
Can Logic Programming Be Liberated from
Backtracking?

– Extended Abstract –

Michael Hanus
mh@informatik.uni-kiel.de

Institut für Informatik, CAU Kiel, 24098 Kiel, Germany

Abstract
Logic programming is historically tight with Prolog and its backtracking search strategy.
The use of backtracking was justified by efficiency reasons when Prolog was invented
and is still present, although the incompleteness of backtracking destroys the elegant
connection of logic programming and the underlying Horn clause logic. Moreover, it
causes difficulties to teach logic programming. In this paper we argue that this is no
longer necessary if new implementation approaches are taken into account.

1 Introduction

Logic programming was developed as a restriction of the general resolution
principle [Robinson, 1965] to Horn clauses so that efficient linear (SLD-resolution)
proofs can be constructed (see also Cohen [1988] for some historical background).
It became popular when concrete implementations in the form of interpreters
(and later compilers) for the programming language Prolog were available.
Horn clauses and SLD-resolution are tightly connected to mathematical logic.
The soundness and completeness of SLD-resolution establish the foundation
of logic programming [Lloyd, 1987]. Unfortunately, the memory restrictions of
computers at that time caused a gap between these theoretical foundations and
the practice of logic programming in Prolog: non-deterministic computations
are implemented by backtracking so that the theoretical completeness of SLD-
resolution is lost. For instance, consider the definition of a Prolog predicate
relating a list and its last element:
last([H|T],E) :- last(T,E).

last([E],E).

Can Logic Programming Be Liberated from Backtracking? Michael Hanus

This definition works when the list is known:
?- last([1,2,3],E).

E = 3

One of the advantages of logic programming is the absence of fixed input and
output parameters. Instead of providing a known value for an argument of
a predicate, one can also call the predicate a free variable for this argument
(as E above) so that a result is computed by binding this variable to some
value. In practice, this advantage is often lost when non-deterministic search
is implemented by backtracking, since infinite branches in a search tree might
preclude the computation of valid answers. For instance, Prolog does not compute
any result for the definition of last, as shown above, when the list is unknown,
e.g., for the goal last(L,3): the backtracking strategy causes an infinite chain of
applications of the first rule.

Generally, the use of backtracking in logic programming has several disadvan-
tages:

Ź The theoretical completeness of SLD-resolution is lost.

Ź It hinders the teaching of logic programming since beginners are often faced
with the influence of the search strategy.

Ź Programmers have to think about the influence of backtracking to the success
of computations—a contradiction to the idea of declarative programming.

These problems can be solved if backtracking is replaced by a complete search
strategy. Thus, abandoning backtracking as a default for logic programming is
similar to the removal of the von Neumann bottleneck by functional program-
ming [Backus, 1978]: one obtains a higher, declarative programming style which
frees the programmer from thinking about low-level control details.

Unfortunately, many aspects of Prolog, in particular, the connection to the
external world (e.g., file system, networks, graphics) heavily depends on the
backtracking strategy. Thus, in order to get a better logic programming language,
we have to switch from Prolog to a paradigm supporting a clean and declara-
tive connection to external resources, as developed in functional programming
[Wadler, 1997]. Therefore, we consider in the following functional logic languages.

2 Functional Logic Programming

Functional logic languages [Antoy and Hanus, 2010] combine the main features
of functional and logic languages in a single programming model. In particular,
demand-driven evaluation of expressions is amalgamated with non-deterministic

Can Logic Programming Be Liberated from Backtracking? Michael Hanus

search for values. In functional logic programs, operations are defined by rewrite
rules, as in functional languages, but rules can be overlapping, as in logic
languages. The archetype of an operation defined by overlapping rules is the
non-deterministic choice, defined in the functional logic language Curry [Hanus
(ed.), 2016] as the infix operator “?” as follows:
x ? _ = x
_ ? y = y

Hence, an expression like “0 ? 1” yields two values: 0 and 1. In contrast to Prolog,
the concrete strategy to compute these values, i.e., the search strategy, is not fixed
in Curry. Implementations of Curry can support various search strategies. For
instance, the Curry system KiCS2 [Braßel, Hanus, et al., 2011] has options to select
different search strategies, like depth-first, breadth-first, iterative deepening, or
parallel search.

Early implementations of functional logic languages, like PAKCS [Antoy and
Hanus, 2000] or TOY [López-Fraguas and Sánchez-Hernández, 1999], used
Prolog as a target language due to its built-in support for non-determinism. A
drawback of this approach is that they inherit the incompleteness of Prolog’s
backtracking strategy. In order to get rid of this fixed search strategy, subsequent
implementations are based on the idea to represent non-deterministic choices
as data. Thus, instead of directly evaluating non-deterministic branches, the
alternatives are returned as a tree structure so that search strategies can be
defined as tree traversals, which supports an easy switch between different
strategies.

We omit the details of actual techniques to evaluate expressions to such tree
structures. It is sufficient to keep in mind that the operational semantics is based
on graph transformations, like pull-tabbing [Antoy, 2011], but the details are not
relevant for the programmer as long as a complete search strategy is used. In
general, breadth-first search could be used. However, if the search space is finite,
depth-first search is also reasonable.

3 Comparing Search Strategies

These theoretical considerations are useless if they are not supported by practical
implementations. Instead of compiling functional logic languages into Prolog, one
can compile them into a deterministic target language and add explicit support
for non-determinism, as done with KiCS2 [Braßel, Hanus, et al., 2011] which
compiles Curry programs into Haskell programs. The intermediate language
ICurry [Antoy, Hanus, et al., 2020] is intended to compile Curry into imperative

Can Logic Programming Be Liberated from Backtracking? Michael Hanus

target languages. It has been used to translate Curry to LLVM code [Antoy
and Jost, 2016], to C or Python programs [Wittorf, 2018], and to Julia programs
[Hanus and Teegen, 2021]. A recent implementation, called Curry2Go1, compiles
ICurry programs into Go2 programs. Go is a statically typed language with
garbage collection and direct support for CSP-like concurrency [Hoare, 1978]
and lightweight threads (goroutines). The latter feature is used by Curry2Go to
provide a fair search strategy which avoids the limitations of backtracking-based
logic programming languages discussed above.

Due to the explicit handling of non-deterministic computations, Curry2Go
supports various search strategies. The run-time system works with a queue
or set of tasks (depending on the search strategy) where each task evaluates
some non-deterministic branch. The difference between depth-first (DFS) and
breadth-first (BFS) search amounts to a different strategy to add new tasks to
the queue: DFS adds new tasks at the front and BFS adds them at the tail of the
queue.

Each task evaluates an expression to some value (to be more precise, a head
normal form) or is split into two new tasks if some non-deterministic choice oc-
curs. If the evaluation of an expression does not terminate and non-deterministic
choices do not occur, even a breadth-first search strategy might not compute
existing values. For instance, consider the following contrived example:
idND :: a Ñ a

idND n = loop ? n ? loop

where loop is non-terminating (e.g., defined by loop = loop). Semantically, idND is
the identity function but, operationally, it is non-deterministically defined with
looping alternatives. Although 0 is a value of idND 0, both DFS and BFS do not
return any value but loop. To avoid such kind of incompleteness, Curry2Go also
implements a fair search (FS) strategy. FS evaluates each task concurrently as a
goroutine and collects the computed result in a channel where these goroutines
write their computed results. More details about this implementation can be
found in Böhm, Hanus, and Teegen [2021].

Table 1 shows the run times3 (in seconds as the average of three runs) of
some examples executed with different Curry systems and search strategies.
PAKCS [Hanus, Antoy, et al., 2020], which is part of Debian and Ubuntu Linux
distributions, compiles to Prolog (SWI-Prolog 8.0) and is based on backtrack-

1The source code is available at https://github.com/curry-language/curry2go. A distribution can be downloaded at
https://www-ps.informatik.uni-kiel.de/curry2go/.

2https://golang.org/
3All benchmarks were executed on a Linux machine running running Debian 10 with an Intel Core i7-7700K

(4.2GHz) processor with eight cores.

https://github.com/curry-language/curry2go
https://www-ps.informatik.uni-kiel.de/curry2go/
https://golang.org/

Can Logic Programming Be Liberated from Backtracking? Michael Hanus

Table 1. Comparing Curry system with search strategies

PAKCS KiCS2 Curry2Go
Example DFS BFS DFS BFS FS
nrev_4096 8.28 0.43 0.44 1.16 1.17 1.16

takPeano_24_16_8 54.75 0.30 0.30 5.08 5.09 5.08
primesHO_1000 38.88 0.43 0.44 4.08 4.09 4.08

psort_13 16.46 0.77 2.88 5.20 5.27 5.43
addNum_2 0.19 0.98 1.77 0.44 0.43 0.41
addNum_5 0.22 3.21 5.18 1.06 1.06 0.45
addNum_10 0.29 10.03 15.55 2.48 2.48 0.69
select_50 0.14 0.61 0.67 0.11 0.11 0.08
select_100 0.45 4.97 5.25 0.14 0.14 0.10
select_150 1.08 21.25 26.14 0.23 0.23 0.12

isort_primes4 15.63 0.42 0.42 1.74 1.74 1.72
psort_primes4 155.95 0.40 0.42 1.72 1.72 0.94

ing. KICS2 [Braßel, Hanus, et al., 2011] compiles to Haskell (GHC 8.4) where
non-determinism is implemented by lazily generating search trees which are
explored by various search strategies. Curry2Go compiles to Go (Version 1.16)
and manages a queue of tasks to implement DFS and BFS or use goroutines
communicating via channels to implement FS.

The first three benchmarks are typical purely functional programs. nrev-4096
is the quadratic naive reverse algorithm applied to a list with 4096 elements,
takPeano is a highly recursive function on naturals [Partain, 1993] applied to
arguments (24,16,8) in Peano representation, and primesHO_1000 computes the
1000th prime number by constructing an infinite list of all primes via the sieve
of Eratosthenes (using higher-order functions). These benchmarks indicate that,
for purely functional programs, Curry2Go is much faster than PAKCS but less
efficient than KiCS2. The latter is not surprising since Haskell/GHC is highly
optimized for these kinds of programs.

One might think that the less efficient behavior of Prolog-based PAKCS is the
fact that Prolog also supports non-determinism. This hypothesis is refuted by the
remaining non-deterministic benchmark programs. psort-13 is the naive permu-
tation sort applied to a list of 13 elements. addNum-n non-deterministically chooses
a number (out of 2000) and adds it n times, and select-n non-deterministically
selects an element in a list of length n and sums up the element and the list
without the selected element. The considerable slowdown in KiCS2 with increas-

Can Logic Programming Be Liberated from Backtracking? Michael Hanus

ing values for n is caused by the duplication of choices in pull-tab steps when
non-deterministic expressions are shared, as discussed in Hanus and Teegen
[2021]. This is avoided in Curry2Go by adding a sort of memoization for choices,
as described in Böhm, Hanus, and Teegen [2021]; Hanus and Teegen [2021].

Apart from the fact that the fair search strategy of Curry2Go is the only
operationally complete strategy (e.g., it is able to compute a value for idND 0),
there are also other interesting differences between the search strategies. For
instance, KiCS2 shows some overhead of BFS compared to DFS (possibly due to
the additional structures used to implement a breadth-first tree search), whereas
there is almost no overhead in Curry2Go (since the difference between BFS and
DFS is just a different schedule of tasks). Moreover, the fair search (FS) strategy
is sometimes faster than BFS and DFS thanks to the use of goroutines possibly
scheduled on different processors. This is also visible in the last two lines of
Table 1 which show the time to sort
[primes!!303, primes!!302, primes!!301, primes!!300]

with the deterministic insertion sort (isort) and the non-deterministic permuta-
tion sort (psort) algorithm, respectively, where primes defines the infinite list of all
prime numbers. Due to backtracking, identical computations might be repeated if
they occur in different non-deterministic branches. Thus, primes is re-evaluated by
PAKCS several times when the list is passed to the non-deterministic operation
psort. This is not the case in implementations which represent choices in a graph
structure so that the results of deterministic computations are shared across
non-deterministic evaluations [Braßel and Huch, 2007]. In Curry2Go, where
non-deterministic branches are evaluated by goroutines, it could be even better
to use a non-deterministic algorithm since it might map evaluations of com-
mon subexpressions to different computation nodes, as shown by the results for
psort-primes4. This is also demonstrated with the following benchmark, where the
timings for psort-primes4 increased to a list of eight prime numbers and executed
with different numbers of processors (by setting the Go variable GOMAXPROCS) are
shown:

processors 1 2 4 8
psort_primes8 6.57 3.41 1.99 1.55

Hence, the presence of multiple processors can be exploited in a non-deterministic
program without requiring specific user annotations.

Can Logic Programming Be Liberated from Backtracking? Michael Hanus

4 Conclusions

We have compared the implementation of different search strategies for non-
deterministic programming, like depth-first, breadth-first and fair (concurrent)
search. Due to memory restrictions in early years, depth-first search implemented
by backtracking was introduced and is still used in the logic programming lan-
guage Prolog. Backtracking causes a gap between the theory and practice of
logic programming and complicates teaching and the practical use of logic pro-
gramming techniques. By using recent implementation techniques developed in
functional logic programming, operationally complete strategies can compete
with backtracking and can even be faster on multi-processor architectures. Hence,
logic programming must not be tight to backtracking: with modern implementa-
tion technologies, one can use better strategies that avoid the classical drawbacks
of backtracking, namely the operational incompleteness of search. This closes
the gap between theory and practice of logic programming and could lead to a
higher, really declarative programming style.

References

Antoy, S. (2011). “On the correctness of pull-tabbing”. In: Theory and Practice of
Logic Programming 11.4-5, pp. 713–730. doi: 10.1017/S1471068411000263.

Antoy, S. and M. Hanus (2000). “Compiling multi-paradigm declarative programs
into Prolog”. In: Proc. International Workshop on Frontiers of Combining Systems
(FroCoS’2000). Springer LNCS 1794, pp. 171–185. doi: 10.1007/10720084_12.

– (2010). “Functional logic programming”. In: Communications of the ACM 53.4,
pp. 74–85. doi: 10.1145/1721654.1721675.

Antoy, S., M. Hanus, et al. (2020). “ICurry”. In: Declarative Programming and
Knowledge Management - Conference on Declarative Programming (DECLARE
2019). Springer LNCS 12057, pp. 286–307. doi: 10.1007/978-3-030-46714-2_18.

Antoy, S. and A. Jost (2016). “A new functional-logic compiler for Curry: Sprite”.
In: Proceedings of the 26th International Symposium on Logic-Based Program Synthe-
sis and Transformation (LOPSTR 2016). Springer LNCS 10184, pp. 97–113. doi:
10.1007/978-3-319-63139-4_6.

Backus, J. (1978). “Can programming be liberated from the von Neumann style?
A functional style and its algebra of programs”. In: Comm. of the ACM 21.8,
pp. 613–641.

Böhm, J., M. Hanus, and F. Teegen (2021). “From non-determinism to goroutines:
a fair implementation of Curry in Go”. In: Proc. of the 23rd International Sympo-

https://doi.org/10.1017/S1471068411000263
https://doi.org/10.1007/10720084_12
https://doi.org/10.1145/1721654.1721675
https://doi.org/10.1007/978-3-030-46714-2_18
https://doi.org/10.1007/978-3-319-63139-4_6

Can Logic Programming Be Liberated from Backtracking? Michael Hanus

sium on Principles and Practice of Declarative Programming (PPDP 2021). ACM
Press.

Braßel, B., M. Hanus, et al. (2011). “KiCS2: a new compiler from Curry to Haskell”.
In: Proc. of the 20th International Workshop on Functional and (Constraint) Logic
Programming (WFLP 2011). Springer LNCS 6816, pp. 1–18. doi: 10.1007/978-3-642-

22531-4_1.
Braßel, B. and F. Huch (2007). “On a tighter integration of functional and logic

programming”. In: Proc. APLAS 2007. Springer LNCS 4807, pp. 122–138. doi:
10.1007/978-3-540-76637-7_9.

Cohen, J. (1988). “A view of the origins and development of Prolog”. In: Commu-
nications of the ACM 31.1, pp. 26–36. doi: 10.1145/35043.35045.

Hanus, M., S. Antoy, et al. (2020). PAKCS: the Portland Aachen Kiel Curry System.
Available at http://www.informatik.uni-kiel.de/~pakcs/.

Hanus, M. and F. Teegen (2021). “Memoized pull-tabbing for functional logic
programming”. In: Proc. of the 28th International Workshop on Functional and
(Constraint) Logic Programming (WFLP 2020). Springer LNCS 12560, pp. 57–73.
doi: 10.1007/978-3-030-75333-7_4.

Hanus (ed.), M. (2016). Curry: an integrated functional logic language (vers. 0.9.0).
Available at http://www.curry-lang.org.

Hoare, C.A.R. (1978). “Communicating sequential processes”. In: Communications
of the ACM 21.8, pp. 666–677. doi: 10.1145/359576.359585.

Lloyd, J.W. (1987). Foundations of logic programming. Springer, second, extended
edition.

López-Fraguas, F. and J. Sánchez-Hernández (1999). “TOY: a multiparadigm
declarative system”. In: Proc. of RTA’99. Springer LNCS 1631, pp. 244–247.

Partain, W. (1993). “The nofib benchmark suite of Haskell programs”. In: Pro-
ceedings of the 1992 Glasgow Workshop on Functional Programming. Springer,
pp. 195–202.

Robinson, J.A. (1965). “A machine-oriented logic based on the resolution princi-
ple”. In: Journal of the ACM 12.1, pp. 23–41.

Wadler, P. (1997). “How to declare an imperative”. In: ACM Computing Surveys
29.3, pp. 240–263.

Wittorf, M.A. (2018). “Generic translation of Curry programs into imperative
programs (in German)”. MA thesis. Kiel University.

https://doi.org/10.1007/978-3-642-22531-4_1
https://doi.org/10.1007/978-3-642-22531-4_1
https://doi.org/10.1007/978-3-540-76637-7_9
https://doi.org/10.1145/35043.35045
http://www.informatik.uni-kiel.de/~pakcs/
https://doi.org/10.1007/978-3-030-75333-7_4
http://www.curry-lang.org
https://doi.org/10.1145/359576.359585

	Introduction
	Functional Logic Programming
	Comparing Search Strategies
	Conclusions
	References

