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Abstract. We present CurryCheck, a tool to automate the testing of programs written
in the functional logic programming language Curry. CurryCheck executes unit tests as
well as property tests which are parameterized over one or more arguments. In the lat-
ter case, CurryCheck tests these properties by systematically enumerating test cases so
that, for smaller finite domains, CurryCheck can actually prove properties. Unit tests
and properties can be defined in a Curry module without being exported. Thus, they are
also useful to document the intended semantics of the source code. Furthermore, Cur-
ryCheck also supports the automated checking of specifications and contracts occurring
in source programs. Hence, CurryCheck is a useful tool that contributes to the property-
and specification-based development of reliable and well tested declarative programs.

1 Motivation

Testing is an important step to get confidence in the functionality of a program. The advantage
of testing compared to program verification is its potential for automation. If we do not execute
test cases only manually for some inputs but encode them as input to test frameworks, we can
automatically run and repeat them when the software is further developed, which is also known
as regression testing.

A difficulty in testing is to find appropriate inputs for the individual tests. For this purpose,
property-based testing has been proposed, well known in the functional language Haskell with
the QuickCheck tool [16]. Basically, properties are predicates parameterized over one or more
arguments. QuickCheck automates the test execution by applying properties to randomly gen-
erated test inputs. Since this idea is particularly reasonable for declarative languages, it is been
adapted in different forms to functional and logic programming languages. For instance, Small-
Check [33] and GAST [28] focus on a systematic enumeration of test inputs for functional pro-
grams, PropEr [30] adapts ideas of QuickCheck to the concurrent functional language Erlang,
PrologCheck [1] transfers and extends ideas of QuickCheck to Prolog, and EasyCheck [15]
exploits functional logic programming features to property-based testing of Curry programs.

CurryCheck follows the same ideas. Actually, it is based on EasyCheck to define properties.
However, CurryCheck is intended as a comprehensive tool to simplify the automation of test
execution. To use CurryCheck, properties are interspersed into the program as top-level defini-
tions. Thus, properties are used to document the intended semantics of the source code, which
also supports test-driven program development known as “extreme programming.” When Cur-
ryCheck is applied to a (set of) Curry modules, it extracts all properties, generates a program
to test these properties, executes this generated program, and reports any errors. Furthermore,
CurryCheck also analyzes possible contracts [8] provided in source programs and generates
properties to test these contracts. Thanks to this automation, CurryCheck is a useful tool for
continuous integration and deployment processes. Actually, it is used for this purpose in the
Curry implementations PAKCS [24] and KiCS2 [14].

In this paper we present the ideas and usage of CurryCheck. After a review of the main
features of Curry in the next section, we introduce properties in Sect. 3 and explain how they



are tested in Sect. 4. The support of CurryCheck to define test inputs is presented in Sect. 5.
CurryCheck’s support for contract checking is described in Sect. 6. Some initial features of
CurryCheck to combine testing and verification are sketched in Sect. 7. We report about our
practical experience with CurryCheck in Sect. 8 before we compare CurryCheck to some re-
lated tools and conclude.

2 Functional Logic Programming and Curry

Functional logic languages [6,23] integrate the most important features of functional and logic
languages in order to provide a variety of programming concepts. They support functional con-
cepts like higher-order functions and lazy evaluation as well as logic programming concepts
like non-deterministic search and computing with partial information. This combination led to
new design patterns [7] as well as better abstractions for application programming. The declar-
ative multi-paradigm language Curry [20] is a modern functional logic language with advanced
programming concepts. In the following, we briefly review some features of Curry relevant for
this paper. More details can be found in recent surveys on functional logic programming [6,23]
and in the language report [25].

The syntax of Curry is close to Haskell [31]. In addition to Haskell, Curry allows free
(logic) variables in rules and initial expressions. Function calls with free variables are evaluated
by a possibly non-deterministic instantiation of demanded arguments.

Example 1. The following simple program shows the functional and logic features of Curry. It
defines the well-known list concatenation and an operation that returns some element of a list
having at least two occurrences:
(++) :: [a] → [a] → [a] someDup :: [a] → a
[] ++ ys = ys someDup xs | xs == _++[x]++_++[x]++_
(x:xs) ++ ys = x : (xs ++ ys) = x where x free

The (optional) type declaration (“::”) of the operation “++” specifies that “++” takes two lists
as input and produces an output list, where all list elements are of the same (unspecified) type.
Since “++” can be called with free variables in arguments, the condition in the rule of someDup
is solved by instantiating x and the anonymous free variables “_” to appropriate values before
reducing the function calls. This corresponds to narrowing [34,32], but Curry narrows with
possibly non-most-general unifiers to ensure the optimality of computations [2].

Note that someDup is a non-deterministic operation since it might deliver more than one result
for a given argument, e.g., the evaluation of someDup[1,2,2,1] yields the values 1 and
2. Non-deterministic operations, which can formally be interpreted as mappings from values
into sets of values [19], are an important feature of contemporary functional logic languages.
Hence, Curry has also a predefined choice operation:
x ? _ = x
_ ? y = y

Thus, the expression “0 ? 1” evaluates to 0 and 1with the value non-deterministically chosen.
Functional patterns [3] are useful to define some operations more easily. A functional

pattern is a pattern occurring in an argument of the left-hand side of a rule containing defined
operations (and not only data constructors and variables). Such a pattern abbreviates the set
of all standard patterns to which the functional pattern can be evaluated (by narrowing). For
instance, we can rewrite the definition of someDup as
someDup (_++[x]++_++[x]++_) = x



Functional patterns are a powerful feature to express arbitrary selections in tree structures, e.g.,
in XML documents [22]. Details about their semantics and a constructive implementation of
functional patterns by a demand-driven unification procedure can be found in [3].

Curry has also features which are useful for application programming, like set functions [5]
to encapsulate non-deterministic computations, default rules [9] to deal with partially specified
operations and negation, and standard features from functional programming, like modules or
monadic I/O [36]. Other features are explained when they are used in the following.

3 Properties

In this section we briefly discuss which kind of program properties to be tested are supported
by CurryCheck. Since CurryCheck extends the functionality of EasyCheck [15], it supports all
kinds of EasyCheck’s properties which we review first.

Properties are defined top-level entities with a distinct type (see below). Thus, their syntax
and type-correctness can be checked by the standard front end of any Curry system. Properties
do not require a specific naming convention but CurryCheck recognizes them by their type.
Moreover, the name and position of the property in the source file are used by CurryCheck to
identify properties when errors are reported.

For instance, consider the list concatenation operation “++” defined in Example 1. Before
discussing general properties, we define some unit tests for fixed arguments, like
concNull12 = [] ++ [1,2] -=- [1,2]
concCurry = "Cu" ++ "rry" -=- "Curry"

The infix operator “-=-” specifies a test which is successful if both sides have single values
which are identical (we will later see tests for non-deterministic operations). Since the expres-
sions can be of any type (of course, the two arguments must be of the same type), the operator
is polymorphic and has the type
(-=-) :: a → a → Prop

Hence, all entities defined above have type Prop.
The power of CurryCheck and similar property-based test frameworks comes from the fact

that we can also test properties which are parameterized over some input data. For instance,
we can check whether the concatenation operation is associative by:
concIsAssociative xs ys zs = (xs++ys)++zs -=- xs++(ys++zs)

This property is parameterized over three input values xs, ys, and zs. To test this property,
CurryCheck guesses values for these parameters (see below for more details) and tests the
property for these values:
concIsAssociative_ON_BASETYPE (module ConcDup, line 18):
OK, passed 100 tests.

Indicated by the suffix _ON_BASETYPE, we see another feature of CurryCheck. If properties are
polymorphic in their input values (the above property has type [a]→ [a]→ [a]→ Prop),
CurryCheck specializes the type to some base type, since there is no concrete value of a
polymorphic type (and EasyCheck would fail on such properties). As a default, CurryCheck
uses the predefined type Ordering having the three values LT, EQ, GT (another more in-
volved method to instantiate polymorphic types in purely functional programs can be found
in [12]). This default type can be changed to other base types, like Bool, Int, or Char, with
a command-line option. One could also provide an explicit type declaration for the property.
For instance, we can test the commutativity of the list concatenation on lists of integers by the
property



concIsCommutative :: [Int] → [Int] → Prop
concIsCommutative xs ys = (xs ++ ys) -=- (ys ++ xs)

Of course, this property does not hold so that CurryCheck reports an error together with a
counter-example:
. . .
concIsCommutative (module ConcDup, line 20) failed
Falsified by 8th test.
Arguments: [-1] [-3]
Results: ([-1,-3],[-3,-1])

Note that the arguments of a test are ordinary expressions so that one can use any defined
operation in the tests. For instance, we can (sucessfully) check whether the list concatenation
is the addition on their lengths:
concAddLengths xs ys = length xs + length ys -=- length (xs++ys)

Since Curry covers also logic programming features, CurryCheck supports the testing of non-
deterministic properties. For instance, one can check whether an expression reduces to some
given value with the operator is “~>”:
someDup1 = someDup [1,2,1,2] ~> 1

Another important operator is “<~>” which denotes a test which succeeds if both arguments
have the same set of values. We can write unit tests by enumerating all expected values with
the choice operator “?”:
someDup12 = someDup [1,2,1,2,1] <~> (1?2)

It should be noted that the operator “<~>” really compares sets and not multi-sets: Although the
evaluation of someDup [1,2,1,2,1] returns the value 1 three times in a typical Curry system,
the property someDup12 holds. This is intended since CurryCheck tests declarative properties
which are independent of specific compiler optimizations (this is in contrast to PrologCheck
which tests operational properties like multiplicity of answers and modes [1]).

As another example, consider the following definition of a permutation of a list by exploit-
ing a functional pattern to select some element in the argument list:
perm (xs++[x]++ys) = x : perm (xs++ys)
perm [] = []

An important property of a permutation is that the length of the list is not changed. Hence, we
check it by the property
permLength xs = length (perm xs) <~> length xs

Note that the use of “<~>” (instead of “-=-”) is relevant since non-deterministic values are
compared. Actually, the left argument evaluates to many (identical) values.

We might also want to check whether our definition of perm computes the correct number
of solutions. Since we know that a list of length n has n! permutations, we write the following
property, where fac is the factorial function and the property x # n is satisfied if x has n
different values:
permCount :: [Int] → Prop
permCount xs = perm xs # fac (length xs)

However, this test will be falsified with the test input [1,1], since this list has only one per-
muted value (actually, both computed values are identical). We can obtain a correct property
if we add the condition that all elements in the input list xs are pairwise different. For this
purpose, we use a conditional property: the property b ==> p is satisfied if p is satisfied for all



values where b evaluates to True. If the predicate allDifferent is satisfied iff its argument
list does not contain duplicated elements, then we can reformulate our property as follows:
permCount xs = allDifferent xs ==> perm xs # fac (length xs)

Furthermore, we want to check the existence of distinguished permutations. For this purpose,
consider a predicate to check whether a list is sorted:
sorted :: [Int] → Bool
sorted [] = True
sorted [_] = True
sorted (x:y:zs) = x<=y && sorted (y:zs)

Then we can check whether there are sorted permutations (the property “eventually x” is
satisfied if some value of x is True):
permIsEventuallySorted :: [Int] → Prop
permIsEventuallySorted xs = eventually (sorted (perm xs))

Property-based testing is appropriate for declarative languages since the absence of side effects
allows the execution of tests on any number of test data without influencing the individual tests.
Nevertheless, real programming languages have to deal with the real world so that they support
also I/O operations. Clearly, such operations should also be tested. Although there are methods
to test monadic code [17], Curry supports only I/O monadic operations where testing with
arbitrary data seems not reasonable. Therefore, CurryCheck supports only non-parameterized
unit tests for I/O operations. For instance, the test (a ‘returns‘ x) is satisfied if the I/O
action a returns the value x. For instance, we can test whether writing a file and reading it
yields the same contents:
writeReadFile = (writeFile "TEST" "Hello" >> readFile "TEST")

‘returns‘ "Hello"

Since CurryCheck executes the tests written in a source program in their textual order, one can
write also several I/O tests whose side effects depend on each other. For instance, we can split
the previous I/O test into two consecutive tests:
writeTestFile = (writeFile "TEST" "Hello") ‘returns‘ ()
readTestFile = (readFile "TEST") ‘returns‘ "Hello"

4 Testing Properties

After having seen several methods to define properties, we sketch in this section how they are
actually tested. Our motivation for the development of CurryCheck is manifold:

1. Properties are an executable documentation for the intended semantics of operations.
2. Properties increase the confidence in the quality of the developed software.
3. Properties can be used for software verification by proving their validity for all possible

input data.

The first point is supported by interspersing properties into the source code of the program
instead of putting them into separate files. Thus, properties play the same role as comments
or type annotations: they document the intended semantics. Hence, they can be extracted and
put into the program documentation by automatic documentation tools [21,26]. In order to
avoid that properties influence the interface of a module, they do not need to be exported. As
an example, consider the following simple module defining the classical list reverse operation
(the imported module Test.EasyCheck contains the definitions of the property combinators
introduced in Sect. 3):



module Rev(rev) where

import Test.EasyCheck

rev :: [a] → [a]
rev [] = []
rev (x:xs) = rev xs ++ [x]

revLength xs = length (rev xs) -=- length xs
revRevIsId xs = rev (rev xs) -=- xs

We can run all tests of this module by invoking the CurryCheck executable with the name of
the module:1

> currycheck Rev
Analyzing module ’Rev’ . . .
. . .
Executing all tests . . .
revLength_ON_BASETYPE (module Rev, line 9):
OK, passed 100 tests.
revRevIsId_ON_BASETYPE (module Rev, line 10):
OK, passed 100 tests.

Although module Rev only exports the operation rev, all properties defined in the top-level of
Rev are passed to the underlying EasyCheck library for testing. For this purpose, CurryCheck
creates a copy of this module where all entities are exported (note that the original module can-
not be modified since it might be imported to other modules to be tested). For each property a
corresponding call to an operation of EasyCheck is generated which actually performs the gen-
eration of test data, runs the test, and collects all results which are passed back to CurryCheck.
Furthermore, polymorphic properties are not checked but a corresponding new property on the
default base type is generated which calls the polymorphic property. For instance, if the default
base type is Int, CurryCheck generates the new property
revRevIsId_ON_BASETYPE :: [Int] → Prop
revRevIsId_ON_BASETYPE = revRevIsId

which is actually checked instead of revRevIsId. Note that it might lead to a failure if the type
of revRevIsId is directly specialized, since the polymorphic property revRevIsId might be
used in other property definitions with a different specialized type.

After these preparations, EasyCheck tests the properties by generating test data as de-
scribed in [15]. EasyCheck does not use random generators like QuickCheck or PrologCheck,
but it exploits functional logic programming features to enumerate possible input values. Since
logic variables are equivalent to non-deterministic generators [4], one can evaluate a logic
variable of a particular type in order to get all values of this type in a non-deterministic man-
ner. For instance, if we evaluate the Boolean variable b::Bool, we obtain the values False
and True as results. Similarly, for bs::[Bool] we obtain values like [], [False], [True],
[False,False], etc. In order to select a finite amount of these infinite values, one can use
Curry’s feature for encapsulated search to collect all non-deterministic results in a tree struc-
ture, traverse the tree with some strategy and return the result of the traversal into a list. If one
selects only a finite amount of this list, the lazy evaluation strategy of Curry ensures a finite
computation even if the tree is infinite. Based on these features, the EasyCheck library contains
an operation
valuesOf :: a → [a]

1 One can also provide several module names so that they are tested at once. Furthermore, CurryCheck
has various options to influence the number of test cases, default types for polymorphic properties, etc.



which computes the list of all values of the given argument according to a fixed strategy (in
the current implementation by randomized level diagonalization [15]). Hence, we can get 20
values for a list of integers by
. . .> take 20 (valuesOf (_::[Int]))
[[],[-1],[-3],[0],[1],[-1,0],[-2],[0,0],[3],[-1,1],[-3,0],[0,1],
[2],[-1,-1],[-5],[0,-1],[5],[-1,2],[-9],[0,2]]

It should be noted that valuesOf enumerates all values of the given type completely and
without duplicates.2 Hence, if the set of possible input values is finite, it is ensured that all of
them are tested if sufficiently many tests are performed. In this case, the property is also verified
(where QuickCheck or PrologCheck does not give such guarantees). For instance, consider the
De Morgan law from Boolean algebra:
negOr b1 b2 = not (b1 || b2) -=- not b1 && not b2

This property is proved by CurryCheck after four tests with all possible input values, and the
output of CurryCheck indicates that the testing was exhaustive:
negOr (module BoolTest, line 4):
Passed all available tests: 4 tests.

5 User-Defined Test Data

Due to the use of functional logic features to generate test data, one can write properties not
only on predefined data types but also on user-defined data types. For instance, consider the
following definition of general polymorphic trees:
data Tree a = Leaf a | Node [Tree a]

We define operations to compute the leaves of a tree and mirroring a tree:
leaves (Leaf x) = [x]
leaves (Node ts) = concatMap leaves ts

mirror (Leaf x) = Leaf x
mirror (Node ts) = Node (reverse (map mirror ts))

The following properties should increase our confidence in the correctness of the implementa-
tion:
doubleMirrorIsId t = mirror (mirror t) -=- t

leavesOfMirrorAreReversed t = leaves t -=- reverse (leaves (mirror t))

CurryCheck successfully tests these properties without providing any further information about
how to generate test data. However, in some cases it might be desirable to define our own
test data since the generated structures are not appropriate for testing. For instance, if we test
algorithms working on balanced search trees, we need correctly balanced search trees as test
data. As a naive approach, we can limit the tests to correct test inputs by using conditional
properties. As a simple example, consider the following operation that adds all numbers from
1 to a given limit:
sumUp n = if n==1 then 1 else n + sumUp (n-1)

Since there is also a simple formula to compute this sum, we can check it:
sumUpIsCorrect n = n>0 ==> sumUp n -=- n * (n+1) ‘div‘ 2

2 In order to get an idea of the distribution of the generated test data, CurryCheck also provides property
combinators collect and classify known from QuickCheck.



Note that the condition is important since sumUp diverges on non-positive numbers. As a result,
CurryCheck tests this property by enumerating integers and dropping tests with non-positive
numbers. While this works well, since CurryCheck performs a fairly good distribution between
positive and negative numbers, this approach might have a serious drawback if the proportion
of correct test data is small. In the case of balanced search trees, there are many more unbal-
anced trees than balanced search trees. This has the effect that CurryCheck generates many test
data and drops it so that it does not make much progress. Actually, CurryCheck has an upper
limit for dropping test data in the conditional operator in order to avoid spending too much
work on generating unusable test data. For instance, if we want to test the above property
revRevIsId on long input lists, we could define it as follows:
revRevIsIdLong :: [Int] → Prop
revRevIsIdLong xs = length xs > 100 ==> rev (rev xs) -=- xs

Since there are a huge number of integer lists with a length smaller than 100, CurryCheck
does not find any test case (with a default limit of dropping at most 10,000 incorrect test data
values):
revRevIsIdLong (module Rev, line 13):
Arguments exhausted after 0 test.

This shows that the fully automatic generation of test data is not always appropriate. There-
fore, CurryCheck provides some combinators to explicitly define test data (more advanced
enumeration combinators in the context of Scala are discussed in [29]).

To show the method for test data generation in more detail, we have to review Curry’s
methods to encapsulate non-deterministic computations. For this purpose, Curry defines the
following structure to represent the results of a non-deterministic computation [13]:
data SearchTree a = Value a | Fail | Or (SearchTree a) (SearchTree a)

(Value v) and Fail represent a single value or a failure (i.e., no value), respectively, and
(Or t1 t2) represents a non-deterministic choice between two search trees t1 and t2. Fur-
thermore, there is a primitive search operator
someSearchTree :: a → SearchTree a

which yields a search tree for an expression. For instance, someSearchTree (0?1) evaluates
to the search tree
Or (Value 0) (Value 1)

The expression
someSearchTree (id $## (_::[Bool]))

(where “$##” is an infix application operator which evaluates the right argument to ground nor-
mal form before applying the left argument to it) yields an (infinite) search tree of all Boolean
lists:
(Or (Value []) (Or (Or (Or (Value [False]) . . . ) (Or . . . )) . . . ))

Basically, EasyCheck defines various strategies to traverse such search trees (see [15] for de-
tails) in order to enumerate test data. Hence, if we want to define our own test data, we have
to define an operation that generates a search tree containing the test data in Value leaves.
Although this is not difficult for simple data types, it could be demanding for polymorphic
types where generators for the polymorphic arguments must be weaved with the generators
for the main data structure. To simplify this task, CurryCheck offers a family of combinators
genConsn where each combinator takes an n-ary constructor function and n generators as
arguments and produces a search tree for this constructor and all combinations of generated
arguments. Hence, these combinators have the type



genConsn :: (a1 → · · · → an → a) →SearchTree a1 → · · · →SearchTree an
→ SearchTree a

Furthermore, there is an infix combinator “|||” to combine two search trees. For instance,
consider the straightforward definition of Peano numbers:
data Nat = Z | S Nat

Then we can define a search tree generator for this type as follows:
genNat :: SearchTree Nat
genNat = genCons0 Z ||| genCons1 S genNat

Similarly, we can define a search tree generator for polymorphic trees which takes a search tree
for the argument type as a parameter (where genList denotes the corresponding generator for
list values):
genTree :: SearchTree a → SearchTree (Tree a)
genTree ta = genCons1 Leaf ta ||| genCons1 Node (genList (genTree ta))

The explicit definition of value generators is reasonable when only a subset of all values should
be used for testing. For instance, sumUpIsCorrect should be testest with positive numbers
only. Hence, we define a generator for positive numbers:
genPos = genCons0 1 ||| genCons1 (+1) genPos

Since these numbers are slowly increasing, i.e., the search tree is actually degenerated to a list,
we can also use the following definition to obtain a more balanced search tree:
genPos = genCons0 1 ||| genCons1 (\n → 2*(n+1)) genPos

||| genCons1 (\n → 2*n+1) genPos

In order to test properties with user-defined data, CurryCheck provides the property combinator
forAll :: [a] → (a → Prop) → Prop

which is satisfied if the parameterized property given as the second argument is satisfied for all
values of the first argument list. Since there is also a library operation
valuesOfSearchTree :: SearchTree a → [a]

(actually, the operation valuesOf introduced in Sect. 4 is defined via this operation) to enu-
merate all values of a search tree, we can redefine the property sumUpIsCorrect as follows:
sumUpIsCorrect = forAll (valuesOfSearchTree genPos)

(\n → sumUp n -=- n*(n+1) ‘div‘ 2)

Using this technique, we could also define finite tests for potentially infinite structures, e.g.,
one can easily define tree generators that generate all trees up to a particular depth.

Finally, we show the implementation of the combinators to generate search trees. The def-
inition of “|||” and genCons0 is straightforward:
x ||| y = Or x y

genCons0 v = Value v

To define the further combinators like genCons1, we have to replace in a given search tree (for
the argument) the Value nodes by new nodes where the constructor operation is applied to the
given value. This task is done by the following auxiliary operation:3

updateValues :: SearchTree a → (a → SearchTree b) → SearchTree b
updateValues (Value a) f = f a
updateValues Fail f = Fail
updateValues (Or t1 t2) f = Or (updateValues t1 f) (updateValues t2 f)

3 This operation is similar to the monadic bind operation in Haskell’s MonadPlus, but we use this
definition due to the lack of type classes in the current language definiton of Curry.



The definition of the remaining combinators is now easy (we only show the first two ones):
genCons1 c gena = updateValues gena (\a → Value (c a))

genCons2 c gena1 gena2 =
updateValues gena1 (\a1 → updateValues gena2 (\a2 → Value (c a1 a2)))

6 Contract and Specification Testing

As discussed in detail in [8], the distinctive features of Curry (e.g., non-deterministic opera-
tions, demand-driven evaluation, functional patterns, set functions) support writing high-level
specifications as well as efficient implementations for a given problem in the same program-
ming language. When applying this idea, Curry can be used as a wide-spectrum language [11]
for software development. If a specification or contract is provided for some function, one
can exploit this information to support run-time assertion checking with these specifications
and contracts. As an additional use of this information, CurryCheck automatically generates
properties to test the given specifications and contracts, which is described in the following.

According to the notation proposed in [8], a specification for an operation f is an operation
f’spec of the same type as f . A contract consists of a pre- and a postcondition, where the
precondition could be omitted. When provided, a precondition for an operation f of type τ →
τ ′ is an operation
f’pre :: τ → Bool

putting demands on allowed arguments, whereas a postcondition for f is an operation
f’post :: τ → τ ′ → Bool

which relates input and output values (the generalization to operations with more than one ar-
gument is straightforward). A specification should precisely describe the meaning of an oper-
ation, i.e., the declarative meaning of the specification and the implementation of an operation
should be equivalent. In contrast, a contract is a partial specification, e.g., all results computed
by the implementation should satisfy the postcondition.

As a concrete example, consider the problem of sorting a list. The specification defines
a sorted version of a given list as a permutation of the input which is sorted. Exploiting the
operations introduced in Sect.3, we define the following specification for the operation sort:
sort’spec :: [Int] → [Int]
sort’spec xs | ys == perm xs && sorted ys = ys where ys free

A postcondition, which is easier to check, states that the input and output lists should have the
same length:
sort’post :: [Int] → [Int] → Bool
sort’post xs ys = length xs == length ys

To provide a concrete implementation, we implement the quicksort algorithm as follows:
sort :: [Int] → [Int]
sort [] = []
sort (x:xs) = sort (filter (<x) xs) ++ [x] ++ sort (filter (>x) xs)

Note that specifications and contracts are optional. However, if they are included in a module
processed with CurryCheck, CurryCheck automatically generates and checks properties that
relate the specification and contract to the implementation. For instance, an implementation
satisfies a specification if both yield the same values, and a postcondition is satisfied if each
value computed for some input satisfies the postcondition relation between input and output.



For our example, CurryCheck generates the following properties (if there are also precondi-
tions for some operation, these preconditions are used to restrict the test cases via the condition
operater “==>”):4

sortSatisfiesSpecification :: [Int] → Prop
sortSatisfiesSpecification x = sort x <~> sort’spec x

sortSatisfiesPostCondition :: [Int] → Prop
sortSatisfiesPostCondition x = always (sort’post x (sort x))

With CurryCheck, the framework of [8] becomes more useful since contracts are not only used
as run-time assertions in concrete computations, but many possible computations are checked
with various test data. For instance, CurryCheck reports that the above implementation of sort
is incorrect for the example input [1,1] (as the careful reader might have already noticed).
When reporting the error, the module and source code line number of the erroneous operation
is shown so that the programmer can easily spot the problem.

Another kind of contracts taken into account by CurryCheck are determinism annotations.
An operation that yields always identical results (maybe multiple times) on identical argument
values can be annotated as “deterministic” by adding DET to the result type of its type signature.
For instance, the following operation tests whether a list represents a set, i.e., has no duplicate
elements (the definition exploits functional patterns [3] as well as default rules [9]):
isSet :: [a] →DET Bool
isSet (_++[x]++_++[x]++_) = False
isSet’default _ = True

The determinism annotation “→DET” has the effect that at most one result is computed for a
given input, e.g., a single value False is returned for the call isSet [1,3,1,3,1], although
the first rule can be applied multiple times to this call. Thus, after computing a first value, all
attempts to compute further values are ignored. In order to ensure that this does not destroy
completeness, i.e., it behaves like “green cuts” in Prolog, such operations must be deterministic
from a semantical point of view. CurryCheck tests this property by generating a property for
each DET-annotated operation that expresses that there is at most one value for each input. For
instance, for isSet, the DET annotation is removed and the property
isSetIsDeterministic x1 = isSet x1 #< 2

is added by CurryCheck, where “e #< n” is satisfied if the set of all values of e contains less
than n elements.

7 Combining Testing and Verification

The objective of CurryCheck is to increase the confidence in the reliability of Curry programs.
Testing with a lot of input data is one important step but, in case of input data types with infinite
values, it can only show possible errors but not the absence of them. In order to support the
latter, CurryCheck has also some (preliminary) support to include the verification of program
properties. For this purpose, a programmer might prove properties stated in a source program.
Since there are many different possibilities to prove such properties, ranging from manual
proofs to interactive proof assistants and fully automatic provers, CurryCheck does not enforce
a particular proof technique. Instead, CurryCheck trusts the programmer and uses a naming
convention for files containing proofs: if there is a file with name proof-t.*, CurryCheck
assumes that this file contains a valid proof for property t. For instance, the following property
states that sorting a list does not change its length:

4 The property “always x” is satisfied if all values of x are True.



sortlength xs = length (sort xs) <~> length xs

If there is a file proof-sortlength.agda, containing a proof for the above property ([10]
addresses techniques how to prove such properties in the dependently typed language Agda),
CurryCheck considers this property as valid and does not check it. Moreover, it uses it to sim-
plify other properties to be tested. In our case, the property sortSatisfiesPostCondition
of the previous section can be simplified to always True so that it does not need to be
tested. Similarly, a determinism annotation for operation f is not tested if there is a proof
file fIsDeterministic.*.

Since program verification is a notoriously difficult task, a mixture of different techniques
is required. For instance, [27] discusses techniques to use the Isabelle/HOL proof assistant
to verify purely functional properties inspired by QuickCheck. [10] describes a method to
prove non-deterministic computations by translating Curry programs into Agda programs.
Since these proofs can be verified by the Agda compiler, CurryCheck can test the validity
of a given proof file by simply invoking the Agda compiler. Some purely functional properties
can be proved in a fully automatic way. For instance, the properties
concLength xs = length (xs ++ ys) -=- length xs + length ys
revLength xs = length (rev xs) -=- length xs

can be proved by the SMT solver Alt-Ergo. To support the use of such solvers, we have started
the development of tools to automatically translate Curry programs into the syntax of Agda
and other proof systems. We omit more details since this is outside the scope of this paper.

8 Practical Experience

The implementation of CurryCheck is available with the (Prolog-based) Curry implementation
PAKCS [24] (since version 1.14.0) and the (Haskell-based) Curry implementation KiCS2 [14]
(since version 0.5.0). The implementation exploits meta-programming features available in
these systems to parse programs and transform them into new programs as described in the
previous sections.

Although we could show in this paper only simple examples, we would like to remark
that CurryCheck is successfully applied in a larger context. CurryCheck is regularly used for
automatic regression testing during continuous integration and nightly builds of PAKCS and
KiCS2. Currently, approximately 500 properties (the number is continuously growing) are
regularly used to test the libraries and tools of these systems. Our practical experience is quite
promising. After the development and use of CurryCheck, we found a bug in the implementa-
tion of the prelude operations quot and rem w.r.t. negative numbers and free variables which
was undetected for a couple of years. Although the bug was easy to fix, the definition of a
general property relating both operations and testing it with all smaller values was essential for
its detection.

The run time of CurryCheck mainly depends on the specific properties to be tested. The
initial translation phase, which extracts properties, contracts, and specifications from a given
module and transforms them into executable tests, is a straightforward compilation process.
The run time of the subsequent test execution phase depends on the number of test cases and
the time needed to evaluate each property. The functional logic programming technique to gen-
erate test data described in Sect. 4 (i.e,. collecting all non-deterministic results of evaluating a
logic variable) is reasonable in practice. For instance, KiCS2 needs 0.6 seconds to test a trivial
property on a list of integers with 10,000 test cases computed by the randomized level diag-



onalization strategy described in [15] (on a Linux machine with Intel Core i7-4790/3.60Ghz
and 8GiB of memory).

9 Related Work

Since testing is an important part of the software development process, there is a vast literature
on this topic. In the following, we compare our approach to testing, in particular, property-
based testing, in declarative languages. We already mentioned QuickCheck [16] which was
influential in this area and followed by other property-testing systems for functional languages,
like GAST [28] or SmallCheck [33]. The same idea has also been transferred to other languages
like PropEr [30] for Erlang and PrologCheck [1] for Prolog. In contrast to CurryCheck, most
of these systems (except for SmallCheck) are based on randomly generating test data so that
they do not provide guarantees for a complete enumeration if the sets of input values are finite,
i.e., they cannot verify properties. PropEr also supports contract checking but these function
contracts are limited to type specifications. PrologCheck could also check operational aspects
likes modes or multiplicity of answers, whereas our properties are oriented towards declarative
aspects, i.e., the input/output relation of values.

Closely related to CurryCheck is EasyCheck [15] since it can be seen as our back end.
EasyCheck is the only property-based test tool covering functional and logic aspects but it
is more limited than CurryCheck. EasyCheck does not support polymorphic properties, I/O
properties, or combinators for user-defined generation of test data. This has been added in
CurryCheck together with a full automation of the test process in order to obtain an easily
usable tool. Moreover, CurryCheck expands the use of automatic testing by using it for contract
and specification checking, where functional logic programming has been shown to be an
appropriate framework [8], and combines it with static verification techniques.

10 Conclusion

We have presented CurryCheck, the first fully automatic tool to test functional as well as non-
deterministic properties of Curry programs. CurryCheck supports unit tests and tests of I/O
operations with fixed inputs as well as property tests which are parameterized over some argu-
ments. In the latter case, they are executed with test inputs which are systematically generated
for the given argument types. Moreover, CurryCheck also supports specification and contract
testing if such information is present in the source program.

To simplify and, thus, enhance the use property testing, properties can be interspersed in the
source program and are automatically extracted by CurryCheck. Hence, CurryCheck supports
test-driven program development methods like extreme programming. Properties are not only
useful to obtain more reliable programs, but they can also be used by automated documentation
tools to describe the intended meaning of operations, a feature which has been recently added
to the CurryDoc [21] documentation tool.5

For future work we plan to extend the functionality of CurryCheck (the current version
does not support the generation of floating point numbers and functional values). Furthermore,
we intend to integrate into CurryCheck more features that can help to improve the reliability of
the source code, like abstract interpretation to approximate specific run-time properties [18,35],

5 See www.informatik.uni-kiel.de/~pakcs/lib/Combinatorial.html for an exam-
ple.

www.informatik.uni-kiel.de/~pakcs/lib/Combinatorial.html


or program covering to show whether the test data was sufficient to reach all parts of a source
program.

Acknowledgements. The author is grateful to Jan-Patrick Baye for implementing an initial
version of CurryCheck.
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