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Abstract. We show how the features of modern integrated functional
logic programming languages can be exploited to implement graphical
user interfaces (GUIs) in a high-level declarative style. For this purpose,
we have developed a GUI library in Curry, a multi-paradigm language
amalgamating functional, logic, and concurrent programming principles.
The functional features of Curry are exploited to define the graphical
structure of an interface and to implement new graphical abstractions,
and the logic features of Curry are used to specify the logical dependen-
cies of an interface. Moreover, the concurrent and distributed features of
Curry support the easy implementation of GUIs to distributed systems.

1 Introduction

The implementation of graphical user interfaces for application programs is a
non-trivial task which is usually supported by specific libraries. Although it is
clear that any serious programming language must have a library for implement-
ing GUISs, there are many different approaches to structure those libraries. In this
paper we propose a GUIT library for integrated functional logic languages (see
[6] for a survey) and show how the features of such integrated languages can be
exploited to provide a nice structure for the implementation of GUIs.

In this paper, we consider the language Curry [7,11], a modern multi-
paradigm declarative language which integrates functional, logic, and concur-
rent programming paradigms. Curry combines in a seamless way features from
functional programming (nested expressions, lazy evaluation, higher-order func-
tions), logic programming (logical variables, partial data structures, built-in
search), and concurrent programming (concurrent evaluation of expressions with
synchronization on logical variables). Curry also provides additional features in
comparison to the pure paradigms (compared to functional programming: search,
computing with partial information and constraints; compared to logic program-
ming: more efficient evaluation due to the deterministic and demand-driven eval-
uation of functions, more flexible search strategies) and supports programming-
in-the-large with specific features (types, modules, encapsulated search).

In order to avoid reinventing the wheel, our GUI library is based on Tcl/Tk
[14]. The main purpose of this contribution is to provide a suitable structure to
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runWidget "Hello"
(TkCol [] [TkLabel [TkText "Hello world!'], _
TkButton tkExit [TkText "Stop"ll) Hello word!

Stop

Fig. 1. A simple “Hello world” GUI

TkCol [1 [
TkEntry [TkRef val, TkText "0"],
TkRow [] [TkButton (tkUpdate incrText val) [TkText "Increment'],
TkButton (tkSetValue val "0'") [TkText '"Reset'],
TkButton tkExit [TkText "Stop"1]]
where val free
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Increment | Reset | Stop |

Fig. 2. A specification of a counter GUI

access the components of Tcl/Tk in a high-level way from Curry programs. We
will see that the functional and logic features of Curry supports together a good
structure to describe GUIs.

In order to get an impression of the proposed structure of GUI implement-
ations, Fig. 1 shows a simple but complete implementation of a “Hello world”
GUI based on our library. The GUI is started by the I/O action runWidget
which takes a string (the title of the main window) and a specification of a GUI
as an argument. This specification is basically a description of the hierarchical
layout of the various GUI elements. In this simple example, the GUI 1s a column
(TkCol) of two elements: a label element (TkLabel) containing a text and a
button (TkButton) which terminates the GUI by the action tkExit when the
button is pressed.

Beyond the hierarchical layout structure, GUIs have also a logical structure
which connects the different elements of a GUI. For instance, different buttons
refer to the manipulation of particular entry fields in a GUI. As a simple example,
consider the counter GUI shown in Fig. 2. Since clicking the increment button
should increase the value of the entry field by one, there is a connection between
the action of the “Increment” button and the value shown in the entry field
(and similar for the “Reset” button). Many GUIT libraries (e.g., [14,19]) solve
this problem by forcing the programmer to assign explicit names (strings) to the
different GUI elements which are subsequently used as references to them. Since
these names are strings, often no consistency checks are done so that runtime er-
rors can occur when a name 1s referred but does not exist. Moreover, new graph-
ical abstractions which combine several elements are difficult to define since the
necessary names can clash with other existing names. To avoid these problems,
we use logical variables (“fixed but unknown widget references”) to refer to the
different GUI elements. If a reference to some GUI element is necessary, we in-
troduce for this purpose a logical variable (“TkRef val” in Fig. 2) which can



be used in actions like tkSetValue or tkUpdate to manipulate these elements.
Thus, a GUI in our framework is a partially instantiated data structure’ where
multiple occurrences of a logical variable denotes the logical dependencies in-
side the GUI. In Fig. 2 the entry field showing the current value of the counter
is referred by the logical variable val. Clicking the “Increment” button causes
the invocation of the event handler “tkUpdate incrText val” that applies the
function incrText (which increments the textual representation of a number by
one) to the string shown in the entry element referred by val. Similarly, this
field is set to the string "0" by pressing the “Reset” button.

2 Basic Elements of Curry

This section provides a brief overview of Curry as necessary to understand our
approach to GUI programming. More details about Curry’s computation model
and a complete description of all language features can be found in [7,11].
From a syntactic point of view, a Curry program is a functional program
extended by the possible inclusion of free (logical) variables in conditions and
right-hand sides of defining rules. Thus, a Curry program consists of the defini-
tion of functions and the data types on which the functions operate. Functions
are evaluated in a lazy manner. To provide the full power of logic programming,
functions can be called with uninstantiated arguments (logical variables). The
behavior of such function calls depends on the evaluation annotations of func-
tions which can be either flexible or rigid. Calls to rigid functions are suspended
if a demanded argument, i.e., an argument whose value is necessary to decide
the applicability of a rule, is uninstantiated (“residuation”). Calls to flexible
functions are evaluated by a possibly non-deterministic instantiation of the de-
manded arguments to the required values in order to apply a rule (“narrowing”).

2

Ezxample 1. The following Curry program defines the data types of Boolean val-
ues and polymorphic lists (first two lines) and functions for computing the con-
catenation of lists and the last element of a list:

data Bool
data List a

True | False
(] | a : List a

conc :: [a] -> [a] —> [al
conc eval flex

conc [] ys = ys
conc (x:xs) ys = x : conc Xs ys

last xs | concys [x] =:= xs = x where x,ys free

! Since the GUI library does not export any constructor for the argument type of
TkRef, the type system ensures that no ground values can be inserted as arguments
of TkRef.

% Curry has a Haskell-like syntax [15], i.e., (type) variables and function names start
with lowercase letters and the names of type and data constructors start with an
uppercase letter. The application of f to e is denoted by juxtaposition (“f €”).



The data type declarations define True and False as the Boolean constants and
[1 (empty list) and : (non-empty list) as the constructors for polymorphic lists
(ais a type variable ranging over all types and the type List a is usually written
as [a] for conformity with Haskell).

The (optional) type declaration (“::”) of the function conc specifies that
conc takes two lists as input and produces an output list, where all list elements
are of the same (unspecified) type.? Since conc is explicitly defined as flexible*
(by “eval flex”), the equation “conc ys [x] =:= xs” can be solved by in-
stantiating the first argument ys to the list xs without the last argument, i.e.,
the only solution to this equation satisfies that x is the last element of xs.

In general, functions are defined by (conditional) rules of the form
“l | ¢ =e where vs free” where [ has the form f#;...{, with f being a func-
tion, %1,...,t, data terms and each variable occurs only once, the condition ¢
1s a constraint, e is a well-formed expression which may also contain function
calls, and ws is the list of free variables that occur in ¢ and e but not in [ (the
condition and the where parts can be omitted if ¢ and vs are empty, respect-
ively). The where part can also contain further local function definitions which
are only visible in this rule. A conditional rule can be applied if its left-hand
side matches the current call and its condition is satisfiable. A constraint is
any expression of the built-in type Constraint. Each Curry system must sup-
port at least equational constraints of the form e; =:=e9 which are satisfiable if
both sides e; and ey are reducible to unifiable data terms (i.e., terms without
defined function symbols). However, specific Curry systems can also support
more powerful constraint structures, like arithmetic constraints on real numbers
or finite domain constraints for applications in operation research problems, as
in the PACS implementation [9]. Exzpressions are of the following form:

en=c
x
(eg €1...€p)

constants like numbers or identifiers)
variables x)
application)

(

(

(
if b then e; else e9 (conditional)
e1=:=eq (equational constraint)
e1 & eo (concurrent conjunction of constraints)
e1 &> es (sequential conjunction of constraints)
let #1,...,%, free in e (existential quantification)

Curry has also a polymorphic type system which ensures that the expressions
e,e1, eo in the last three alternatives are always constraints.

The operational semantics of Curry, as precisely described in [7,11], is a
conservative extension of lazy functional programming (if no free variables occur
in the program or the initial goal) and (concurrent) logic programming. Due to
the use of an optimal evaluation strategy [1], Curry can be considered as a

® Curry uses curried function types where a->8 denotes the type of all functions
mapping elements of type a into elements of type 3.
* As a default, all non-constraint functions are rigid.



generalization of concurrent constraint programming [17] with a lazy (optimal)
evaluation strategy. Due to this generalization, Curry supports a clear separation
between the sequential (functional) parts of a program, which are evaluated with
an efficient and optimal evaluation strategy, and the concurrent parts, based on
the concurrent evaluation of constraints, to coordinate concurrent program units.

Monadic 1/0: Since the implementation of GUIs in a declarative language re-
quires some knowledge about performing I/O in a declarative manner, we sketch
the I/O concept of Curry which is identical to the monadic I/O concept of
Haskell [20]. In the monadic approach to I/O, an interactive program computes
a sequence of actions which are applied to the outside world. Actions have type
“I0 o which means that they return a result of type o whenever they are applied
to (and change) the outside world. For instance, getChar of type I0 Char is an
action which reads a character from the standard input whenever it is executed,
1.e., applied to a world. Actions can only be sequentially composed. For instance,
the action getChar can be composed with the action putChar (which has type
Char -> I0 () and writes a character to the terminal) by the sequential com-
position operator >>= (which has type I0 a -> (a -> I0 8) -> I0 3), i.e.,
“getChar >>= putChar” is a composed action which prints the next character
of the input stream on the screen. The second composition operator >> is like
>>= but ignores the result of the first action. Furthermore, done is the “empty”
action which does nothing (see [20] for more details).

Disjunctive computations: A difficulty in combining logic-oriented languages
with T/O is the fact that the meaning of I/O operations becomes unclear when a
computation is split into two disjunctive paths. In Curry this problem is solved
by encapsulating possible non-deterministic computations between 1/0 oper-
ations (see [10] for details). We do not further discuss this technique here but
remark that non-deterministic search is not performed for goals containing global
variables but only for goals where all unbound variables are existentially quan-
tified in this goal. Since we will create GUIs via global variables (“ports”, see
below), non-deterministic steps (i.e., a potential copying of GUIs in a disjunct-
ive computation) are automatically avoided (i.e., suspended) if they include a
reference to a GUI. This provides for a conceptually clean integration of GUI
programming in a logic language (in contrast to low-level Tcl/Tk libraries like
in Sicstus-Prolog).

3 Object-Oriented and Distributed Programming

GUI programming as proposed in this paper is based on the techniques for
object-oriented and distributed programming in Curry. Therefore, we sketch
these features in this section. More details and examples can be found in [8].

It is well known [18] that concurrent logic programming languages provide
a simple way to implement (concurrent) objects. An object can be seen as a
constraint or predicate processing a stream of incoming messages. The local
state of the object is a parameter which may change in recursive calls when a
message 1s processed. Thus, the general type of an object o is



o :: st => [mt] -> Constraint

where st is the type of the local state and mt is the type of the messages which can
be sent to the object. For instance, a simple counter object which understands
the messages Inc, Get v, and Stop can be implemented in Curry as follows (the
predefined type Int denotes the type of all integer values and success denotes
the always satisfiable constraint):

data CounterMessage = Inc | Get Int | Stop

counter :: Int -> [CounterMessage] -> Constraint
counter eval rigid

counter n (Inc : ms) = counter (n+1) ms
counter n (Get v : ms) = v=:=n & counter n ms
counter _ (Stop : ms) = success

The type declaration for counter (which can be omitted since types are re-
constructed in Curry by a type inference algorithm) specifies that a counter
object keeps an integer as local state and understands messages of type
CounterMessage. Since counter is declared as a rigid function, an expression
“counter n s” can reduce only if s is a bound variable.

The evaluation of the constraint “counter 0 s” creates a new counter object
with initial value 0 where messages are sent by constraining the variable s to
hold the desired messages. For instance, the constraint

let s free in counter 0 s & s=:=[Inc, Inc, Get x, Stop]
1s successfully evaluated by binding x to the value 2.

In realistic applications, the stream of messages is not instantiated at once but
incrementally constrained by various other objects (message senders). In order
to allow a dynamic extension of senders and to ensure the sending of messages
in constant time, Janson et al. [12] proposed the use of port constraints which
have been generalized in Curry to provide a high-level approach to implement
distributed systems [8]. In principle, a port can be considered as a multiset (of
messages) where the individual elements are not directly accessible. There are
two primitive constraints on ports, where “Port a” denotes the type of a port
to which messages of type a can be sent:

openPort :: Port a -> [a] -> Constraint
send :: a -> Port a -> Constraint

The evaluation of “openPort p s” where p and s are uninstantiated variables
establishes a port constraint which is satisfied iff all elements in the port p
also occur in the message stream s and vice versa. A message m is sent to the
port p by evaluating the constraint “send m p” which constrains (in constant
time) p and the corresponding stream s to hold the element m. From a logic
programming point of view, p and s are partially instantiated variables that are
more and more constrained by solving the constraint “send m p”. In contrast to
the purely functional part of Curry, the communication i1s performed in a strict
manner to avold a communication overhead in a distributed system, i.e., the
message m is reduced to a data term before sending it.



With the use of ports, we can define a generic constraint new

new :: (st -> [mt] -> Constraint) -> st —-> Port mt —-> Constraint
new obj st p = let s free in openPort p s &> obj st s

to create new objects with initial state st and communication port p. Thus,
let cp free in new counter O cp & <clientl cp & client2 cp

creates a counter with two different clients. Each client can increment the counter
by solving the constraint “send Inc cp”. The current state of the counter can be
asked by “send (Get x) cp” so that x is unified with the current counter value.
Thus, free variables in messages provide an elegant method to return values to
the sender without explicitly creating reply channels.

In order to support the programming of distributed systems, where different
components run on different machines in the Internet, ports can be declared
as erternal so that they are accessible from outside. This feature together with
concrete examples for distributed applications using ports can be found in [8].

4 A Functional Logic GUI Library

A main objective of our GUI library is a design which smoothly interacts with the
features of the base language Curry. In particular, a careful design is necessary to
deal with features like non-determinism and search. We solve this by using ports
for GUT communication. Therefore, we introduce a new primitive I/O action

openWish :: String -> I0 (Port TkMsg) .

“openWish t” creates a new GUI window with title t and returns a communic-
ation port for this GUL The (abstract) data type TkMsg® is the type of possible
messages for GUI communication. These are only used in the implementation
of the GUI library but not visible to the user of the library. The important
design issue is the fact that a GUI communication port is always external and
created by such an I/O action. Since the GUI communication port is a global
variable, disjunctive computations or search are not performed for subexpres-
sions containing a reference to such a port (compare Sect. 2). This behavior is
perfectly intended since it avoids the potential duplication of GUIs in different
disjunctive branches of a computation. Nevertheless, the non-deterministic fea-
tures of the base language can be used inside a GUI if the search computations
are encapsulated and do not refer to the global port.

After the creation of a GUI communication port gp, we can run a
GUI specification gs (like the one shown in Fig. 2) by the constraint
“runWidgetOnPort gs gp’. Basically, runWidgetOnPort communicates with
the port gp by translating the GUI specification gs into appropriate Tcl com-
mands (see Sect. 7). The I/O action runWidget (see Fig. 1) composes the func-
tionality of openWish and runWidgetOnPort: it creates a new GUI communic-
ation port and runs the GUI specification on this port. Note that runWidget

® Most of the identifiers defined in the GUI library are prefixed by Tk since the library
is based on the Tcl/Tk toolkit. Similarly, the name openWish refers to the fact that
the windowing shell wish is used for the communication with the Tk toolkit.



executes a GUI as an I/O action whereas runWidgetOnPort executes a GUI as a
(concurrent) constraint. Therefore, runWidget is usually applied when one GUI
is executed as the main program (Fig. 1), whereas runWidgetOnPort is applied
when one GUI should be executed concurrently to other activities (e.g., other
concurrent objects or GUIS, see Sect. 5).

Layout structure of a GUI: A GUI specification is a description of the hier-
archical layout structure of the GUI together with the actions that should be
performed when, for instance, a GUI button is pressed. To be more precise, a
GUI specification is a term of the following data type (here we list only the
widgets used in the examples of this paper):

data TkWidget a = TkButton (Port TkMsg -> a) [TkConfltem a]

| TkCheckButton [TkConfItem al
| TkEntry [TkConfItem al
| TkLabel [TkConfItem al

| TkRow [TkCollectionOption] [TkWidget al]
| TkCol [TkCollectionOption] [TkWidget al]

Thus, a GUI specification is a simple widget (like a button or entry), a row
(TkRow) or a column (TkCol) of widgets.® The first parameter of TkRow/TkCol
specifies additional options for the geometric alignment for widget composition,
like centering, left alignment, expanding subwidgets if extra space is available:

data TkCollectionOption = TkCenter | TkLeft | ... | TkExpand

A button widget (TkButton) is intended to perform an action whenever the user
presses this button. Therefore, an event handler is associated to each button
widget (first parameter). Other widgets can also contain event handlers but
they are optionally associated in the list of configuration items (see below).
Since these event handlers are responsible for an event of a specific GUI, event
handlers have type “Port TkMsg -> a” where a is the result type of the event
handler which is either Constraint (for GUIs executed concurrently to other
objects) or 10 () (for GUIs executed as an I/O action). Consequently, this type
variable is also a parameter for the entire GUI structure.

Logical structure of a GUI: Before discussing event handlers in more detail, we
must understand the concept to describe the logical structure of GUIs. As men-
tioned in the introduction, GUIs have a layout structure and a logical structure.
While the layout structure is simply described by composing simple widgets into
widget collections (TkRow and TkCol), the logical structure contains dependen-
cies between different widgets and their event handlers. For instance, pressing
some button usually results (after some computation) in the update of one or
more other widgets. Although many GUI libraries (e.g., [14,19]) are based on
user-selected strings to identify the different widgets, we propose to use logical
variables to refer to individual widgets which avoids many programming errors

® The row/column organization of widgets is sufficient for our purposes but one can
also extend the library to cover other forms of widget collections (see also Sect. 6).



and provides for better abstractions. For this purpose, each primitive widget can
have a number of items to configure the widget, like”

data TkConfltem a =

TkRef TkRefType -- a reference to this widget
| TkText String -- an initial text contents
| TkWidth Int -- the width of a widget
| TkBackground String —-- the background color
| TkCmd (Port tkMsg -> a) -- an associated event handler

Most of these configuration items directly correspond to similar options in the
Tk toolkit with the exception of TkRef. Since TkRefType, the type of all widget
references, is abstract, i.e., no constructors of this data type are available to
the user of the GUI library, the only reasonable way to use the TkRef item is
with a free logical variable as shown in Fig. 2. If we run a GUI specification on
a concrete port, this variable will be instantiated to a unique widget reference
which is not visible to the user. The important point is that this variable can also
be used in event handlers for other widgets in the same GUI. For this purpose,
there are the following primitives to construct event handlers for GUIs:

tkExit :: Port TkMsg -> I0 ()

tkGetValue :: TkRefType -> Port TkMsg -> IO String

tkSetValue :: TkRefType -> String -> Port TkMsg -> I0 ()

tkUpdate :: (String->String) -> TkRefType -> Port TkMsg -> I0 ()

tkExit terminates the GUI, tkGetValue gets the (String) value currently stored
in the widget referred by its first argument, tkSetValue sets the value stored
in the referred widget, and tkUpdateValue updates the value according to an
update function. The same set of primitives is also available for GUIs executed
as a concurrent constraint:

tkCExit :: Port TkMsg —> Constraint
tkCGetValue :: TkRefType -> Port TklMsg -> String —-> Constraint

The event handlers attached to some widget are automatically invoked with the
current GUI communication port whenever a GUI specification is executed by
runWidgetOnPort (or runWidget), see also the examples in Fig. 1 and 2. Thus,
a GUI specification is executed by sending commands that create the widget
layout through the communication port followed by a scheduler which invokes
the corresponding event handlers whenever the user performs some action on
the GUT (see Sect. 7 for more details).

To change the configuration of widgets dynamically (e.g., changing colors,
deactivating or activating buttons and entries), there is also a primitive

tkConfig :: TkRefType —-> TkConfltem a -> Port TkMsg -> I0 ()
which adds a configuration item to a particular widget in a GUIL
7 Note that not all configuration items are meaningful for all widgets. This is checked

at run time in our library, but in can be also checked at compile time with a more
sophisticated type system, as proposed in [3].



5 Example: A Calculator

We have already seen in Fig. 1 and 2 two specifications of simple GUIs
using our library. However, many interactive applications [OelElES
contain a state which is shown and modified by a GUI. |[[z1a75

To demonstrate the implementation of these kinds of | , | 2 | 3 | . |
applications with our GUI concept, we present in the
following the implementation of a simple calculator GUI as 4 | 3 | 6 | - |
shown to the right. We model the calculator as an object | 7 | 8 | 9 |
which accepts the following messages:

C 1] = f

data CalcMsg = Button Char | Display String | | |—|
The message “Button ¢” is sent whenever the button ¢ (e.g., 217, 227 ... 2+,
*%7 ... is pressed. The message “Display s” is sent to get the current value

of the operand, i.e., the argument s (which is usually an unbound variable) is
instantiated with the current operand of the calculator. The calculator’s local
state is a pair (d,f) with the current operand d and an accumulator function
f to be applied to d (this idea is due to [19]). With the techniques sketched
in Sect. 3, we can implement calculator objects as follows (the rigid Boolean
function == tests the equality of two ground expressions, i.e., e;==es reduces
to True if both e; and es are reducible to identical ground data terms; (e op)
denotes the partial application of the operator op to the left argument e):

calcMgr :: (Int,Int->Int) -> [CalcMsg] -> Constraint
calcMgr eval rigid
calcMgr (d,f) (Display s : ms) = s=:=(show d) &> calcMgr (d,f) ms
calcMgr (d,f) (Button b : ms)
| isDigit b = calclgr (10*%d + ord b - ord’0’, £f) ms

[ b=="+’ = calcMgr (0, ((f d4) +)) ms

| b=="-" = calcMgr (0, ((£f d4) -)) ms

| b=="%’ = calcMgr (0, ((f d) *)) ms

| b=="/" = calcMgr (0, ((£f d) ‘div‘)) ms
| b=="=" = calcMgr (f d, id) ms

| b=="¢C" = calcMgr (0, id) ms

Since the GUI needs a reference to the calculator object, we add it as a parameter

cm to the GUI:

calc_GUI cm = TkCol [] [TkEntry [TkRef display, TkText "0"],
TkRow [] (map cbutton [’1’,°27,°3’,°+°]),
TkRow [] (map cbutton [’4’,°5’,’6°,’-’]1),
TkRow [] (map cbutton [’7’,°87,°9’,’%°]),
TkRow [] (map cbutton [’C’,’0°,’=’,7/°]1)]
where display free
cbutton ¢ = TkButton (button_pressed c) [TkText [c]]
button_pressed ¢ gp = let d free in
send (Button c¢) cm &>
send (Display d) cm &>
tkCSetValue display d gp

10



Here we exploit the higher-order features of the base language: To create the
individual buttons, we use a generic function cbutton which is mapped on the
particular lists of characters. The event handler button_pressed for each button
sends a corresponding Button message to the calculator and shows the new
operand of the calculator in the display widget. A new calculator application
on a given GUI communication port gp is created by the following function:

runCalcOnPort gp
| let cm free in
new calcMgr (0,id) cm & runWidgetOnPort (calc_GUI cm) gp
= done

Now the complete application is started by
openWish "Calculator'" >>= runCalcOnPort

This implementation is modular similarly to the classical model-view-controller
paradigm of Smalltalk-80 [13]. The application (represented by calcMgr) is com-
pletely independent to the user interface. All the programming techniques of the
base language (laziness, higher-order functions, constraints, search etc.) can be
used to implement the application. Due to the independence of the user interface
and the application, it is also possible to have several GUIs (which represents
the applications in different ways) for one application. In our implementation
above, this is easily possible by changing the function runCalcOnPort to start
one application together with several concurrent GUIs. This feature of our GUI
design is also useful for developing GUIs for distributed applications where the
GUI shows and manipulates different components of a distributed system. For
instance, we have implemented a GUI for sending emails where the email address
can be inserted by querying an address server running on some other machine.
Due to lack of space, we omit a concrete example for this, but from the previous
example it should be obvious how to use the distributed features of Curry (see

Sect. 3 and [8]) in GUIs.

6 Application-Oriented Extensions

This section shows how the features of the base language can be exploited to
define new application-oriented graphical elements for GUIs. As a simple ex-
ample (which is often predefined in GUI libraries), consider the implementa-
tion of a radio button column as a new GUI element. A radio button column
is a column of check buttons where at most one button is “on”, i.e., if the
user activates a button in this column, all other buttons must be set to “off”
(for the sake of simplicity, the values “off” and “on” are represented by the
strings "0" and "1"). This can be implemented by the following function, where
“radioButtonCol r labs cmd” creates a new radio button column with refer-
ence r, labels labs (i.e., the strings shown at each button) and event handler
cmd which is called whenever the user presses a button (the auxiliary functions
gen_varsn returns a list of n unbound variables, {117 returns the #-th element
of the list /, and removei [ removes the i-th element from the list {):

11



radioButtonCol r labs cmd
| r =:= gen_vars (length labs) = TkCol [TkLeft] (gen_rb 0)

where gen_rb i = if i==(length labs) then []
else TkCheckButton [TkText (labs!'i), TkRef (r!!'i),
TkCmd (rbemd (r!'!'i) (remove i r) cmd)]
: gen_rb (i+1)

rbemd sel oth cmd gp =
tkGetValue sel gp >>= \sv -> --get state sv of this checkbutton
(if sv=="1" then foldr (>>) done (map (\o->tkSetValueo "0" gp) oth)
else done ) >>
cmd gp

Thus, each button of a radio button column 1s a check button with an event
handler which sets the other buttons (oth) to “off” whenever it is turned on,
followed by the execution of the event handler cmd for the radio button. Two
operations are important on radio buttons: get the index of the activated button
in the column (or -1 if there is no active button) and activate a particular button.
These operations can be defined as follows:

getRadioValue [] _ = return (-1)
getRadioValue (r:rs) gp = tkGetValue r gp >>= \rval ->
if rval=="1" then return 0
else getRadioValue rs gp >>= \rspos ->

return (if rspos>=0 then rspos+1l else -1)

setRadioValue [1 _ _ = done
setRadioValue (r:rs) i gp =
tkSetValue r (if i==0 then "1" else "0") gp >>

setRadioValue rs (i-1) gp

Due to the functional dimension of the base language, we can use radio button
columns like any other widget in GUI specifications. For yRTeGiaL: (Nl

instance, a “traffic light GUI” as shown to the right, where
the user can click on two traffic lights and the program
ensures the pairwise exclusion of both red and green lights,
is implemented by the following simple GUI specification: |# Green i Green

TkRow [] [radioButtonCol 11 ["Red","Yellow",'"Green"] (ex 11 12),
radioButtonCol 12 ["Red","Yellow","Green"] (ex 12 11)]
where 11,12 free

ex 11 12 gp = getRadioValue 11 gp >>= \sel ->
if sel>=0 then setRadioValue 12 (2-sel) gp else done

i Red #i Red
1 Yellow _: Yellow

The event handler ex ensures that, whenever the user selects Red (Yellow,
Green) for one traffic light, the other light switches to Green (Yellow, Red).

In a similar way, one can implement other more advanced graphical abstrac-
tions. For instance, one can define sets of radio buttons which are not simply
mutually exclusive, like in the traffic light example, but must satisfy more com-
plex constraints (“constraint buttons”). Due to the constraint logic programming
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features of Curry, such abstractions are fairly easy to implement. The usefulness
of constraints in the design of user interfaces has been discussed elsewhere [16].

Note the importance of the use of free logical variables for widget references to
built new graphical abstractions. If one assigns fixed strings to refer to widgets,
as for instance in [14,19], name conflicts can easily occur.

7 Implementation

The entire GUI library is implemented in Curry based on the connection to the
Tcl/Tk toolkit [14]. The only extension which has been added to Curry is the
connection to a windowing shell wish via the I/O action openWish (see Sect. 4).
The messages sent to this port are of the following type:

data TkMsg = TkPut String | TkGet String

If the message “TkPut s” is sent to the port, the string s, which must be a
valid Tcl command, is added to the input stream of the wish. On the other
hand, the message “TkGet s” unifies the argument variable s with the next line
of the output stream of the wish. These two messages are sufficient to imple-
ment runWidgetOnPort in Curry. First of all, the GUI specification is translated
into a Tcl/Tk script to create the GUI layout which is sent to the wish via
the message TkPut. Additionally, runWidgetOnPort creates a call-back list for
handling the GUT events. If the user manipulates the GUI (e.g., press a but-
ton) so that an event occurs for which an event handler is defined, the wish
emits a message on its output stream. This message is analyzed by the sched-
uler in runWidgetOnPort which calls the responsible event handler stored in the
call-back list. Furthermore, the primitive event handlers like tkGetValue and
tkSetValue are implemented by sending Tcl/Tk scripts that set or extract the
corresponding GUI values.

Although all communication between the Curry system and Tcl/Tk is done
by strings which have to be interpreted on both sides, this kind of implementation
is efficient enough in our practical experiences. This is due to the fact that
the communication in interactive applications tends to be slow since the user
is usually much slower than the system. Therefore, the connection to Tcl/Tk
through a port is sufficient for implementing practical systems. Furthermore, this
technique supports an easy reuse of this library in other Curry implementations.

8 Conclusions and Related Work

We have presented a library for implementing GUIs in the functional logic lan-
guage Curry. We have exploited the functional as well as the logic features of
Curry for the design of the library. The functional features are used to define
the layout structure of GUIs and to built new application-oriented graphical
abstractions. The logic features (logical variables) are used to specify the logic
dependencies inside a GUI. This allows a compact and readable specification of
GUIs as expressions of a particular data type rather than a sequence of actions to
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built the GUI. As far as we know, this is the first approach to design a functional
logic GUI library. Nevertheless, we want to relate it to some other approaches
for GUI programming in declarative languages.

TkGofer [3] extends Gofer, a lazy functional language similar to Haskell, with
a library for GUI programming. Similarly to our approach, the implementation is
based on Tcl/Tk. TkGofer uses a monadic approach for GUI programming which
forces the user to an imperative style. The different widgets are defined in a flat
and sequential order and are later composed to a hierarchical layout structure
by pack operations, similarly to Tcl/Tk scripts. This has the disadvantage that
the layout structure is not defined together with the individual widgets and each
widget must be given a name—even if they are used only once like the labels or
buttons in Fig. 1 and 2. Furthermore, TkGofer is based on a sequential functional
language. Thus, logic programming techniques like constraint solving as well as
features for concurrent and distributed programming are not available.

The same holds for Fudgets [2], a GUI concept for lazy functional languages.
Fudgets are processes accepting messages (for manipulating the state) and deliv-
ering messages (for sending information about an event). Primitive fudgets, like
buttons, text inputs etc., are composed to more complex entities by connecting
the input and output streams of the different fudgets. This approach makes it
necessary to pass the GUI events via streams to the corresponding widgets to
be manipulated by these events, which leads to less intuitive GUI specifications
than using direct references to the corresponding widgets as in our approach.

Haggis [5] is a further GUI framework for Haskell. Tt is based on monadic I/0
and uses concurrent processes to handle events. Instead of specifying a handler
to be invoked when an event occurs, a new process is created that waits for this
event. This has the drawback that widgets have two handlers in Haggis (one for
the layout and one for the event handling).

Our proposal for GUI programming is not just an adaptation of existing
GUI library designs to an integrated functional logic language, but it exploits
the features of such an integrated language to support simple and readable GUI
specifications. Moreover, the features of the base language like higher-order func-
tions, constraints, and concurrency can be used to build new application-oriented
graphical abstractions in a simple way and to support a modular connection of
the application program to the user interface. In particular, the distribution
features of Curry largely simplify the implementation of user interfaces for dis-
tributed systems.

The current definition of Curry has also some limitations which restricts
the design of our GUI library. Currently, Curry has a Hindley-Milner like poly-
morphic type system [4]. It has been shown in [3] that a richer type system
including type classes can improve the structure of a GUI library so that more
errors can be caught at compile time. Since this is independent on the design
issues discussed in this paper, we plan for the future to refine the design of our
GUI library with a more sophisticated type system. Another topic for future
work is to add the possibility to dynamically change the layout structure of
GUIs which is currently not supported.
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