
Using an Abstra
t Representation to Spe
ializeFun
tional Logi
 Programs?Elvira Albert1, Mi
hael Hanus2, and Germ�an Vidal11 DSIC, UPV, Camino de Vera s/n, E-46022 Valen
ia, Spainfealbert,gvidalg�dsi
.upv.es2 Institut f�ur Informatik, CAU Kiel, Olshausenstr. 40, D-24098 Kiel, Germanymh�informatik.uni-kiel.de

Springer-VerlagIn Pro
. of the 7th International Conferen
e on Logi
 for Programming andAutomated Reasoning, LPAR'2000, La Reunion.Springer LNCS 1955, pp. 381{398, 2000

Abstra
t. This paper introdu
es a novel approa
h for the spe
ializa-tion of fun
tional logi
 languages. We
onsider a maximally simpli�edabstra
t representation of programs (whi
h still
ontains all the ne
es-sary information) and de�ne a non-standard semanti
s for these pro-grams. Both things mixed together allow us to design a simple and
on-
ise partial evaluation method for modern fun
tional logi
 languages,avoiding several limitations of previous approa
hes. Moreover, sin
e theselanguages
an be automati
ally translated into the abstra
t representa-tion, our te
hnique is widely appli
able. In order to assess the pra
ti-
ality of our approa
h, we have developed a partial evaluation tool forthe multi-paradigm language Curry. The partial evaluator is written inCurry itself and has been tested on an extensive ben
hmark suite (evena meta-interpreter). To the best of our knowledge, this is the �rst purelyde
larative partial evaluator for a fun
tional logi
 language.1 Introdu
tionPartial evaluation (PE) is a sour
e-to-sour
e program transformation te
hniquefor spe
ializing programs w.r.t. parts of their input (hen
e also
alled programspe
ialization). PE has been studied, among others, in the
ontext of fun
tionalprogramming (e.g., [9, 21℄), logi
 programming (e.g., [12, 24℄), and fun
tionallogi
 programming (e.g., [4, 22℄). While the aim of traditional partial evaluationis to spe
ialize programs w.r.t. some known data, several PE te
hniques are ableto go beyond this goal, a
hieving more powerful program optimizations. Thisis the
ase of a number of PE methods for fun
tional programs (e.g., positivesuper
ompilation [27℄), logi
 programs (e.g., partial dedu
tion [24℄), and fun
-tional logi
 programs (e.g., narrowing-driven PE [4℄). A
ommon pattern of thesete
hniques is that they are able to a
hieve optimizations regardless of whetherknown data are provided (e.g., they
an eliminate some intermediate data stru
-tures, similarly to Wadler's deforestation [28℄). In some sense, these te
hniquesare stronger theorem provers than traditional PE approa
hes.? This work has been partially supported by CICYT TIC 98-0445-C03-01, by A

i�onIntegrada hispano-alemana HA1997-0073, and by the DFG under grant Ha 2457/1-1.

Re
ent proposals of multi-paradigm de
larative languages amalgamate themost important features of fun
tional, logi
 and
on
urrent programming (see[14℄ for a survey). The operational semanti
s of these languages is usually basedon a
ombination of two di�erent operational prin
iples: narrowing and residua-tion [15℄. The residuation prin
iple is based on the idea of delaying fun
tion
allsuntil they are ready for a deterministi
 evaluation (by rewriting). On the otherhand, the narrowing me
hanism allows the instantiation of variables in inputexpressions and, then, applies redu
tion steps to the fun
tion
alls of the instan-tiated expression. Due to its optimality properties w.r.t. the length of derivationsand the number of
omputed solutions, needed narrowing [6℄ is
urrently the bestnarrowing strategy for fun
tional logi
 programs. The formulation of needed nar-rowing is based on the use of de�nitional trees [5℄, whi
h de�ne a strategy toevaluate fun
tions by applying narrowing steps.In this work, we are
on
erned with the PE of fun
tional logi
 languages.The �rst approa
h to this topi
 was the narrowing-driven PE of [4℄, whi
h
on-sidered fun
tional logi
 languages with an operational semanti
s based solelyon narrowing. Re
ently, [2℄ introdu
ed an extension of this basi
 framework inorder to
onsider also the residuation prin
iple. Using the terminology of [13℄,the narrowing-driven PE methods of [2, 4℄ are able to produ
e both polyvariantand polygeneti
 spe
ializations, i.e., they
an produ
e di�erent spe
ializations forthe same fun
tion de�nition and
an also
ombine distin
t original fun
tion def-initions into a
omprehensive spe
ialized fun
tion. This means that narrowing-driven PE has the same potential for spe
ialization as positive super
ompilation[27℄ and
onjun
tive partial dedu
tion [10℄ (a
omparison
an be found in [4℄).Despite its power, the narrowing-driven approa
h to PE su�ers from severallimitations: (i) Firstly, in the
ontext of lazy fun
tional logi
 languages, expres-sions in head normal form (i.e., rooted by a
onstru
tor symbol)
annot beevaluated at PE time. This restri
tion is imposed be
ause the ba
kpropagationof bindings to the left-hand sides of residual rules
an in
orre
tly restri
t thedomain of fun
tions (see Example 2). (ii) Se
ondly, if one intends to develop aPE s
heme for a realisti
 multi-paradigm de
larative language, several high-level
onstru
ts have to be
onsidered: higher-order fun
tions,
onstraints, programannotations,
alls to external fun
tions, et
. A
omplex operational
al
ulus isrequired to properly deal with these additional features of modern languages.It is well-known that a partial evaluator normally in
ludes an interpreter of thelanguage. Therefore, as the operational semanti
s be
omes more elaborated, theasso
iated PE te
hniques be
ome (more powerful but) also in
reasingly more
omplex. (iii) Finally, an interesting appli
ation of PE is the generation of
om-pilers and
ompiler generators [21℄. For this purpose, the partial evaluator mustbe self-appli
able, i.e., able to partially evaluate itself. This be
omes diÆ
ult inthe presen
e of high-level
onstru
ts su
h as those mentioned in (ii). As advisedin [21℄, it is essential to
ut the language down to the bare bones in order toa
hieve self-appli
ation.In order to over
ome the aforementioned problems, a promising approa
h su
-
essfully tested in other
ontexts (e.g., [7, 25℄) is to
onsider programs written in

a maximally simpli�ed programming language, into whi
h programs written in ahigher-level language
an be automati
ally translated. Re
ently, [18℄ introdu
edan expli
it representation of the stru
ture of de�nitional trees (used to guide theneeded narrowing strategy) in the rewrite rules. This provides more expli
it
on-trol and leads to a
al
ulus simpler than standard needed narrowing. Moreover,sour
e programs
an be automati
ally translated to the new representation.1 Inthis work, we
onsider a very simple abstra
t representation of fun
tional logi
programs whi
h is based on the one introdu
ed in [18℄. As opposed to [18℄, ourabstra
t representation in
ludes also information about the evaluation type offun
tions:
exible |whi
h enables narrowing steps| or rigid |whi
h for
es de-layed evaluation by rewriting. Then, we de�ne a non-standard semanti
s whi
his spe
ially well-suited to perform
omputations at PE time. This is a
ru
ial dif-feren
e with previous approa
hes [2, 4℄, where the same me
hanism is used bothfor program exe
ution and for PE. The use of an abstra
t representation, to-gether with the new
al
ulus, allows us to design a simple and
on
ise automati
PE method for modern fun
tional logi
 languages, breaking the limitations ofprevious approa
hes.Finally, sin
e truly lazy fun
tional logi
 languages
an be automati
ally trans-lated into the abstra
t representation (whi
h still
ontains all the ne
essary in-formation about programs), our te
hnique is widely appli
able. Following thiss
heme, partially evaluated programs will be also written in the abstra
t repre-sentation. Sin
e existing
ompilers use a similar representation for intermediate
ode, this is not a restri
tion. Rather, our spe
ialization pro
ess
an be seen asan optimization phase (transparent to the user) performed during the
ompila-tion of the program. In order to assess the pra
ti
ality of our approa
h, we havedeveloped a PE tool for the multi-paradigm language Curry [19℄. The partialevaluator is written in Curry itself and has been tested on an extensive set ofben
hmarks (even a meta-interpreter). To the best of our knowledge, this is the�rst purely de
larative partial evaluator for a fun
tional logi
 language.The stru
ture of this paper is as follows. After providing some preliminaryde�nitions in Se
t. 2, we present our approa
h for the PE of fun
tional logi
 lan-guages based on the use of an abstra
t representation in Se
t. 3. We also dis
ussthe limitations of using the standard semanti
s during PE and, then, introdu
ea more suitable semanti
s. Se
tion 4 presents a fully automati
 PE algorithmbased on the previous ideas, and Se
t. 5 shows some ben
hmarks performed withan implementation of the partial evaluator. Finally, Se
t. 6
on
ludes and dis-
usses some dire
tions for future work. More details and missing proofs
an befound in [3℄.2 PreliminariesIn this se
tion we re
all, for the sake of
ompleteness, some basi
 notions fromterm rewriting [11℄ and fun
tional logi
 programming [14℄. We
onsider a (many-1 Indeed, it
onstitutes the basis of a re
ent proposal for an standard intermediatelanguage, FlatCurry, for the
ompilation of Curry programs [20℄.

sorted) signature � partitioned into a set C of
onstru
tors and a set F of(de�ned) fun
tions or operations. We write
=n 2 C and f=n 2 F for n-ary
onstru
tor and operation symbols, respe
tively. There is at least one sort Bool
ontaining the
onstru
tors True and False. The set of terms and
onstru
torterms with variables (e.g., x; y; z) from V are denoted by T (C[F ;V) and T (C;V),respe
tively. The set of variables o

urring in a term t is denoted by Var(t). Aterm is linear if it does not
ontain multiple o

urren
es of any variable. Wewrite on for the sequen
e of obje
ts o1; : : : ; on. We denote by root(t) the symbolat the root of the term t. A position p in a term t is denoted by a sequen
e ofnatural numbers. Positions are ordered by: u � v, if 9w su
h that u:w = v. Thesubterm of t at position p is denoted by tjp, and t[s℄p is the result of repla
ingthe subterm tjp by the term s.We denote a substitution � by fx1 7! t1; : : : ; xn 7! tng with �(xi) = ti fori = 1; : : : ; n (where xi 6= xj if i 6= j), and �(x) = x for all other variablesx. By abuse, Dom(�) = fx 2 V j �(x) 6= xg is
alled the domain of �. Also,Ran(�) = f�(x) j x 2 Dom(�)g. A substitution � is a
onstru
tor substitution,if �(x) is a
onstru
tor term 8x 2 Dom(�). The identity substitution is denotedby f g. Given a substitution � and a set V � V , we denote the substitutionobtained from � by restri
ting its domain to V by �j�V . We write � = � [V ℄ if�j�V = �j�V , and � � � [V ℄ denotes the existen
e of a substitution
 su
h that
 Æ � = � [V ℄. A term t0 is an instan
e of t if 9� with t0 = �(t).A set of rewrite rules l = r su
h that l 62 V , and Var(r) � Var(l) is
alleda term rewriting system (TRS). The terms l and r are
alled the left-hand sideand the right-hand side of the rule, respe
tively. A rewrite step is an appli
ationof a rewrite rule to a term, i.e., t !p;R s if there exists a position p in t, arewrite rule R = (l = r) and a substitution � with tjp = �(l) and s = t[�(r)℄p.Given a relation !, we denote by !+ the transitive
losure of !, and by !�the transitive and re
exive
losure of !. A (
onstru
tor) head normal form iseither a variable or a term rooted by a
onstru
tor symbol. To evaluate terms
ontaining variables, narrowing nondeterministi
ally instantiates the variablesso that a rewrite step is possible. Formally, t;p;R;� t0 is a narrowing step if p isa non-variable position in t and �(t)!p;R t0. We denote by t0 ;�� tn a sequen
eof narrowing steps t0 ;�1 : : : ;�n tn with � = �n Æ � � � Æ �1. (If n = 0 then� = f g.) In fun
tional programming, one is interested in the
omputed valuewhereas logi
 programming emphasizes the di�erent bindings (answers). In anintegrated setting, given a narrowing derivation t0 ;�� tn, we say that tn is the
omputed value and � is the
omputed answer for t0.3 Using an Abstra
t Representation for PEIn this se
tion, we present an appropriate abstra
t representation for modernfun
tional logi
 languages. We also provide a non-standard operational semanti
swhi
h is spe
ially well-suited to perform
omputations during partial evaluation.First, let us brie
y re
all the basis of the narrowing-driven approa
h to PE of[4℄. Informally speaking, given a parti
ular narrowing strategy;, the (paramet-

ri
) notions of resultant and partial evaluation are de�ned as follows. A resultantis a program rule of the form: �(s) = t asso
iated to a narrowing derivation:s ;+� t. A partial evaluation for a term s in a program R is
omputed by
on-stru
ting a �nite (possibly in
omplete) narrowing tree for this term, and thenextra
ting the resultants asso
iated to the root-to-leaf derivations of the tree.Depending on the
onsidered
lass of programs (and the asso
iated narrowingstrategy), a PE might require a post-pro
essing of renaming to re
over the same
lass of programs. An intrinsi
 feature of the narrowing-driven approa
h is theuse of the same operational me
hanism for both exe
ution and PE.3.1 The Abstra
t RepresentationRe
ent approa
hes to fun
tional logi
 programming
onsider indu
tively sequen-tial systems as programs and a
ombination of needed narrowing and residuationas operational semanti
s [15, 19℄. The pre
ise me
hanism (narrowing or residua-tion) for ea
h fun
tion is spe
i�ed by evaluation annotations, whi
h are similarto
oroutining de
larations in Prolog, where the programmer spe
i�es
onditionsunder whi
h a
all is ready for a resolution step. Fun
tions to be evaluated in adeterministi
 manner are de
lared as rigid (whi
h for
es deferred evaluation byrewriting), while fun
tions providing for nondeterministi
 evaluation steps arede
lared as
exible (whi
h enables narrowing steps).Similarly to [18℄, we present an abstra
t representation for programs in whi
hthe de�nitional trees (used to guide the needed narrowing strategy) are madeexpli
it by means of
ase
onstru
ts. Moreover, here we distinguish two kindsof
ase expressions in order to make also expli
it the
exible/rigid evaluationannotations. In parti
ular, we assume that all fun
tions are de�ned by one rulewhose left-hand side
ontains only variables as parameters and the right-handside
ontains
ase expressions for pattern-mat
hing. Thanks to this new rep-resentation, we
an de�ne a simple operational semanti
s, whi
h will be
omeessential to simplify the de�nition of the asso
iated PE s
heme. The syntax forprograms in the abstra
t representation is summarized as follows:R ::= D1 : : : Dm t ::= v (variable)D ::= f(v1; : : : ; vn) = t j
(t1; : : : ; tn) (
onstru
tor)j f(t1; : : : ; tn) (fun
tion
all)p ::=
(v1; : : : ; vn) j
ase t0 of fp1 ! t1; : : : ; pn ! tng (rigid
ase)j f
ase t0 of fp1 ! t1; : : : ; pn ! tng (
exible
ase)where R denotes a program, D a fun
tion de�nition, p a pattern and t an ar-bitrary expression. A program R
onsists of a sequen
e of fun
tion de�nitionsD su
h that the left-hand side is linear and has only variable arguments, i.e.,pattern mat
hing is
ompiled into
ase expressions. The right-hand side of ea
hfun
tion de�nition is a term t
omposed by variables,
onstru
tors, fun
tion
alls,and
ase expressions. The form of a
ase expression is: (f)
ase t of f
1(xn1)!t1; : : : ;
k(xnk) ! tkg, where t is a term,
1; : : : ;
k are di�erent
onstru
tors ofthe type of t, and t1; : : : ; tk are terms (possibly
ontaining
ase expressions).

The variables xni are
alled pattern variables and are lo
al variables whi
h o
-
ur only in the
orresponding subexpression ti. The di�eren
e between
ase andf
ase shows up when the argument t is a free variable:
ase suspends (whi
h
or-responds to residuation) whereas f
ase nondeterministi
ally binds this variableto the pattern in a bran
h of the
ase expression (whi
h
orresponds to narrow-ing). Fun
tions de�ned only by f
ase (resp.
ase) expressions are
alled
exible(resp. rigid). Thus,
exible fun
tions a
t as generators (like predi
ates in logi
programming) and rigid fun
tions a
t as
onsumers. Con
urren
y is expressedby a built-in operator \&" whi
h evaluates its two arguments
on
urrently. Thisoperator
an be de�ned by the rule: True & True = True and, hen
e, in thefollowing we simply
onsider it as an ordinary fun
tion symbol.Example 1. Consider the rules de�ning the (rigid) fun
tion \ 6 ":20 6 n = True(Su

 m) 6 0 = False(Su

 m) 6 (Su

 n) = m 6 nBy using
ase expressions, they
an be represented by the following rewrite rule:x 6 y =
ase x of f0 ! True;(Su

 x1)!
ase y of f0! False;(Su

 y1)! x1 6 y1g gDue to the presen
e of fresh pattern variables in the right-hand side of therule, this is not a standard rewrite rule. Nevertheless, the redu
tion of a
aseexpression binds these pattern variables so that they disappear during a
on
reteevaluation (see [18℄).3.2 The Residualizing Semanti
sAn automati
 transformation from indu
tively sequential programs to programsusing
ase expressions is introdu
ed in [18℄. They also provide an appropriateoperational semanti
s for these programs: the LNT
al
ulus (Lazy Narrowingwith de�nitional Trees), whi
h is equivalent to needed narrowing over indu
tivelysequential programs. In this work, we
onsider fun
tional logi
 languages with amore general operational prin
iple, namely a
ombination of (needed) narrowingand residuation. Nevertheless, the translation method of [18℄
ould be easilyextended to
over programs
ontaining evaluation annotations; namely,
exible(resp. rigid) fun
tions are translated by using only f
ase (resp.
ase) expressions.Moreover, the LNT
al
ulus of [18℄
an be also extended to
orre
tly evaluate
ase=f
ase expressions. In the following, we refer to the LNT
al
ulus to mean theLNT
al
ulus of [18℄ extended to
ope with
ase=f
ase expressions (the formalde�nition
an be found in [3℄).Unfortunately, by using the standard semanti
s during PE, we would havethe same problems of previous approa
hes (see Se
t. 1). In parti
ular, one of the2 Although we
onsider in this work a �rst-order language, we use a
urried notationin the examples (as is usual in fun
tional languages).

main problems
omes from the ba
kpropagation of variable bindings to the left-hand sides of residual rules. In the
ontext of lazy (
all-by-name) fun
tional logi
languages, this
an provoke an in
orre
t restri
tion on the domain of fun
tions(regarding the ability to
ompute head normal forms) and, thus, the loss of
orre
tness for the transformation whenever some term in head normal form isevaluated during PE. The following example illustrates this point.Example 2. Consider the following program:isZero 0 = TruenonEmptyList (x : xs) = Truefoo x = isZero x : [℄Here we use \[℄" and \:" as
onstru
tors of lists, and \0" and \Su

" to de�nenatural numbers. Then, given the (unique)
omputation for foo y:foo y ;fg (isZero y) : [℄ ;fy7!0g True : [℄where (isZero y) : [℄ is in head normal form, we get the residual rule:foo 0 = True : [℄However, the expression nonEmptyList (foo (Su

 0))
an be evaluated to Truein the original program (redu
ed fun
tions are underlined):nonEmptyList (foo (Su

 0)) ;fg nonEmptyList (isZero (Su

 0) : [℄);fg Truewhereas it is not possible if the residual rule for foo is used (together with theoriginal de�nitions for isZero and nonEmptyList).The restri
tion on forbidding the evaluation of head normal forms
an drasti
allyredu
e the optimization power of the transformation in some
ases. Therefore, wepropose a residualizing version of the LNT
al
ulus whi
h allows us to avoid thisrestri
tion. In the new
al
ulus, variable bindings are en
oded by
ase expressions(and are
onsidered \residual"
ode). The inferen
e rules of the new
al
ulus,RLNT (Residualizing LNT),
an be seen in Fig. 1. Let us explain the inferen
erules de�ning the one-step relation). We note that the symbols \[[" and \℄℄"in an expression like [[t℄℄ are purely synta
ti
al (i.e., they do not denote \thevalue of t"). Indeed, they are only used to guide the inferen
e rules and, mostimportantly, to mark whi
h part of an expression
an be still evaluated (withinthe square bra
kets) and whi
h part must be de�nitively residualized (not withinthe square bra
kets). Let us brie
y des
ribe the rules of the
al
ulus:HNF. The HNF (Head Normal Form) rules are used to evaluate terms in headnormal form. If the expression is a variable or a
onstru
tor
onstant, thesquare bra
kets are removed and the evaluation pro
ess stops. Otherwise,the evaluation pro
eeds with the arguments. This evaluation
an be madein a don't
are nondeterministi
 manner. Note, though, that this sour
e ofnondeterminism
an be easily avoided by
onsidering a �xed sele
tion rule,e.g., by sele
ting the leftmost argument whi
h is not a
onstru
tor term.

HNF [[t℄℄) t if t 2 V or t =
() with
=0 2 C[[
(t1; : : : ; tn)℄℄)
([[t1℄℄; : : : ; [[tn℄℄)Case-of-Case[[(f)
ase ((f)
ase t of fpk ! tkg) of fp0j ! t0jg℄℄) [[(f)
ase t of fpk ! (f)
ase tk of fp0j ! t0jgg℄℄Case Fun
tion[[(f)
ase g(tn) of fpk ! t0kg℄℄) [[(f)
ase �(r) of fpk ! t0kg℄℄if g(xn) = r 2 R is a rule with fresh variablesand � = fxn 7! tngCase Sele
t[[(f)
ase
(tn) of fpk ! t0kg℄℄) [[�(t0i)℄℄ if pi =
(xn);
 2 C; � = fxn 7! tngCase Guess[[(f)
ase x of fpk ! tkg℄℄) (f)
ase x of fpk ! [[�k(tk)℄℄gif �i = fx 7! pig, i = 1; : : : ; kFun
tion Eval [[g(tn)℄℄) [[�(r)℄℄ if g(xn) = r 2 R is a rule with freshvariables and � = fxn 7! tngFig. 1. RLNT Cal
ulusCase-of-Case. This rule moves the outer
ase inside the bran
hes of the innerone. Rigorously speaking, this rule
an be expanded into four rules (withthe di�erent
ombinations for
ase and f
ase expressions), but we keep theabove (less formal) presentation for simpli
ity. Observe that the outer
aseexpression may be dupli
ated several times, but ea
h
opy is now (possibly)s
rutinizing a known value, and so the Case Sele
t rule
an be applied toeliminate some
ase
onstru
ts.Case Fun
tion. This rule
an be only applied when the argument of the
ase isoperation-rooted. In this
ase, it allows the unfolding of the fun
tion
all.Case Guess. It represents the main di�eren
e w.r.t. the standard LNT
al
ulus.In order to imitate the instantiation of variables in needed narrowing steps,this rule is de�ned in the standard LNT
al
ulus as follows:[[f
ase x of fpk ! tkg℄℄)� [[�(ti)℄℄ if � = fx 7! pig; i = 1; : : : ; kHowever, in this
ase, we would inherit the limitations of previous approa
hes.Therefore, it has been modi�ed in order not to ba
kpropagate the bindingsof variables. In parti
ular, we \residualize" the
ase stru
ture and
ontinuewith the evaluation of the di�erent bran
hes (by applying the
orrespondingsubstitution in order to propagate bindings forward in the
omputation).Note that, due to this modi�
ation, no distin
tion between
exible and rigid
ase expressions is needed in the RLNT
al
ulus.Fun
tion Eval. This rule performs the unfolding of a fun
tion
all. As in proofpro
edures for logi
 programming, we assume that we take a program rulewith fresh variables in ea
h su
h evaluation step.

In
ontrast to the standard LNT
al
ulus, the inferen
e system of Fig. 1 is
ompletely deterministi
, i.e., there is no don't know nondeterminism involvedin the
omputations. This means that only one derivation
an be issued from agiven term (thus, there is no need to introdu
e a notion of RLNT \tree").Example 3. Consider the well-known fun
tion app to
on
atenate two lists:app x y =
ase x of f [℄ ! y ;(a : b)! a : (app b y) gGiven the
all app (app x y) z to
on
atenate three lists, we have the following(partial) derivation using the rules of the RLNT
al
ulus:[[app (app x y) z℄℄) [[
ase (app x y) of f[℄! z; (a : b)! (a : app b z)g℄℄) [[
ase (
ase x of f[℄ ! y; (a0 : b0)! (a0 : app b0 y)g)of f[℄ ! z; (a : b)! (a : app b z)g℄℄) [[
ase x of f [℄ !
ase y of f[℄! z; (a : b)! (a : app b z)g;(a0 : b0) !
ase (a0 : app b0 y) of f[℄ : z; (a : b)! (a : app b z)g℄℄)
ase x of f [℄ ! [[
ase y of f[℄! z; (a : b)! (a : app b z)g℄℄;(a0 : b0) ! [[
ase (a0 : app b0 y) of f[℄! z; (a : b)! (a : app b z)g℄℄)�
ase x of f [℄ !
ase y of f[℄! z; (a : b)! (a : [[app b z)℄℄g;(a0 : b0) ! [[
ase (a0 : app b0 y) of f[℄! z; (a : b)! (a : app b z)g℄℄)�
ase x of f [℄ !
ase y of f[℄! z; (a : b)! (a : [[app b z℄℄)g;(a0 : b0) ! (a0 : [[app (app b0 y) z℄℄)gThe resulting RLNT
al
ulus shares many similarities with the driving me
ha-nism of [27℄ and Wadler's deforestation [28℄ (although we obtained it indepen-dently by re�ning the original LNT
al
ulus to avoid the ba
kpropagation ofbindings). The main di�eren
es w.r.t. the driving me
hanism are that we in-
lude the Case-of-Case rule and that driving is de�ned also for if then else
onstru
ts (whi
h
an be expressed in our representation by means of
ase ex-pressions). The main di�eren
e w.r.t. deforestation is revealed in the Case Guessrule, where the patterns pi are substituted in the di�erent bran
hes, like in thedriving transformation. Although it may seem only a slight di�eren
e, situationsmay arise during transformation in whi
h our
al
ulus (as well as the drivingme
hanism) takes advantage of the sharing between di�erent arguments whiledeforestation may not (see [27℄).A
ommon restri
tion in related program transformations is to forbid theunfolding of fun
tion
alls using program rules whose right-hand side is not lin-ear. This avoids the dupli
ation of
alls under an eager (
all-by-value) semanti
sor under a lazy (
all-by-name) semanti
s implementing the sharing of
ommonvariables. Sin
e our
omputation model is based on a lazy semanti
s, whi
h doesnot
onsider the sharing of variables, we
annot in
ur into the risk of dupli
ated
omputations. Nevertheless, if sharing is
onsidered (as in, e.g., the languageCurry), this restri
tion
an be implemented by requiring right-linear programrules to apply the Case Fun
tion and Fun
tion Eval rules.

Regarding the PE of programs with
exible/rigid evaluation annotations,[2℄ introdu
ed a spe
ial treatment in order to
orre
tly infer the evaluation an-notations for residual de�nitions. Within this approa
h, one is for
ed to splitresultants by introdu
ing several intermediate fun
tions in order not to mixbindings whi
h
ome from the evaluation of
exible and rigid fun
tions. More-over, to avoid the
reation of a large number of intermediate fun
tions, only the
omputation of a single needed narrowing step for suspended expressions is al-lowed. Now, by using
ase expressions (instead of fun
tions de�ned by patternsas in [2℄), we are able to pro
eed the spe
ialization of suspended expressions be-yond a single needed narrowing step without being for
ed to split the asso
iatedresultant (and hen
e without in
reasing the size of the residual program). Thisis justi�ed by the fa
t that
ase
onstru
ts preserve the rigid or
exible natureof the fun
tions whi
h instantiate the variables.3 The following example is takenfrom [2℄ and illustrates that the use of
ase
onstru
ts to represent fun
tionde�nitions simpli�es the residual program.Example 4. Consider a program and its PE for the term f x (g y (h z)), a

ordingto the te
hnique introdu
ed in [2℄:f 0 (Su

 0) = 0 % flex f0 0 Y Z = f01 Y Z % flexg 0 0 = (Su

 0) % rigid f01 (Su

 0) Z = f02 Z % rigidh 0 = 0 % flex f02 0 = f03 % flexf03 = 0 % flexwhere f x (g y (h z)) is renamed as f0 x y z. The original program
an betranslated to our abstra
t representation as follows:f x y = f
ase x of f0! f
ase y of f(Su

 0)! 0ggg x y =
ase x of f0!
ase y of f0! (Su

 0)ggh x = f
ase x of f0! 0gThe following PE for f x (g y (h z)),
onstru
ted by using the rules of the RLNT
al
ulus, avoids the introdu
tion of three intermediate rules and, thus, is notablysimpli�ed:f0 x y z = f
ase x of f0!
ase y of f(Su

 0)! f
ase z of f0! 0gggThe next result establishes a pre
ise equivalen
e between the standard semanti
s(the LNT
al
ulus) and its residualizing version. In the following, we denote by)Guess the appli
ation of the following rule from the standard semanti
s:[[f
ase x of fpk ! tkg℄℄)�Guess [[�(ti)℄℄ if � = fx 7! pig; i = 1; : : : ; kFurthermore, we denote by delsq (t) the expression whi
h results from t by delet-ing all the o

urren
es of \[[" and \℄℄" (if any).Theorem 1. Let t be a term, V � Var(t) a �nite set of variables, d a
on-stru
tor term, and R a program in the abstra
t representation. For ea
h LNT3 Indeed, the treatment for
ase=f
ase expressions is the same in the RLNT
al
ulus.

derivation [[t℄℄ �) � d for t w.r.t. R
omputing the answer �, there exists aRLNT derivation [[t℄℄)� t0 for t w.r.t. R su
h that there is a �nite sequen
e[[delsq (t0)℄℄)�1Guess : : :)�nGuess d, where �n Æ : : : Æ �1 = � [V ℄, and vi
e versa.Roughly speaking, for ea
h (su

essful) LNT derivation from t to a
onstru
torterm d
omputing �, there is a
orresponding RLNT derivation from t to t0 inwhi
h the
omputed substitution � is en
oded in t0 by
ase expressions and
anbe obtained by a (�nite) sequen
e of)Guess steps (deriving the same value d).4 Control Issues for Partial EvaluationFollowing [12℄, a simple on-line PE algorithm
an pro
eed as follows. Givena term t and a program R, we
ompute a �nite (possibly in
omplete) RLNTderivation t)+ s for t w.r.t. R.4 Then, this pro
ess is iteratively repeated forany subterm whi
h o

urs in the expression s and whi
h is not
losed w.r.t. theset of terms already evaluated. Informally, the
losedness
ondition guaranteesthat ea
h
all whi
h might o

ur during the exe
ution of the residual programis
overed by some program rule. If this pro
ess terminates, it
omputes a set ofpartially evaluated terms S su
h that the
losedness
ondition is satis�ed and,moreover, it uniquely determines the asso
iated residual program.First, we formalize the notion of
losedness adjusted to our abstra
t repre-sentation.De�nition 1. Let S be a set of terms and t be a term. We say that t is S-
losedif
losed (S; t) holds, where the relation \
losed" is de�ned indu
tively as follows:
losed (S; t) = 8>>><>>>: true if t 2 V
losed (S; t1) ^ : : : ^
losed (S; tn) if t =
(t1; : : : ; tn);
 2 C
losed (t0) ^ Vi2f1;:::;kg
losed (ti) if t = (f)
ase t0 of fpk ! tkgVt02Ran(�)
losed(S; t0) if 9s 2 S su
h that t = �(s)A set of terms T is S-
losed, written
losed (S; T), if
losed (S; t) holds for allt 2 T .A

ording to this de�nition, variables are always
losed, while an operation-rooted term is S-
losed if it is an instan
e of some term in S and the termsin the mat
hing substitution are re
ursively S-
losed. On the other hand, for
onstru
tor-rooted terms and for
ase expressions, we have two nondetermin-isti
 ways to pro
eed: either by
he
king the
losedness of their arguments orby pro
eeding as in the
ase of an operation-rooted term. For instan
e, a
aseexpression su
h as
ase t of fp1 ! t1; : : : ; pk ! tkg
an be proved
losed w.r.t.S either by
he
king that the set ft; t1; : : : ; tkg is S-
losed5 or by testing whetherthe whole
ase expression is an instan
e of some term in S.4 Note that, sin
e the RLNT
al
ulus is deterministi
, there is no bran
hing. Thus,only a single derivation
an be
omputed from a term.5 Patterns are not
onsidered here sin
e they are
onstru
tor terms and hen
e
losedby de�nition.

Example 5. Let us
onsider the following set of terms:S = fapp a b;
ase (app a b) of f[℄! z; (x : y)! (app y z)g g :The following expression
ase (app a0 b0) of f[℄ ! z0; (x0 : y0) ! (app y0 z0)g
an be proved S-
losed using the �rst element of the set (by
he
king that thesubterms app a0 b0 and app y0 z0 are instan
es of app a b) or by testing that thewhole expression is an instan
e of the se
ond element of the set.The PE algorithm outlined above involves two
ontrol issues: the so-
alled lo
al
ontrol, whi
h
on
erns the
omputation of partial evaluations for single terms,and the global
ontrol, whi
h ensures the termination of the iterative pro
ess butstill guaranteeing that the
losedness
ondition is eventually rea
hed. Following[12℄, we present a PE pro
edure whi
h is parameterized by:{ An unfolding rule U (lo
al
ontrol), whi
h determines how to stop RLNTderivations. Formally, U is a (total) fun
tion from terms to terms su
h that,whenever U(s) = t, then there exists a �nite RLNT derivation [[s℄℄)+ t.{ An abstra
tion operator abstra
t (global
ontrol), whi
h keeps the set ofpartially evaluated terms �nite. It takes two sets of terms S and T (whi
hrepresent the
urrent partially evaluated terms and the terms to be addedto this set, respe
tively) and returns a safe approximation of S [T . Here,by \safe" we mean that ea
h term in S [T is
losed w.r.t. the result ofabstra
t(S; T).De�nition 2. Let R be a program and T a �nite set of expressions. We de�nethe PE fun
tion P as follows:P(R; T) = S if abstra
t(fg; T) 7�!�P S and S 7�!P Swhere 7�!P is de�ned as the smallest relation satisfyingS0 = fs0 j s 2 S ^ U(s) = s0gS 7�!P abstra
t(S; S0)We note that the fun
tion P does not
ompute a partially evaluated program,but a set of terms S from whi
h a S-
losed PE
an be uniquely
onstru
tedusing the unfolding rule U . To be pre
ise, for ea
h term s 2 S with U(s) = t,we produ
e a residual rule s = t. Moreover, in order to ensure that the residualprogram ful�lls the syntax of our abstra
t representation, a renaming of thepartially evaluated
alls is ne
essary. This
an be done by applying a standardpost-pro
essing renaming transformation. We do not present the details of thistransformation here but refer to [3℄.As for lo
al
ontrol, a number of well-known te
hniques
an be applied forensuring the �niteness of RLNT derivations, e.g., depth-bounds, loop-
he
ks,well-founded (or well-quasi) orderings (see, e.g., [8, 23, 26℄). For instan
e, an un-folding rule based on the use of the homeomorphi
 embedding ordering has beenproposed in [4℄.As for global
ontrol, an abstra
tion operator should essentially distinguishthe same
ases as in the
losedness de�nition. Intuitively, the reason is that the

abstra
tion operator must �rst
he
k whether a term is
losed and, if not, tryto add this term (or some of its subterms) to the set. Therefore, given a
allabstra
t(S; ftg), an abstra
tion operator usually distinguishes three main
asesdepending on t:{ if t is
onstru
tor-rooted, it tries to add the arguments of t;{ if it is operation-rooted and is an instan
e of some term in S, it tries to addthe terms in the mat
hing substitution;{ otherwise (an operation-rooted term whi
h is not an instan
e of any term inS), it is simply added to S (or generalized in order to keep the set S �nite).Our parti
ular abstra
tion operator uses a quasi-ordering, namely the homeo-morphi
 embedding relation E (see, e.g., [23℄), to ensure termination and gen-eralizes those
alls whi
h do not satisfy this ordering by using the msg (mostspe
i�
 generalization) between terms.6As opposed to previous abstra
tion operators [4℄, here we need to give a spe-
ial treatment to
ase expressions. Of
ourse, if one
onsiders the
ase symbol asan ordinary
onstru
tor symbol, the extension would be straightforward. Unfor-tunately, this will often provoke a serious loss of spe
ialization, as the followingexample illustrates.Example 6. Let us
onsider again the program app and the RLNT derivation ofExample 3:[[app (app x y) z℄℄)� [[
ase (
ase x of f[℄ ! y; (a0 : b0)! (a0 : app b0 y)g)of f[℄ ! z; (a : b)! (a : app b z)g℄℄)�
ase x of f [℄ !
ase y of f[℄! z; (a : b)! (a : [[app b z℄℄)g;(a0 : b0) ! (a0 : [[app (app b0 y) z℄℄)gIf one
onsiders an unfolding rule whi
h stops the derivation at the interme-diate
ase expression, then the abstra
tion operator will attempt to add onlythe operation-rooted subterms app b0 y and app b y to the set of terms to bespe
ialized. This will prevent us from obtaining an eÆ
ient (re
ursive) residualfun
tion for the original term, sin
e we will never rea
h again an expression
ontaining app (app x y) z (see Example 7).On the other hand, by treating
ase expressions as operation-rooted terms, theproblem is not solved. For instan
e, if we
onsider that the unfolding rule returnsthe last term of the above derivation, then it is not
onvenient to add the wholeterm to the
urrent set. Here, the best
hoi
e would be to treat the
ase symbolas a
onstru
tor symbol. Moreover, a similar situation arises when
onsidering
onstru
tor-rooted terms, sin
e the RLNT
al
ulus has no restri
tions to evaluateterms in head normal form.6 A generalization of the set of terms S = ft1; : : : ; tng is a pair ht; f�1; : : : ; �ngi su
hthat, 8i 2 f1; : : : ; ng; �i(t) = ti. The pair ht; f�1; : : : ; �ngi is the most spe
i�
 gen-eralization of S, written msg(S), if ht; f�1; : : : ; �ngi is a generalization and for everyother generalization ht0; f�01; : : : ; �0ngi of S, t0 is more general than t.

Lu
kily, the RLNT
al
ulus gives us some leeway. The key idea is to takeinto a

ount the position of the square bra
kets of the
al
ulus: an expressionwithin square bra
kets should be added to the set of partially evaluated terms(if possible), while expressions whi
h are not within square bra
kets should bede�nitively residualized (i.e., ignored by the abstra
tion operator, ex
ept foroperation-rooted terms).De�nition 3. Given two �nite sets of terms, T and S, we de�ne:7abstra
t(S; T) = �S if T = ?abs(: : : abs(S; t1); : : : ; tn) if T = ft1; : : : ; tng; n � 1The fun
tion abs(S; t) distinguishes the following
ases:abs(S; t) = 8>>>><>>>>:S if t 2 Vabstra
t(S; ft1; : : : ; tng) if t =
(t1; : : : ; tn);
 2 Cabstra
t(S; ft0; t1; : : : ; tng) if t = (f)
ase t0 of fpn ! tngtry add (S; t) if t = f(t1; : : : ; tn); f 2 Ftry add (S; t0) if t = [[t0℄℄Finally, the fun
tion try add (S; t) is de�ned as follows:try add (S; t) = 8>><>>:abstra
t(S n fsg; fs0g [Ran(�1) [Ran(�2))if 9s 2 S: root(s) = root(t) and s E t;where hs0; f�1; �2gi = msg(fs; tg)S [ftg otherwiseLet us informally explain this de�nition. Given a set of terms S, in order to adda new term t, the abstra
tion operator abs distinguishes the following
ases:{ variables are disregarded;{ if t is rooted by a
onstru
tor symbol or by a
ase symbol, then it re
ursivelyinspe
ts the arguments;{ if t is rooted by a de�ned fun
tion symbol or it is en
losed within squarebra
kets, then the abstra
tion operator tries to add it to S with try add(even if it is
onstru
tor-rooted or a
ase expression). Now, if t does notembed any
omparable (i.e., with the same root symbol) term in S, then tis simply added to S. Otherwise, if t embeds some
omparable term of S,say s, then the msg of s and t is
omputed, say hs0; f�1; �2gi, and it �nallyattempts to add s0 as well as the terms in �1 and �2 to the set resulting fromremoving s from S.Let us
onsider an example to illustrate the
omplete PE pro
ess.Example 7. Consider the program Rapp whi
h
ontains the rule de�ning thefun
tion app. In order to
ompute P(Rapp; fapp (app x y) zg), we start with:S0 = abstra
t(fg; fapp (app x y) zg) = fapp (app x y) zg7 The parti
ular order in whi
h the elements of T are added to S by abstra
t
annota�e
t
orre
tness but
an degrade the e�e
tiveness of the algorithm. A more pre
isetreatment
an be easily given by using sequen
es instead of sets of terms.

For the �rst iteration, we assume that:U(app (app x y) z) =
ase x of f [℄ !
ase y of f[℄! z; (a : b)! (a : [[app b z℄℄)g;(a0 : b0)! (a0 : [[app (app b0 y) z℄℄)g(see derivation in Example 3). Then, we
ompute:S1 = abstra
t(S0; fU(app (app x y) z)g) = fapp (app x y) z); app b zgFor the next iteration, we assume that:U(app b z) =
ase b of f[℄! z; (
 : d)!
 : [[app d z℄℄ gTherefore, abstra
t(S1; fU(app b z)g) = S1 and the pro
ess �nishes. The asso
i-ated residual rules are (after renaming the original expression by dapp x y z):dapp x y z =
ase x of f [℄ !
ase y of f[℄! z;(a : b)! (a : app b z)g;(a0 : b0)! (a0 : dapp b0 y z)gapp b z =
ase b of f [℄ ! z; (
 : d)! (
 : app d z)gNote that the optimized fun
tion dapp is able to
on
atenate three lists bytraversing the �rst list only on
e, whi
h is not possible in the original program.The following proposition states that the operator abstra
t of Def. 3 is safe.Proposition 1. Given two �nite sets of terms, T and S, if S0 = abstra
t(S; T),then for all t 2 (S [T), t is
losed with respe
t to S0.Finally, we establish the termination of the
omplete PE pro
ess:Theorem 2. Let R be a program and S a �nite set of terms. The
omputationof P(R; S) terminates using a �nite unfolding rule and the abstra
tion operatorof Def. 3.5 Experimental EvaluationIn order to assess the pra
ti
ality of the ideas presented in this work, the im-plementation of a partial evaluator for the multi-paradigm de
larative languageCurry has been undertaken.8 Curry [19℄ integrates features from logi
 (logi
 vari-ables, partial data stru
tures, built-in sear
h), fun
tional (higher-order fun
tions,demand-driven evaluation) and
on
urrent programming (
on
urrent evaluationof
onstraints with syn
hronization on logi
al variables). Furthermore, Curry isa
omplete programming language whi
h is able to implement distributed appli-
ations (e.g. Internet servers [16℄) or graphi
al user interfa
es at a high-level [17℄.In order to develop an e�e
tive PE tool for Curry, one has to extend the basi
PE s
heme to
over all high-level features. This extension be
omes impra
ti
al8 It is publi
ly available at http://www.dsi
.upv.es/users/elp/soft.html.

Ben
hmark mix original spe
ialized speedupallones 470 430 290 1.48double app 510 370 320 1.16double flip 750 550 400 1.37kmp 1440 730 35 20.9length app 690 310 290 1.07Table 1. Ben
hmark resultswithin previous frameworks for the PE of fun
tional logi
 languages due to the
omplexity of the resulting semanti
s. By using an abstra
t representation andtranslating high-level programs to this notation (see [20℄), the extension be
omessimple and e�e
tive. A detailed des
ription of the
on
rete manner in whi
h ea
hfeature is treated
an be found in [3℄. Moreover, as opposed to previous partialevaluators for Curry (e.g., Indy [1℄), it is
ompletely written in Curry. To thebest of our knowledge, this is the �rst purely de
larative partial evaluator for afun
tional logi
 language.Firstly, we have ben
hmarked several examples whi
h are typi
al from par-tial dedu
tion and from the literature of fun
tional program transformations.Table 1 shows the results obtained from some sele
ted ben
hmarks (a
ompletedes
ription
an be found, e.g., in [4℄). For ea
h ben
hmark, we show the spe-
ialization time in
luding the reading and writing of programs (
olumn mix),the timings for the original and spe
ialized programs (
olumns original and spe-
ialized), and the speedups a
hieved (
olumn speedup). Times are expressed inmillise
onds and are the average of 10 exe
utions on a Sun Ultra-10. Runtimeinput goals were
hosen to give a reasonably long overall time. All ben
hmarkshave been spe
ialized w.r.t. fun
tion
alls
ontaining no stati
 data, ex
ept forthe kmp example (what explains the larger speedup produ
ed). Speedups aresimilar to those obtained by previous partial evaluators, e.g., Indy [1℄. Indeed,these ben
hmarks were used in [4℄ to illustrate the power of the narrowing-drivenapproa
h (and are not a�e
ted by the dis
ussed limitations). This indi
ates thatour new s
heme for PE is a
onservative extension of previous approa
hes on
omparable examples. Note, though, that our partial evaluator is appli
able toa wider
lass of programs (in
luding higher-order,
onstraints, several built-in's,et
), while Indy is not.Se
ondly, we have
onsidered the PE of the
olle
tion of programs in theCurry library (see http://www.informatik.uni-kiel.de/~
urry). Here, ourinterest was to
he
k the ability of the partial evaluator to deal with realisti
programs whi
h make extensive use of all the features of the Curry language.Our partial evaluator has been su

essfully applied to all the examples produ
ingin some
ases signi�
ant improvements. We refer to [3℄ for the sour
e
ode ofsome ben
hmarks. Finally, we have also
onsidered the PE of a meta-interpreterw.r.t. a sour
e program. Although the partial evaluator su

essfully spe
ializedit, regarding improvement in eÆ
ien
y, the results were not so satisfa
tory. Toimprove this situation, we plan to develop a binding-time analysis to determine,

for ea
h expression, whether it
an be de�nitively evaluated at PE time (hen
e, itshould not be generalized by the abstra
tion operator) or whether this de
isionmust be taken online. This kind of (o�-line) analysis would be also useful toredu
e spe
ialization times.Altogether, the experimental evaluation is en
ouraging and gives a good im-pression of the spe
ialization a
hieved by our partial evaluator.6 Con
lusionsIn this work, we introdu
e a novel approa
h for the PE of truly lazy fun
tionallogi
 languages. The new s
heme is
arefully designed for an abstra
t represen-tation in whi
h high-level programs
an be automati
ally translated. We haveshown how a non-standard (residualizing) semanti
s
an avoid several limitationsof previous frameworks. The implementation of a fully automati
 PE tool forthe language Curry has been undertaken and tested on an extensive ben
hmarksuite. To the best of our knowledge, this is the �rst purely de
larative partialevaluator for a fun
tional logi
 language. Moreover, sin
e Curry is an extensionof both logi
 and (lazy) fun
tional languages, we think that our PE s
heme
anbe easily adapted to other de
larative languages.From the experimental results, we
on
lude that our partial evaluator isindeed suitable for \real" Curry programs. Anyway, there is still room for furtherimprovements. For instan
e, although self-appli
ation is already (theoreti
ally)possible, the de�nition of a pre
ise binding-time analysis seems mandatory toa
hieve an e�e
tive self-appli
able partial evaluator. On the other hand, we havenot
onsidered a formal treatment to measuring the e�e
tiveness of our partialevaluator. Another promising dire
tion for future work is the development ofabstra
t
riteria to formally measure the potential bene�t of our PE algorithm.Referen
es1. E. Albert, M. Alpuente, M. Falas
hi, and G. Vidal. Indy User's Manual. Te
hni
alreport, UPV, 1998. Available from URL:http://www.dsi
.upv.es/users/elp/papers.html.2. E. Albert, M. Alpuente, M. Hanus, and G. Vidal. A Partial Evaluation Frameworkfor Curry Programs. In Pro
. of the 6th Int'l Conf. on Logi
 for Programming andAutomated Reasoning, LPAR'99, pages 376{395. Springer LNAI 1705, 1999.3. E. Albert, M. Hanus, and G. Vidal. Using an Abstra
t Representation to Spe
ializeFun
tional Logi
 Programs. Te
hni
al report, UPV, 2000. Available from URL:http://www.dsi
.upv.es/users/elp/papers.html.4. M. Alpuente, M. Falas
hi, and G. Vidal. Partial Evaluation of Fun
tional Logi
Programs. ACM Transa
tions on Programming Languages and Systems, 20(4):768{844, 1998.5. S. Antoy. De�nitional trees. In Pro
. of the 3rd Int'l Conferen
e on Algebrai
 andLogi
 Programming, ALP'92, pages 143{157. Springer LNCS 632, 1992.6. S. Antoy, R. E
hahed, and M. Hanus. A Needed Narrowing Strategy. Journal ofthe ACM, 2000 (to appear). Previous version in Pro
. of POPL'94, pages 268{279.

7. A. Bondorf. A Self-Appli
able Partial Evaluator for Term Rewriting Systems. InPro
. of TAPSOFT'89, pages 81{95. Springer LNCS 352, 1989.8. M. Bruynooghe, D. De S
hreye, and B. Martens. A General Criterion for AvoidingIn�nite Unfolding. New Generation Computing, 11(1):47{79, 1992.9. C. Consel and O. Danvy. Tutorial notes on Partial Evaluation. In Pro
. ACMSymp. on Prin
iples of Programming Languages, pages 493{501, 1993.10. D. De S
hreye, R. Gl�u
k, J. J�rgensen, M. Leus
hel, B. Martens, and M.H.S�rensen. Conjun
tive Partial Dedu
tion: Foundations, Control, Algorihtms, andExperiments. Journal of Logi
 Programming, 41(2&3):231{277, 1999.11. N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, ed-itor, Handbook of Theoreti
al Computer S
ien
e, volume B: Formal Models andSemanti
s, pages 243{320. Elsevier, Amsterdam, 1990.12. J. Gallagher. Tutorial on Spe
ialisation of Logi
 Programs. In Pro
. of PartialEvaluation and Semanti
s-Based Program Manipulation, pages 88{98. ACM, NewYork, 1993.13. R. Gl�u
k and M.H. S�rensen. A Roadmap to Meta
omputation by Super
ompila-tion. In Partial Evaluation. Int'l Dagstuhl Seminar, pages 137{160. Springer LNCS1110, 1996.14. M. Hanus. The Integration of Fun
tions into Logi
 Programming: From Theoryto Pra
ti
e. Journal of Logi
 Programming, 19&20:583{628, 1994.15. M. Hanus. A uni�ed
omputation model for fun
tional and logi
 programming. InPro
. of POPL'97, pages 80{93. ACM, New York, 1997.16. M. Hanus. Distributed Programming in a Multi-Paradigm De
larative Language.In Pro
. of PPDP'99, pages 376{395. Springer LNCS 1702, 1999.17. M. Hanus. A Fun
tional Logi
 Programming Approa
h to Graphi
al User In-terfa
es. In Int'l Workshop on Pra
ti
al Aspe
ts of De
larative Languages, pages47{62. Springer LNCS 1753, 2000.18. M. Hanus and C. Prehofer. Higher-Order Narrowing with De�nitional Trees. Jour-nal of Fun
tional Programming, 9(1):33{75, 1999.19. M. Hanus (ed.). Curry: An Integrated Fun
tional Logi
 Language. Available athttp://www.informatik.uni-kiel.de/~
urry, 2000.20. M. Hanus, S. Antoy, J. Koj, P. Niederau, R. Sadre, and F. Steiner. PAKCS 1.2:User Manual. Available at http://www.informatik.uni-kiel.de/~pak
s, 2000.21. N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automati
 Pro-gram Generation. Prenti
e-Hall, Englewood Cli�s, NJ, 1993.22. Laura Lafave. A Constraint-based Partial Evaluator for Fun
tional Logi
 Programsand its Appli
ation. PhD thesis, Department of Computer S
ien
e, University ofBristol, 1998.23. M. Leus
hel. On the Power of Homeomorphi
 Embedding for Online Termination.In G. Levi, editor, Pro
. of SAS'98, pages 230{245. Springer LNCS 1503, 1998.24. J.W. Lloyd and J.C. Shepherdson. Partial Evaluation in Logi
 Programming.Journal of Logi
 Programming, 11:217{242, 1991.25. A.P. Nemytykh, V.A. Pin
huk, and V.F. Tur
hin. A Self-Appli
able Super
ompiler.In Pro
. of Dagstuhl Sem. on Part. Evaluation, pages 322{337. Springer LNCS1110, 1996.26. M.H. S�rensen and R. Gl�u
k. An Algorithm of Generalization in Positive Super-
ompilation. In Pro
. of ILPS'95, pages 465{479. MIT Press, 1995.27. M.H. S�rensen, R. Gl�u
k, and N.D. Jones. A Positive Super
ompiler. Journal ofFun
tional Programming, 6(6):811{838, 1996.28. P.L. Wadler. Deforestation: Transforming programs to eliminate trees. Theoreti
alComputer S
ien
e, 73:231{248, 1990.

