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Abstract. Functional logic programming languages support non-deterministic
search and a flexible use of defined operations by applying them to unknown val-
ues. The use of these features has the risk that equal values might be computed
several times or I/O computations could fail due to non-deterministic subcompu-
tations. To detect such problems at compile time, we present a method to locate
non-deterministic operations. If the non-determinism caused by some operation
is semantically not relevant, the programmer can direct the compiler to produce
only one result of a computation. If all the results of the computations are equal,
this directive preserves the semantics and improves the operational behavior of
programs. We define the declarative meaning of such annotations and propose
both testing and verification techniques that respectively increase the confidence
or formally prove that the non-determinism of an operation is irrelevant.

1 Introduction

Functional logic languages combine the most important features of functional and logic
programming in a single language (see [8, 24] for recent surveys). In particular, the
functional logic language Curry [26] conceptually extends Haskell with common fea-
tures of logic programming, i.e., non-determinism, free variables, and constraint solv-
ing. Non-determinism is useful in programming to write a specification of a task instead
of coding all the details of the task’s solution. For instance, consider the selection sort
algorithm where the smallest element is placed in front of the sorted remaining ele-
ments. In Curry, one can easily specify the smallest element of a list of integers by
min :: [Int] → Int
min xs@(_++[x]++_) | all (x<=) xs = x

Here we use a functional pattern, i.e., an expression with evaluable functions at pattern
positions [5], to express that x is any element of the input list, and an as pattern (known
from Haskell) to refer to the complete input list by xs. If the condition that x is not
greater than any element of the input list xs is satisfied, we return the selected element
x as the smallest one. Operation min shows an example of don’t care non-determinism.
Its definition through a functional pattern is elegant and declarative, but a consequence
is that if there are repeated occurrences of the minimum in the argument, the minimum
is returned multiple times. Of course, we don’t care which occurrence is returned since
they are all equal.



With this definition of min, the implementation of sorting a list is straightforward
(delete x xs returns the list xs without the first occurrence of x):
selSort [] = []
selSort xs@(_:_) = m : selSort (delete m xs) where m = min xs

Although this implementation of sorting a list is correct, it has a potential drawback
when used in larger applications. To ensure a declarative style of computations, Curry
adopts the monadic I/O approach of Haskell. Hence, an application program computes
an I/O action, i.e., a transformation on a state of a “world” (including physical resources
like a terminal or file system), that is applied to a concrete world when the program is
executed. Since it is impossible to copy the world to apply a non-deterministic I/O
action to these copies, the computed I/O action must be unique [24]. For instance, the
execution of the call (“?” denotes a non-deterministic choice between two values)
print 1 ? print 2

leads to a run-time error (“non-determinism in I/O”). This is intended, since it is inten-
tionally unspecified whether one should show 1 or 2 on the display. As a consequence,
non-deterministic computations need to be encapsulated when using them in applica-
tions performing I/O. Encapsulating non-determinism means producing the set of every
possible non-deterministic result of a computation, hence a deterministic result. Thus,
if the call “print (selSort [1,3,2,1])” is evaluated without encapsulating the ar-
gument, we obtain a non-determinism error. This is due to the fact that the list contains
two smallest elements so that the auxiliary operation min yields two (equal) results.

The same problem might occur even if only one non-deterministic branch of a com-
putation leads to a result. For instance, consider the computation of the last element of
a list by an inverse use of list concatenation:
last (_ ++ [x]) = x

Although last yields at most one result for a given list, its use in the context of an I/O
operation causes a run-time error since one cannot decide which of the alternative I/O
actions eventually yields a result.

These are not artificial examples. Such problems occurred to us several times when
putting together applications consisting of more than one hundred modules and thou-
sands of operations. Therefore, we develop a practical solution to it. As known from
lazy functional languages, the source of run-time errors is not easy to locate from
the run-time stack available when an error actually occurs. Therefore, we propose a
compile-time analysis to locate potential calls to non-deterministic operations from a
main operation. In this way, a programmer can examine these operations. If an opera-
tion computes, for a given argument, a single result multiple times, we propose to anno-
tate such operations as deterministic. This information is used by a compiler to return
the result only once since any recomputation would provide no additional information.
This yields an improved operational behavior (reduction of the computation space) and
avoids the kinds of non-determinism errors sketched above. In our example, we simply
annotate the operation min as deterministic to avoid the non-determinism error. By the
use of determinism annotations, we combine the compact and comprehensible specifi-
cation of operations with a reasonable operational behavior.

This paper investigates the source of non-determinism in a program, introduces a
new concept of deterministic operation and defines its semantics. The semantic proper-
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ties of deterministic operations allow us to implement them more efficiently. Moreover,
we discuss methods to check these properties. In the next section, we review the main
concepts of functional logic programming and Curry. A compile-time method to locate
non-deterministic operations relevant in application programs is presented in Sect. 3.
The concept of deterministic operation is introduced in Sect. 4. The implementation of
our program analysis and deterministic operations is shown in Sect. 5 and evaluated by
some benchmarks. Options to check the formal properties of deterministic operations
are discussed in Sect. 6 before we relate our proposal to other work and conclude.

2 Functional Logic Programming and Curry

We briefly review those elements of functional logic languages and Curry that are nec-
essary to understand the contents of this paper. More details can be found in surveys on
functional logic programming [8, 24] and in the language report [26].

Curry is a declarative multi-paradigm language combining in a seamless way fea-
tures from functional and logic programming. The syntax of Curry is close to Haskell
[32]. In addition to Haskell, Curry allows free (logic) variables in conditions and right-
hand sides of rules. These variables must be explicitly declared unless they are anony-
mous. Function calls can contain free variables, in particular variables without a value at
call time. These calls are evaluated lazily where free variables as demanded arguments
are non-deterministically instantiated [4].

Moreover, the patterns of a defining rule are expanded with respect to traditional
functional languages. As a matter of convenience, patterns can be non-linear, i.e., they
might contain multiple occurrences of some variable, which is an abbreviation for
equalities between these occurrences. Patterns can also be functional [5] to more eas-
ily and directly define functions. A functional pattern is a pattern containing defined
operations (and not only data constructors and variables) occurring in an argument of
the left-hand side of a rule. Such a pattern abbreviates the set of all standard patterns to
which the functional pattern can be evaluated (by narrowing). For example, functional
patterns have been proved powerful to express arbitrary selections in tree structures,
e.g., in XML documents [23]. Details about their semantics and a constructive imple-
mentation of functional patterns by a demand-driven unification procedure can be found
in [5].
Example 1. The following simple program shows the functional and logic features of
Curry. It defines an operation “++” to concatenate two lists, which is identical to the
Haskell encoding. The second operation, dup, returns some list element having at least
two occurrences:1

(++) :: [a] → [a] → [a] dup :: [a] → a
[] ++ ys = ys dup xs | xs == _++[x]++_++[x]++_
(x:xs) ++ ys = x : (xs ++ ys) = x where x free

The condition of the rule defining dup is solved by instantiating x and the anonymous
free variables “-”. This evaluation method corresponds to narrowing [33, 34], but Curry

1 Note that Curry requires the explicit declaration of free variables, as x in the rule of dup, to
ensure checkable redundancy.
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narrows with possibly non-most-general unifiers to ensure the optimality of computa-
tions [4]. Using a functional pattern, the definition of dup is simply phrased as:
dup (_++[x]++_++[x]++_) = x

Note that dup is a non-deterministic operation since it might deliver more than one
result for a given argument, e.g., the evaluation of dup[1,2,2,1] yields the values
1 and 2. Non-deterministic operations, which are interpreted as mappings from val-
ues into sets of values [21], are an important feature of contemporary functional logic
languages. Hence, there is also a predefined choice operation:
x ? _ = x
_ ? y = y

Thus, the expression “0 ? 1” evaluates to 0 and 1 with the value non-deterministically
chosen.

Default rules, which have recently been proposed [10], are useful in combination
with functional patterns in order to express cases where a functional pattern, which
often corresponds to an infinite set of standard patterns, is not applicable. Any oper-
ation can have a single default rule. To avoid syntactic extensions, default rules are
marked by adding the suffix ’default to the operation’s name. The default rule is ap-
plied if no standard rule is applicable (see [10] for a precise definition in the context
of non-deterministic values and free variables). For instance, by slightly modifying the
operation dup, we can easily define a predicate isSet which checks whether a given
list represents a set, i.e., does not contain duplicates:
isSet (_++[x]++_++[x]++_) = False
isSet’default _ = True

Set functions [7] allow the encapsulation of non-deterministic computations in a
strategy-independent manner. For each defined function f , fS denotes the correspond-
ing set function. fS encapsulates the non-determinism caused by evaluating f apart
from the non-determinism originating from the evaluation of the arguments to which f
is applied. For instance, consider the operation decOrInc defined by
decOrInc x = (x-1) ? (x+1)

Then “decOrIncS 3” evaluates to (an abstract representation of) the set {2, 4},
i.e., the non-determinism caused by decOrInc is encapsulated into a set. However,
“decOrIncS (2?5)” evaluates to two different sets {1, 3} and {4, 6}, i.e., the non-
determinism caused by the argument is not encapsulated.

3 Location of Non-deterministic Operations

To avoid potential problems with non-deterministic operations, first we have to locate
them in a source program. In this section we present our method for this.

Definition 1 (NDD operation). An operation is non-deterministically defined (NDD)
if its defining rules are not inductively sequential2 or some of the defining rules contain
free variables.

2 The defining rules are inductively sequential if their patterns are just case distinctions on the
constructors (see [2] for a precise definition). A consequence of this definition is that opera-
tions defined by functional patterns are NDD.
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The operation dup defined in Example 1 shows why the occurrence of free variables
in rules might lead to non-deterministic operations even if the left-hand sides are in-
ductively sequential. This is due to the fact that free variables are equivalent to non-
deterministic operations that generate all the values [6] of a given type. For instance,
the choice operator “?” defined above by rules with overlapping left-hand sides can also
be defined by rules with non-overlapping left-hand sides and a free variable:
x ? y = choose b x y choose True x y = x

where b free choose False x y = y

Note that Def. 1 only approximates non-deterministic evaluations. For instance, the use
of the operation f defined by
f = if True then [] else ys++ys where ys free

will never lead to a choice in a computation, although we classify it as non-
deterministically defined. However, our approximation is syntactically decidable.

If NDD operations are not invoked during a functional logic computation, then this
computation is deterministic, i.e., there is no alternative outcome for the same initial ex-
pression. This can be easily proved by induction on the steps of an evaluation sequence,
e.g., using the small-step operational semantics defined in [1]. Hence, in order to detect
the sources of potentially non-deterministic computations, we have to find NDD oper-
ations. However, in a large application with many libraries, not all NDD operations are
relevant since they might not be called or their calls are encapsulated in set functions. It
would not be helpful to report all NDD operations occurring in a program. Instead, we
want to know only those NDD operations that are called (directly or indirectly) from
the main expression starting the application. For this purpose, we need a dependency
analysis which assigns to each operation the set of all relevant NDD operations.

Definition 2 (Relevant NDD operations). Let F be the set of all defined operations in
a program. For all f ∈ F we denote by fR ⊆ F the set of NDD operations that are
relevant for f : fR is the smallest set such that the following properties hold:

– If f is an NDD operation, then fR = {f}.
– If f is a set function, then fR = ∅.
– Otherwise: gR ⊆ fR for all g ∈ F occurring in some rule defining f .

The first property ignores further NDD operations called by f if f itself is NDD. Hence,
we return only the “first” NDD operation. In all our practical examples (see Sect. 5.2),
this is sufficient to spot the NDD operation that is actually relevant for the overall non-
deterministic behavior. Our implementation supports also the computation of the tran-
sitive closure of relevant NDD operations, but this often returns too much information.

Relevant NDD operations can be computed by a standard fixpoint analysis. The
fixpoint computation always terminates since F is finite so that the abstract domain is
finite. The implementation and practical results of this analysis are discussed in Sect. 5.

4 Deterministic Operations

When we locate a relevant NDD operation in an application, we can avoid its non-
deterministic behavior if it is semantically not relevant, like in the operations min or
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isSet defined above. We call operations with semantically irrelevant non-determinism
deterministic. Informally, an operation is deterministic if different values cannot be ob-
tained for the same input. However, the operation can compute the same value multiple
times. Deterministic operations can also fail if the input is not appropriate. For instance,
the operation head defined as
head (x:xs) = x

is deterministic, although it does not yield a result for the empty list.
In order to mark a defined operation as deterministic, we annotate its determinism

status in the last arrow of its type signature (this is partially inspired by the notation
of deterministic and non-deterministic operations used in the semantic models of func-
tional logic programming in [21]). Thus, we express the determinism status of the op-
erations min and last by the following type signatures:
min :: [Int] →DET Int last :: [a] →DET a

From a declarative point of view, such an annotation is correct, i.e., an operation is
deterministic, if all the results computed by this operation for a given input are equal.
Since we are in a context of a lazy non-deterministic language where arguments, even
if they are ground expressions, might denote several or also infinite values, a precise
definition needs more care. For instance, consider the identity operation
id :: a → a
id x = x

Intuitively, id is a deterministic operation since it does not introduce any non-
determinism. However, the ground (i.e., variable free) call id (0?1) yields two dif-
ferent results: 0 and 1. Note that these non-deterministic results are caused by the argu-
ments and not by id itself.

In order to deal with such subtleties, we need a formal model of the semantics
of functional logic programs. The difficulties of combining non-deterministic opera-
tions with a demand-driven evaluation model have been pioneered in [21]. The authors
proposed the call-time choice semantics [28] as a reasonable model, which has been
adapted to contemporary functional logic languages. , such as Curry [26] or TOY [30].
The authors defined the rewriting logic CRWL as a logical foundation for declarative
programming with non-strict and non-deterministic operations. Conceptually, values of
arguments of an operation are determined before the operation is evaluated. In a lazy
strategy, this is naturally obtained by sharing. Since standard term rewriting does not
conform to the intended call-time choice semantics, other notions of rewriting are nec-
essary to formalize this idea. In this paper we use the simple reduction relation of [31]
which we review in the following.

Expressions occurring in a program contain operations, constructors (introduced
in data type declarations), and variables (arguments of operations or free variables).
The goal of a computation is to obtain a value of some expression, where a value is an
expression that does not contain any operation. To cover demand-driven or non-strict
computations, expressions can also contain the special symbol ⊥ to represent an unde-
fined or unevaluated value. A partial value is a value which might contain occurrences
of ⊥. A partial constructor substitution is a substitution that replaces variables by par-
tial values. A context C[·] is an expression with some “hole”. Then the reduction relation
we use throughout this paper is defined as follows:
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C[σ(f t1 . . . tn)] � C[σ(r)] (f t1 . . . tn = r program rule, σ partial constr. subst.)
C[e] � C[⊥] (e expression)

The first rule models call-time choice: if a rule is applied, the actual arguments of the
operation must have been evaluated to partial values. The second rule models non-
strictness by allowing the evaluation of any subexpression to an undefined value (which
is intended if the value of this subexpression is not demanded). As usual, �∗ denotes
the reflexive and transitive closure of this reduction relation. The equivalence of this
rewrite relation and CRWL is shown in [31]. Conditional rules are not considered since
they can be seen as syntactic sugar for conditional expressions [3]. We recall that two
expressions e1 and e2 are equal iff they can be reduced to the same value, i.e., there
exists a value t such that e1 �∗ t and e2 �∗ t.

Now we can formally define the meaning of deterministic operations.

Definition 3 (Deterministic operation). An n-ary operation f is deterministic, i.e., a
determinism annotation f :: τ1 → · · · τn →DET τ

′ is correct, iff, for all partial values
t1, . . . , tn and evaluations f t1, . . . , tn �∗ r and f t1, . . . , tn �∗ r′ with values r and
r′, r = r′ holds.

Clearly, the declaration “id :: a →DET a” is correct, but “dup :: [a] →DET a”
(where dup was defined in Example 1) would not be correct, since
“dup [1,2,2,1]” evaluates to 1 and 2. It is not obvious whether the annota-
tion “min :: [Int] →DET Int” is correct. We discuss methods to check the
correctness of determinism annotations in Sect. 6.

Below, we motivate two crucial design decisions of the definition, namely why a
deterministic operation must have unique result values and not just unique head normal
forms or partial values and why arguments can be evaluated up to partial values rather
then values, i.e., fully evaluated.

An alternative to unique values is unique head normal forms. Often, the latter is a
target of computations in non-strict languages. Head normal form would be inappropri-
ate since non-determinism may show up under the head, as in
f x = [x, 0 ? 1]

The expression “f 0” evaluates to the single head normal form [0,0?1] but to two
different values [0,0] and [0,1]. Hence, the number of different results of an expres-
sion might depend on the degree of its evaluation, which is unfortunate when reasoning
about programs in a declarative manner, i.e., without considering an evaluation strategy.
As a consequence of this design, we must evaluate a deterministic operation application
completely, i.e., to normal form, before we omit all other alternative choices.

Likewise, unique partial values would be inappropriate since most expressions
might have different partial result values. For example, consider the operation id de-
fined above. Then “id 1 �∗ 1” and “id 1 �∗ ⊥” are two derivations with different
partial result values. Hence, if we change Def. 3 so that we require unique partial result
values, id would not be deterministic.

The requirement that arguments can be partial values is appropriate since this allows
us to prune the computation space even if an argument has not been fully evaluated. For
instance, consider the following contrived non-deterministic definition of computing
the first element of a list and the definition of an infinite list:
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head (x:xs) = x ones = 1 : ones
head (x:xs) = id x

Note that head is a deterministic operation according to our definition. The evaluation
of the expression head ones demands the head normal form of the argument, which is
1:ones. If we apply the first rule of head, we obtain the result value 1 and any attempt
to compute another value can be dropped because 1:ones �∗ 1:⊥ and head is de-
terministic. Requiring values for the arguments in Def. 3 would have the consequence
that the evaluation of head [1] yields one result whereas the evaluation of head ones
yields two identical results.

Nevertheless, to check deterministic operations, it is sufficient to consider their be-
havior on values provided that each data type is sensible, i.e., has at least one value:

Proposition 1. Assume types are sensible and that f is an n-ary operation such that,
for all values t1, . . . , tn and evaluations f t1, . . . , tn �∗ r and f t1, . . . , tn �∗ r′

with values r and r′, r = r′ holds. Then f is a deterministic operation.

Proof. Let t′1, . . . , t
′
n be partial values and e′ = f t′1, . . . , t

′
n. Assume e′ �∗ r and

e′ �∗ r′ with values r and r′. We must prove that r = r′. We transform each partial
value t′i into some value ti by replacing each occurrences of ⊥ in t′i with some value
of the appropriate type (which exists by assumption). Let e = f t1, . . . , tn. Since the
symbol ⊥ does not occur in the program rules, the applicability of a program rule is
not affected by the occurrences of ⊥-symbols in the expression to be derived. Hence
e �∗ r by executing the same steps (i.e., same positions and rules) executed in e′ �∗

r, and likewise e �∗ r′. By the assumption of the proposition, r = r′. Hence f is
deterministic. ut

We could have used this property, where the requirements on arguments and results
are more symmetric, as the definition of deterministic operations. However, this would
unnecessarily restrict the cutting of the search space by deterministic operations, as
discussed above.

Our notion of deterministic operations is intended to be a constructive approxima-
tion of determinism in functional logic programs. Hence, we do not cover all potential
determinism, in particular for non-terminating operations. To see why we cut the search
space only if we compute a result value (and not a partially evaluated expression), con-
sider the operation
inf x = if p x then x : inf (x+1)

else (42 ? x) : inf (x+1)

where p is some predicate on integers. Intuitively, the operation inf does not branch
if p is always satisfied. If p is not satisfied only on the argument 42, the evaluation of
inf branches but does not compute different results. In other cases, inf might compute
different results. In particular, the non-deterministic branching might occur “arbitrarily
late” during the evaluation of a call to inf so that there is no point to cut the computation
space during the computation of an infinite structure. Thus, we decided to restrict the
determinism property to finite result values.

We demonstrate the advantages of determinism annotations for application pro-
gramming by further examples.
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Example 2. We define an operation to sort a list by switching two adjacent elements
which are out of order (a generalization of bubble sort):
bsort :: [Int] →DET [Int]
bsort (xs++[x,y]++ys) | x>y = bsort (xs++[y,x]++ys)
bsort’default xs = xs

The functional pattern in the first rule frees the programmer from specifying a concrete
strategy to find a pair which should be swapped. Actually, the sort operation works
with any strategy to select such pairs. The determinism annotation has the effect that
all attempts to compute further values after the first sorted list are discarded. Without
this annotation, we obtain 16 (equal) result values for the call bsort [4,3,2,1], 768
results for bsort [5,4,3,2,1], and 292864 results for bsort [6,5,4,3,2,1].

Example 3. The Dutch National Flag problem [19] has been proposed in a simple form
to discuss the termination of rewriting [17]. As already shown in [9], Curry allows
a quite direct formulation by exploiting functional patterns and a default rule for the
termination condition. Since this formulation produces many identical solutions, we
mark it as deterministic and obtain the following reasonable implementation:
dnf :: [Color] →DET [Color]
dnf (x++[White]++y++[Red ]++z) = dnf (x++[Red ]++y++[White]++z)
dnf (x++[Blue ]++y++[Red ]++z) = dnf (x++[Red ]++y++[Blue ]++z)
dnf (x++[Blue ]++y++[White]++z) = dnf (x++[White]++y++[Blue ]++z)
dnf’default flag = flag

Example 4. The simplification of symbolic arithmetic expressions has been used in [5]
to demonstrate the power of functional patterns. The task is to simplify arithmetic ex-
pressions like 1 ∗ (x + 0) to x. Based on the definition of a replacement operation
replace, where “replace e p t” is equivalent to the notation e[t]p commonly used
in term rewriting [18], and a non-deterministic operation evalTo which evaluates to
expressions equivalent to the argument, 3 [5] defines a one-step simplification operation
as
simplifyStep (replace c p (evalTo x)) = replace c p x

Furthermore, it is remarked in [5] that “the application of repeated simplification steps
to an expression until no more simplification steps are available can be controlled by
Curry’s search primitives.” The concrete code for this task is not shown since the coding
via search primitives is a bit cumbersome: one has to compute the set of all the results
of a simplification step, check whether this set is empty and, if not, select one step and
proceed with the simplification. Using default rules and determinism annotations, the
code for completely simplifying expressions becomes quite agile:
simplify :: Exp →DET Exp
simplify (replace c p (evalTo t)) = simplify (replace c p t)
simplify’default e = e

The correctness of the determinism annotation of simplify depends on the confluence
of the simplification rules specified by evalTo.

3 The implementation of these operations and the structure of expressions is reviewed in Ap-
pendix A.
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5 Practical Aspects

5.1 Implementation

We have implemented the analysis of relevant NDD operations described in Sect. 3 with
the Curry analysis framework CASS [25]. CASS provides the infrastructure to analyze
larger applications in a modular and incremental manner. Our actual analysis does not
return only the relevant NDD operations but also the call sequence (limited to a fixed
maximal length to keep the abstract domain finite) leading to relevant NDD operations
from a main expression. This context information could be helpful to decide at which
point non-determinism should be encapsulated.

To implement the reduction of the computation space by deterministic operations,
we use existing features of functional logic languages. In particular, deterministic op-
erations are implemented by a preprocessing approach that requires no language exten-
sion. The actual preprocessor is available and integrated into the compilation chain of
the Curry systems PAKCS [27] and KiCS2 [12].

To support the possibility to annotate deterministic operations similarly to the nota-
tion used before, we introduce a type synonym:
type DET a = a

Hence, we can put the type constructor DET around any type without changing its mean-
ing. For instance, we can write the type annotation of Example 4 as
simplify :: Exp ->DET Exp

Our preprocessor reads a Curry program and looks for such occurrences of DET. Since a
deterministic operation is intended to compute only a single value for a given argument
and ignore all others, we use set functions [7] to compute and select one value. Since
the result sets are evaluated lazily, the computation of further elements is automatically
precluded if we access only one element. Therefore, the following transformation is
sufficient. If the preprocessor finds a function definition of the form (where tn denotes
a sequence of elements t1 . . . tn)
f :: τ1 → . . . → τn →DET τ

f t1n | c1 = e1
...

f tkn | ck = ek

then it is transformed into
f :: τ1 → · · · → τn → τ fND :: τ1 → · · · → τn → τ

f xn = selectValue (fND
S xn) fND t1n | c1 = e1

...
fND tkn | ck = ek

where fND is a new identifier and xn are pairwise distinct variables. Hence, the orig-
inal operation is replaced by a call to its set function where some element of the set
is returned by the operation selectValue.4 Due to this transformation, determinism

4 Note that this operation on value sets returns some value from the set and ignores the others,
i.e., it implements “don’t care” non-determinism.
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annotations have similarities to strictness annotations (“seq”) in Haskell: they change
the semantics in order to get a more efficient operational behavior.

Note that if the arguments of a deterministic operations are non-deterministic and
have several values, the search space is cut for each value separately. This is due to the
fact that set functions encapsulate the non-determinism of the function definition but not
the non-determinism of the arguments (see Sect. 2). For instance, consider the operation
list2set which transforms a list into a set by removing duplicated elements (also
known as nub in Haskell but specified without a concrete strategy to find duplicates):
list2set :: [a] →DET [a]
list2set (xs++[e]++ys++[e]++zs) = list2set (xs++[e]++ys++zs)
list2set’default xs = xs

Then the call
list2set [True, True?False, True]

evaluates to two results: [True] and [True,False]. Thanks to the determinism an-
notation, the result [True] is computed once whereas it would be computed three
times without the determinism annotation. One can even call deterministic functions
with unknown arguments. For instance, list2set xs == [True,False] is solved
by non-deterministically instantiating xs to [True,False], [True,False,False],
[True,False,True], and so on.5 This shows that a determinism annotation does not
imply that the operation can only be used in a purely functional manner, i.e., to com-
pute an output value from a given input value, but deterministic operations compute
at most one result for each given input value, which can still be guessed. This makes
deterministic operations more powerful than Prolog’s cut operator.

5.2 Benchmarking

To evaluate our analysis on non-trivial examples, we applied it to some existing applica-
tions where I/O non-determinism errors occurred during their development. Since our
analysis was not available at that time, we manually located them in a time-consuming
process. For our current test, we re-introduced the problematic definitions (mainly due
to the use of functional patterns) in these applications. Our current analysis precisely re-
turned these NDD operations as relevant for the main operation of the applications. The
applications we tested are the KiCS2 compiler, CurryCheck (discussed in Sect. 6.1), the
Curry preprocessor (partially described above), and a web-based information system
for the curricula in the department of computer science in Kiel. For the benchmarks, we
used the Curry implementation KiCS2 (Version 0.5.1) [12] with the Glasgow Haskell
Compiler (GHC 7.6.3, option -O2) as its back end on a Linux machine (Debian 8.5)
with an Intel Core i7-4790 (3.60Ghz) processor and 8GiB of memory.

Figure 1 shows the size of these applications and their analysis times. The table
shows the number of modules, the size (in KB) and the number of lines of the source
code (including all imported libraries), the time to analyze the complete application for
the first time, and the time to re-analyze the complete application after fixing the prob-
lem (in seconds). Note that CASS performs a modular and incremental analysis, i.e.,

5 This behavior is specific to KiCS2. PAKCS suspends on this equation since it has a more
restricted implementation of set functions.
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Application # modules program size # source lines initial re-analysis
KiCS2 Compiler 63 651 17521 7.72 2.36
Curry Preprocessor 110 1040 26085 12.58 2.69
CurryCheck 52 538 14357 5.33 1.80
Curricula Web System 97 1056 26634 15.27 7.42

Fig. 1. Benchmarks: analysis of relevant NDD operations

Expression nondet det
isSet (take 200 (repeat [1..10])) 1.46 0.00
last [1..20000] 0.05 0.24
selSort ([1..10]++[1..10]) 0.48 0.00
bsort [5,4,3,2,1] 2.25 0.00
list2set [1,2,3,4,5,6,7,7,6,5,4,3,2,1] 53.96 0.02
dnf [White,Red,White,Blue,Red,Blue,White] 0.89 0.00
simplify <expression with 17 nodes> 4.33 0.00

Fig. 2. Benchmarks: assessing the effect of determinism annotations

if some module has been analyzed, it stores the analysis information and re-analyzes
a module only if the module or some of its (direct or indirect) imported modules have
been changed. Hence, the initial analysis time is the worst-case analysis time which
rarely occurs in practice. The re-analysis time clearly shows the advantage of this in-
cremental analysis method. Altogether, the benchmarks demonstrate that our analysis
method is effective and efficient enough for realistic applications.

In order to assess the practical consequences of determinism annotations, we com-
pared the run times of some examples with and without determinism annotations on
the same architecture used in the previous benchmarks. The timings were performed
with the Unix time command measuring the execution time to compute all solutions (in
seconds) of a compiled executable for each benchmark as a mean of three runs. The
programs used for the benchmarks are the examples presented in the previous sections.

Figure 2 shows the execution times for evaluating the given expression without
(“nondet” column) and with (“det” column) a determinism annotation (where “0.00”
means less than 10 ms). Obviously, one can obtain arbitrarily large speedups by increas-
ing the size of the input. Nevertheless, the numbers indicate that a non-deterministic im-
plementation where we don’t care about strategies to solve intermediate problems, like
selecting appropriate list elements, is reasonable if the overall operation is deterministic.
The example last shows that determinism annotations can also come with some cost
since the machinery to encapsulate search with set functions is not for free. However, it
should be noted that this comparison is also somehow artificial since a non-encapsulated
top-level non-determinism is compared with an encapsulated computation. In practice,
where the application program performs I/O operation on the top-level, all intermediate
non-deterministic computations need to be encapsulated as discussed in Sect. 1.
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6 Checking Deterministic Operations

If we add determinism annotations to operations that are not deterministic according to
Def. 3, we lose completeness. Since the determinism property is undecidable in general,
we cannot expect an automatic tool to verify this property. On the other hand, accepting
only those determinism annotations where the determinism property can be verified by
some sufficient criteria would be too restrictive. Therefore, the preprocessor outputs for
each operation with a determinism annotation a proof obligation as a reminder and puts
the task of verifying this property into the hands of the programmer. In this section, we
discuss some methods to check or verify the correctness of determinism annotations.

6.1 Testing Deterministic Operations

A first approach to get confidence in the correctness of determinism annotations is test-
ing. Testing can be quite powerful if one tests program properties, i.e., predicates, with
a lot of test data. A well known example of such a property-based test framework is
Haskell’s QuickCheck tool [15] which generates random test data to test given proper-
ties. CurryCheck is a similar new tool for Curry programs distributed with the Curry
systems PAKCS and KiCS2. It uses EasyCheck [14] for test data generation but auto-
mates property testing with additional features. In particular, CurryCheck automatically
tests the correctness of determinism annotations as follows. If CurryCheck finds an an-
notation
f :: τ1 → . . . → τn →DET τ

CurryCheck removes the determinism annotation (actually, it copies the code of f with-
out the determinism annotation, since the annotated operation might be used in some
other property) and adds the following property (where the property “e #< n” is satisfied
if the set of all values of e contains less than n elements):
fIsDeterministic :: τ1 → · · · → τn → Prop
fIsDeterministic x1 . . . xn = f x1 . . . xn #< 2

This property is tested by systematically enumerating values for x1, . . . , xn. Although
this enumeration is exhaustive only for finite domains, checking determinism properties
by testing is a quite useful tool in practice if the test cases are numerous and well
distributed. These test cases are provided by the underlying EasyCheck library.

6.2 Proving Determinism Annotations

To show the correctness of determinism annotations also for infinite sets of input values,
formal proofs are required. We discuss in this section methods to construct such proofs
for particular examples.

A method to determine the determinism of an operation borrows from the theory
of rewriting [37]. We denote by → the standard rewrite relation on terms and by →∗
its reflexive and transitive closure. Then we can use the following proposition to verify
determinism annotations by rewriting:

Proposition 2. Assume that each data type is sensible and f is an n-ary operation
so that, for all values t1, . . . , tn and rewrite derivations f t1, . . . , tn →∗ r and
f t1, . . . , tn →∗ r′ with values r and r′, r = r′ holds. Then f is deterministic.
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Proof. Assume that the preconditions hold and e �∗ r and e �∗ r′ for e =
f t1, . . . , tn. Since →∗ over-approximates �∗ ([31, Theorems 7 and 8]), there are
rewrite derivations e →∗ r and e →∗ r′. By assumption, r = r′. Hence f is deter-
ministic by Prop. 1. ut

Note that the converse of this proposition does not hold: The operation f defined as
f x = square (x ? (0-x)) where square x = x*x

is deterministic in the sense of Def. 3 but the expression f 3 has the following rewrite
derivations (among others):
f 3 →∗ 3 * (3 ? (0-3)) → 3 * 3 → 9
f 3 →∗ 3 * (3 ? (0-3)) → 3 * -3 → -9

There are many cases where Prop. 2 can be applied to verify determinism annotations.
For instance, within the context of rewriting, determinism coincides with confluence,
the property that the end result of a complete sequence of applications of the rules
does not depend on the order in which the rules were applied. Weak orthogonality is a
sufficient condition to ensure confluence, hence determinism. First we briefly recall this
concept, then we show its application to Example 4.

Given a binary relation → on a set A of “objects” and an element a ∈ A, we say
that a is confluent iff for all b, c ∈ A, if a →∗ b and a →∗ c then there exists some
d ∈ A such that b→∗ d and c→∗ d. If every element ofA is confluent, thenA is called
confluent (or also Church-Rosser). Confluence captures determinism in that no element
can have two distinct normal forms or values. When the objects of A are terms, there
is a simple syntactic condition, called weak orthogonality, that ensures confluence. A
rewrite system R is weakly orthogonal iff the following two conditions holds: (1) the
rules of R are left-linear, i.e., no variable in the left-hand side is repeated, and (2) any
critical pair (t, s) is trivial, i,.e. t = s syntactically. We refer to [37, Def. 2.7.9] for the
definition of critical pair, which is quite technical, but in the following paragraph we
show an application of these concepts to one of our examples.

The simplification of an expression, as in Example 4, can be seen as a rewrite com-
putation. A rule, l → r, of this computation is constructed as follows: l is an alterna-
tive in the right-hand side of the definition of evalTo (see Appendix A) and r is the
variable e, for example Add (Lit 0) e → e. An inspection of the rules shows that
they are left-linear. If the left-hand sides of two rules do not overlap, as in a rule sim-
plifying addition and a rule simplifying multiplication, then the rules can be applied
independently of each other and the order in which they are applied does not affect
the result. If the left-hand sides overlap, then we consider their most general common
instance and rewrite this instance with each rule. The two results form a critical pair.
For example, the two rules of addition overlap, their most common general instance is
Add (Lit 0) (Lit 0), and the critical pair is (Lit 0, Lit 0). Since the components of
the pair are equal, the pair is trivial. Since all the critical pairs of this system are trivial,
the system is weakly orthogonal, hence confluent, hence deterministic.

A second approach to ensure the determinism of an operation relies on the char-
acteristics of the operation definition. For example, consider the sort operation bsort

defined earlier. A call to bsort t, where t is a list of elements, has either of two out-
comes: (1) the call result in a recursive call bsort t′ where t′ is a permutation of t, or
(2) the call outputs t, the argument of bsort. The latter occurs only when there are no
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elements out of order in the argument. Since there is only one permutation of t with
this property, this permutation is the only value that bsort t can ever produce. Hence
bsort is deterministic. The pattern exemplified by bsort is not uncommon, e.g., the
Dutch National Flag problem is similar, hence this is a simple and useful technique for
determinism proofs.

One could also use proof assistants to show determinism properties. Due to the
presence of (don’t know) non-determinism in Curry programs, this requires the formal
representation of the rewriting logic, as sketched in Sect. 4, in the logic of the proof as-
sistant, as proposed in [16]. However, in simpler examples, it suffices to show properties
about functional computations to show the correctness of determinism annotations. For
instance, to show the determinism of the operation last, we have to show that every
concatenation used in the pattern of last produces the same last element. This proof
obligation can be formally written as
∀l, l1, l2, x1, x2 : (l == l1++[x1] ∧ l == l2++[x2]) =⇒ x1 == x2

Since the involved operations “==” and “++” are defined in a purely functional man-
ner, we could apply proof assistants for functional programs to verify this property.
Actually, we formally verified this property with Agda (see Appendix B), a depen-
dently typed functional programming language where proofs are written in a functional
programming style [36]. The similarity of Agda with Haskell eases the translation of
Curry programs into Agda. Actually, [11] describes a method to prove properties of
non-deterministic computations by translating Curry programs into Agda programs.
Using this method, one can mechanically prove that min (see Sect. 1) is deterministic
by verifying its correspondence to a deterministic definition of a minimum function (see
Appendix C).

7 Related Work

The use of deterministic operations to improve the operational behavior of functional
logic computations has a long history. For instance, the SLOG system [20] used sim-
plification with program rules and inductive axioms to reduce the search space. Sim-
ilarly, the more general language ALF exploited deterministic rewrite computations
interspersed in narrowing steps to obtain efficient functional logic computations [22].
A more dynamic use of deterministic computations was proposed in [29] where the
“dynamic cut” as an alternative to Prolog’s static cut has been introduced. In contrast to
the static cut operator in Prolog, whose disadvantages were already discussed in Sect. 4,
all these proposals aim at keeping the completeness of functional logic computations.
In contrast to our proposal, these older proposals did not characterize a separate set
of deterministic operations since all operations are deterministic due to a confluence
requirement of the involved programs.

This view changed with the introduction of a new semantic foundation of functional
logic programming presented in [21]. There, the notion of non-deterministic functions
was introduced in functional logic programs and deterministic and non-deterministic
functions are distinguished on a semantic level. The authors used these two kinds of
functions to define the intended models of functional logic programs. Deterministic
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functions characterize homomorphisms and interpret data constructors, whereas user-
defined operations are always interpreted as non-deterministic functions so that they are
evaluated in a non-deterministic manner.

Improving computations for deterministic operations in the presence of non-
deterministic operations has also been addressed in [13]. The authors transferred the
idea of dynamic determinism detection in functional logic programs introduced in [29]
to functional logic programs with non-deterministic operations. Dynamic determinism
detection is based on the idea to check variable bindings of actual arguments inside an
operation and omit alternatives (as with Prolog’s cut) if arguments are not bound during
the evaluation of the operation. Although this has some similarities with our approach,
it is less general. Due to the use of set functions, we can still call deterministic op-
erations with free variables and compute bindings for them in order to cut the search
space in computations with individual bindings. Moreover, [13, 29] have strong criteria
on operations where dynamic determinism detection is applied (in particular, no extra
variables in right-hand sides) so that it is not applicable to most of our examples.

The declarative language Mercury6 also supports monadic I/O as well as non-
deterministic computations. To annotate predicates where only one of possibly sev-
eral solutions are needed, the user can use committed choice annotations (cc-nondet,
cc-multi) to suppress the computation of several solutions. Since the Mercury com-
piler checks these annotations, their usage is restricted in contrast to our semantic-based
notion of deterministic operations.

A well-known method in logic programming to restrict the search space is the “cut”
operator of Prolog, which is also intended to mark deterministic computations and omit
the computation of further results. Although our requirement to compute complete val-
ues before omitting parts of the computation space looks stronger than the cut operator,
it helps to ensure referential transparency, i.e., a strategy-independent interpretation of
computations. Compared to Prolog’s cut operator, our concept of deterministic opera-
tions does not destroy operational completeness. For instance, consider a simplifier for
arithmetic expressions which might contain the following clauses:
simp(*(0,X),0).
simp(*(X,0),0).

Since the goal
?- simp(*(0,0),S).

yields the binding S=0 twice, we could be attempted to avoid this superfluous non-
determinism by putting a cut at the end of the first clause:
simp(*(0,X),0) :- !.
simp(*(X,0),0).

This seems to work at first glance but fails if we try to generate expressions that yield a
given simplified form. For instance, the goal
?- X=1, simp(*(X,Y),0).

succeeds, whereas the logical equivalent goal
?- simp(*(X,Y),0), X=1.

6 www.mercurylang.org
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fails. Trying to move the cut from the clause to the call side does not help. We might try
to define different predicates for different modes, but this is not an appropriate solution
from a declarative point of view. As we will see later, our deterministic operations “cut”
the search space only if there is enough information about the arguments, which avoids
the problems sketched above. In this sense, the annotation of deterministic operations
corresponds to a safe use of cuts in Prolog, i.e., they correspond to the informal concept
of “green cuts” [35].

8 Conclusions

We presented a method to detect relevant non-deterministic operations in Curry applica-
tions and proposed the use of deterministic operations to improve their operational be-
havior. We characterized deterministic operations semantically w.r.t. their input/output
behavior, i.e., deterministic operations might yield multiple results under the standard
semantics but all results are equal for a given input. We showed that one can exploit this
property by cutting the computation space for such operations if the arguments are suf-
ficiently evaluated. In this way, we do not only improve their operational behavior, but
one can also avoid run-time problems if these operations are used inside I/O operations,
which always require deterministic subcomputations.

We demonstrated with various examples that deterministic operations frequently
occur in functional logic programs. Actually, they occur whenever a task like selecting
list elements or subterms, or applying transformation rules can be more easily expressed
in a non-deterministic manner.

We also discussed how determinism properties can be checked, since they are de-
cidable only in simple cases. One can automatically test these properties with advanced
testing tools which might also prove a property if the set of possible argument values is
finite. We sketched also proof techniques for determinism annotations. Developing bet-
ter proof techniques with mechanical support is an interesting topic for future research.
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A Simplification of Arithmetic Expressions

The simplification of symbolic arithmetic expressions has been used in [5] to demon-
strate the power of functional patterns. Such a simplifier should simplify arithmetic ex-
pressions like 1 ∗ (x+ 0) to x. For this purpose, the structure of arithmetic expressions
is defined by
data Exp = Lit Int

| Var String
| Add Exp Exp
| Mul Exp Exp

In order to replace a subterm at some position, we define an operation replace such
that the call “replace e p t” is equivalent to the notation e[t]p commonly used in
term rewriting [18], where a position p is represented as a sequence of numbers:
replace :: Exp → [Int] → Exp → Exp
replace _ [] t = t
replace (Add l r) (1:p) t = Add (replace l p t) r
replace (Add l r) (2:p) t = Add l (replace r p t)
replace (Mul l r) (1:p) t = Mul (replace l p t) r
replace (Mul l r) (2:p) t = Mul l (replace r p t)

The various possibilities to simplify an expression e are defined by a non-deterministic
operation evalTo that evaluates to expressions that are equivalent to e (where only a
few possibilities are shown here):
evalTo :: Exp → Exp
evalTo e = Add (Lit 0) e

? Add e (Lit 0)
? Mul (Lit 1) e
? Mul e (Lit 1)

Exploiting functional patterns, a one-step simplification operation can be defined as
follows:
simplifyStep (replace c p (evalTo x)) = replace c p x

Thus, if there is a context c and a position p such that the actual argument has the form
c[e]p, where e is simplifiable according to the definition of evalTo, then this subterm
is replaced by its simplified form.

B Proof: last is deterministic

This section contains the Agda program which proves that last is a deterministic op-
eration. For this purpose, we show that every concatenation used in the pattern of last
determines the same last element. To be more precise, we show that, if two concatena-
tions produces the same list (i.e., argument of last), the selected elements are equal.
More formally, we prove:
∀l1, l2, x1, x2 : (l1++[x1] == l2++[x2]) =⇒ x1 == x2

This is mechanically proved with the following Agda program (where we omit the
module header and imports):
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-- Auxiliary statements: an empty list cannot be equal to a list with
-- an element at the end:
nonemptylast : ∀ (l : L N)(x : N) → =L _=N_ [] (l ++ [ x ]) ≡ ff
nonemptylast [] x = refl
nonemptylast (z :: l) x = refl

nonemptylastr : ∀ (l : L N)(x : N) → =L _=N_ (l ++ [ x ]) [] ≡ ff
nonemptylastr [] x = refl
nonemptylastr (z :: l) x = refl

-- Main property formulated as Boolean implication:
lasteqp : ∀ (l1 l2 : L N)(x1 x2 : N)

→ (=L _=N_ (l1 ++ [ x1 ]) (l2 ++ [ x2 ])) imp (x1 =N x2) ≡ tt
lasteqp [] [] x1 x2 rewrite &&-tt (x1 =N x2) | imp-same (x1 =N x2) = refl
lasteqp [] (x :: l2) x1 x2
rewrite nonemptylast l2 x2 | &&-ff (x1 =N x) = refl

lasteqp (x :: l1) [] x1 x2
rewrite nonemptylastr l1 x1 | &&-ff (x =N x2) = refl

lasteqp (z1 :: l1) (z2 :: l2) x1 x2 with (z1 =N z2)
lasteqp (z1 :: l1) (z2 :: l2) x1 x2 | tt
rewrite lasteqp l1 l2 x1 x2 = refl

lasteqp (z1 :: l1) (z2 :: l2) x1 x2 | ff = refl

-- Main property formulated as propositional implication:
lasteq : ∀ (l1 l2 : L N)(x1 x2 : N)

→ =L _=N_ (l1 ++ [ x1 ]) (l2 ++ [ x2 ]) ≡ tt
→ x1 =N x2 ≡ tt

lasteq l1 l2 x1 x2 p = imp-mp (lasteqp l1 l2 x1 x2) p

C Proof: min is deterministic

This section contains the Agda program which proves that min is a deterministic opera-
tion. This is done by proving that a result computed by min is identical to the minimum
of the list defined in a purely functional manner. Thus, we also show that the non-
deterministic specification of the minimum is identical to a more efficient functional
implementation. To distinguish the non-deterministic and the deterministic definition
of min, they are called min-nd and min-d, respectively, in the proof.

We model the non-determinism by a translation into Agda which is called “planned
choices” in [11]. The mechanical proof is non-trivial and requires various lemmas. In
particular, the proof is split into showing that the non-deterministically selected element
is smaller than, or equal to, all other list elements, but it cannot be strictly smaller than
all others since it is itself an element from the list.
open import bool

module nd-minlist-is-correct
(Choice : Set)
(choose : Choice → B)
(lchoice : Choice → Choice)
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(rchoice : Choice → Choice)
where

open import eq
open import bool-thms
open import bool-thms2
open import nat
open import nat-thms
open import list
open import maybe
open import inspect

----------------------------------------------------------------------
-- Some auxiliaries:

-- We define our own less-or-equal since the standard definition with
-- if-then-else produces too many branches:

_<=_ : N → N → B
0 <= y = tt
(suc x) <= 0 = ff
(suc x) <= (suc y) = x <= y

-- Some properties about less-or-equal:

<=-refl : ∀ (x : N) → x <= x ≡ tt
<=-refl 0 = refl
<=-refl (suc x) = <=-refl x

<=-trans : ∀ (x y z : N) → x <= y ≡ tt → y <= z ≡ tt → x <= z ≡ tt
<=-trans zero y z p1 p2 = refl
<=-trans (suc x) zero z p1 p2 = B-contra p1
<=-trans (suc x) (suc y) zero p1 p2 = B-contra p2
<=-trans (suc x) (suc y) (suc z) p1 p2 = <=-trans x y z p1 p2

<=-< : ∀ (x y : N) → x <= y ≡ ff → y < x ≡ tt
<=-< zero x ()
<=-< (suc x) zero p = refl
<=-< (suc x) (suc y) p = <=-< x y p

<-<= : ∀ (x y : N) → x < y ≡ tt → y <= x ≡ ff
<-<= x zero p rewrite <-0 x = B-contra p
<-<= zero (suc y) p = refl
<-<= (suc x) (suc y) p = <-<= x y p

<-<=-ff : ∀ (x y : N) → x < y ≡ ff → y <= x ≡ tt
<-<=-ff zero zero p = refl
<-<=-ff zero (suc y) p = B-contra (sym p)
<-<=-ff (suc x) zero p = refl
<-<=-ff (suc x) (suc y) p = <-<=-ff x y p
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<-<=-trans : ∀ (x y z : N) → x < y ≡ tt → y <= z ≡ tt → x < z ≡ tt
<-<=-trans zero zero z p1 p2 = B-contra p1
<-<=-trans zero (suc y) zero p1 p2 = B-contra p2
<-<=-trans zero (suc y) (suc z) p1 p2 = refl
<-<=-trans (suc x) zero z p1 p2 = B-contra p1
<-<=-trans (suc x) (suc y) zero p1 p2 = B-contra p2
<-<=-trans (suc x) (suc y) (suc z) p1 p2 = <-<=-trans x y z p1 p2

----------------------------------------------------------------------
-- More lemmas about ordering relations:

leq-if : ∀ (x y z : N)
→ y <= x && y <= z ≡ (if x <= z then y <= x else y <= z)

leq-if x y z with inspect (y <= x)
leq-if x y z | it tt p1 with inspect (x <= z)
... | it tt p2 rewrite p1 | p2 | <=-trans y x z p1 p2 = refl
... | it ff p2 rewrite p1 | p2 = refl
leq-if x y z | it ff p1 with inspect (x <= z)
... | it tt p2 rewrite p1 | p2 = refl
... | it ff p2 rewrite p1 | p2

| <-<= z y (<-trans {z} {x} {y} (<=-< x z p2) (<=-< y x p1)) = refl

le-if : ∀ (x y z : N)
→ y < x && y < z ≡ (if x <= z then y < x else y < z)

le-if x y z with inspect (y < x)
le-if x y z | it tt p1 with inspect (x <= z)
... | it tt p2 rewrite p1 | p2 | <-<=-trans y x z p1 p2 = refl
... | it ff p2 rewrite p1 | p2 = refl
le-if x y z | it ff p1 with inspect (x <= z)
... | it tt p2 rewrite p1 | p2 = refl
... | it ff p2 rewrite p1 | p2

| <-asym {z} {y} (<-<=-trans z x y (<=-< x z p2) (<-<=-ff y x p1))
= refl

----------------------------------------------------------------------
-- A lemma relating equality and orderings:

=N-not-le : ∀ (m n : N) → m =N n ≡ ˜ (m < n) && m <= n
=N-not-le zero zero = refl
=N-not-le zero (suc m) = refl
=N-not-le (suc n) zero = refl
=N-not-le (suc n) (suc m) = =N-not-le n m

----------------------------------------------------------------------
-- This is the translation of the Curry program defining min in
-- a deterministic and a non-deterministic manner:

-- Check whether all elements of a list satisfy a given predicate:
all : {A : Set} → (A → B) → L A → B
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all _ [] = tt
all p (x :: xs) = p x && all p xs

-- Deterministic min-d (the second argument is a proof that
-- the input list is non-empty):
min-d : (l : L N) → is-empty l ≡ ff → N
min-d [] ()
min-d (x :: []) _ = x
min-d (x :: y :: xs) _ = let z = min-d (y :: xs) refl

in if x <= z then x else z

-- Non-deterministic selection of some element from a list:
select : {A : Set} → Choice → L A -> maybe A
select _ [] = nothing
select ch (x :: xs) = if choose ch then just x

else select (lchoice ch) xs

-- Non-deterministically select elements satisfying a property from a list:
select-with : {A : Set} → Choice → (A → B) → L A → maybe A
select-with _ p [] = nothing
select-with ch p (x :: xs) =
if choose ch then (if p x then just x else nothing)

else select-with (lchoice ch) p xs

-- Non-deterministic minimum definition:
min-nd : Choice → (xs : L N) → maybe N
min-nd ch xs = select-with ch (λ x → all (_<=_ x) xs) xs

----------------------------------------------------------------------

-- Proof of the correctness of the operation select-with:
select-with-correct : ∀ {A : Set}

→ (ch : Choice) (p : A → B) (xs : L A) (z : A)
→ select-with ch p xs ≡ just z → p z ≡ tt

select-with-correct ch p [] z ()
select-with-correct ch p (x :: xs) z u with choose ch
select-with-correct ch p (x :: xs) z u | tt with inspect (p x)
select-with-correct ch p (x :: xs) z u | tt | it tt v rewrite v | u | down-≡ u
= v
select-with-correct ch p (x :: xs) z u | tt | it ff v rewrite v with u
select-with-correct ch p (x :: xs) z u | tt | it ff v | ()
select-with-correct ch p (x :: xs) z u | ff =
select-with-correct (lchoice ch) p xs z u

----------------------------------------------------------------------
-- First step:
-- if y smaller than all elements, y is smaller than the minimum:
all-leq-min : ∀ (y x : N) (xs : L N)

→ all (_<=_ y) (x :: xs) ≡ y <= min-d (x :: xs) refl
all-leq-min y x [] = &&-tt (y <= x)
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all-leq-min y x (z :: zs)
rewrite all-leq-min y z zs
| ite-arg (_<=_ y) (x <= min-d (z :: zs) refl) x (min-d (z :: zs) refl)

= leq-if x y (min-d (z :: zs) refl)

-- Now we can prove:
-- if min-nd selects an element, it is smaller than the minimum:
min-nd-select-min-d : ∀ (ch : Choice) (x : N) (xs : L N) (z : N)

→ min-nd ch (x :: xs) ≡ just z → z <= min-d (x :: xs) refl ≡ tt
min-nd-select-min-d ch x xs z u
rewrite sym (all-leq-min z x xs)

| select-with-correct ch (λ y → all (_<=_ y) (x :: xs)) (x :: xs) z u
= refl

----------------------------------------------------------------------
-- Next step: if y smaller than all elements, y is smaller than the minimum:
all-less-min : ∀ (y x : N) (xs : L N)

→ all (_<_ y) (x :: xs) ≡ y < min-d (x :: xs) refl
all-less-min y x [] rewrite &&-tt (y < x) = refl
all-less-min y x (z :: zs)
rewrite all-less-min y z zs
| ite-arg (_<_ y) (x <= min-d (z :: zs) refl) x (min-d (z :: zs) refl)

= le-if x y (min-d (z :: zs) refl)

-- Next we prove that the element selected by min-nd cannot be smaller
-- than the minimum.

-- For this purpose, we prove an auxiliary lemma:
-- If an element is selected from a list, it cannot be smaller than all elements
select-with-all<-ff : ∀ (ch : Choice) (p : N → B) (xs : L N) (z : N)

→ select-with ch p xs ≡ just z → all (_<_ z) xs ≡ ff
select-with-all<-ff ch _ [] z ()
select-with-all<-ff ch p (x :: xs) z u with (choose ch)
select-with-all<-ff ch p (x :: xs) z u | tt with (p x)
select-with-all<-ff ch p (x :: xs) z u | tt | tt rewrite down-≡ u | <-irrefl z
= refl

select-with-all<-ff ch p (x :: xs) z () | tt | ff
select-with-all<-ff ch p (x :: xs) z u | ff
rewrite select-with-all<-ff (lchoice ch) p xs z u | &&-ff (z < x) = refl

-- Now we can prove: if min-nd selects an element, it cannot be smaller
-- than all other elements:
min-nd-select-all<-ff : ∀ (ch : Choice) (xs : L N) (z : N)

→ min-nd ch xs ≡ just z → all (_<_ z) xs ≡ ff
min-nd-select-all<-ff ch xs z u
rewrite select-with-all<-ff ch (λ y → all (_<=_ y) xs) xs z u
= refl

----------------------------------------------------------------------
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-- The main theorem: each result of min-nd is the mininum computed by min-d:
min-nd-theorem : ∀ (ch : Choice) (x : N) (xs : L N) (z : N)

→ min-nd ch (x :: xs) ≡ just z → z =N min-d (x :: xs) refl ≡ tt
min-nd-theorem ch x xs z u
rewrite
=N-not-le z (min-d (x :: xs) refl) -- split equality into no less and leq

| min-nd-select-min-d ch x xs z u -- min-nd selects leq min. elements
| sym (all-less-min z x xs) -- less-than min. elements satisfy all<
| min-nd-select-all<-ff ch (x :: xs) z u --min-nd can’t select any all< element
= refl

----------------------------------------------------------------------
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