Local stack element]
Heap = [Heap address→ Term]
Trail = [Trail address→ Trail element]
Code area = [Code address→ Instructions]

Instructions is the domain of all instructions with appropiate parameters. We omit the necessary

definitions here. A state of the WAM interpreter contains the following components:

Name Type Comment

p Code address program pointer
cp Code address continutation pointer
e Local stack address environment pointer
b Local stack address backtrack pointer
t T rail address trail pointer
h Heap address heap pointer
s Heap address structure pointer
rw {read, write} read/write register
error Boolean error register for predefined predicates
occur check Boolean occur check register
a [Nat→ Term] A-registers
x [Nat→ Term] X-registers
ca Code area code area
hp Heap heap
ls Local stack local stack
trl T rail trail

There are several restrictions on a well-defined state, e.g., ls(e) must be an element of Environment,

ls(b) must be an element of Backtrackpoint and so on. The state transitions of the WAM must

preserve these restrictions. The component error of the state is set to true if there is a run-time error

in some predefined predicate, e.g., arithmetic errors, file errors etc. If the component occur check is

set to true then the unification of two terms is done with the occur check (cf. [Lloyd 87]). In the

initial state all memory areas are undefined (contains no elements) and the values of cp, e, t, h and

s are the least addresses of the address domains. The terminal state is defined as the state with

error = true or ca(p) is a “stop” instruction.

The main part of the WAM specification is the description of the state transition corresponding to

an interpretation of a particular WAM instruction. We omit the full description here but present the

specification of three WAM instructions. We denote the modification of a component x of a state by

x ← <newvalue>

If f is an element of the domain [A → B], then f [x ← y] denotes the element of [A → B] which

is identical to f but has the value y for the argument x. If x is a component of a state, then ′x

denotes the old value of x before the interpretation of the instruction. Only changes of the WAM

state are listed in the specification of a WAM instruction. Components of the WAM state that are

not mentioned in the instruction specification are not changed by that instruction.

Examples: The WAM instruction “execute(x)” calls the last goal in a clause body. The program

pointer is set to the code address of the predicate in the last goal:

instruction execute(x)

x: Code address

Transformation:

p← x

The instruction “put nil(v)” puts the constant representing an empty list into A-register v:

instruction put nil(v)

v: A register

Transformation:

a← ′a[v.nr ← (atom, nil)]

The instruction “put value(u,v)” puts the value of variable u into A-register v. If u is an A- or

X-register, we have direct access to the value of u. If u is a Y-register, the value of u can be found

in the actual environment and therefore we need a reference to the actual environment:

instruction put value(u, v)

u: (X register + A register + Y register)

v: A register

Transformation:

if u.reg = X

then a← ′a[v.nr ← x(u.nr)]

else if u.reg = A

then a← ′a[v.nr ← ′a(u.nr)]

else a← ′a[v.nr ← (ls(e).y)(u.nr)]

The full specification of the WAM can be found in [ProCom 87].

This specification is the basis of a 68000-based WAM implementation at the University of Dortmund.

The specified state is mapped into memory and machine registers and the transformations are mapped

into sequences of machine code. The complete system is shown in the following picture.

Prolog
program

WAM
program

68000
code

✲ ✲

pass1 pass2

“pass1” is the implementation of the Prolog compiler described in chapter 2 and “pass2” translates

every WAM instruction into a sequence of machine instructions. Our implementation is a direct

realization of the WAM specification without any optimizations. The performance of our system

is approximate 40 Klips on a Sun-3 for the naive reverse example, which is comparable with other

Prolog implementations.

4 Correctness proofs

There are at least two reasons for the formal specification of a Prolog system:

1. It is the foundation of an implementation. The specification decreases the problems in coordi-

nating several people working on the project.

2. It makes it possible to prove the correctness of the complete system or some translated pro-

grams.

The first reason was very important to our project, whereas the second point is a task for the future.

Actually, we are working on correctness proofs for particular programs. [Kursawe 86] has shown that

it is possible to derive specific WAM instructions from the source program by partial evaluation. We

want to refine the interpreters that define the operational semantics of Prolog (cf. [Debray/Mishra 88],

[Jones/Mycroft 84]) in a way that makes it possible to compare these interpreters with the operational

semantics of the WAM.

5 Conclusions

We have presented an outline of a formal specification of a Prolog compiler and the Warren abstract

machine. The specification is a good basis for a direct implementation of a Prolog system with an

acceptable performance. Further work includes a more efficient implementation of the specification

and correctness proofs for particular programs.

Acknowledgements

The author is grateful to Jörg Süggel, Jörg Petersen and the members of the project group “ProCom”

for their work on the Prolog system.

References

[Arbab/Berry 87]

B. Arbab and D.M. Berry. Operational and Denotational Semantics of Prolog. Journal of

Logic Programming (4), pp. 309–329, 1987.

[Clocksin/Mellish 81]

W.F. Clocksin and C.S. Mellish. Programming in Prolog. Springer, 1981.

[Debray/Mishra 88]

S.K. Debray and P. Mishra. Denotational and Operational Semantics for Prolog. Journal of

Logic Programming (5), pp. 61–91, 1988.

[Deransart/Ferrand 87]

P. Deransart and G. Ferrand. An Operational Formal Definition of PROLOG. In Proc. 4th

IEEE Internat. Symposium on Logic Programming, pp. 162–172, San Francisco, 1987.

[Ganzinger/Giegerich 84]

H. Ganzinger and R. Giegerich. Attribute Coupled Grammars. In Proceedings of the SIG-

PLAN ’84 Symposium on Compiler Construction, pp. 157–170, Montreal, 1984.

[Ganzinger/Hanus 85]

H. Ganzinger and M. Hanus. Modular Logic Programming of Compilers. In Proc. IEEE

Internat. Symposium on Logic Programming, pp. 242–253, Boston, 1985.

[Jones/Mycroft 84]

N.D. Jones and A. Mycroft. Stepwise Development of Operational and Denotational Seman-

tics for Prolog. In Proc. IEEE Internat. Symposium on Logic Programming, pp. 281–288,

Atlantic City, 1984.

[Kursawe 86]

P. Kursawe. How to invent a Prolog machine. In Proc. Third International Conference on

Logic Programming (London), pp. 134–148. Springer LNCS 225, 1986.

[Lloyd 87]

J.W. Lloyd. Foundations of Logic Programming. Springer, second, extended edition, 1987.

[Nilsson 84]

J.F. Nilsson. Formal Vienna-Definition-Method models of Prolog. In J.A. Campbell, editor,

Implementations of Prolog, pp. 281–308. Ellis Horwood, 1984.

[ProCom 87]

Projektgruppe ProCom. Zwischen- und Abschlußbericht der Projektgruppe ProCom (Prolog

Compiler). Univ. Dortmund, 1987.

[Van Roy 84]

P. Van Roy. A Prolog Compiler for the PLM. Report No. UCB/CSD 84/203, Univ. of

California, Berkeley, 1984.

[Warren 80]

D.H.D. Warren. Logic Programming and Compiler Writing. Software - Practice and Experi-

ence, Vol. 10, pp. 97–125, 1980.

[Warren 83]

D.H.D. Warren. An Abstract Prolog Instruction Set. Technical Note 309, SRI International,

Stanford, 1983.

