
Improving Logic Programs by Adding Functions

Michael Hanus

Institut für Informatik, Kiel University, Kiel, Germany
mh@informatik.uni-kiel.de

Abstract. Logic programming is based on defining relations. Functions
are often considered as syntactic sugar which can be transformed into
predicates so that their logic is not used for computational purposes. In
this paper, we present a method to use functions to improve the opera-
tional behavior of logic programs without loosing the flexibility of logic
programming. For this purpose, predicates and goals are transformed
into functions and nested expressions. By evaluating these functions in
a demand-driven manner wherever possible and taking potential failures
into account, we ensure that the execution of the transformed programs
will never require more steps than the original programs but can decrease
the number of steps—in the best case reducing infinite search spaces to
finite ones. Thus, we obtain a systematic method to improve the opera-
tional behavior of logic programs without changing their semantics.

1 Introduction

Logic programming supports flexible programming techniques by built-in non-
determinism and free (logic) variables. Predicates can be called with unknown
arguments so that there are no fixed input and output positions, in contrast to
functional languages. Since functions can be represented as predicates by adding
the result as a parameter, logic programming is often considered as the more
expressive programming paradigm [36].

Due to these considerations, functions and nested function calls are consid-
ered as nice syntactic sugar which can be eliminated by translating them into
predicates and flattening nested expressions [8,12,32]. A consequence of this tra-
ditional view is the fact that one does not gain any operational advantage by
the presence of functions. Since it is well known in functional programming that
demand-driven (lazy) evaluation supports new programming techniques, as com-
puting with infinite data structures or modularity [25], there are also approaches
to translate functions with a demand-driven evaluation strategy by exploiting
coroutining in Prolog [12,32]. Since coroutining might influence completeness
due to flounderung, these approaches have an ad-hoc flavor—they are useful for
particular examples, but general correctness results (soundness, completeness)
are not provided.

To improve this situation, one could also take the opposite way. Instead of
transforming functions into predicates, one could transform logic programs into
programs of a language with another operational semantics. For instance, Van

Roy and Haridi [42] proposed to translate Prolog programs into Oz programs
where advanced features of Oz for concurrent and distributed computations are
used. Although this is an interesting approach to move logic programs tech-
niques into the distributed world, an operational improvement is not obtained
by this transformation. This is different in [19] where various transformations
of logic programs into functional logic programs are proposed. Functional logic
languages, such as Curry [22], offer the same flexibility as logic languages (sound-
ness and completeness w.r.t. computing with partial information). In addition,
optimality properties are known for well-defined classes of programs (minimal
number of computed solutions, minimal number of evaluation steps [2]). The
latter properties are due to the demand-driven evaluation of functions, i.e., it is
essential to keep nested functional expressions instead of flattening them.

Due to these results, one could transform logic programs into functional
logic programs. However, there is still one obstacle. As shown in [19], this trans-
formation yields equivalent computations (identical answers, same number of
computation steps) if the functional logic program is evaluated with an eager
(strict) strategy. When a lazy strategy is used, the transformed programs might
be more efficient but there are also cases where they compute answers which are
not justified by the logic program. This could be the case if some subgoal fails
in the logic program but they are not evaluated (due to laziness) in the trans-
formed program. Thus, the transformation might obtain more efficient programs
but with logically different answers.

In this paper, we want to close this gap by incorporating the failure behav-
ior into the transformation. Due to this improvement, we obtain a method to
transform logic programs with the following properties.

– The transformed programs always compute the same or more general answers
to a given goal.

– The evaluation of the transformed programs is guaranteed equal or better
than the evaluation of the original programs: in the worst case, the same
number of steps are performed, but there are also cases where less steps are
required to compute the result.

– As a consequence, there are also cases where infinite search spaces are re-
duced to finite ones.

Sloppily speaking, the improvements introduced by our transformation are com-
parable to “green” cuts in logic programming.

To obtain this result, we extend the transformation of [19] by deciding the
eager or lazy evaluation of operations based on potential failures. For this pur-
pose, we carefully analyze the problem of different answers between an eager or
lazy evaluation of transformed programs. Then we use an approximation of the
totality property of the transformed functions to explicitly enforce strict evalu-
ations at some points in the generated programs. If a subexpression is ensured
to be totally defined, it can be evaluated in a demand-driven manner, otherwise
its evaluation is enforced even if the result is not immediately demanded.

This paper is structured as follows. After sketching the basics of logic and
functional logic programming, we review in Sect. 3 the existing method to trans-

form logic into functional logic programs. Section 4 discusses the incorporation
of failure information to obtain a transformation which is correct w.r.t. the log-
ical consequences of the logic program. In order to improve the transformation,
we show in Sect. 5 how the addition of types can help to deduce a more pre-
cise approximation of potentially failing computations. Section 6 sketches the
implementation of our approach which is evaluated in Sect.7. Section 8 discusses
related work before we conclude.

2 Logic and Functional Logic Programming

In the following we briefly review some notions and features of logic and func-
tional logic programming. More details can be found in [29] and in surveys on
functional logic programming [5,17].

We use Prolog syntax to present logic programs. Terms in logic programs
are constructed from variables (X,Y, . . .), numbers, atom constants (c, d, . . .),
and functors or term constructors (f, g, . . .) applied to a sequence of terms, like
f(t1, . . . , tn). A literal p(t1, . . . , tn) is a predicate p applied to a sequence of
terms, and a goal L1, . . . , Lk is a sequence of literals, where □ denotes the empty
goal (k = 0). Clauses L :- B define predicates, where the head L is a literal
and the body B is a goal (a fact is a clause with an empty body □, otherwise it
is a rule). A logic program is a sequence of clauses.

Logic programs are evaluated by SLD-resolution steps, where we consider the
leftmost selection rule here. Thus, if G = L1, . . . , Lk is a goal and L :- B is a
variant of a program clause (with fresh variables) such that there exists a most
general unifier1 (mgu) σ of L1 and L, then G ⊢σ σ(B,L2, . . . , Lk) is a resolution
step. We denote by G1 ⊢∗

σ Gm a sequence G1 ⊢σ1 G2 ⊢σ2 . . . ⊢σm−1 Gm of
resolution steps with σ = σm−1 ◦ . . . ◦ σ1. A computed answer for a goal G is a
substitution σ (restricted to the variables occurring in G) with G ⊢∗

σ □.

Example 1. The following logic program defines a predicate plus, which relates
two natural numbers in Peano representation, where o represents zero and s rep-
resents the successor of a natural [41] to its sum, a predicate plus3, which relates
three natural numbers to its sum, and a predicate thirdof which is satisfied if
the second argument is a third of the first one.

plus(o,Y,Y).

plus(s(X),Y,s(Z)) :- plus(X,Y,Z).

plus3(X,Y,Z,R) :- plus(X,Y,XY), plus(XY,Z,R).

thirdof(X,Y) :- plus3(Y,Y,Y,X).

For the goal thirdof(o,T), the answer {T 7→ o} is computed but, after showing
this answer, Prolog does not terminate due to an infinite search space (since it
enumerates arbitrary large values for Y).

1 Substitutions, variants, and unifiers are defined as usual [29].

Functional logic programming [5,17] integrates the most important features of
functional and logic languages, such as higher-order functions and lazy (demand-
driven) evaluation from functional programming and non-deterministic search
and computing with partial information from logic programming. The declara-
tive multi-paradigm language Curry [22], which we use in this paper, is a func-
tional logic language with advanced programming concepts. Its syntax is close to
Haskell [35], i.e., variables and names of defined operations start with lowercase
letters and the names of data constructors start with an uppercase letter. The
application of an operation f to e is denoted by juxtaposition (“f e”).

In addition to Haskell, Curry allows free (logic) variables in program rules
(equations) and initial expressions. Function calls with free variables are evalu-
ated by a possibly non-deterministic instantiation of arguments.

Example 2. The following Curry program2 defines the operations of Example 1
in a functional manner, where logic features (like the free variable y) are exploited
to define thirdof:

plus O y = y

plus (S x) y = S (plus x y)

plus3 x y z = plus (plus x y) z

thirdof x | x =:= plus3 y y y

= y

“|” introduces a condition, and “=:=” denotes semantic unification, i.e., the
expressions on both sides are evaluated before unifying them.

Since plus can be called with arguments containing free variables, the condition
in the definition of thirdof is solved by instantiating y to appropriate values
(i.e., expressions without defined functions) before reducing a function call. This
corresponds to narrowing [37,40]. t ⇝σ t′ is a narrowing step if there is some
non-variable position p in t, an equation (program rule) l = r, and an mgu σ
of t|p and l such that t′ = σ(t[r]p),

3 i.e., t′ is obtained from t by replacing the
subterm t|p by the equation’s right-hand side and applying the unifier. Condi-
tional equations l | c = r are considered as syntactic sugar for the unconditional
equation l = c &> r, where “&>” is defined by True &> x = x.

Curry is based on the needed narrowing strategy [2] which also uses non-
most-general unifiers in narrowing steps to ensure the optimality of computa-
tions. Needed narrowing is a demand-driven evaluation strategy, i.e., it supports
computations with infinite data structures [25] and can avoid superfluous com-
putations so that it is optimal w.r.t. the number of computed solutions and
the length of derivation (see [2] for precise statements). The latter property is
our motivation to transform logic programs into Curry programs, since this can
reduce infinite search spaces to finite ones. For instance, the evaluation of the
expression thirdof O has a finite computation space: the generation of larger

2 The concrete syntax is simplified by omitting the declaration of free variables, like y,
which is required in Curry programs to enable consistency checks by the compiler.

3 We use common notations from term rewriting [6].

numbers for the first argument of plus3 is avoided since there is no demand for
such numbers.

Curry has many more features which are useful to implement applications,
like set functions [4] to encapsulate search, and standard features from functional
programming, like modules and monadic I/O [43]. However, the kernel of Curry
described so far should be sufficient to understand the remaining contents.

3 From Logic to Functional Logic Programs

Due to the fact that functional logic programming is an extension of pure logic
programming, there is a simple way to transform logic into functional logic pro-
grams by mapping each predicate into a Boolean function and each clause into
a (conditional) equation. This conservative transformation [19] does not change
the structure of derivations since narrowing steps on Boolean functions cor-
respond to resolution steps. Thus, there is no real advantage to perform this
transformation.

In order to exploit the computational power of functional logic languages, one
has to transform predicates into non-Boolean functions by selecting some argu-
ments as results and generating function definitions according to this selection.

Example 3. Consider the predicate plus defined in Example 1. If the third argu-
ment is selected as a result argument (as often intended in logic programs), the
clauses of plus can be transformed into the following functional logic program:

plus O y = y

plus (S x) y | z =:= plus x y = S z

In principle, any set of argument positions can be selected as results, as discussed
in [19]. For instance, if the first two arguments of plus are selected as result
arguments, the clauses of plus can be transformed into the following program:

plus y = (O, y)

plus (S z) | (x,y) =:= plus z = (S x, y)

Although this is not a function in a mathematical sense, it is a valid definition in
Curry: it defines a non-deterministic operation which might deliver more than
one result for a given argument. For a given natural number n, it returns all
splittings into two numbers such that their sum is equal to n:

> plus (S (S O))

(S (S O), O)

(S O, S O)

(O, S (S O))

Non-deterministic operations, which can formally be interpreted as mappings
from values into sets of values [14], are an important feature of contemporary
functional logic languages. The admissibility of non-deterministic operations pro-
vides more freedom when transforming logic programs into functional logic pro-
grams.

It is shown in [19] that, even if this functional transformation is used, there is
a strong one-to-one correspondence, independent of the selection of result ar-
guments, between resolution derivations w.r.t. the original logic program and
narrowing derivations w.r.t. the transformed program. In order to get a real ad-
vantage, one has to replace the unification occurring in conditions by let bindings
whenever possible4 and inline these bindings if reasonable. For instance, one can
transform the rule

plus (S x) y | z =:= plus x y = S z

into

plus (S x) y = let z = plus x y in S z

and inline the binding of z into

plus (S x) y = S (plus x y)

This demand functional transformation is described in detail in [19]. If the trans-
formed program is eagerly evaluated, i.e., the arguments of a function call are
evaluated before replacing the function call by its body (“call by value”), there
is no operational difference between programs transformed by the functional and
the demand functional transformation. This situation changes when the argu-
ments are evaluated “by need,” as in Haskell or Curry and discussed in [24,25].
For instance, consider the predicate signat defined by the clauses

signat(o,o).

signat(s(X),s(o)).

Its demand functional transformation is5

signat O = O

signat (S x) = S O

Now consider the evaluation of the expression signat (plus n1 n2), where n1 is a
big natural number. An eager evaluation requires n1 + 1 rewrite steps, whereas
a non-strict language needs only two steps.

Although it seems that the demand functional transformation is the way
to go, there is one potential problem of this transformation: it might change
the semantics, i.e., the set of computed solutions. This could be the case if the
evaluation of some subexpression is not demanded and its evaluation would fail
to yield a value. This failure would be propagated in the original logic program,
but it might be “hidden” in the transformed program. For instance, consider a
“decrement” predicate

dec(s(X),X).

and its application in the predicate

sig1(R) :- dec(o,X), plus(s(o),X,Y), signat(Y,R).

4 This is possible when the variable in the left-hand side of the unification has no
occurrences in result arguments of other goal literals, see [19] for a precise discussion.

5 If it is not explicitly mentioned, the last argument of a predicate is considered as the
result argument.

Due to the failure of the first subgoal, the goal “?- sig1(R).” fails. However, the
demand functional transformation yields

dec (S x) = x

sig1 = signat (plus (S O) (dec O))

so that a lazy evaluation of sig1 yields the value S O.
One could argue that the latter result value is intended due to the mathe-

matical principle of “replacing equals by equals.” This point of view is taken in
[19]. However, if we intend to use the transformation of logic programs into func-
tional logic programs to obtain more efficient programs without changing the set
of computed answers, this difference is not acceptable. Therefore, we develop in
the next sections a slightly different transformation which does not change the
answer behavior (except for computing more general answers) but improves the
operational behavior in many cases.

4 Incorporating Failure Information

We have seen in the previous section that the demand functional transformation
might yield a different answer behavior if functions generated by the transfor-
mation are partially defined, i.e., fail to compute a value for particular argument
values. We call such functions failing. The reason could be a pattern matching
failure as well as an infinite loop. Since failures due to infinite loops are seldom,
we later concentrate on the approximation of pattern matching failures.

If all functions occurring in an evaluation are totally defined, i.e., always
non-failing, then a demand-driven evaluation strategy, like needed narrowing,
computes only more general answers compared to an eager strategy, as shown
in the following result.

Theorem 1 (Correctness of the demand functional transformation).
Let P be a logic program and G be a goal. Let F be the functional logic program
and e the expression obtained by applying the demand functional transformation
to P and G, respectively.

1. If there is a resolution derivation G ⊢∗
σ □ w.r.t. P , then there is a needed

narrowing derivation e
∗
⇝σ′ True w.r.t. F and a substitution φ with σ =

φ ◦ σ′.
2. If all functions in F are totally defined and there is a needed narrowing

derivation e
∗
⇝σ True w.r.t. F , then there is a resolution derivation G ⊢∗

σ′ □

w.r.t. P and a substitution φ with σ′ = φ ◦ σ.

Proof. We sketch the proof which is a direct consequence of the soundness and
completeness of needed narrowing [1,2].

If there is a resolution derivation G ⊢∗
σ □ w.r.t. P , then there is an innermost

narrowing derivation e
∗
⇝σ True w.r.t. F computing the same answer [19]. By

soundness of narrowing, σ is a solution of the Boolean expression e w.r.t. F .

By completeness of needed narrowing, there is a needed narrowing derivation
e

∗
⇝σ′ True w.r.t. F and a substitution φ with σ = φ ◦ σ′.

If there is a needed narrowing derivation e
∗
⇝σ True w.r.t. F , then, by sound-

ness of needed narrowing, there is a rewriting of σ(e) to True. This is not nec-
essarily an innermost (eager) rewriting, i.e., there are some function calls in
this rewrite sequence which might not be rewritten since their values are not
needed. In an eager evaluation, all these function calls are evaluated. Due to the
assumption that all functions are totally defined, they can always be evaluated
to some value. An eager narrowing derivation might also bind some argument
variables which were not bound in the needed narrowing evaluation. Thus, in-
nermost narrowing might compute a more instantiated answer σ′. By [19], there
is a resolution derivation G ⊢∗

σ′ □ w.r.t. P . ⊓⊔

For instance, consider the expression signat (plus x x) where x is a free vari-
able. Needed narrowing computes only the answer substitutions {x 7→ O} for the
result O and {x 7→ S _} for the result S O, whereas innermost narrowing computes
an infinite set of answer substitutions, i.e., {x 7→ n} for every natural number
n. The same infinite set of answers is computed for the corresponding Prolog
program.

In order to safely use the demand functional transformation w.r.t. the needed
narrowing strategy, one has to ensure that all functions occurring in the evalua-
tion steps are totally defined. However, one has not to give up in the presence of
possibly failing operations since one only has to enforce the evaluation of such
operations if they occur in the right-hand side of a rule, since the corresponding
predicates are also evaluated in the logic program. This can be obtained by the
following modification of the transformation. If a rule’s right-hand side contains
an application f e and the evaluation of the expression e might fail to compute
a value, then this application is replaced by

f $! e

We call this modified transformation fail-sensitive functional transformation.
The predefined infix operator “$!” denotes a function application with a strict
evaluation of the argument. Thus, if the evaluation of e fails, the evaluation of
f $! e fails.

For instance, the fail-sensitive functional transformation maps the predicate
sig1 defined in the previous section into

sig1 = signat $! (plus (S O) $! (dec O))

so that the evaluation of sig1 leads to a failure due to the enforced evaluation of
(dec O). Note that the usage of “$!” is necessary at all places where a potentially
failing expression occurs and not only where the failing expressions occurs first.
For instance, the slightly modified expression

signat (S (plus (S O) $! (dec O)))

evaluates to S 0 when evaluated by needed narrowing, whereas

signat $! (S $! (plus (S O) $! (dec O))

fails, similarly to the corresponding logic program.

In order to perform our transformation, we need to know whether an oper-
ation is totally defined. Obviously, this is undecidable in general so that some
approximation is required. We can split this property into two parts: termina-
tion and non-occurrence of failures. Termination of rewrite systems or functional
programs is a well-studied topic so that various techniques are available to ap-
proximate this property, e.g., [13,28]. Actually, the Curry analysis framework
CASS [21] also provides an analysis to approximate the termination of func-
tions. Therefore, we concentrate the subsequent discussion to the problem to
approximate fail-freeness.

An operation is called fail-free [18] if its evaluation will never run into an
explicit failure (due to a pattern-match error). A recent technique to approximate
and verify fail-freeness is a type-based approximation of the arguments describing
values for which a function call does not fail [20]. For this purpose, sets of
concrete argument values are approximated by some abstract type. A simple
but practically useful approximation are depth-k abstractions [38]. For the case
k = 1, depth-1 types are described by subsets of constructors representing all
terms having one of these constructors at the root. Moreover, the special value ⊤
describes the set of all constructors occurring in the program (a refinement based
on type information will be discussed later). A call type of an n-ary function f is
sequence α1, . . . , αn of abstract types such that any evaluation of a call f t1 . . . tn
does not fail if ti belongs to the set represented by αi (i = 1, . . . , n). For instance,
{S} is a call type of the operation dec (∅ woul be another, less precise call type),
and {O, S},⊤ is a call type of plus. Since {O, S} are the only constructors in this
program, we can also write this call type as ⊤,⊤. A trivial call type is a sequence
of ⊤s.

A method to infer call types is described in [20]. It is based on approximating
the input/output behavior of operations and using this information to infer call
types by considering the patterns and the operations occurring in the right-hand
sides of the rules. Since these operations might demand for refined call types,
the entire inference is a global fixpoint computation. For instance, the initial call
type of

plusD x y = plus x (dec y)

is ⊤,⊤ (since there are no restrictions in the left-hand side due to patterns).
The call (dec y) demands that the second argument has type {S} so that the
initial call type is refined to ⊤, {S}. With this call type, plusD can be proved as
fail-free.

An operation can have a trivial call type even if it calls potentially failing
operations. For instance, consider the operation

dPlusS n = dec (plus (S n) n)

The tool described in [20] infers the trivial call type for dPlusS since the first
argument of plus ensures that dec is always called with an S-rooted term.

The practical evaluation shows that only a few operations have non-trivial
call types in larger programs since most operations are defined by complete pat-

tern matchings on their input type. However, this demands for the consideration
of the intended types of operations, as discussed next.

5 Type-Based Translation

Although Curry and other contemporary functional logic languages (e.g., TOY
[31]) are strongly typed, type information is not considered in the fail-sensitive
functional transformation. In principle, this is not necessary since types of func-
tions are automatically inferred. Since data constructors need to be declared, the
transformation adds a single definition of a type Term containing all constructors
occurring in the program. For instance, the transformation of the previous ex-
amples using natural numbers in Peano representation adds the type declaration

data Term = O | S Term

If we extend the previous logic programs by a definition of a predicate to relate
a binary tree with the number of its leaves, like

numleaves(leaf(_),s(o)).

numleaves(node(M1,M2),s(N)) :-

numleaves(M1,N1), numleaves(M2,N2), plus(N1,N2,N).

then the following data type is generated:

data Term = O | S Term | Leaf Term | Node Term Term

Since it is not ensured that plus is called only with natural numbers as argu-
ments, the call type inferred for plus is no longer trivial. This is correct since
the call plus (Leaf O) O is allowed and fails.

In order to improve this situation, we extend the transformation by the inclu-
sion of type declarations. Although there is some interest to add types to Prolog
programs [39], there is no general agreement about its syntax and structure. For
instance, CIAO-Prolog [23] allows the definition of regular and Hindley-Milner
types, or [7] describes a tool to infer types from logic programs. For our purpose,
we support the explicit definition of polymorphic algebraic data types in Prolog
syntax, like

:- type nat = o ; s(nat).

:- type tree(A) = leaf(A) ; node(tree(A),tree(A)).

These will be translated into definitions in Curry syntax:

data Nat = O | S Nat

data Tree a = Leaf a | Node (Tree a) (Tree a)

With these definitions, the following types are inferred for the transformed op-
erations plus and numleaves:

plus :: Nat → Nat → Nat

numleaves :: Tree a → Nat

Based on these types, both operations have trivial call types so that they are
fail-free. This demonstrates that type information is useful to improve the trans-

formation of logic programs into functional logic programs. In principle, it is not
necessary. In the worst case, missing type information might have the effect that
all operations are potentially failing so that the translated program is eagerly
evaluated without any advantage compared to the original logic program.

6 Implementation

To evaluate our approach, we have extended the transformation tool presented
in [19] by the inclusion of type and failure information.6 Types can be declared
in the source program as discussed in the previous section. They are directly
mapped into corresponding data definitions in Curry. The remaining construc-
tors occurring in the logic program but not mentioned in a type declaration are
declared in a single Term type, as shown in the previous section.

Predicates are mapped into Curry functions without type annotations so
that type signatures are inferred by the Curry system. The entire transformation
process is performed in the following steps:

1. The given logic program is translated into a Curry program based on the
demand functional transformation. The result argument positions are either
inferred using a heuristic discussed in [19] or they can also be explicitly
declared in the given logic program.

2. The generated functional logic program is analyzed with the tool described
in [20] to check which operations are fail-free.7

3. Using the information computed in the previous step, the given logic pro-
grams is translated into a Curry program based on the fail-sensitive func-
tional transformation. Thus, the same program structure is generated but
the standard function application f e is replaced by f $! e whenever the ex-
pressions e might fail, i.e., contains an operation which is not fail-free. Note
that f might be an expression, e.g., another application. For instance, if f is
a binary operation and e1 as well as e2 contain operations with non-trivial
call types, then an application f e1 e2 generated in step 1 is replaced by
(f $! e1) $! e2.8 If all operations in e2 have trivial call types, the application
(f $! e1) e2 is generated.

7 Evaluation

The main motivation for this work is to show that functional logic programs have
concrete operational advantages compared to pure logic programs. In principle,

6 The tool, available at https://cpm.curry-lang.org/pkgs/prolog2curry-1.2.0.html, is imple-
mented as a Curry package for easy installation. A script with all required tools is
also available as a docker image at https://hub.docker.com/r/currylang/prolog2curry.

7 The inclusion of automated termination checks is currently omitted since it is seldom
that operations generated from Prolog are completely defined but non-terminating.

8 Note that this might change the order of evaluation if both arguments are demanded
by f , but this order is not relevant in a declarative language without side effects.

https://cpm.curry-lang.org/pkgs/prolog2curry-1.2.0.html
https://hub.docker.com/r/currylang/prolog2curry

Language: Prolog Prolog Curry
System: SWI 9.0.4 SICStus 4.9.0 KiCS2 3.1.0

rev_4096 0.23 0.22 0.10
tak_27_16_8 6.97 3.23 0.74
ackermann_3_9 2.13 8.72 0.07
thirdof_0 ∞ ∞ 0.01
signat_plus_0 ∞ ∞ 0.01
numleaves_7 ∞ ∞ 0.01
permsort_10 1.43 0.28 0.03
permsort_11 16.16 1.38 0.08
permsort_12 206.34 15.23 0.28

Table 1. Execution times (in seconds) of Prolog and generated Curry programs

this has already been shown in [19] but that approach is based on changing the
semantics of programs from strict to demand-driven evaluation. As discussed
above, this could have the effect that the transformed program computes more
answers than the original logic program. By incorporating failure information,
our new transformation has not this effect but compute more general answers
compared to the answers of the logic program. For instance, the Prolog goal

?- plus(X,o,N), signat(N,s(o)).

yields an infinite set of answers where X and N are bound to all non-zero natural
numbers, whereas the equivalent Curry expression obtained by our transforma-
tion

> signat (plus x O) =:= S O

has a finite search space and yields the single answer substitution {x 7→ S _}.
In the following, we want to show the practical advantages of this trans-

formation by various examples. Note that these examples are small programs
since larger Prolog programs are seldom logic programs—they often use non-
declarative features. Such non-declarative features are either not necessary in
functional logic programs (e.g., cuts are replaced by exploiting functional de-
pendencies) or can be reformulated in a declarative manner (e.g., declarative
monadic I/O, state monads). Due to these reasons, functional logic programs
have advantages from the view of software construction—which is less tangi-
ble to formalization. Therefore, we evaluate the advantages of functional logic
programming only from the operational point of view.

Table 1 contains the results of executing various Prolog programs with SWI-
Prolog and SICStus-Prolog and the Curry programs obtained by applying the
fail-sensitive functional transformation with the Curry system KiCS2 [9].9 The
direct comparison of original and transformed programs is not straightforward

9 The benchmarks were executed on a Linux machine running Ubuntu 22.04 with an
Intel Core i7-1165G7 (2.80GHz) processor with eight cores. The time is the total run
time of executing a binary generated with the Prolog/Curry systems.

since the execution times depend on the implementation techniques used in the
Prolog and Curry systems. KiCS2 compiles Curry programs into Haskell pro-
grams that are compiled to machine code by the Glasgow Haskell Compiler
(GHC 9.4.5). GHC generates efficient code for functional computations. This
is visible in the first three benchmarks which are purely deterministic compu-
tations. rev_4096 is the naive list reversal applied to a list of 4096 elements.
tak_27_16_8 applies the highly recursive tak function, used in various bench-
marks [34] for logic and functional languages, to the values (27,16,8) in Peano
representation. Similarly, the Ackermann function is defined on Peano numbers
and applied to the Peano representation of (3,9). The definition of these func-
tions can be found in the appendix. It is interesting to note that the definition
of tak decrements some arguments based on the predicate dec defined in Sect. 3.
Since the generated function dec might fail, our transformation inserts the strict
application operator “$!” in several places in the body of tak. These operators
cause some overhead10 and are not really necessary since tak is strict in its first
argument. With a strictness analysis, one could drop these operators. Although
this is not implemented in our tool, a manual optimization of the Curry code
results in an execution time of 0.38 seconds. Thus, there is potential to improve
the generated Curry code.

For the first three benchmarks, the demand-driven evaluation strategy has
no real advantage since the values of all subexpressions are required. Hence, the
same steps, possibly in a different order, are performed in the Prolog and Curry
programs. The situation is different in the next three benchmarks which use ex-
amples already discussed in this paper. thirdof_O is the evaluation of the literal
thirdof(o,T) (see Sect.1), signat_plus_O is the evaluation of the goal shown at
the beginning of this section, and numleaves_7 is the evaluation of the literal
numleaves(T,s(s(s(s(s(s(s(o)))))))) having five solutions (compare Sect. 5).
Since Table 1 shows the time to compute all answers to the given goals, the
Prolog systems do not terminate due to the infinite search spaces of these goals,
whereas the transformed Curry programs have a finite search space. The final
benchmarks, permutation sort applied to lists containing 10, 11, and 12 decreas-
ing Peano numbers, demonstrates the advantage of demand-driven evaluation
even if the search space is finite. As discussed at various places [5,17], the func-
tional logic version of permutation sort has the effect that permutations are
explored in a demand-driven manner so that not all permutations are actually
generated. Thus, our transformation maps a “generate-and-test” algorithm into
a more efficient “test-of-generate-as-demanded” algorithm with a lower complex-
ity, as apparent from the benchmarks.

The fail-sensitive functional transformation produces functional logic pro-
grams providing the same or more general answers as the original logic programs.
In the worst case, the same number of evaluation steps are performed (apart from
a few additional steps to reduce occurrences of “$!” introduced due to non-total
functions). In the best case, the transformation reduces infinite search spaces to

10 The operator “$!” is not considered by the Curry compiler KiCS2 but implemented
by a specific predefined operation.

finite ones. Thus, one does not get any disadvantage of this transformation but
in some cases considerable advantages.

We want to remark that this improvement is not only of theoretical interest.
As apparent from our examples, logic programs might have infinite search spaces
when search is nested, i.e., if two predicates defined on infinite structures, like
Peano numbers, lists, or trees, are sequentially called with unknown arguments,
as in plus3 or numleaves. When such programs are transformed into functional
logic programs, a demand-driven evaluation, like needed narrowing, results in a
demand-driven exploration of the search space. This is exploited in [16] to im-
plement a domain-specific language for deep XML matching and transformation
as a library in Curry. Without the demand-driven evaluation strategy, many of
the library functions would not terminate. Actually, the library has similar fea-
tures as the logic-based language Xcerpt [11] which uses a specialized unification
procedure to ensure finite matching and unification of XML terms.

8 Related Work

The view that algorithms can be seen as declarative logic descriptions combined
with appropriate control rules was introduced before decades [27]. Since the
standard control rule of Prolog, left-to-right depth-first search implemented via
backtracking, has the risk to loop infinitely instead of delivering an answer, there
is also long history to modify the standard control rule in order to improve the
operational behavior [10,33]. These proposals usually consider the operational
level so that a declarative justification (soundness and completeness) is missing.
This is in contrast to our work which is motivated to keep the soundness and
completeness of logic programming and provide a better operational model.

There are also approaches to add functions and functional notations to logic
programs and map them in various ways to logic programs, in particular, to
Prolog systems with coroutining in order to have a similar effect as in a demand-
driven computation model. However, one has to be careful since there are various
ways and pitfalls to implement laziness in this way. For instance, [32] implements
lazy evaluation in Prolog by representing closures as terms and use when decla-
rations to delay insufficiently instantiated function calls. This might lead to
floundering so that completeness is lost when predicates are transformed into
functions. Moreover, delaying recursively defined predicates could result in infi-
nite search spaces where a complete narrowing strategy has a finite search space
[15]. A notation for functions in Prolog programs is also proposed in [12]. This
syntactic extension is mapped into Prolog predicates where coroutining is used to
implement lazy evaluation. Although this syntactic transformation might yield
the same values and search space as functional logic languages, there are no
formal results justifying this transformation.

Other approaches use Prolog as a target language to implement functional
logic languages based on demand-driven narrowing strategies [3,26,30,31]. Since
these approaches implement narrowing strategies, the soundness and complete-
ness results of narrowing holds also for the generated logic programs. When

implementing needed narrowing in this way [3], the resulting programs are op-
timal, i.e., the set of computed solutions is minimal and successful derivations
have the shortest possible length [2].

In this paper we take an opposite approach since we use (pure) Prolog as the
source language. This was already proposed in [19] but there it is not ensured
that the set of answers is kept by the transformation, as discussed in Sect. 3. By
respecting the failure behavior of the source programs, we fixed this problem and
showed how to obtain an equal or better operational behavior without changing
the answer behavior. The extension of this transformation to Prolog’s built-
in arithmetic and conditional goals is shown in [19] and also implemented in
our current approach. Methods to infer result argument positions so that the
transformed program is optimal (if possible) are also discussed in [19]. Since these
methods can be used identically in our transformation, we omitted a detailed
presentation of them in this paper.

9 Conclusions

We presented a method to transform logic programs into functional logic pro-
grams so that the transformed functional logic program always computes the
same or more general answers than the original program. For a well-defined class
of programs (predicates completely defined by inductively sequential rules), the
set of answers and the number of evaluation steps leading to an answer are
minimal [1,2]. Thus, the transformation is useful to transfer strong results from
functional logic programming into logic programming.

To ensure the correctness of the transformation, we use an approximation of
the failure behavior of transformed programs, which is improved by considering
types provided for logic programs. As a result, the transformation yields pro-
grams that require the same number of evaluation steps in the worst case, but
often require less steps and reduces infinite search spaces to finite ones. Thus,
the main lesson learned from this work is that the introduction of functions and
the usage of these dependencies in functional logic programs has many advan-
tages but no disadvantages in general. We implemented our method in a tool
and showed the practical advantages by evaluating a set of small but typical
examples.

For future work it might be interesting to improve the presented fail-sensitive
functional transformation by taking strictness information into account to avoid
the introduction of strict application operations, as discussed in Sect. 7. However,
the motivation of this work is not to provide a general applicable tool to trans-
form Prolog programs, since this is difficult due to the use of non-declarative
features in larger Prolog programs. Our intention is to show that the execu-
tion mechanism of functional logic programs is always equal or better than the
resolution principle for pure logic programs thanks to exploiting functional de-
pendencies. Although this could be simulated in Prolog systems with corouting,
additional problems might occur due to floundering and incompleteness of exe-
cutions.

References

1. S. Antoy. Optimal non-deterministic functional logic computations. In Proc. Inter-
national Conference on Algebraic and Logic Programming (ALP’97), pages 16–30.
Springer LNCS 1298, 1997.

2. S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. Journal of
the ACM, 47(4):776–822, 2000.

3. S. Antoy and M. Hanus. Compiling multi-paradigm declarative programs into
Prolog. In Proc. International Workshop on Frontiers of Combining Systems (Fro-
CoS’2000), pages 171–185. Springer LNCS 1794, 2000.

4. S. Antoy and M. Hanus. Set functions for functional logic programming. In Pro-
ceedings of the 11th ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming (PPDP’09), pages 73–82. ACM Press, 2009.

5. S. Antoy and M. Hanus. Functional logic programming. Communications of the
ACM, 53(4):74–85, 2010.

6. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

7. J. Barbosa, M. Florido, and V. Santos Costa. Data type inference for logic pro-
gramming. In Proceedings of the 31st International Symposium on Logic-based
Program Synthesis and Transformation (LOPSTR 2021), pages 16–37. Springer
LNCS 13290, 2021.

8. R. Barbuti, M. Bellia, G. Levi, and M. Martelli. On the integration of logic pro-
gramming and functional programming. In Proc. IEEE Internat. Symposium on
Logic Programming, pages 160–166, Atlantic City, 1984.

9. B. Braßel, M. Hanus, B. Peemöller, and F. Reck. KiCS2: A new compiler from
Curry to Haskell. In Proc. of the 20th International Workshop on Functional and
(Constraint) Logic Programming (WFLP 2011), pages 1–18. Springer LNCS 6816,
2011.

10. M. Bruynooghe, D. De Schreye, and B. Krekels. Compiling control. Journal of
Logic Programming (6), pages 135–162, 1989.

11. F. Bry and S. Schaffert. Towards a declarative query and transformation language
for XML and semistructured data: Simulation unification. In Proceedings of the In-
ternational Conference on Logic Programming (ICLP’02), pages 255–270. Springer
LNCS 2401, 2002.

12. A. Casas, D. Cabeza, and M.V. Hermenegildo. A syntactic approach to combining
functional notation, lazy evaluation, and higher-order in LP systems. In Proc. of
the 8th International Symposium on Functional and Logic Programming (FLOPS
2006), pages 146–162. Springer LNCS 3945, 2006.

13. J. Giesl, M. Raffelsieper, P. Schneider-Kamp, S. Swiderski, and R. Thiemann.
Automatic termination proofs for Haskell by term rewriting. ACM Transactions
on Programming Languages and Systems, 33(2):Article 7, 2011.

14. J.C. González-Moreno, M.T. Hortalá-González, F.J. López-Fraguas, and
M. Rodŕıguez-Artalejo. An approach to declarative programming based on a
rewriting logic. Journal of Logic Programming, 40:47–87, 1999.

15. M. Hanus. Analysis of residuating logic programs. Journal of Logic Programming,
24(3):161–199, 1995.

16. M. Hanus. Declarative processing of semistructured web data. In Technical
Communications of the 27th International Conference on Logic Programming, vol-
ume 11, pages 198–208. Leibniz International Proceedings in Informatics (LIPIcs),
2011.

17. M. Hanus. Functional logic programming: From theory to Curry. In Programming
Logics - Essays in Memory of Harald Ganzinger, pages 123–168. Springer LNCS
7797, 2013.

18. M. Hanus. Verifying fail-free declarative programs. In Proceedings of the 20th
International Symposium on Principles and Practice of Declarative Programming
(PPDP 2018), pages 12:1–12:13. ACM Press, 2018.

19. M. Hanus. From logic to functional logic programs. Theory and Practice of Logic
Programming, 22(4):538–554, 2022.

20. M. Hanus. Inferring non-failure conditions for declarative programs. In Proc. of
the 17th International Symposium on Functional and Logic Programming (FLOPS
2024), pages 167–187. Springer LNCS 14659, 2024.

21. M. Hanus and F. Skrlac. A modular and generic analysis server system for func-
tional logic programs. In Proc. of the ACM SIGPLAN 2014 Workshop on Partial
Evaluation and Program Manipulation (PEPM’14), pages 181–188. ACM Press,
2014.

22. M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.9.0). Avail-
able at http://www.curry-lang.org, 2016.

23. M. Hermenegildo, F. Bueno, M. Carro, P. López-Garćıa, E. Mera, J.F. Morales,
and G. Puebla. An overview of Ciao and its design philosophy. Theory and Practice
of Logic Programming, 12(1-2):219–252, 2012.

24. G. Huet and J.-J. Lévy. Computations in orthogonal rewriting systems. In J.-L.
Lassez and G. Plotkin, editors, Computational Logic: Essays in Honor of Alan
Robinson, pages 395–443. MIT Press, 1991.

25. J. Hughes. Why functional programming matters. In D.A. Turner, editor, Research
Topics in Functional Programming, pages 17–42. Addison Wesley, 1990.

26. J.A. Jiménez-Martin, J. Marino-Carballo, and J.J. Moreno-Navarro. Efficient com-
pilation of lazy narrowing into Prolog. In Proc. Int. Workshop on Logic Program
Synthesis and Transformation (LOPSTR’92), pages 253–270. Springer Workshops
in Computing Series, 1992.

27. R. Kowalski. Algorithm = logic + control. Communications of the ACM,
22(7):424–436, 1979.

28. C.S. Lee, N.D. Jones, and A.M. Ben-Amram. The size-change principle for pro-
gram termination. In ACM Symposium on Principles of Programming Languages
(POPL’01), pages 81–92, 2001.

29. J.W. Lloyd. Foundations of Logic Programming. Springer, second, extended edi-
tion, 1987.

30. R. Loogen, F. López Fraguas, and M. Rodŕıguez Artalejo. A demand driven compu-
tation strategy for lazy narrowing. In Proc. of the 5th International Symposium on
Programming Language Implementation and Logic Programming, pages 184–200.
Springer LNCS 714, 1993.

31. F. López-Fraguas and J. Sánchez-Hernández. TOY: A multiparadigm declarative
system. In Proc. of RTA’99, pages 244–247. Springer LNCS 1631, 1999.

32. L. Naish. Adding equations to NU-Prolog. In Proc. of the 3rd Int. Symposium
on Programming Language Implementation and Logic Programming, pages 15–26.
Springer LNCS 528, 1991.

33. S. Narain. A technique for doing lazy evaluation in logic. Journal of Logic Pro-
gramming, 3:259–276, 1986.

34. W. Partain. The nofib benchmark suite of Haskell programs. In Proceedings of
the 1992 Glasgow Workshop on Functional Programming, pages 195–202. Springer,
1992.

http://www.curry-lang.org

35. S. Peyton Jones, editor. Haskell 98 Language and Libraries—The Revised Report.
Cambridge University Press, 2003.

36. U.S. Reddy. Transformation of logic programs into functional programs. In Proc.
IEEE Internat. Symposium on Logic Programming, pages 187–196, Atlantic City,
1984.

37. U.S. Reddy. Narrowing as the operational semantics of functional languages. In
Proc. IEEE Internat. Symposium on Logic Programming, pages 138–151, Boston,
1985.

38. T. Sato and H. Tamaki. Enumeration of success patterns in logic programs. The-
oretical Computer Science, 34:227–240, 1984.

39. T. Schrijvers, V. Santos Costa, J. Wielemaker, and B. Demoen. Towards Typed
Prolog. In 24th International Conference on Logic Programming (ICLP 2008),
pages 693–697. Springer LNCS 5366, 2008.

40. J.R. Slagle. Automated theorem-proving for theories with simplifiers, commuta-
tivity, and associativity. Journal of the ACM, 21(4):622–642, 1974.

41. L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, Cambridge, Mas-
sachusetts, 2nd edition, 1994.

42. P. Van Roy and S. Haridi. Ideas for the future of Prolog inspired by Oz. CoRR,
abs/2302.00558, 2023.

43. P. Wadler. How to declare an imperative. ACM Computing Surveys, 29(3):240–263,
1997.

A Benchmarks

This appendix shows the Prolog source code of some predicates used in the
benchmarks and the Curry code generated by our tool implementing the fail-
sensitive functional transformation.

A.1 rev

The predicate rev is the well-known naive reverse with a quadratic complexity:

app([],Xs,Xs).

app([X|Xs],Ys,[X|Zs]) :- app(Xs,Ys,Zs).

rev([],[]).

rev([X|Xs],R) :- rev(Xs,Zs), app(Zs,[X],R).

Both predicates are translated into totally defined functions:

app [] xs = xs

app (x : xs) ys = x : app xs ys

rev [] = []

rev (x : xs) = app (rev xs) [x]

A.2 tak

The function tak is defined in Prolog on Peano numbers, i.e., terms constructed
from o/0 and s/1:

tak(X,Y,Z,A) :- leq(X,Y,XLEQY), takc(XLEQY,X,Y,Z,A).

takc(true,X,Y,Z,Z).

takc(false,X,Y,Z,A) :-

dec(X,X1),

tak(X1,Y,Z,A1),

dec(Y,Y1),

tak(Y1,Z,X,A2),

dec(Z,Z1),

tak(Z1,X,Y,A3),

tak(A1,A2,A3,A).

dec(s(X),X).

leq(o,_,true).

leq(s(_),o,false).

leq(s(X),s(Y),R) :- leq(X,Y,R).

Due to the definition of dec, the generated function takc contains occurrences of
“$!” in its right-hand side:

tak x y z = takc (leq x y) x y z

takc True x y z = z

takc False x y z =

((tak $! (tak $! (dec x)) y z) $! (tak $! (dec y)) z x) $!
(tak $! (dec z)) x y

dec (S x) = x

leq O _ = True

leq (S _) O = False

leq (S x) (S y) = leq x y

A.3 ackermann

The Ackermann function is also defined as a Prolog predicate on Peano numbers,
as presented in [41]:

ackermann(o,N,s(N)).

ackermann(s(M),o,Val) :- ackermann(M,s(o),Val).

ackermann(s(M),s(N),Val) :-

ackermann(s(M),N,Val1), ackermann(M,Val1,Val).

It is translated into the Curry function

ackermann O n = S n

ackermann (S m) O = ackermann m (S O)

ackermann (S m) (S n) = ackermann m (ackermann (S m) n)

A.4 permsort

The permutation sort example computes permutations by non-deterministically
inserting an element into a list.

% Non-deterministic list insertion:

insert(X,[],[X]).

insert(X,[Y|Ys],[X,Y|Ys]).

insert(X,[Y|Ys],[Y|Zs]) :- insert(X,Ys,Zs).

% Permutations:

perm([],[]).

perm([X|Xs],Zs) :- perm(Xs,Ys), insert(X,Ys,Zs).

% less-or-equal relation

leq(o,_).

leq(s(X),s(Y)) :- leq(X,Y).

% Is the argument list sorted?

sorted([]).

sorted([_]).

sorted([X,Y|Ys]) :- leq(X,Y), sorted([Y|Ys]).

% Permutation sort: search for some sorted permutation

psort(Xs,Ys) :- perm(Xs,Ys), sorted(Ys).

The generated operations insert and perm are totally defined, whereas leq,
sorted, and psort might fail. Due to the strict left-to-right semantics of the
predefined conjunction operator “&&”, insertions of the strict application opera-
tor “$!” in the third rule of sorted are not necessary.

insert x [] = [x]

insert x (y : ys) = x : (y : ys)

insert x (y : ys) = y : insert x ys

perm [] = []

perm (x : xs) = insert x (perm xs)

leq O _ = True

leq (S x) (S y) | leq x y = True

sorted [] = True

sorted [_] = True

sorted (x : y : ys) | leq x y && sorted (y : ys) = True

psort xs | sorted ys = ys

where ys = perm xs

	Improving Logic Programs by Adding Functions

