
A Functional Logic Programming Approach toGraphical User InterfacesMichael Hanus?Informatik II, RWTH Aachen, D-52056 Aachen, Germanyhanus@informatik.rwth-aachen.de
c
Springer-VerlagIn Proc. of the Second International Workshop on Practical Aspects ofDeclarative Languages, PADL'00, Boston.Springer LNCS 1753, pp. 47{62, 2000

Abstract. We show how the features of modern integrated functionallogic programming languages can be exploited to implement graphicaluser interfaces (GUIs) in a high-level declarative style. For this purpose,we have developed a GUI library in Curry, a multi-paradigm languageamalgamating functional, logic, and concurrent programming principles.The functional features of Curry are exploited to de�ne the graphicalstructure of an interface and to implement new graphical abstractions,and the logic features of Curry are used to specify the logical dependen-cies of an interface. Moreover, the concurrent and distributed features ofCurry support the easy implementation of GUIs to distributed systems.1 IntroductionThe implementation of graphical user interfaces for application programs is anon-trivial task which is usually supported by speci�c libraries. Although it isclear that any serious programming language must have a library for implement-ing GUIs, there are many di�erent approaches to structure those libraries. In thispaper we propose a GUI library for integrated functional logic languages (see[6] for a survey) and show how the features of such integrated languages can beexploited to provide a nice structure for the implementation of GUIs.In this paper, we consider the language Curry [7, 11], a modern multi-paradigm declarative language which integrates functional, logic, and concur-rent programming paradigms. Curry combines in a seamless way features fromfunctional programming (nested expressions, lazy evaluation, higher-order func-tions), logic programming (logical variables, partial data structures, built-insearch), and concurrent programming (concurrent evaluation of expressions withsynchronization on logical variables). Curry also provides additional features incomparison to the pure paradigms (compared to functional programming: search,computing with partial information and constraints; compared to logic program-ming: more e�cient evaluation due to the deterministic and demand-driven eval-uation of functions, more
exible search strategies) and supports programming-in-the-large with speci�c features (types, modules, encapsulated search).In order to avoid reinventing the wheel, our GUI library is based on Tcl/Tk[14]. The main purpose of this contribution is to provide a suitable structure to? This research has been partially supported by the German Research Council (DFG)under grant Ha 2457/1-1 and by the DAAD under the PROCOPE programme.

runWidget "Hello"(TkCol [] [TkLabel [TkText "Hello world!"],TkButton tkExit [TkText "Stop"]])Fig. 1. A simple \Hello world" GUITkCol [] [TkEntry [TkRef val, TkText "0"],TkRow [] [TkButton (tkUpdate incrText val) [TkText "Increment"],TkButton (tkSetValue val "0") [TkText "Reset"],TkButton tkExit [TkText "Stop"]]]where val free Fig. 2. A speci�cation of a counter GUIaccess the components of Tcl/Tk in a high-level way from Curry programs. Wewill see that the functional and logic features of Curry supports together a goodstructure to describe GUIs.In order to get an impression of the proposed structure of GUI implement-ations, Fig. 1 shows a simple but complete implementation of a \Hello world"GUI based on our library. The GUI is started by the I/O action runWidgetwhich takes a string (the title of the main window) and a speci�cation of a GUIas an argument. This speci�cation is basically a description of the hierarchicallayout of the various GUI elements. In this simple example, the GUI is a column(TkCol) of two elements: a label element (TkLabel) containing a text and abutton (TkButton) which terminates the GUI by the action tkExit when thebutton is pressed.Beyond the hierarchical layout structure, GUIs have also a logical structurewhich connects the di�erent elements of a GUI. For instance, di�erent buttonsrefer to the manipulation of particular entry �elds in a GUI. As a simple example,consider the counter GUI shown in Fig. 2. Since clicking the increment buttonshould increase the value of the entry �eld by one, there is a connection betweenthe action of the \Increment" button and the value shown in the entry �eld(and similar for the \Reset" button). Many GUI libraries (e.g., [14,19]) solvethis problem by forcing the programmer to assign explicit names (strings) to thedi�erent GUI elements which are subsequently used as references to them. Sincethese names are strings, often no consistency checks are done so that runtime er-rors can occur when a name is referred but does not exist. Moreover, new graph-ical abstractions which combine several elements are di�cult to de�ne since thenecessary names can clash with other existing names. To avoid these problems,we use logical variables (\�xed but unknown widget references") to refer to thedi�erent GUI elements. If a reference to some GUI element is necessary, we in-troduce for this purpose a logical variable (\TkRef val" in Fig. 2) which can2

be used in actions like tkSetValue or tkUpdate to manipulate these elements.Thus, a GUI in our framework is a partially instantiated data structure1 wheremultiple occurrences of a logical variable denotes the logical dependencies in-side the GUI. In Fig. 2 the entry �eld showing the current value of the counteris referred by the logical variable val. Clicking the \Increment" button causesthe invocation of the event handler \tkUpdate incrText val" that applies thefunction incrText (which increments the textual representation of a number byone) to the string shown in the entry element referred by val. Similarly, this�eld is set to the string "0" by pressing the \Reset" button.2 Basic Elements of CurryThis section provides a brief overview of Curry as necessary to understand ourapproach to GUI programming. More details about Curry's computation modeland a complete description of all language features can be found in [7, 11].From a syntactic point of view, a Curry program is a functional program2extended by the possible inclusion of free (logical) variables in conditions andright-hand sides of de�ning rules. Thus, a Curry program consists of the de�ni-tion of functions and the data types on which the functions operate. Functionsare evaluated in a lazy manner. To provide the full power of logic programming,functions can be called with uninstantiated arguments (logical variables). Thebehavior of such function calls depends on the evaluation annotations of func-tions which can be either
exible or rigid. Calls to rigid functions are suspendedif a demanded argument, i.e., an argument whose value is necessary to decidethe applicability of a rule, is uninstantiated (\residuation"). Calls to
exiblefunctions are evaluated by a possibly non-deterministic instantiation of the de-manded arguments to the required values in order to apply a rule (\narrowing").Example 1. The following Curry program de�nes the data types of Boolean val-ues and polymorphic lists (�rst two lines) and functions for computing the con-catenation of lists and the last element of a list:data Bool = True | Falsedata List a = [] | a : List aconc :: [a] -> [a] -> [a]conc eval flexconc [] ys = ysconc (x:xs) ys = x : conc xs yslast xs | conc ys [x] =:= xs = x where x,ys free1 Since the GUI library does not export any constructor for the argument type ofTkRef, the type system ensures that no ground values can be inserted as argumentsof TkRef.2 Curry has a Haskell-like syntax [15], i.e., (type) variables and function names startwith lowercase letters and the names of type and data constructors start with anuppercase letter. The application of f to e is denoted by juxtaposition (\f e").3

The data type declarations de�ne True and False as the Boolean constants and[] (empty list) and : (non-empty list) as the constructors for polymorphic lists(a is a type variable ranging over all types and the type List a is usually writtenas [a] for conformity with Haskell).The (optional) type declaration (\::") of the function conc speci�es thatconc takes two lists as input and produces an output list, where all list elementsare of the same (unspeci�ed) type.3 Since conc is explicitly de�ned as
exible4(by \eval flex"), the equation \conc ys [x] =:= xs" can be solved by in-stantiating the �rst argument ys to the list xs without the last argument, i.e.,the only solution to this equation satis�es that x is the last element of xs.In general, functions are de�ned by (conditional) rules of the form\l | c = e where vs free" where l has the form f t1 : : : tn with f being a func-tion, t1; : : : ; tn data terms and each variable occurs only once, the condition cis a constraint, e is a well-formed expression which may also contain functioncalls, and vs is the list of free variables that occur in c and e but not in l (thecondition and the where parts can be omitted if c and vs are empty, respect-ively). The where part can also contain further local function de�nitions whichare only visible in this rule. A conditional rule can be applied if its left-handside matches the current call and its condition is satis�able. A constraint isany expression of the built-in type Constraint. Each Curry system must sup-port at least equational constraints of the form e1 =:= e2 which are satis�able ifboth sides e1 and e2 are reducible to uni�able data terms (i.e., terms withoutde�ned function symbols). However, speci�c Curry systems can also supportmore powerful constraint structures, like arithmetic constraints on real numbersor �nite domain constraints for applications in operation research problems, asin the PACS implementation [9]. Expressions are of the following form:e ::= c (constants like numbers or identi�ers)x (variables x)(e0 e1 : : : en) (application)if b then e1 else e2 (conditional)e1=:=e2 (equational constraint)e1 & e2 (concurrent conjunction of constraints)e1 &> e2 (sequential conjunction of constraints)let x1; : : : ; xn free in e (existential quanti�cation)Curry has also a polymorphic type system which ensures that the expressionse; e1; e2 in the last three alternatives are always constraints.The operational semantics of Curry, as precisely described in [7, 11], is aconservative extension of lazy functional programming (if no free variables occurin the program or the initial goal) and (concurrent) logic programming. Due tothe use of an optimal evaluation strategy [1], Curry can be considered as a3 Curry uses curried function types where �->� denotes the type of all functionsmapping elements of type � into elements of type �.4 As a default, all non-constraint functions are rigid.4

generalization of concurrent constraint programming [17] with a lazy (optimal)evaluation strategy. Due to this generalization, Curry supports a clear separationbetween the sequential (functional) parts of a program, which are evaluated withan e�cient and optimal evaluation strategy, and the concurrent parts, based onthe concurrent evaluation of constraints, to coordinate concurrent program units.Monadic I/O: Since the implementation of GUIs in a declarative language re-quires some knowledge about performing I/O in a declarative manner, we sketchthe I/O concept of Curry which is identical to the monadic I/O concept ofHaskell [20]. In the monadic approach to I/O, an interactive program computesa sequence of actions which are applied to the outside world. Actions have type\IO �" which means that they return a result of type �whenever they are appliedto (and change) the outside world. For instance, getChar of type IO Char is anaction which reads a character from the standard input whenever it is executed,i.e., applied to a world. Actions can only be sequentially composed. For instance,the action getChar can be composed with the action putChar (which has typeChar -> IO () and writes a character to the terminal) by the sequential com-position operator >>= (which has type IO � -> (� -> IO �) -> IO �), i.e.,\getChar >>= putChar" is a composed action which prints the next characterof the input stream on the screen. The second composition operator >> is like>>= but ignores the result of the �rst action. Furthermore, done is the \empty"action which does nothing (see [20] for more details).Disjunctive computations: A di�culty in combining logic-oriented languageswith I/O is the fact that the meaning of I/O operations becomes unclear when acomputation is split into two disjunctive paths. In Curry this problem is solvedby encapsulating possible non-deterministic computations between I/O oper-ations (see [10] for details). We do not further discuss this technique here butremark that non-deterministic search is not performed for goals containing globalvariables but only for goals where all unbound variables are existentially quan-ti�ed in this goal. Since we will create GUIs via global variables (\ports", seebelow), non-deterministic steps (i.e., a potential copying of GUIs in a disjunct-ive computation) are automatically avoided (i.e., suspended) if they include areference to a GUI. This provides for a conceptually clean integration of GUIprogramming in a logic language (in contrast to low-level Tcl/Tk libraries likein Sicstus-Prolog).3 Object-Oriented and Distributed ProgrammingGUI programming as proposed in this paper is based on the techniques forobject-oriented and distributed programming in Curry. Therefore, we sketchthese features in this section. More details and examples can be found in [8].It is well known [18] that concurrent logic programming languages providea simple way to implement (concurrent) objects. An object can be seen as aconstraint or predicate processing a stream of incoming messages. The localstate of the object is a parameter which may change in recursive calls when amessage is processed. Thus, the general type of an object o is5

o :: st -> [mt] -> Constraintwhere st is the type of the local state andmt is the type of the messages which canbe sent to the object. For instance, a simple counter object which understandsthe messages Inc, Get v, and Stop can be implemented in Curry as follows (theprede�ned type Int denotes the type of all integer values and success denotesthe always satis�able constraint):data CounterMessage = Inc | Get Int | Stopcounter :: Int -> [CounterMessage] -> Constraintcounter eval rigidcounter n (Inc : ms) = counter (n+1) mscounter n (Get v : ms) = v=:=n & counter n mscounter _ (Stop : ms) = successThe type declaration for counter (which can be omitted since types are re-constructed in Curry by a type inference algorithm) speci�es that a counterobject keeps an integer as local state and understands messages of typeCounterMessage. Since counter is declared as a rigid function, an expression\counter n s" can reduce only if s is a bound variable.The evaluation of the constraint \counter 0 s" creates a new counter objectwith initial value 0 where messages are sent by constraining the variable s tohold the desired messages. For instance, the constraintlet s free in counter 0 s & s=:=[Inc, Inc, Get x, Stop]is successfully evaluated by binding x to the value 2.In realistic applications, the stream of messages is not instantiated at once butincrementally constrained by various other objects (message senders). In orderto allow a dynamic extension of senders and to ensure the sending of messagesin constant time, Janson et al. [12] proposed the use of port constraints whichhave been generalized in Curry to provide a high-level approach to implementdistributed systems [8]. In principle, a port can be considered as a multiset (ofmessages) where the individual elements are not directly accessible. There aretwo primitive constraints on ports, where \Port a" denotes the type of a portto which messages of type a can be sent:openPort :: Port a -> [a] -> Constraintsend :: a -> Port a -> ConstraintThe evaluation of \openPort p s" where p and s are uninstantiated variablesestablishes a port constraint which is satis�ed i� all elements in the port palso occur in the message stream s and vice versa. A message m is sent to theport p by evaluating the constraint \send m p" which constrains (in constanttime) p and the corresponding stream s to hold the element m. From a logicprogramming point of view, p and s are partially instantiated variables that aremore and more constrained by solving the constraint \send m p". In contrast tothe purely functional part of Curry, the communication is performed in a strictmanner to avoid a communication overhead in a distributed system, i.e., themessage m is reduced to a data term before sending it.6

With the use of ports, we can de�ne a generic constraint newnew :: (st -> [mt] -> Constraint) -> st -> Port mt -> Constraintnew obj st p = let s free in openPort p s &> obj st sto create new objects with initial state st and communication port p. Thus,let cp free in new counter 0 cp & client1 cp & client2 cpcreates a counter with two di�erent clients. Each client can increment the counterby solving the constraint \send Inc cp". The current state of the counter can beasked by \send (Get x) cp" so that x is uni�ed with the current counter value.Thus, free variables in messages provide an elegant method to return values tothe sender without explicitly creating reply channels.In order to support the programming of distributed systems, where di�erentcomponents run on di�erent machines in the Internet, ports can be declaredas external so that they are accessible from outside. This feature together withconcrete examples for distributed applications using ports can be found in [8].4 A Functional Logic GUI LibraryAmain objective of our GUI library is a design which smoothly interacts with thefeatures of the base language Curry. In particular, a careful design is necessary todeal with features like non-determinism and search. We solve this by using portsfor GUI communication. Therefore, we introduce a new primitive I/O actionopenWish :: String -> IO (Port TkMsg) .\openWish t" creates a new GUI window with title t and returns a communic-ation port for this GUI. The (abstract) data type TkMsg5 is the type of possiblemessages for GUI communication. These are only used in the implementationof the GUI library but not visible to the user of the library. The importantdesign issue is the fact that a GUI communication port is always external andcreated by such an I/O action. Since the GUI communication port is a globalvariable, disjunctive computations or search are not performed for subexpres-sions containing a reference to such a port (compare Sect. 2). This behavior isperfectly intended since it avoids the potential duplication of GUIs in di�erentdisjunctive branches of a computation. Nevertheless, the non-deterministic fea-tures of the base language can be used inside a GUI if the search computationsare encapsulated and do not refer to the global port.After the creation of a GUI communication port gp, we can run aGUI speci�cation gs (like the one shown in Fig. 2) by the constraint\runWidgetOnPort gs gp". Basically, runWidgetOnPort communicates withthe port gp by translating the GUI speci�cation gs into appropriate Tcl com-mands (see Sect. 7). The I/O action runWidget (see Fig. 1) composes the func-tionality of openWish and runWidgetOnPort: it creates a new GUI communic-ation port and runs the GUI speci�cation on this port. Note that runWidget5 Most of the identi�ers de�ned in the GUI library are pre�xed by Tk since the libraryis based on the Tcl/Tk toolkit. Similarly, the name openWish refers to the fact thatthe windowing shell wish is used for the communication with the Tk toolkit.7

executes a GUI as an I/O action whereas runWidgetOnPort executes a GUI as a(concurrent) constraint. Therefore, runWidget is usually applied when one GUIis executed as the main program (Fig. 1), whereas runWidgetOnPort is appliedwhen one GUI should be executed concurrently to other activities (e.g., otherconcurrent objects or GUIs, see Sect. 5).Layout structure of a GUI: A GUI speci�cation is a description of the hier-archical layout structure of the GUI together with the actions that should beperformed when, for instance, a GUI button is pressed. To be more precise, aGUI speci�cation is a term of the following data type (here we list only thewidgets used in the examples of this paper):data TkWidget a = TkButton (Port TkMsg -> a) [TkConfItem a]| TkCheckButton [TkConfItem a]| TkEntry [TkConfItem a]| TkLabel [TkConfItem a]...| TkRow [TkCollectionOption] [TkWidget a]| TkCol [TkCollectionOption] [TkWidget a]Thus, a GUI speci�cation is a simple widget (like a button or entry), a row(TkRow) or a column (TkCol) of widgets.6 The �rst parameter of TkRow/TkColspeci�es additional options for the geometric alignment for widget composition,like centering, left alignment, expanding subwidgets if extra space is available:data TkCollectionOption = TkCenter | TkLeft | : : : | TkExpandA button widget (TkButton) is intended to perform an action whenever the userpresses this button. Therefore, an event handler is associated to each buttonwidget (�rst parameter). Other widgets can also contain event handlers butthey are optionally associated in the list of con�guration items (see below).Since these event handlers are responsible for an event of a speci�c GUI, eventhandlers have type \Port TkMsg -> a" where a is the result type of the eventhandler which is either Constraint (for GUIs executed concurrently to otherobjects) or IO () (for GUIs executed as an I/O action). Consequently, this typevariable is also a parameter for the entire GUI structure.Logical structure of a GUI: Before discussing event handlers in more detail, wemust understand the concept to describe the logical structure of GUIs. As men-tioned in the introduction, GUIs have a layout structure and a logical structure.While the layout structure is simply described by composing simple widgets intowidget collections (TkRow and TkCol), the logical structure contains dependen-cies between di�erent widgets and their event handlers. For instance, pressingsome button usually results (after some computation) in the update of one ormore other widgets. Although many GUI libraries (e.g., [14,19]) are based onuser-selected strings to identify the di�erent widgets, we propose to use logicalvariables to refer to individual widgets which avoids many programming errors6 The row/column organization of widgets is su�cient for our purposes but one canalso extend the library to cover other forms of widget collections (see also Sect. 6).8

and provides for better abstractions. For this purpose, each primitive widget canhave a number of items to con�gure the widget, like7data TkConfItem a =TkRef TkRefType -- a reference to this widget| TkText String -- an initial text contents| TkWidth Int -- the width of a widget| TkBackground String -- the background color| TkCmd (Port tkMsg -> a) -- an associated event handler...Most of these con�guration items directly correspond to similar options in theTk toolkit with the exception of TkRef. Since TkRefType, the type of all widgetreferences, is abstract, i.e., no constructors of this data type are available tothe user of the GUI library, the only reasonable way to use the TkRef item iswith a free logical variable as shown in Fig. 2. If we run a GUI speci�cation ona concrete port, this variable will be instantiated to a unique widget referencewhich is not visible to the user. The important point is that this variable can alsobe used in event handlers for other widgets in the same GUI. For this purpose,there are the following primitives to construct event handlers for GUIs:tkExit :: Port TkMsg -> IO ()tkGetValue:: TkRefType -> Port TkMsg -> IO StringtkSetValue:: TkRefType -> String -> Port TkMsg -> IO ()tkUpdate :: (String->String) -> TkRefType -> Port TkMsg -> IO ()tkExit terminates the GUI, tkGetValue gets the (String) value currently storedin the widget referred by its �rst argument, tkSetValue sets the value storedin the referred widget, and tkUpdateValue updates the value according to anupdate function. The same set of primitives is also available for GUIs executedas a concurrent constraint:tkCExit :: Port TkMsg -> ConstrainttkCGetValue :: TkRefType -> Port TkMsg -> String -> Constraint: : :The event handlers attached to some widget are automatically invoked with thecurrent GUI communication port whenever a GUI speci�cation is executed byrunWidgetOnPort (or runWidget), see also the examples in Fig. 1 and 2. Thus,a GUI speci�cation is executed by sending commands that create the widgetlayout through the communication port followed by a scheduler which invokesthe corresponding event handlers whenever the user performs some action onthe GUI (see Sect. 7 for more details).To change the con�guration of widgets dynamically (e.g., changing colors,deactivating or activating buttons and entries), there is also a primitivetkConfig :: TkRefType -> TkConfItem a -> Port TkMsg -> IO ()which adds a con�guration item to a particular widget in a GUI.7 Note that not all con�guration items are meaningful for all widgets. This is checkedat run time in our library, but in can be also checked at compile time with a moresophisticated type system, as proposed in [3].9

5 Example: A CalculatorWe have already seen in Fig. 1 and 2 two speci�cations of simple GUIsusing our library. However, many interactive applicationscontain a state which is shown and modi�ed by a GUI.To demonstrate the implementation of these kinds ofapplications with our GUI concept, we present in thefollowing the implementation of a simple calculator GUI asshown to the right. We model the calculator as an objectwhich accepts the following messages:data CalcMsg = Button Char | Display StringThe message \Button c" is sent whenever the button c (e.g., '1', '2',. . . ,'+','*',. . .) is pressed. The message \Display s" is sent to get the current valueof the operand, i.e., the argument s (which is usually an unbound variable) isinstantiated with the current operand of the calculator. The calculator's localstate is a pair (d,f) with the current operand d and an accumulator functionf to be applied to d (this idea is due to [19]). With the techniques sketchedin Sect. 3, we can implement calculator objects as follows (the rigid Booleanfunction == tests the equality of two ground expressions, i.e., e1==e2 reducesto True if both e1 and e2 are reducible to identical ground data terms; (e op)denotes the partial application of the operator op to the left argument e):calcMgr :: (Int,Int->Int) -> [CalcMsg] -> ConstraintcalcMgr eval rigidcalcMgr (d,f) (Display s : ms) = s=:=(show d) &> calcMgr(d,f) mscalcMgr (d,f) (Button b : ms)| isDigit b = calcMgr (10*d + ord b - ord'0', f) ms| b=='+' = calcMgr (0, ((f d) +)) ms| b=='-' = calcMgr (0, ((f d) -)) ms| b=='*' = calcMgr (0, ((f d) *)) ms| b=='/' = calcMgr (0, ((f d) `div`)) ms| b=='=' = calcMgr (f d, id) ms| b=='C' = calcMgr (0, id) msSince the GUI needs a reference to the calculator object, we add it as a parametercm to the GUI:calc_GUI cm = TkCol [] [TkEntry [TkRef display, TkText "0"],TkRow [] (map cbutton ['1','2','3','+']),TkRow [] (map cbutton ['4','5','6','-']),TkRow [] (map cbutton ['7','8','9','*']),TkRow [] (map cbutton ['C','0','=','/'])]where display freecbutton c = TkButton (button_pressed c) [TkText [c]]button_pressed c gp = let d free insend (Button c) cm &>send (Display d) cm &>tkCSetValue display d gp10

Here we exploit the higher-order features of the base language: To create theindividual buttons, we use a generic function cbutton which is mapped on theparticular lists of characters. The event handler button_pressed for each buttonsends a corresponding Button message to the calculator and shows the newoperand of the calculator in the display widget. A new calculator applicationon a given GUI communication port gp is created by the following function:runCalcOnPort gp| let cm free innew calcMgr (0,id) cm & runWidgetOnPort (calc_GUI cm) gp= doneNow the complete application is started byopenWish "Calculator" >>= runCalcOnPortThis implementation is modular similarly to the classical model-view-controllerparadigm of Smalltalk-80 [13]. The application (represented by calcMgr) is com-pletely independent to the user interface. All the programming techniques of thebase language (laziness, higher-order functions, constraints, search etc.) can beused to implement the application. Due to the independence of the user interfaceand the application, it is also possible to have several GUIs (which representsthe applications in di�erent ways) for one application. In our implementationabove, this is easily possible by changing the function runCalcOnPort to startone application together with several concurrent GUIs. This feature of our GUIdesign is also useful for developing GUIs for distributed applications where theGUI shows and manipulates di�erent components of a distributed system. Forinstance, we have implemented a GUI for sending emails where the email addresscan be inserted by querying an address server running on some other machine.Due to lack of space, we omit a concrete example for this, but from the previousexample it should be obvious how to use the distributed features of Curry (seeSect. 3 and [8]) in GUIs.6 Application-Oriented ExtensionsThis section shows how the features of the base language can be exploited tode�ne new application-oriented graphical elements for GUIs. As a simple ex-ample (which is often prede�ned in GUI libraries), consider the implementa-tion of a radio button column as a new GUI element. A radio button columnis a column of check buttons where at most one button is \on", i.e., if theuser activates a button in this column, all other buttons must be set to \o�"(for the sake of simplicity, the values \o�" and \on" are represented by thestrings "0" and "1"). This can be implemented by the following function, where\radioButtonCol r labs cmd" creates a new radio button column with refer-ence r, labels labs (i.e., the strings shown at each button) and event handlercmd which is called whenever the user presses a button (the auxiliary functionsgen_varsn returns a list of n unbound variables, l!!i returns the i-th elementof the list l, and remove i l removes the i-th element from the list l):11

radioButtonCol r labs cmd| r =:= gen_vars (length labs) = TkCol [TkLeft] (gen_rb 0)where gen_rb i = if i==(length labs) then []else TkCheckButton [TkText (labs!!i), TkRef (r!!i),TkCmd (rbcmd (r!!i) (remove i r) cmd)]: gen_rb (i+1)rbcmd sel oth cmd gp =tkGetValue sel gp >>= \sv -> -- get state sv of this checkbutton(if sv=="1" then foldr (>>) done (map (\o->tkSetValueo "0" gp) oth)else done) >>cmd gpThus, each button of a radio button column is a check button with an eventhandler which sets the other buttons (oth) to \o�" whenever it is turned on,followed by the execution of the event handler cmd for the radio button. Twooperations are important on radio buttons: get the index of the activated buttonin the column (or -1 if there is no active button) and activate a particular button.These operations can be de�ned as follows:getRadioValue [] _ = return (-1)getRadioValue (r:rs) gp = tkGetValue r gp >>= \rval ->if rval=="1" then return 0else getRadioValue rs gp >>= \rspos ->return (if rspos>=0 then rspos+1 else -1)setRadioValue [] _ _ = donesetRadioValue (r:rs) i gp =tkSetValue r (if i==0 then "1" else "0") gp >>setRadioValue rs (i-1) gpDue to the functional dimension of the base language, we can use radio buttoncolumns like any other widget in GUI speci�cations. Forinstance, a \tra�c light GUI" as shown to the right, wherethe user can click on two tra�c lights and the programensures the pairwise exclusion of both red and green lights,is implemented by the following simple GUI speci�cation:TkRow [] [radioButtonCol l1 ["Red","Yellow","Green"] (ex l1 l2),radioButtonCol l2 ["Red","Yellow","Green"] (ex l2 l1)]where l1,l2 freeex l1 l2 gp = getRadioValue l1 gp >>= \sel ->if sel>=0 then setRadioValue l2 (2-sel) gp else doneThe event handler ex ensures that, whenever the user selects Red (Yellow,Green) for one tra�c light, the other light switches to Green (Yellow, Red).In a similar way, one can implement other more advanced graphical abstrac-tions. For instance, one can de�ne sets of radio buttons which are not simplymutually exclusive, like in the tra�c light example, but must satisfy more com-plex constraints (\constraint buttons"). Due to the constraint logic programming12

features of Curry, such abstractions are fairly easy to implement. The usefulnessof constraints in the design of user interfaces has been discussed elsewhere [16].Note the importance of the use of free logical variables for widget references tobuilt new graphical abstractions. If one assigns �xed strings to refer to widgets,as for instance in [14, 19], name con
icts can easily occur.7 ImplementationThe entire GUI library is implemented in Curry based on the connection to theTcl/Tk toolkit [14]. The only extension which has been added to Curry is theconnection to a windowing shell wish via the I/O action openWish (see Sect. 4).The messages sent to this port are of the following type:data TkMsg = TkPut String | TkGet StringIf the message \TkPut s" is sent to the port, the string s, which must be avalid Tcl command, is added to the input stream of the wish. On the otherhand, the message \TkGet s" uni�es the argument variable s with the next lineof the output stream of the wish. These two messages are su�cient to imple-ment runWidgetOnPort in Curry. First of all, the GUI speci�cation is translatedinto a Tcl/Tk script to create the GUI layout which is sent to the wish viathe message TkPut. Additionally, runWidgetOnPort creates a call-back list forhandling the GUI events. If the user manipulates the GUI (e.g., press a but-ton) so that an event occurs for which an event handler is de�ned, the wishemits a message on its output stream. This message is analyzed by the sched-uler in runWidgetOnPort which calls the responsible event handler stored in thecall-back list. Furthermore, the primitive event handlers like tkGetValue andtkSetValue are implemented by sending Tcl/Tk scripts that set or extract thecorresponding GUI values.Although all communication between the Curry system and Tcl/Tk is doneby strings which have to be interpreted on both sides, this kind of implementationis e�cient enough in our practical experiences. This is due to the fact thatthe communication in interactive applications tends to be slow since the useris usually much slower than the system. Therefore, the connection to Tcl/Tkthrough a port is su�cient for implementing practical systems. Furthermore, thistechnique supports an easy reuse of this library in other Curry implementations.8 Conclusions and Related WorkWe have presented a library for implementing GUIs in the functional logic lan-guage Curry. We have exploited the functional as well as the logic features ofCurry for the design of the library. The functional features are used to de�nethe layout structure of GUIs and to built new application-oriented graphicalabstractions. The logic features (logical variables) are used to specify the logicdependencies inside a GUI. This allows a compact and readable speci�cation ofGUIs as expressions of a particular data type rather than a sequence of actions to13

built the GUI. As far as we know, this is the �rst approach to design a functionallogic GUI library. Nevertheless, we want to relate it to some other approachesfor GUI programming in declarative languages.TkGofer [3] extends Gofer, a lazy functional language similar to Haskell, witha library for GUI programming. Similarly to our approach, the implementation isbased on Tcl/Tk. TkGofer uses a monadic approach for GUI programmingwhichforces the user to an imperative style. The di�erent widgets are de�ned in a
atand sequential order and are later composed to a hierarchical layout structureby pack operations, similarly to Tcl/Tk scripts. This has the disadvantage thatthe layout structure is not de�ned together with the individual widgets and eachwidget must be given a name|even if they are used only once like the labels orbuttons in Fig. 1 and 2. Furthermore, TkGofer is based on a sequential functionallanguage. Thus, logic programming techniques like constraint solving as well asfeatures for concurrent and distributed programming are not available.The same holds for Fudgets [2], a GUI concept for lazy functional languages.Fudgets are processes accepting messages (for manipulating the state) and deliv-ering messages (for sending information about an event). Primitive fudgets, likebuttons, text inputs etc., are composed to more complex entities by connectingthe input and output streams of the di�erent fudgets. This approach makes itnecessary to pass the GUI events via streams to the corresponding widgets tobe manipulated by these events, which leads to less intuitive GUI speci�cationsthan using direct references to the corresponding widgets as in our approach.Haggis [5] is a further GUI framework for Haskell. It is based on monadic I/Oand uses concurrent processes to handle events. Instead of specifying a handlerto be invoked when an event occurs, a new process is created that waits for thisevent. This has the drawback that widgets have two handlers in Haggis (one forthe layout and one for the event handling).Our proposal for GUI programming is not just an adaptation of existingGUI library designs to an integrated functional logic language, but it exploitsthe features of such an integrated language to support simple and readable GUIspeci�cations. Moreover, the features of the base language like higher-order func-tions, constraints, and concurrency can be used to build new application-orientedgraphical abstractions in a simple way and to support a modular connection ofthe application program to the user interface. In particular, the distributionfeatures of Curry largely simplify the implementation of user interfaces for dis-tributed systems.The current de�nition of Curry has also some limitations which restrictsthe design of our GUI library. Currently, Curry has a Hindley-Milner like poly-morphic type system [4]. It has been shown in [3] that a richer type systemincluding type classes can improve the structure of a GUI library so that moreerrors can be caught at compile time. Since this is independent on the designissues discussed in this paper, we plan for the future to re�ne the design of ourGUI library with a more sophisticated type system. Another topic for futurework is to add the possibility to dynamically change the layout structure ofGUIs which is currently not supported.14

References1. S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. In Proc. 21stACM Symposium on Principles of Programming Languages, pp. 268{279, 1994.2. M. Carlsson and T. Hallgren. Fudgets - A Graphical User Interface in a LazyFunctional Language. In Conference on Functional Programming and ComputerArchitecture (FPCA'93). ACM Press, 1993.3. K. Claessen, T. Vullinghs, and E. Meijer. Structuring graphical paradigms inTkGofer. In Proc. of the International Conference on Functional Programming(ICFP'97), pp. 251{262. ACM SIGPLAN Notices Vol. 32, No. 8, 1997.4. L. Damas and R. Milner. Principal type-schemes for functional programs. In Proc.9th Symposium on Principles of Programming Languages, pp. 207{212, 1982.5. S. Finne and S. Peyton Jones. Composing Haggis. In Proc. of the Fifth EurographicsWorkshop on Programming Paradigms for Computer Graphics. Springer, 1995.6. M. Hanus. The Integration of Functions into Logic Programming: From Theory toPractice. Journal of Logic Programming, Vol. 19&20, pp. 583{628, 1994.7. M. Hanus. A Uni�ed Computation Model for Functional and Logic Programming.In Proc. 24th ACM Symposium on Principles of Programming Languages, pp. 80{93, 1997.8. M. Hanus. Distributed Programming in a Multi-Paradigm Declarative Language.In Proc. of the International Conference on Principles and Practice of DeclarativeProgramming (PPDP'99), pp. 376{395. Springer LNCS 1702, 1999.9. M. Hanus, S. Antoy, J. Koj, R. Sadre, and F. Steiner. PACS: The Portland AachenCurry System. Available athttp://www-i2.informatik.rwth-aachen.de/~hanus/pacs/, 1999.10. M. Hanus and F. Steiner. Controlling Search in Declarative Programs. InPrinciples of Declarative Programming (Proc. Joint International SymposiumPLILP/ALP'98), pp. 374{390. Springer LNCS 1490, 1998.11. M. Hanus (ed.). Curry: An Integrated Functional Logic Language (Vers. 0.5).Available at http://www-i2.informatik.rwth-aachen.de/~hanus/curry, 1999.12. S. Janson, J. Montelius, and S. Haridi. Ports for Objects in Concurrent LogicPrograms. In Research Directions in Concurrent Object-Oriented Programming.MIT Press, 1993.13. G. Krasner and S. Pope. A Cookbook for using the Model-View-Controller UserInterface in Smalltalk-80. Journal of Object-Oriented Programming, Vol. 1, No. 3,pp. 26{49, 1988.14. J.K. Ousterhout. Tcl and the Tk toolkit. Addison Wesley, 1994.15. J. Peterson et al. Haskell: A Non-strict, Purely Functional Language (Version 1.4).Technical Report, Yale University, 1997.16. M. Renschler. Con�guration Spreadsheet for Interactive Constraint Problem Solv-ing. In Proc. of the ComputlogNet Industrial Conference on Advanced SoftwareApplications, Manchester, 1998.17. V.A. Saraswat. Concurrent Constraint Programming. MIT Press, 1993.18. E. Shapiro and A. Takeuchi. Object Oriented Programming in Concurrent Prolog.In E. Shapiro, editor, Concurrent Prolog: Collected Papers, volume 2, pp. 251{273.MIT Press, 1987.19. T. Vullinghs, D. Tuijnman, and W. Schulte. Lightweight GUIs for Functional Pro-gramming. In Proc. 7th Int. Symp. on Programming Languages, Implementations,Logics and Programs (PLILP'95), pp. 341{356. Springer LNCS 982, 1995.20. P. Wadler. How to Declare an Imperative. ACM Computing Surveys, Vol. 29,No. 3, pp. 240{263, 1997. 15

