(©Springer-Verlag
In Proc. of the Tth International Conference on Logic for Programming and
Automated Reasoning, LPAR’2000, La Reunion.
Springer LNCS 1955, pp. 381-398, 2000

Using an Abstract Representation to Specialize
Functional Logic Programs*

Elvira Albert!, Michael Hanus?, and Germén Vidal'

! DSIC, UPV, Camino de Vera s/n, E-46022 Valencia, Spain
{ealbert,gvidal}@dsic.upv.es
2 Institut fiir Informatik, CAU Kiel, Olshausenstr. 40, D-24098 Kiel, Germany

mh@informatik.uni-kiel.de

Abstract. This paper introduces a novel approach for the specializa-
tion of functional logic languages. We consider a maximally simplified
abstract representation of programs (which still contains all the neces-
sary information) and define a non-standard semantics for these pro-
grams. Both things mixed together allow us to design a simple and con-
cise partial evaluation method for modern functional logic languages,
avoiding several limitations of previous approaches. Moreover, since these
languages can be automatically translated into the abstract representa-
tion, our technique is widely applicable. In order to assess the practi-
cality of our approach, we have developed a partial evaluation tool for
the multi-paradigm language Curry. The partial evaluator is written in
Curry itself and has been tested on an extensive benchmark suite (even
a meta-interpreter). To the best of our knowledge, this is the first purely
declarative partial evaluator for a functional logic language.

1 Introduction

Partial evaluation (PE) is a source-to-source program transformation technique
for specializing programs w.r.t. parts of their input (hence also called program
specialization). PE has been studied, among others, in the context of functional
programming (e.g., [9,21]), logic programming (e.g., [12,24]), and functional
logic programming (e.g., [4,22]). While the aim of traditional partial evaluation
is to specialize programs w.r.t. some known data, several PE techniques are able
to go beyond this goal, achieving more powerful program optimizations. This
is the case of a number of PE methods for functional programs (e.g., positive
supercompilation [27]), logic programs (e.g., partial deduction [24]), and func-
tional logic programs (e.g., narrowing-driven PE [4]). A common pattern of these
techniques is that they are able to achieve optimizations regardless of whether
known data are provided (e.g., they can eliminate some intermediate data struc-
tures, similarly to Wadler’s deforestation [28]). In some sense, these techniques
are stronger theorem provers than traditional PE approaches.

* This work has been partially supported by CICYT TIC 98-0445-C03-01, by Accién
Integrada hispano-alemana HA1997-0073, and by the DFG under grant Ha 2457/1-1.

Recent proposals of multi-paradigm declarative languages amalgamate the
most important features of functional, logic and concurrent programming (see
[14] for a survey). The operational semantics of these languages is usually based
on a combination of two different operational principles: narrowing and residua-
tion [15]. The residuation principle is based on the idea of delaying function calls
until they are ready for a deterministic evaluation (by rewriting). On the other
hand, the narrowing mechanism allows the instantiation of variables in input
expressions and, then, applies reduction steps to the function calls of the instan-
tiated expression. Due to its optimality properties w.r.t. the length of derivations
and the number of computed solutions, needed narrowing [6] is currently the best
narrowing strategy for functional logic programs. The formulation of needed nar-
rowing is based on the use of definitional trees [5], which define a strategy to
evaluate functions by applying narrowing steps.

In this work, we are concerned with the PE of functional logic languages.
The first approach to this topic was the narrowing-driven PE of [4], which con-
sidered functional logic languages with an operational semantics based solely
on narrowing. Recently, [2] introduced an extension of this basic framework in
order to consider also the residuation principle. Using the terminology of [13],
the narrowing-driven PE methods of [2, 4] are able to produce both polyvariant
and polygenetic specializations, i.e., they can produce different specializations for
the same function definition and can also combine distinct original function def-
initions into a comprehensive specialized function. This means that narrowing-
driven PE has the same potential for specialization as positive supercompilation
[27] and conjunctive partial deduction [10] (a comparison can be found in [4]).

Despite its power, the narrowing-driven approach to PE suffers from several
limitations: (i) Firstly, in the context of lazy functional logic languages, expres-
sions in head normal form (i.e., rooted by a constructor symbol) cannot be
evaluated at PE time. This restriction is imposed because the backpropagation
of bindings to the left-hand sides of residual rules can incorrectly restrict the
domain of functions (see Example 2). (ii) Secondly, if one intends to develop a
PE scheme for a realistic multi-paradigm declarative language, several high-level
constructs have to be considered: higher-order functions, constraints, program
annotations, calls to external functions, etc. A complex operational calculus is
required to properly deal with these additional features of modern languages.
It is well-known that a partial evaluator normally includes an interpreter of the
language. Therefore, as the operational semantics becomes more elaborated, the
associated PE techniques become (more powerful but) also increasingly more
complex. (iii) Finally, an interesting application of PE is the generation of com-
pilers and compiler generators [21]. For this purpose, the partial evaluator must
be self-applicable, i.e., able to partially evaluate itself. This becomes difficult in
the presence of high-level constructs such as those mentioned in (ii). As advised
in [21], it is essential to cut the language down to the bare bomes in order to
achieve self-application.

In order to overcome the aforementioned problems, a promising approach suc-
cessfully tested in other contexts (e.g., [7,25]) is to consider programs written in

a maximally simplified programming language, into which programs written in a
higher-level language can be automatically translated. Recently, [18] introduced
an explicit representation of the structure of definitional trees (used to guide the
needed narrowing strategy) in the rewrite rules. This provides more explicit con-
trol and leads to a calculus simpler than standard needed narrowing. Moreover,
source programs can be automatically translated to the new representation.! In
this work, we consider a very simple abstract representation of functional logic
programs which is based on the one introduced in [18]. As opposed to [18], our
abstract representation includes also information about the evaluation type of
functions: flexible —which enables narrowing steps— or rigid —which forces de-
layed evaluation by rewriting. Then, we define a non-standard semantics which
is specially well-suited to perform computations at PE time. This is a crucial dif-
ference with previous approaches [2, 4], where the same mechanism is used both
for program execution and for PE. The use of an abstract representation, to-
gether with the new calculus, allows us to design a simple and concise automatic
PE method for modern functional logic languages, breaking the limitations of
previous approaches.

Finally, since truly lazy functional logic languages can be automatically trans-
lated into the abstract representation (which still contains all the necessary in-
formation about programs), our technique is widely applicable. Following this
scheme, partially evaluated programs will be also written in the abstract repre-
sentation. Since existing compilers use a similar representation for intermediate
code, this is not a restriction. Rather, our specialization process can be seen as
an optimization phase (transparent to the user) performed during the compila-
tion of the program. In order to assess the practicality of our approach, we have
developed a PE tool for the multi-paradigm language Curry [19]. The partial
evaluator is written in Curry itself and has been tested on an extensive set of
benchmarks (even a meta-interpreter). To the best of our knowledge, this is the
first purely declarative partial evaluator for a functional logic language.

The structure of this paper is as follows. After providing some preliminary
definitions in Sect. 2, we present our approach for the PE of functional logic lan-
guages based on the use of an abstract representation in Sect. 3. We also discuss
the limitations of using the standard semantics during PE and, then, introduce
a more suitable semantics. Section 4 presents a fully automatic PE algorithm
based on the previous ideas, and Sect. 5 shows some benchmarks performed with
an implementation of the partial evaluator. Finally, Sect. 6 concludes and dis-
cusses some directions for future work. More details and missing proofs can be
found in [3].

2 Preliminaries

In this section we recall, for the sake of completeness, some basic notions from
term rewriting [11] and functional logic programming [14]. We consider a (many-

! Indeed, it constitutes the basis of a recent proposal for an standard intermediate
language, FlatCurry, for the compilation of Curry programs [20].

sorted) signature X partitioned into a set C of constructors and a set F of
(defined) functions or operations. We write ¢/n € C and f/n € F for n-ary
constructor and operation symbols, respectively. There is at least one sort Bool
containing the constructors True and False. The set of terms and constructor
terms with variables (e.g., x,y, z) from V are denoted by 7 (CUF,V) and T (C, V),
respectively. The set of variables occurring in a term ¢ is denoted by Var(t). A
term is linear if it does not contain multiple occurrences of any variable. We
write o, for the sequence of objects o1, ..., 0,. We denote by root(t) the symbol
at the root of the term t. A position p in a term ¢ is denoted by a sequence of
natural numbers. Positions are ordered by: v < v, if w such that w.w = v. The
subterm of ¢ at position p is denoted by t|,, and t[s], is the result of replacing
the subterm t|, by the term s.

We denote a substitution o by {x; — t1,...,z, — t,} with o(x;) = t; for
i =1,...,n (where z; # z; if i # j), and o(x) = = for all other variables
z. By abuse, Dom(o) = {z € V | o(x) # =} is called the domain of o. Also,
Ran(f) = {8(z) | € Dom(0)}. A substitution o is a constructor substitution,
if o(z) is a constructor term Yz € Dom (o). The identity substitution is denoted
by { }. Given a substitution 6 and a set V' C V, we denote the substitution
obtained from # by restricting its domain to V' by .. We write § = o [V] if
O = o, and 0 < o [V] denotes the existence of a substitution v such that
vof =0 [V]. Aterm t' is an instance of t if o with t' = o(¢).

A set of rewrite rules | = r such that [¢ V, and Var(r) C Var(l) is called
a term rewriting system (TRS). The terms | and r are called the left-hand side
and the right-hand side of the rule, respectively. A rewrite step is an application
of a rewrite rule to a term, i.e., ¢ =, r s if there exists a position p in ¢, a
rewrite rule R = (I = r) and a substitution o with t|, = o(I) and s = t[o(r)],.
Given a relation —, we denote by —* the transitive closure of —, and by —*
the transitive and reflexive closure of —. A (constructor) head normal form is
either a variable or a term rooted by a constructor symbol. To evaluate terms
containing variables, narrowing nondeterministically instantiates the variables
so that a rewrite step is possible. Formally, t ~», g » t' is a narrowing step if p is
a non-variable position in ¢ and o(t) —, g t'. We denote by to ~% £, a sequence
of narrowing steps tg ~g, ... ~g, tp With 0 = o, 0---00y. (If n = 0 then
o = {}.) In functional programming, one is interested in the computed value
whereas logic programming emphasizes the different bindings (answers). In an
integrated setting, given a narrowing derivation tg ~7 t,, we say that ¢,, is the
computed value and o is the computed answer for tg.

3 Using an Abstract Representation for PE

In this section, we present an appropriate abstract representation for modern
functional logic languages. We also provide a non-standard operational semantics
which is specially well-suited to perform computations during partial evaluation.

First, let us briefly recall the basis of the narrowing-driven approach to PE of
[4]. Informally speaking, given a particular narrowing strategy ~», the (paramet-

ric) notions of resultant and partial evaluation are defined as follows. A resultant
is a program rule of the form: o(s) = t associated to a narrowing derivation:
s~ t. A partial evaluation for a term s in a program R is computed by con-
structing a finite (possibly incomplete) narrowing tree for this term, and then
extracting the resultants associated to the root-to-leaf derivations of the tree.
Depending on the considered class of programs (and the associated narrowing
strategy), a PE might require a post-processing of renaming to recover the same
class of programs. An intrinsic feature of the narrowing-driven approach is the
use of the same operational mechanism for both execution and PE.

3.1 The Abstract Representation

Recent approaches to functional logic programming consider inductively sequen-
tial systems as programs and a combination of needed narrowing and residuation
as operational semantics [15,19]. The precise mechanism (narrowing or residua-
tion) for each function is specified by evaluation annotations, which are similar
to coroutining declarations in Prolog, where the programmer specifies conditions
under which a call is ready for a resolution step. Functions to be evaluated in a
deterministic manner are declared as rigid (which forces deferred evaluation by
rewriting), while functions providing for nondeterministic evaluation steps are
declared as flezible (which enables narrowing steps).

Similarly to [18], we present an abstract representation for programs in which
the definitional trees (used to guide the needed narrowing strategy) are made
explicit by means of case constructs. Moreover, here we distinguish two kinds
of case expressions in order to make also explicit the flexible/rigid evaluation
annotations. In particular, we assume that all functions are defined by one rule
whose left-hand side contains only variables as parameters and the right-hand
side contains case expressions for pattern-matching. Thanks to this new rep-
resentation, we can define a simple operational semantics, which will become
essential to simplify the definition of the associated PE scheme. The syntax for
programs in the abstract representation is summarized as follows:

R:u:=Di...D,, ti=w (variable)
D= f(vi,...,un) =t | cltr,... tn) (constructor)
| flt1,... tn) (function call)
p ==c(vi,...,vn) | case to of {p1 = t1;...;pn — tn} (rigid case)
| fease to of {p1 — t1;...;pn = tn} (flexible case)

where R denotes a program, D a function definition, p a pattern and ¢ an ar-
bitrary expression. A program R consists of a sequence of function definitions
D such that the left-hand side is linear and has only variable arguments, i.e.,
pattern matching is compiled into case expressions. The right-hand side of each
function definition is a term ¢ composed by variables, constructors, function calls,
and case expressions. The form of a case expression is: (f)case ¢t of {¢1(Tn;) —
t1y. .., ¢k(Tn,) = tr}, where t is a term, ¢y, ..., ¢, are different constructors of
the type of ¢, and #,...,#; are terms (possibly containing case expressions).

The variables T,; are called pattern variables and are local variables which oc-
cur only in the corresponding subexpression ¢;. The difference between case and
fease shows up when the argument ¢ is a free variable: case suspends (which cor-
responds to residuation) whereas fease nondeterministically binds this variable
to the pattern in a branch of the case expression (which corresponds to narrow-
ing). Functions defined only by fcase (resp. case) expressions are called flexible
(resp. rigid). Thus, flexible functions act as generators (like predicates in logic
programming) and rigid functions act as consumers. Concurrency is expressed
by a built-in operator “&” which evaluates its two arguments concurrently. This
operator can be defined by the rule: True & True = True and, hence, in the
following we simply consider it as an ordinary function symbol.

Example 1. Consider the rules defining the (rigid) function “ < ”:?

0<n = True
(Succm) < 0O = False
(Succm) < (Succn) = m<n

By using case expressions, they can be represented by the following rewrite rule:

x < y= casexof {0 — True;
(Succ x1) — case y of {0 — False;

(Succ yi) = x1 <yi}}

Due to the presence of fresh pattern variables in the right-hand side of the
rule, this is not a standard rewrite rule. Nevertheless, the reduction of a case
expression binds these pattern variables so that they disappear during a concrete
evaluation (see [18]).

3.2 The Residualizing Semantics

An automatic transformation from inductively sequential programs to programs
using case expressions is introduced in [18]. They also provide an appropriate
operational semantics for these programs: the LNT calculus (Lazy Narrowing
with definitional Trees), which is equivalent to needed narrowing over inductively
sequential programs. In this work, we consider functional logic languages with a
more general operational principle, namely a combination of (needed) narrowing
and residuation. Nevertheless, the translation method of [18] could be easily
extended to cover programs containing evaluation annotations; namely, flexible
(resp. rigid) functions are translated by using only fcase (resp. case) expressions.
Moreover, the LNT calculus of [18] can be also extended to correctly evaluate
case [fease expressions. In the following, we refer to the LNT calculus to mean the
LNT calculus of [18] extended to cope with case/fcase expressions (the formal
definition can be found in [3]).

Unfortunately, by using the standard semantics during PE, we would have
the same problems of previous approaches (see Sect. 1). In particular, one of the

2 Although we consider in this work a first-order language, we use a curried notation
in the examples (as is usual in functional languages).

main problems comes from the backpropagation of variable bindings to the left-
hand sides of residual rules. In the context of lazy (call-by-name) functional logic
languages, this can provoke an incorrect restriction on the domain of functions
(regarding the ability to compute head normal forms) and, thus, the loss of
correctness for the transformation whenever some term in head normal form is
evaluated during PE. The following example illustrates this point.

Example 2. Consider the following program:

isZero 0 = True
nonEmptyList (x:xs) = True
foo x = isZerox:|
Here we use “[]” and “:” as constructors of lists, and “0” and “Succ” to define

natural numbers. Then, given the (unique) computation for foo y:
fooy ~yy (isZeroy):[] ~(ysop True:|]

where (isZero y) : [] is in head normal form, we get the residual rule:
foo 0 = True : []

However, the expression nonEmptyList (foo (Succ 0)) can be evaluated to True
in the original program (reduced functions are underlined):

nonEmptyList (foo (Succ 0)) ~+¢} nonEmptyList (isZero (Succ 0) : [])
~ True

whereas it is not possible if the residual rule for foo is used (together with the
original definitions for isZero and nonEmptyList).

The restriction on forbidding the evaluation of head normal forms can drastically
reduce the optimization power of the transformation in some cases. Therefore, we
propose a residualizing version of the LNT calculus which allows us to avoid this
restriction. In the new calculus, variable bindings are encoded by case expressions
(and are considered “residual” code). The inference rules of the new calculus,
RLNT (Residualizing LNT), can be seen in Fig. 1. Let us explain the inference
rules defining the one-step relation =>. We note that the symbols “[” and “]”
in an expression like [t] are purely syntactical (i.e., they do not denote “the
value of ¢”). Indeed, they are only used to guide the inference rules and, most
importantly, to mark which part of an expression can be still evaluated (within
the square brackets) and which part must be definitively residualized (not within
the square brackets). Let us briefly describe the rules of the calculus:

HNF. The HNF (Head Normal Form) rules are used to evaluate terms in head
normal form. If the expression is a variable or a constructor constant, the
square brackets are removed and the evaluation process stops. Otherwise,
the evaluation proceeds with the arguments. This evaluation can be made
in a don’t care nondeterministic manner. Note, though, that this source of
nondeterminism can be easily avoided by considering a fixed selection rule,
e.g., by selecting the leftmost argument which is not a constructor term.

HNF
[t] = t ifteVort=c() withe/0eC
le(te, ... ta)] = c([ti],-- -, [ta])
Case-of-Case
[(F)ease ((F)ease ¢ of (o =) of (7 5T}
= [(f)case t of {pr — (f)case ti, of {pj — t}}}]

Case Function
[(f)case 9(x) of {pr > B} = [(Pease o(r) of {pr = E1]
if g(T) =r € R is a rule with fresh variables
and o = {z, = t,}
Case Select
[(f)case c(tn) of {pr = t},}] = [o(t)] if pi =c(Tn), c €C, 0= {xn = ta}
Case Guess
[(f)case = of {px = ti}] = (f)case z of {px — [on(tr)]}
if o; ={m'—)pi},i=1,...,k
Function Eval
[9(t)] = [o(r)] if g(Tn) =r € R is a rule with fresh
variables and o = {z, — £, }

Fig. 1. RLNT Calculus

Case-of-Case. This rule moves the outer case inside the branches of the inner
one. Rigorously speaking, this rule can be expanded into four rules (with
the different combinations for case and fcase expressions), but we keep the
above (less formal) presentation for simplicity. Observe that the outer case
expression may be duplicated several times, but each copy is now (possibly)
scrutinizing a known value, and so the Case Select rule can be applied to
eliminate some case constructs.

Case Function. This rule can be only applied when the argument of the case is
operation-rooted. In this case, it allows the unfolding of the function call.

Case Guess. It represents the main difference w.r.t. the standard LNT calculus.
In order to imitate the instantiation of variables in needed narrowing steps,
this rule is defined in the standard LNT calculus as follows:

[fease x of {pr = tr}] =7 [o(t:;))] fo={z—p}, i=1,...,k

However, in this case, we would inherit the limitations of previous approaches.
Therefore, it has been modified in order not to backpropagate the bindings
of variables. In particular, we “residualize” the case structure and continue
with the evaluation of the different branches (by applying the corresponding
substitution in order to propagate bindings forward in the computation).
Note that, due to this modification, no distinction between flexible and rigid
case expressions is needed in the RLNT calculus.

Function Eval. This rule performs the unfolding of a function call. As in proof
procedures for logic programming, we assume that we take a program rule
with fresh variables in each such evaluation step.

In contrast to the standard LNT calculus, the inference system of Fig. 1 is
completely deterministic, i.e., there is no don’t know nondeterminism involved
in the computations. This means that only one derivation can be issued from a
given term (thus, there is no need to introduce a notion of RLNT “tree”).

Example 3. Consider the well-known function app to concatenate two lists:

appxy =casex of {]] =>¥;
(a:b) > a:(appby) }

Given the call app (app x y) z to concatenate three lists, we have the following
(partial) derivation using the rules of the RLNT calculus:

[app (app x ¥) 2]
= [case (app x y) of {[] =@ z; (a:b) = (a:app b z)}]
= [case (case x of {[] = y; (&' :b') = (2’ :app V' y)})
of {[] > 2; (a:b) = (a:app b z)}]
= [case x of {] —caseyof {2z (a:b) > (a:appb z)};
(2 :b') > case (2" :app b’ y) of {[]:z; (a:b) = (a:app b z)}]

= case x of {] — [case y of {[] = 2; (a:b) — (a:app b z)}];
(2 :b') = [case (2’ :app V' y) of {[] > z; (a:b) = (a:app b z)}]

=" case x of {] —caseyof {[] > z; (a:b) = (a:[app b z)]};
a' :b') = [case (' :app b’ y) of {[] =z (a:b) = (a:app b z)}]

[
=" case x of {] —caseyof {[] > z; (a:b) = (a:[app b z])};
(a':b') = (2" : [app (app V' y) z])}

The resulting RLNT calculus shares many similarities with the driving mecha-
nism of [27] and Wadler’s deforestation [28] (although we obtained it indepen-
dently by refining the original LNT calculus to avoid the backpropagation of
bindings). The main differences w.r.t. the driving mechanism are that we in-
clude the Case-of-Case rule and that driving is defined also for if_then_else
constructs (which can be expressed in our representation by means of case ex-
pressions). The main difference w.r.t. deforestation is revealed in the Case Guess
rule, where the patterns p; are substituted in the different branches, like in the
driving transformation. Although it may seem only a slight difference, situations
may arise during transformation in which our calculus (as well as the driving
mechanism) takes advantage of the sharing between different arguments while
deforestation may not (see [27]).

A common restriction in related program transformations is to forbid the
unfolding of function calls using program rules whose right-hand side is not lin-
ear. This avoids the duplication of calls under an eager (call-by-value) semantics
or under a lazy (call-by-name) semantics implementing the sharing of common
variables. Since our computation model is based on a lazy semantics, which does
not consider the sharing of variables, we cannot incur into the risk of duplicated
computations. Nevertheless, if sharing is considered (as in, e.g., the language
Curry), this restriction can be implemented by requiring right-linear program
rules to apply the Case Function and Function Eval rules.

Regarding the PE of programs with flexible/rigid evaluation annotations,
[2] introduced a special treatment in order to correctly infer the evaluation an-
notations for residual definitions. Within this approach, one is forced to split
resultants by introducing several intermediate functions in order not to mix
bindings which come from the evaluation of flexible and rigid functions. More-
over, to avoid the creation of a large number of intermediate functions, only the
computation of a single needed narrowing step for suspended expressions is al-
lowed. Now, by using case expressions (instead of functions defined by patterns
as in [2]), we are able to proceed the specialization of suspended expressions be-
yond a single needed narrowing step without being forced to split the associated
resultant (and hence without increasing the size of the residual program). This
is justified by the fact that case constructs preserve the rigid or flexible nature
of the functions which instantiate the variables.? The following example is taken
from [2] and illustrates that the use of case constructs to represent function
definitions simplifies the residual program.

Ezample 4. Consider a program and its PE for the term £ x (g y (h z)), according
to the technique introduced in [2]:

f 0 (Succ 0) =0 % flex f0YZ = f1YZ % flex
g00 = (Succ 0) % rigid £} (Succ0)Z = f,Z % rigid
ho =0 % flex £, 0 = f} % flex

£ =0 % flex

where £ x (g y (h z)) is renamed as f' x y z. The original program can be
translated to our abstract representation as follows:

fxy = fcasex of {0 > fcasey of {(Succ 0) — 0}}
gxy = casexof {0— casey of {0— (Succ0)}}
hx = fcasexof {0— 0}

The following PE for f x (g y (h z)), constructed by using the rules of the RLNT
calculus, avoids the introduction of three intermediate rules and, thus, is notably
simplified:

f' x y z = fcase x of {0 — case y of {(Succ 0) — fcase z of {0 — 0}}}

The next result establishes a precise equivalence between the standard semantics
(the LNT calculus) and its residualizing version. In the following, we denote by
= Guess the application of the following rule from the standard semantics:
[[fcase 4 Of {pk - tk}]] =>guess [[U(tl)]] if o = {ZL” = pi}: i=1,.. -:k

Furthermore, we denote by delsq(t) the expression which results from ¢ by delet-
ing all the occurrences of “[” and “]” (if any).

Theorem 1. Let t be a term, V' D Var(t) a finite set of variables, d a con-
structor term, and R a program in the abstract representation. For each LNT

% Indeed, the treatment for case/fcase expressions is the same in the RLNT calculus.

derivation [t] =7 d for t w.r.t. R computing the answer o, there ezists a
RLNT derivation [t] =* t' for t w.r.t. R such that there is a finite sequence

[delsq(t)] =G yess - - - = uess 4> where op 0. .00y =0 [V], and vice versa.

Roughly speaking, for each (successful) LNT derivation from ¢ to a constructor
term d computing o, there is a corresponding RLNT derivation from ¢ to ¢’ in
which the computed substitution o is encoded in #' by case expressions and can
be obtained by a (finite) sequence of = gyess steps (deriving the same value d).

4 Control Issues for Partial Evaluation

Following [12], a simple on-line PE algorithm can proceed as follows. Given
a term ¢ and a program R, we compute a finite (possibly incomplete) RLNT
derivation ¢t =+ s for ¢t w.r.t. R.* Then, this process is iteratively repeated for
any subterm which occurs in the expression s and which is not closed w.r.t. the
set of terms already evaluated. Informally, the closedness condition guarantees
that each call which might occur during the execution of the residual program
is covered by some program rule. If this process terminates, it computes a set, of
partially evaluated terms S such that the closedness condition is satisfied and,
moreover, it uniquely determines the associated residual program.

First, we formalize the notion of closedness adjusted to our abstract repre-
sentation.

Definition 1. Let S be a set of terms and t be a term. We say that t is S-closed
if closed (S, t) holds, where the relation “closed” is defined inductively as follows:

true ifteV
closed(S,t1) A ... A closed(S,tn) ift =c(t1,...,tn), c€C

closed(t') A /\ie{l,...,k} closed(t;) if t = (f)case t' of {pr — &}
At eRan(o) closed(S,t') if 3s € S such that t = 0(s)

A set of terms T is S-closed, written closed(S,T), if closed(S,t) holds for all
teT.

closed (S, t) =

According to this definition, variables are always closed, while an operation-
rooted term is S-closed if it is an instance of some term in S and the terms
in the matching substitution are recursively S-closed. On the other hand, for
constructor-rooted terms and for case expressions, we have two nondetermin-
istic ways to proceed: either by checking the closedness of their arguments or
by proceeding as in the case of an operation-rooted term. For instance, a case
expression such as case t of {p1 — t1,...,pr — t} can be proved closed w.r.t.
S either by checking that the set {¢,t1,...,t;} is S-closed® or by testing whether
the whole case expression is an instance of some term in S.

* Note that, since the RLNT calculus is deterministic, there is no branching. Thus,
only a single derivation can be computed from a term.

® Patterns are not considered here since they are constructor terms and hence closed
by definition.

Example 5. Let us consider the following set of terms:

S = {app a b, case (app a b) of {[] = z;(x:y) = (appy 2)} } -

The following expression case (app a’' b') of {[] = z';(x' : y') — (app ¥’ 2')}
can be proved S-closed using the first element of the set (by checking that the
subterms app a' b’ and app y' z’ are instances of app a b) or by testing that the
whole expression is an instance of the second element of the set.

The PE algorithm outlined above involves two control issues: the so-called local
control, which concerns the computation of partial evaluations for single terms,
and the global control, which ensures the termination of the iterative process but
still guaranteeing that the closedness condition is eventually reached. Following
[12], we present a PE procedure which is parameterized by:

— An unfolding rule & (local control), which determines how to stop RLNT
derivations. Formally, U/ is a (total) function from terms to terms such that,
whenever U(s) = t, then there exists a finite RLNT derivation [s] =7 t.

— An abstraction operator abstract (global control), which keeps the set of
partially evaluated terms finite. It takes two sets of terms S and T (which
represent the current partially evaluated terms and the terms to be added
to this set, respectively) and returns a safe approximation of S U T. Here,
by “safe” we mean that each term in S U T is closed w.r.t. the result of
abstract(S,T).

Definition 2. Let R be a program and T a finite set of expressions. We define
the PE function P as follows:

PR, T)=S if abstract({},T) —5» S and S+—p S
where —p is defined as the smallest relation satisfying

S'={s"|seS A Us)=5"}
S +——p abstract(S,S")

We note that the function P does not compute a partially evaluated program,
but a set of terms S from which a S-closed PE can be uniquely constructed
using the unfolding rule ¢. To be precise, for each term s € S with U(s) = ¢,
we produce a residual rule s = t. Moreover, in order to ensure that the residual
program fulfills the syntax of our abstract representation, a renaming of the
partially evaluated calls is necessary. This can be done by applying a standard
post-processing renaming transformation. We do not present the details of this
transformation here but refer to [3].

As for local control, a number of well-known techniques can be applied for
ensuring the finiteness of RLNT derivations, e.g., depth-bounds, loop-checks,
well-founded (or well-quasi) orderings (see, e.g., [8,23,26]). For instance, an un-
folding rule based on the use of the homeomorphic embedding ordering has been
proposed in [4].

As for global control, an abstraction operator should essentially distinguish
the same cases as in the closedness definition. Intuitively, the reason is that the

abstraction operator must first check whether a term is closed and, if not, try
to add this term (or some of its subterms) to the set. Therefore, given a call
abstract(S, {t}), an abstraction operator usually distinguishes three main cases
depending on t:

— if t is constructor-rooted, it tries to add the arguments of t;

— if it is operation-rooted and is an instance of some term in S, it tries to add
the terms in the matching substitution;

— otherwise (an operation-rooted term which is not an instance of any term in
S), it is simply added to S (or generalized in order to keep the set S finite).

Our particular abstraction operator uses a quasi-ordering, namely the homeo-
morphic embedding relation < (see, e.g., [23]), to ensure termination and gen-
eralizes those calls which do not satisfy this ordering by using the msg (most
specific generalization) between terms.°

As opposed to previous abstraction operators [4], here we need to give a spe-
cial treatment to case expressions. Of course, if one considers the case symbol as
an ordinary constructor symbol, the extension would be straightforward. Unfor-
tunately, this will often provoke a serious loss of specialization, as the following
example illustrates.

Example 6. Let us consider again the program app and the RLNT derivation of
Example 3:

[app (app x y) 2]
=" [case (case x of {[] = y; (2":b) = (a’ :app V' y)})

of {[] > 2; (a:b) — (a:app b z)}]
=" case x of {] — casey of {[] 2 z; (a:b) = (a:[app b 2])};

(' :b") = (a’ : [app (app V' y) z])}

If one considers an unfolding rule which stops the derivation at the interme-
diate case expression, then the abstraction operator will attempt to add only
the operation-rooted subterms app b’ y and app b y to the set of terms to be
specialized. This will prevent us from obtaining an efficient (recursive) residual
function for the original term, since we will never reach again an expression
containing app (app x y) z (see Example 7).

On the other hand, by treating case expressions as operation-rooted terms, the
problem is not solved. For instance, if we consider that the unfolding rule returns
the last term of the above derivation, then it is not convenient to add the whole
term to the current set. Here, the best choice would be to treat the case symbol
as a constructor symbol. Moreover, a similar situation arises when considering
constructor-rooted terms, since the RLNT calculus has no restrictions to evaluate
terms in head normal form.

6 A generalization of the set of terms S = {t1,...,t,} is a pair (¢,{61,...,6,}) such
that, Vi € {1,...,n}, 0i(t) = t;. The pair (¢,{61,...,0,}) is the most specific gen-
eralization of S, written msg(S), if (t,{f1,...,6r}) is a generalization and for every
other generalization (¢, {61,...,6,}) of S, t' is more general than ¢.

Luckily, the RLNT calculus gives us some leeway. The key idea is to take
into account the position of the square brackets of the calculus: an expression
within square brackets should be added to the set of partially evaluated terms
(if possible), while expressions which are not within square brackets should be
definitively residualized (i.e., ignored by the abstraction operator, except for
operation-rooted terms).

Definition 3. Given two finite sets of terms, T and S, we define:”

_ S ifT =0
abstract(S,T) = { abs(... abs(S,t1), - tn) if T = {tr, ... tn},n > 1
The function abs(S,t) distinguishes the following cases:

S iftey
abstract(S,{t1,...,tn}) ift=c(t1,...,tn), c€C
(S

abs(S,t) = abstract(S,{t',t1,...,tn}) if t = (f)case t' of {pn — tn}
try_add(S,t) ift=f(ty,...,tn), fE€F
try_add(S,t’) if t =[t']

Finally, the function try_add(S,t) is defined as follows:

abstract(S \ {s},{s'} URan(61) URan(6s))
if 3s € S. root(s) = root(t) and s <'t,
where (s',{61,02}) = msg({s,t})
Su{t} otherwise

try-add(S,t) =

Let us informally explain this definition. Given a set of terms S, in order to add
a new term ¢, the abstraction operator abs distinguishes the following cases:

— variables are disregarded;

— if t is rooted by a constructor symbol or by a case symbol, then it recursively
inspects the arguments;

— if ¢ is rooted by a defined function symbol or it is enclosed within square
brackets, then the abstraction operator tries to add it to S with try_add
(even if it is constructor-rooted or a case expression). Now, if ¢ does not
embed any comparable (i.e., with the same root symbol) term in S, then ¢
is simply added to S. Otherwise, if ¢ embeds some comparable term of S,
say s, then the msg of s and ¢ is computed, say (s',{61,6-2}), and it finally
attempts to add s’ as well as the terms in 61 and 5 to the set resulting from
removing s from S.

Let us consider an example to illustrate the complete PE process.

Ezample 7. Consider the program Ra.p, which contains the rule defining the
function app. In order to compute P(Rapp, {app (app x y) z}), we start with:

So = abstract({}, {app (app x y) z}) = {app (app x y) 2}

" The particular order in which the elements of T’ are added to S by abstract cannot
affect correctness but can degrade the effectiveness of the algorithm. A more precise
treatment can be easily given by using sequences instead of sets of terms.

For the first iteration, we assume that:

U(app (app x y) z) =
case x of { || —caseyof {[|] >z (a:b) = (a:[app b z])};
(a":b) = (a’ : [app (app b’ y) z])}

(see derivation in Example 3). Then, we compute:

S1 = abstract(So, {U(app (app x y) z)}) = {app (app x y) z),app b z}
For the next iteration, we assume that:

U(app b z) =casebof {[] > z; (c:d) > c:Jappdz] }

Therefore, abstract(S1, {U(app b z)}) = S; and the process finishes. The associ-
ated residual rules are (after renaming the original expression by dapp x y z):

dapp x y z = case x of {] — case y of {[] — z;
(a:b) > (a:appbz)};
(a':b') = (a' :dapp b’ y 2)}
appbz =casebof {[] = 2z (c:d) = (c:appdz)}

Note that the optimized function dapp is able to concatenate three lists by
traversing the first list only once, which is not possible in the original program.

The following proposition states that the operator abstract of Def. 3 is safe.

Proposition 1. Given two finite sets of terms, T and S, if S’ = abstract(S,T),
then for all t € (SUT), t is closed with respect to S'.

Finally, we establish the termination of the complete PE process:

Theorem 2. Let R be a program and S a finite set of terms. The computation

of P(R,S) terminates using a finite unfolding rule and the abstraction operator
of Def. 3.

5 Experimental Evaluation

In order to assess the practicality of the ideas presented in this work, the im-
plementation of a partial evaluator for the multi-paradigm declarative language
Curry has been undertaken.® Curry [19] integrates features from logic (logic vari-
ables, partial data structures, built-in search), functional (higher-order functions,
demand-driven evaluation) and concurrent programming (concurrent evaluation
of constraints with synchronization on logical variables). Furthermore, Curry is
a complete programming language which is able to implement distributed appli-
cations (e.g. Internet servers [16]) or graphical user interfaces at a high-level [17].
In order to develop an effective PE tool for Curry, one has to extend the basic
PE scheme to cover all high-level features. This extension becomes impractical

8 It is publicly available at http://wuw.dsic.upv.es/users/elp/soft.html.

Benchmark mix | original | specialized | speedup
allones 470 430 290 1.48
double_app 510 370 320 1.16
double_flip 750 550 400 1.37
kmp 1440 730 35 20.9
length_app 690 310 290 1.07

Table 1. Benchmark results

within previous frameworks for the PE of functional logic languages due to the
complexity of the resulting semantics. By using an abstract representation and
translating high-level programs to this notation (see [20]), the extension becomes
simple and effective. A detailed description of the concrete manner in which each
feature is treated can be found in [3]. Moreover, as opposed to previous partial
evaluators for Curry (e.g., INDY [1]), it is completely written in Curry. To the
best of our knowledge, this is the first purely declarative partial evaluator for a
functional logic language.

Firstly, we have benchmarked several examples which are typical from par-
tial deduction and from the literature of functional program transformations.
Table 1 shows the results obtained from some selected benchmarks (a complete
description can be found, e.g., in [4]). For each benchmark, we show the spe-
cialization time including the reading and writing of programs (column mix),
the timings for the original and specialized programs (columns original and spe-
cialized), and the speedups achieved (column speedup). Times are expressed in
milliseconds and are the average of 10 executions on a Sun Ultra-10. Runtime
input goals were chosen to give a reasonably long overall time. All benchmarks
have been specialized w.r.t. function calls containing no static data, except for
the kmp example (what explains the larger speedup produced). Speedups are
similar to those obtained by previous partial evaluators, e.g., INDY [1]. Indeed,
these benchmarks were used in [4] to illustrate the power of the narrowing-driven
approach (and are not affected by the discussed limitations). This indicates that
our new scheme for PE is a conservative extension of previous approaches on
comparable examples. Note, though, that our partial evaluator is applicable to
a wider class of programs (including higher-order, constraints, several built-in’s,
etc), while INDY is not.

Secondly, we have considered the PE of the collection of programs in the
Curry library (see http://www.informatik.uni-kiel.de/ curry). Here, our
interest was to check the ability of the partial evaluator to deal with realistic
programs which make extensive use of all the features of the Curry language.
Our partial evaluator has been successfully applied to all the examples producing
in some cases significant improvements. We refer to [3] for the source code of
some benchmarks. Finally, we have also considered the PE of a meta-interpreter
w.r.t. a source program. Although the partial evaluator successfully specialized
it, regarding improvement in efficiency, the results were not so satisfactory. To
improve this situation, we plan to develop a binding-time analysis to determine,

for each expression, whether it can be definitively evaluated at PE time (hence, it
should not be generalized by the abstraction operator) or whether this decision
must be taken online. This kind of (off-line) analysis would be also useful to
reduce specialization times.

Altogether, the experimental evaluation is encouraging and gives a good im-
pression of the specialization achieved by our partial evaluator.

6 Conclusions

In this work, we introduce a novel approach for the PE of truly lazy functional
logic languages. The new scheme is carefully designed for an abstract represen-
tation in which high-level programs can be automatically translated. We have
shown how a non-standard (residualizing) semantics can avoid several limitations
of previous frameworks. The implementation of a fully automatic PE tool for
the language Curry has been undertaken and tested on an extensive benchmark
suite. To the best of our knowledge, this is the first purely declarative partial
evaluator for a functional logic language. Moreover, since Curry is an extension
of both logic and (lazy) functional languages, we think that our PE scheme can
be easily adapted to other declarative languages.

From the experimental results, we conclude that our partial evaluator is
indeed suitable for “real” Curry programs. Anyway, there is still room for further
improvements. For instance, although self-application is already (theoretically)
possible, the definition of a precise binding-time analysis seems mandatory to
achieve an effective self-applicable partial evaluator. On the other hand, we have
not considered a formal treatment to measuring the effectiveness of our partial
evaluator. Another promising direction for future work is the development of
abstract criteria to formally measure the potential benefit of our PE algorithm.

References

1. E. Albert, M. Alpuente, M. Falaschi, and G. Vidal. INDY User’s Manual. Technical
report, UPV, 1998. Available from URL:
http://www.dsic.upv.es/users/elp/papers.html.

2. E. Albert, M. Alpuente, M. Hanus, and G. Vidal. A Partial Evaluation Framework
for Curry Programs. In Proc. of the 6th Int’l Conf. on Logic for Programming and
Automated Reasoning, LPAR’99, pages 376-395. Springer LNAT 1705, 1999.

3. E. Albert, M. Hanus, and G. Vidal. Using an Abstract Representation to Specialize
Functional Logic Programs. Technical report, UPV, 2000. Available from URL:
http://www.dsic.upv.es/users/elp/papers.html.

4. M. Alpuente, M. Falaschi, and G. Vidal. Partial Evaluation of Functional Logic
Programs. ACM Transactions on Programming Languages and Systems, 20(4):768—
844, 1998.

5. S. Antoy. Definitional trees. In Proc. of the 3rd Int’l Conference on Algebraic and
Logic Programming, ALP’92, pages 143-157. Springer LNCS 632, 1992.

6. S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. Journal of
the ACM, 2000 (to appear). Previous version in Proc. of POPL’9/, pages 268-279.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

A. Bondorf. A Self-Applicable Partial Evaluator for Term Rewriting Systems. In
Proc. of TAPSOFT’89, pages 81-95. Springer LNCS 352, 1989.

M. Bruynooghe, D. De Schreye, and B. Martens. A General Criterion for Avoiding
Infinite Unfolding. New Generation Computing, 11(1):47-79, 1992.

C. Consel and O. Danvy. Tutorial notes on Partial Evaluation. In Proc. ACM
Symp. on Principles of Programming Languages, pages 493-501, 1993.

D. De Schreye, R. Gliick, J. Jgrgensen, M. Leuschel, B. Martens, and M.H.
Sgrensen. Conjunctive Partial Deduction: Foundations, Control, Algorihtms, and
Experiments. Journal of Logic Programming, 41(2&3):231-277, 1999.

N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, ed-
itor, Handbook of Theoretical Computer Science, volume B: Formal Models and
Semantics, pages 243-320. Elsevier, Amsterdam, 1990.

J. Gallagher. Tutorial on Specialisation of Logic Programs. In Proc. of Partial
Evaluation and Semantics-Based Program Manipulation, pages 88-98. ACM, New
York, 1993.

R. Gliick and M.H. Sgrensen. A Roadmap to Metacomputation by Supercompila-
tion. In Partial Evaluation. Int’l Dagstuhl Seminar, pages 137-160. Springer LNCS
1110, 1996.

M. Hanus. The Integration of Functions into Logic Programming: From Theory
to Practice. Journal of Logic Programming, 19&20:583-628, 1994.

M. Hanus. A unified computation model for functional and logic programming. In
Proc. of POPL’97, pages 80-93. ACM, New York, 1997.

M. Hanus. Distributed Programming in a Multi-Paradigm Declarative Language.
In Proc. of PPDP’99, pages 376-395. Springer LNCS 1702, 1999.

M. Hanus. A Functional Logic Programming Approach to Graphical User In-
terfaces. In Int’l Workshop on Practical Aspects of Declarative Languages, pages
47-62. Springer LNCS 1753, 2000.

M. Hanus and C. Prehofer. Higher-Order Narrowing with Definitional Trees. Jour-
nal of Functional Programming, 9(1):33-75, 1999.

M. Hanus (ed.). Curry: An Integrated Functional Logic Language. Available at
http://www.informatik.uni-kiel.de/"curry, 2000.

M. Hanus, S. Antoy, J. Koj, P. Niederau, R. Sadre, and F. Steiner. PAKCS 1.2:
User Manual. Available at http://www.informatik.uni-kiel.de/~pakcs, 2000.
N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Pro-
gram Generation. Prentice-Hall, Englewood Cliffs, N.J, 1993.

Laura Lafave. A Constraint-based Partial Evaluator for Functional Logic Programs
and its Application. PhD thesis, Department of Computer Science, University of
Bristol, 1998.

M. Leuschel. On the Power of Homeomorphic Embedding for Online Termination.
In G. Levi, editor, Proc. of SAS’98, pages 230-245. Springer LNCS 1503, 1998.
J.W. Lloyd and J.C. Shepherdson. Partial Evaluation in Logic Programming.
Journal of Logic Programming, 11:217-242, 1991.

A P. Nemytykh, V.A. Pinchuk, and V.F. Turchin. A Self-Applicable Supercompiler.
In Proc. of Dagstuhl Sem. on Part. Evaluation, pages 322-337. Springer LNCS
1110, 1996.

M.H. Sgrensen and R. Gliick. An Algorithm of Generalization in Positive Super-
compilation. In Proc. of ILPS’95, pages 465—479. MIT Press, 1995.

M.H. Sgrensen, R. Gliick, and N.D. Jones. A Positive Supercompiler. Journal of
Functional Programming, 6(6):811-838, 1996.

P.L. Wadler. Deforestation: Transforming programs to eliminate trees. Theoretical
Computer Science, 73:231-248, 1990.

