
Constructing a Bidirectional Transformation
between BPMN and BPEL

with a Functional Logic Programming Language

Steffen Mazaneka,∗, Michael Hanusb

aUniversität der Bundeswehr München, Germany
bChristian-Albrechts-Universität zu Kiel, Germany

Abstract

In this article we show how functional logic programming techniques can be used
to construct a bidirectional transformation between structured process models
of the business process modeling notation (BPMN) and executable models of the
business process execution language (BPEL). We specify the abstract syntax of
structured process models by a context-free hypergraph grammar. This gram-
mar can be subsequently transformed into a graph parser using our previously
developed Grappa framework of functional logic GRAPh PArser combinators.
The Grappa framework has been implemented using the functional logic pro-
gramming language Curry. Furthermore, we show how the constructed parsers
can be enriched with semantic computations as required for the synthesis of
BPEL from BPMN. Since our parser is a function implemented in a functional
logic language, it can be applied in both directions. Thus, given a BPEL model,
a corresponding BPMN graph can be constructed with the very same parser.
Finally, logic-based parsers can be used for model completion and language
generation in a straightforward way.

In order to be self-contained, this article also surveys context-free hypergraph
grammars, the concepts of the programming language Curry, the example lan-
guages BPMN and BPEL, and the ideas of the Grappa framework. Actually,
this article is a literate Curry program and, as such, directly executable. Thus,
it contains the complete concise source code of our application.

Keywords: graph parsing, functional logic programming, parser combinators,
Curry, business process models, BPMN, BPEL

∗Corresponding author
Email addresses: steffen.mazanek@unibw.de (Steffen Mazanek),

mh@informatik.uni-kiel.de (Michael Hanus)

Preprint submitted to Elsevier October 26, 2010

1. Introduction

This article describes how certain model transformations can be implemented
in a convenient way using functional logic programming techniques [3]. The re-
sulting transformations are not only very concise, but they also offer several
unique features. Most importantly, they are bidirectional and provide syntacti-
cal model completion facilities for free.

As a running example, the transformation between process models of the
Business Process Modeling Notation (BPMN) [49] and executable models of
the Business Process Execution Language (BPEL) [48] is developed. Both lan-
guages are practically relevant and so is the transformation in-between. The key
challenge for this transformation is that BPMN and BPEL belong to two funda-
mentally different classes of languages. BPMN is graph-oriented—and graphs
actually will be used as an abstract representation [46]—while BPEL is mainly
block-structured [51].

The proposed implementation of the transformation between BPMN and
BPEL resorts to a framework of functional logic GRAPh PArser combinators,
called Grappa [40]. For a long time, functional languages have already been
known to be exceptionally well-suited for building string parsers—and parser
combinators are probably the most popular approach in this respect: Just define
some primitive parsers and combine them into advanced parsers via powerful
combinators! Quite recently, the parser combinator approach has been lifted
to the graph level. However, in the domain of graph parsing, features of logic
programming languages appear to be very handy as well [40] so that functional
logic languages [3] are promising in this area.

The Grappa framework can be used to construct graph parsers in a flexible
manner. Indeed, parsers for several languages have already been implemented
that way. However, there is one graph grammar formalism, namely Hyperedge
Replacement Grammars (HRGs) [11], where the mapping between a grammar
and its corresponding Grappa parser is particularly close. Considering the
definition of HRGs and their properties, HRGs are the graph grammar formal-
ism closest to context-free string grammars. Fortunately, a significant subset
of BPMN can be described by an HRG and, thus, mapped to a parser in a
straightforward way.

This article aims at being self-contained. As this introduction already shows,
some preliminary concepts need to be introduced and discussed in order to
present the actual parser in an understandable way. Hence, this article is nec-
essarily multifaceted. However, the resulting transformation is worth the effort.
It is very concise and readable so that this article can even contain the complete
program code. Actually, the LATEX source of this article is a literate program
[33] and, as such, directly executable.

Note that the transformation presented in this article has been developed
as a solution to the synthesis case [12] of the Graph-Based Tools (GraBaTs)

2

contest 2009.1 Hence, the transformation part as such is not new at all. Actu-
ally, BPEL can be generated by most state-of-the-art business modeling tools.
However, the proposed technique is novel and, where applicable, quite benefi-
cial. The proposed solution also meets several of the evaluation criteria provided
in the case definition [12], most prominently readability and reversibility—two
important criteria hardly met by most other approaches.

This article is structured as follows: We start in the next section with an
introduction of the languages BPMN and BPEL. Section 3 motivates hyper-
graphs as a uniform diagram representation model followed by a description of
hyperedge replacement grammars that we use for the definition of the subset
of BPMN covered in this article. Since our transformation approach is based
on functional logic graph parser combinators, we review the necessary notions
and techniques in the subsequent two sections. Section 4 introduces the basic
concepts of the functional logic programming language Curry that are necessary
to understand the subsequent program code. Also, (string) parser combinators
are briefly reviewed in Section 4. Section 5 presents the Grappa framework of
graph parser combinators, which is the basis of our transformation, and extends
the original framework proposed in [40] by typed edges. We also show the close
correspondence between grammar rules and parsers. The actual transformation
between BPMN and BPEL is presented in Section 6. This transformation and
the discussion of the overall transformation approach given in Section 7 are the
main contributions of this paper. Finally, Section 8 reviews related work before
we conclude in Section 9.

2. Source and Target Languages of the Example Transformation

In this section we briefly introduce the source and target languages of our
example transformation, namely BPMN and BPEL, and discuss the challenges
of this transformation task.

2.1. The Business Process Modeling Notation
The BPMN [49] has been established as the standard language for business

modeling. As such it is widely adopted among business analysts and system
architects. BPMN essentially provides a graphical notation for business process
modeling with an emphasis on control flow. Models of the BPMN are basically
flowcharts incorporating constructs tailored to business process modeling like
different kinds of splits or events.

In the following, a core subset of BPMN elements that covers the fundamen-
tal kinds of control flow is considered. These elements are shown in Figure 1.
BPMN is a graph-like language so that there are node objects and edges. The
most important kind of edges are the sequence flow arrows that link two objects
at a time and, thus, determine the control flow relation, i.e., the execution or-
der. An object can be an activity, an event, or a gateway. Activities represent

1http://is.ieis.tue.nl/staff/pvgorp/events/grabats2009/ (accessed on 2010-07-30)

3

http://is.ieis.tue.nl/staff/pvgorp/events/grabats2009/

activity events gateways sequence flow

example diagram

ship order

start intermediate end

message timer

order

received

order

closed

product

in stock?

ship order,

send shipping info

C
u
st

o
m

er
C

o
m

p
an

y
 –

S
al

es
 D

ep
ar

tm
en

t

order product

prepare order

send

notificationno

yes

parallel exclusive

Figure 1: The core BPMN elements covered in this article

po
ol

1

act3

act1

act5

act4

ev1

act2

ev2

cond2

cond1

Figure 2: Example process

the atomic items of work to be performed. An event may signal the start of a
process, the end of a process, a specific time that is reached during a process,
or a message to be received.2

A gateway is a routing construct used to control the divergence and conver-
gence of sequence flow. The BPMN distinguishes between

• parallel fork and join gateways for creating and synchronizing concurrent
sequence flows, respectively,

• data/event-based exclusive decision gateways for selecting one out of a
set of mutually exclusive alternative sequence flows where the choice is
based on either the process data or external events (deferred choice, not
considered in the following), and the corresponding gateways for joining
them into one sequence flow again,

• some other kinds of gateways that we do not consider in the following.

Figure 2 shows an example process. It contains several activities and differ-
ent kinds of intermediate events. Furthermore, it comprises both a parallel and
an exclusive branching. This process is well-structured, i.e., splits and joins are
properly nested such that each split has a corresponding join, and the process
can be decomposed into so-called single-entry single-exit regions (SESE) regard-
ing the sequence flow. This will become clearer in Section 3, where a precise

2Since messages can only be exchanged between different pools, which are not covered in
this article, we do not consider them for our transformation.

4

grammar-based specification is given. Note that it is considered good practice
to avoid arbitrary sequence flow—as in programming where spaghetti code is
considered harmful. So, modelers should aim at creating structured processes.
This restriction indeed is supposed to improve the quality and readability of
process models [19, 44]. The transformation described in this article requires
process models to be well-structured. A general discussion of the scope of our
approach is provided in Section 7.

2.2. The Business Process Execution Language
BPEL [48] is essentially an imperative programming language targeted at

web service implementations. Therefore, it is also called WS-BPEL. The syntax
of the language is defined by an XML schema which is visualized by the class
diagram shown in Figure 3(a). A BPEL process definition relates a number of
activities. An activity is either a basic or a structured activity. Basic activities
correspond to atomic actions such as invoking an operation <invoke>, waiting
for a message <receive> or a particular amount of time <wait>, terminating
the entire process <exit>, or doing nothing <empty>. Furthermore, we consider
the following structured activities:

• sequence for defining an execution order <sequence>

• flow for parallel routing <flow>

• switch for conditional routing <switch>

There exist also other kinds of activities, like <pick> for dealing with race
conditions, <while> for structured iteration, or <scope> for grouping activities,
but they are not considered in the following.

A BPEL representation of the example process given in Figure 2 is shown
in Figure 3(b). It clearly preserves the structure of the process. However, it is
not the only possible representation as will be described in the next subsection.

Due to the practical relevance of BPEL for service orchestration, a lot of
execution engines that support BPEL have emerged. Some of them even come
with an associated graphical editing tool. However, the notation supported by
these tools often directly reflects the underlying code, i.e., users are forced to
think in terms of BPEL constructs. But the BPEL language is too restricted for
analysts and, thus, unsuitable for the creative task of process modeling. They
rather prefer BPMN, which gives much more freedom while modeling. This
observation justifies the need for a mapping between BPMN and BPEL.

2.3. Transformation Challenges and Approaches
One of the key issues of the BPMN to BPEL transformation is that com-

plex patterns in the input model need to be identified—in particular the SESE
regions. The problem of identifying all SESE regions in a graph is a well-
understood problem [29] which can be solved in linear time. Some existing
transformations directly follow this approach for the construction of the so-
called process structure tree [64]. Although such algorithms are available, it

5

<process>

<flow>

<sequence>

<invoke name="act1"/>

<invoke name="act2"/>

<receive name="ev1"/>

</sequence>

<sequence>

<invoke name="act3"/>

<switch>

<case cond="cond1">

<sequence>

<invoke name="act4"/>

<wait name="ev2"/>

</sequence>

</case>

<case cond="cond2">

<invoke name="act5"/>

</case>

</switch>

</sequence>

</flow>

</process>

Figure 3: (a) BPEL syntax (left) and (b) example process corresponding to Figure 2 (right)

is worthwhile to see how this transformation can be solved with model trans-
formation approaches in order to raise the level of abstraction and to improve
readability. Note that, from an algorithmic point of view, the reverse transfor-
mation from BPEL to BPMN is the easier one, because in BPEL the structure
is explicitly given by the tree structure of XML; it can be simply traversed.

Besides the identification of SESE regions, there is also a different way to
derive BPEL from BPMN. BPEL provides a non-structured construct, so-called
control links, that allows the definition of directed dependency graphs. A control
link between activities A and B indicates that B cannot start before A has been
completed. Also a condition can be attached that has to be true in order to
execute B. There are some restrictions on the use of control links, e.g., they
must not create cyclic control dependencies and must not cross the boundary
of a while activity. Still a straightforward transformation from BPMN into
BPEL can be implemented by excessively using control links and so-called event
handlers [50]. However, this decreases readability since the structure of the
process does not become as apparent as, e.g., in Figure 3(b).

A wide range of process models can be translated into BPEL respecting
their structure as far as possible. For instance, an efficient transformation for
quasi-structured processes, i.e., processes that can be re-written into perfectly
structured ones [51], has been proposed that is based on SPQR tree decomposi-
tion [15]. However, this result is specific to the language and based on a manual
programming effort.

6

In the GraBaTs 2009 synthesis case definition [12], four criteria for the eval-
uation of transformations have been proposed which can be used to evaluate
the transformation approach presented in this article:

• Completeness: Which classes of processes can be transformed?

• Correctness: The transformation should preserve the execution semantics
of the BPMN process model. This question is beyond the scope of this
article which is mainly about syntax analysis. However, we will discuss
the correctness of the proposed parser.

• Readability: The BPEL process definitions produced by the transforma-
tion as well as the transformation itself should be readable (although the
latter is not explicitly stated in [12]). Readable BPEL basically means that
block-structured control-flow constructs such as <sequence>, <while>,
<switch>, etc. should be preferred over control links.

• Reversibility: The transformation should be accompanied by a reverse
transformation; ideally a mechanism for bidirectional model synchroniza-
tion should be provided.

3. Hypergraph Models

In this section we first introduce hypergraphs as a uniform diagram represen-
tation model [46]. We continue with the introduction of hypergraph grammars
as a device for language definition. Finally, a common way for computing se-
mantic representations of diagrams is described, namely attribute hypergraph
grammars. That way, the introduction of the parser with semantic computations
in Section 6 is prepared.

3.1. Hypergraphs as a Uniform Diagram Representation Model
Roughly speaking, hypergraphs are graphs where edges are allowed to con-

nect (also called visit) an arbitrary number of nodes depending on the edges’s
labels (see [11] for formal definitions). In this case, the edges are called hyper-
edges. Vice versa, normal graphs are specific hypergraphs where all edges visit
exactly two (not necessarily distinct) nodes, i.e., a source and a target node.
For the sake of brevity, hypergraphs and hyperedges are occasionally just called
graphs and edges in the following.

Figure 4 shows an example of a hypergraph, which actually corresponds
to the process of Figure 2.3 Hyperedges are graphically represented by boxes.
Nodes are represented as black dots sometimes identified by numbers. The nodes
visited by an edge are connected to this edge by lines called tentacles. Tentacles
are numbered to indicate the roles of the connected nodes. For instance, BPMN

3Note that properties such as the labels of activities or the conditions of gateways are not
graphically represented but can be attached as properties to the hyperedges.

7

act act inter2 2 2

2 2

1 1 12 6 10 16

start pgw act inter pgw end1 1 1223
2

4

1 3
2

1 3
2

1 3
2

4

1 2

1 1
1

4
7 11 13 15

18

act xgw xgw

act

1 3

4

1 3

4

21

1 2
3 5

8

9 12

14

17

Figure 4: Hypergraph model of Figure 2

activities (edge label act) always have an incoming (1) and an outgoing tentacle
(2); parallel and exclusive gateways (edge label pgw/xgw) always have four
tentacles: left (1), top (2), right (3), and bottom (4).4 Note that BPMN arrows
for sequence flow are represented only implicitly in the hypergraph model shown
in Figure 4. Thus, if two activities are connected by an arrow, the outgoing node
of the first activity’s edge coincides with the incoming node of the latter.

Hypergraphs are well-suited as a diagram model, because they can easily
handle the requirement that diagram components typically have several distinct
attachment areas at which they can interact with other diagram components.
Thus, hypergraphs allow for a homogeneous representation of diagram compo-
nents and their relations via hyperedges. Whereas the actual components can
be modeled by hyperedges, attachment areas can be modeled by nodes visited
by the hyperedge. This observation actually has led to the implementation
of the diagram editor generator DiaGen [47], which is based on hypergraphs,
hypergraph transformations, and hypergraph grammars.

Note that the transformation of a concrete business process diagram into its
hypergraph representation is beyond the scope of this article. This actually is
an easy task compared to the transformation of BPMN into BPEL, where the
overall structure of the process needs to be identified. For instance, this step
could be performed with a model transformation tool as an exogenous trans-
formation. Layout information thereby can be completely discarded. However,
then the reverse transformation would have to include a layout step for the
concrete arrangement of the components. A DiaGen solution to the BPMN-
to-BPEL case that includes an editor for business process diagrams has also
been developed [43]. However, this solution uses another technique that will be
briefly described in Section 3.3.

4Note that only three of those are used at a time, but with four tentacles the correspondence
to the corners of the concrete diamond-shaped diagram component becomes more obvious.

8

4

Process ::= start Flow end

Flow FlowFlElem::=
n1 n2 n1 n2

FlElem
n1 n2

FlElem
n1 n2

act
n1 n2

::= inter
n1 n2

pgw
n1

pgw
n2

Flow

Flow

xgw
n1

xgw
n2

Flow

Flow

1 121

1 2 1 2 1 2 1 2

1 2 1 2 1 2

1 2

1 2

1 3
2

4

1 3
2

4

1 2

1 2

1 3
2

4

1 3
2

4

P1

P2|3

P4|5...

…|6|7

xgw
n1

xgw
n2

Flow
2 1

1 3
2

4

1 3
2

Figure 5: Productions of GProcess

3.2. Hypergraph Grammars for Language Definition
As already mentioned, the hypergraph language of well-structured process

models can be defined using a Hyperedge Replacement Grammar (HRG) [11].
Each HRG consists of two finite sets of terminal and nonterminal hyperedge
labels and a starting hypergraph, which contains only a single hyperedge with a
nonterminal label. The syntax is specified by a set of hypergraph productions.
Figure 5 shows the productions of the HRG GProcess. For the sake of conciseness,
loops are not considered. Productions L ::= R1, . . . , L ::= Rk with the same
left-hand side L are drawn as L ::= R1| . . . |Rk. The types start, end, inter, act,
pgw and xgw are the terminal hyperedge labels. The set of nonterminal labels
consists of Process, Flow and FlElem. The starting hypergraph consists of just
a single Process edge.

The application of a context-free production removes an occurrence e of the
left-hand side hyperedge from the host graph and replaces it by the hypergraph
of the right-hand side, see [11]. Matching node labels of left- and right-hand
sides determine how the right-hand side has to fit in after removing e. An
example derivation is shown in Figure 6 (tentacle numbers are omitted in this
figure). The hypergraph language generated by a grammar is defined by the set
of all hypergraphs that can be derived from the starting hypergraph and that
have only terminal edges. For GProcess this is just the set of structured BPMN
hypergraphs we want to cover.

As in the string setting, hypergraphs can be syntactically analyzed by a
parser with respect to a given grammar. To this end, derivation trees are con-
structed (if existing). Such a hypergraph parser is part of the DiaGen system
[47]. It uses dynamic programming techniques for the construction of derivation
trees (similar to the string parser developed by Cocke, Younger, and Kasami
[31]). The details of this parser are described in [5].

9

Process start Flow end

pgw pgw

Flow

Flow

P1


P2

 start FlElem end

P6

 start end

2*(P2,P4)

 pgw pgw

act

act

start end

Figure 6: An example derivation

pgw
n1

pgw
n2

Flow1

Flow2

1 2

1 2

1 3
2

4

1 3
2

4

FlElem.bpel:= "<flow>" +

Flow
1
.bpel +

Flow
2
.bpel +

"</flow>"

FlElem
n1 n2

::=
1 2

Figure 7: Example production with attribute evaluation rule

3.3. Attribute Hypergraph Grammars for Semantic Computations
The DiaGen system also supports the translation of a diagram into some

domain-specific data structure. For this purpose, it provides attribute eval-
uation [45], a well-known technique in the domain of compiler construction
[32]. Basically, each hyperedge carries some attributes. Number and types of
these attributes depend on the hyperedge label. Productions of the hypergraph
grammar may be augmented by attribute evaluation rules which assign values
to attributes of the corresponding edges. An attribute hypergraph grammar for
the synthesis of BPEL from BPMN has been proposed in [43] as an alternative
solution to the case. An example production with an attribute evaluation rule
is shown in Figure 7. The subscript numbers do not belong to the edge label
but are used to refer to the different occurrences of edges with the same label.

After parsing, attribute evaluation works as follows. Each hyperedge that
occurs in the derivation tree has a distinct number of attributes. Grammar
productions that have been used for creating the tree impose instantiated at-
tribute evaluation rules. Those determine how attribute values are computed
as soon as the values of others are known. The attribute evaluation mechanism
then computes a valid evaluation order. Some or even all attribute values of
terminal edges are already known; they have been derived from attributes of
the diagram components. For instance, hyperedges with label act have a name
attribute representing the name of the respective activity.

Attribute string grammars can be translated into parsers in a straightfor-
ward way, e.g., by using a parser generator or a combinator framework. This
also applies to the graph parser combinators that will be introduced in Sec-
tion 5. A disadvantage of attribute grammars is, however, that usually the
reverse transformation cannot be derived automatically (pair grammars have
been suggested to this end [53]).

10

4. Functional Logic Programming and Parser Combinators

Since our framework of graph parser combinators is implemented in the pro-
gramming language Curry [22], we introduce the relevant concepts of Curry in
this section. Moreover, we discuss the ideas behind (string) parser combinators
and recapitulate why functional logic languages are a natural platform for those.

4.1. The Programming Language Curry
Curry is a declarative multi-paradigm language combining features from

both functional and logic programming (see [3, 24] for recent surveys). The
syntax of Curry is close to Haskell [52]. The main addition are free (logic)
variables in conditions and right-hand sides of defining rules. In functional pro-
gramming, one is interested in the computed value, whereas logic programming
emphasizes the different bindings (answers). Consequently, Curry computes for
each input expression its value together with a substitution for the free variables
occurring in the input expression.

A Curry program consists of the definition of data types and operations on
these types. Although we often use the term “function” as a synonym of “defined
operation” as in functional programming, it should be noted that operations in
Curry might yield more than one result on the same input due to the logic
programming features. Thus, Curry operations are not functions in the classi-
cal mathematical sense so that some authors use the term “non-deterministic
functions” [17]. Nevertheless, Curry programs have a purely declarative seman-
tics where non-deterministic operations are modeled as set-valued functions (to
be more precise, down-closed partially ordered sets are used as target domains
in order to cover non-strictness, see [17] for a detailed account of this model-
theoretic semantics).

In a Curry program, operations are defined by conditional equations with
constraints in the conditions. They are evaluated lazily and can be called with
partially instantiated arguments. This feature will be heavily used later on.
Calls with free variables are evaluated by a possibly non-deterministic instan-
tiation of the required arguments, i.e., arguments whose values are demanded
to decide the applicability of a rule. This mechanism is called narrowing [58].
Curry is based on a refinement of narrowing, called “needed narrowing” [1],
which is optimal for particular classes of programs, i.e., shortest derivations and
a minimal number of solutions are computed (see [1] for more details).

As an example, consider the Curry program given in Figure 8. It defines a
polymorphic data type for lists, and operations to compute the concatenation
of lists and the last element of a list. Note, however, that lists are a built-in
data type with a more convenient syntax, e.g., one can write [x,y,z] instead
of x:y:z:[] and [a] instead of the list type “List a”.

Logic programming is supported by admitting function calls with free vari-
ables, see (ys++[z]) in Figure 8, and constraints in the condition of a defining
rule. In contrast to Prolog, free variables need to be declared explicitly to make
their scopes clear; in the example this is expressed by “where ys,z free”.

11

data List a = [] | a : List a --[a] denotes "List a"

--"++" is a right-associative infix operator
(++) :: [a] → [a] → [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

last :: [a] → a
last xs | (ys ++ [z]) =:= xs

= z where ys,z free

Figure 8: A Curry program with operations on lists

Conditional program rules have the form “l | c = r” specifying that l is re-
ducible to r if c is satisfied. The condition c is a constraint, i.e., an expression
of the built-in type Success. For instance, the trivial constraint success is an
expression of type Success that denotes the always satisfiable constraint. An
equational constraint e1 =:= e2 is satisfiable if both sides e1 and e2 are reducible
to unifiable constructor terms. Furthermore, if c1 and c2 are constraints, c1 &
c2 denotes their concurrent conjunction, i.e., this expression is evaluated by
proving both argument constraints concurrently. For instance, the rule defining
last in Figure 8 states in its condition that z is the last element of a given list
xs if there exists a list ys such that the concatenation of ys and the one-element
list [z] is equal to the given list xs.

Note that, in contrast to Haskell, the evaluation of “last []” does not raise
a run-time error but fails. Similar to logic programming, failure is not a run-
time error in Curry but a useful programming technique: if some evaluation,
i.e., a rule application, leads to a failure, a different rule is chosen. Thus, all
applicable rules are tried to evaluate some function call (in contrast to Haskell
[52] which commits to the first applicable rule). This kind of non-determinism
can be implemented by backtracking or by a parallel search for all solutions.
The concrete implementation is specific to each Curry system.

The execution model of Curry is based on narrowing, a combination of vari-
able instantiation and reduction. For instance, the expression (ys++[1]) is
evaluated to several results: the list [1] by instantiating ys to [] using the first
equation, to the partially unknown list [x,1] by instantiating ys to [x] using
the second equation and then the first equation, and so on to terms of the form
[x,y,1], [x,y,z,1], . . . To restrict these potentially infinite number of non-
deterministic computations, one usually puts such expressions in the context of
constraints. For instance, the equational constraint (ys++[x])=:=[1,2] causes
a finite computation space containing the unique solution where ys and x are
bound to [1] and 2, respectively. This technique is exploited in Figure 8 to
define the operation last conveniently.

As already remarked, operations in Curry may yield more than one result
for some input due to the logic programming features. For instance, consider

12

the operation removeSome defined as follows:

removeSome :: a → [a] → [a]
removeSome x xs | xs=:=(xs1++x:xs2) = xs1++xs2

where xs1,xs2 free

The condition states that the input list xs is decomposable into xs1, x, and
xs2, and the result is the concatenation of xs1 and xs2. Thus, removeSome
returns any list which can be obtained by removing some occurrence of the
input element x from the input list xs. Actually, non-deterministic operations
like removeSome are a useful programming technique which will be used to
implement (graph) parsers in a convenient manner.

The combination of functional and logic programming features has led to
new design patterns [2] and better abstractions for application programming,
e.g., as shown for programming with databases [7, 13], GUI programming [20],
web programming [21, 23, 26], or string parsing ([10] and Section 4.2). In
this article, we show how to exploit these combined features to construct a
bidirectional transformation between a visual graph-oriented language and a
term-oriented language.

As already mentioned, this article is a literate Curry program [33], i.e., the
article’s source text is directly executable. In a literate Curry program, all real
program code starts with the special character “>”. This is called Bird-style code
and comments. Curry code not starting with “>”, e.g., the code in Figure 8, is
just for reader’s information and not required to run the program, i.e., it is a
comment. Occasionally, we will also use Curry line comments, which start with
“--”. As an example of code that counts, consider the following declaration of
a main operation which applies the parser processS (to be defined in Section 6)
to the example hypergraph ex shown in Figure 4 and pretty-prints the resulting
BPEL representation in XML:

> main = let bpel = getSemRep (findfirst (\s → s=:=processS ex))
> in putStrLn (bpel2xml bpel) --output result

Since operations in Curry might yield more than one result, we select one value
of “processS ex” using findfirst and print its XML representation (the oper-
ations used here will be defined later). Thus, executing this program will result
in the output shown in Figure 3(b).

There exist various implementations of Curry,5 where three major systems
are available for general use and, thus, can run our transformation:

• MCC (Münster Curry Compiler) [35] generates fast native code.

• PAKCS (Portland Aachen Kiel Curry System) [25] compiles Curry to Pro-
log as an intermediate language.

• KiCS (Kiel Curry System) [8] compiles Curry to Haskell.

5http://www.curry-language.org/implementations/overview (accessed on 2010-07-30)

13

http://www.curry-language.org/implementations/overview

4.2. A Brief Introduction to Parser Combinators
In functional programming, the most popular approach to parsing is based

on parser combinators. Following this approach, some primitive parsers are
defined that are combined into more advanced parsers using a set of powerful
combinators. These combinators are higher-order functions that can be used to
define parsers so that they resemble the corresponding grammar very closely [28].

Parser combinators integrate seamlessly into the rest of the program, hence
the full power of the host language, e.g., Haskell [52] or Curry, can be used.
Unlike parser generators such as Yacc [30], no extra formalism is needed to
specify a grammar. It is rather possible to define a powerful domain-specific
embedded language for the convenient construction of parsers. Another benefit
of the combinator approach is that parsers are first-class values within the lan-
guage. For example, lists of parsers can be constructed, and parsers can also be
passed as parameters. The possibilities are only restricted by the potential of
the host language.

In most purely functional parser combinator approaches, a parser is a func-
tion that takes a sequence of tokens—plain characters in the simplest case—as
input and returns a list of successes [65] containing all possible ways in which
a prefix of the input can be recognized and converted into a value of the result
type. This parser result could be, e.g., a derivation tree or a computed value
similar to attribute grammars [32]. Each result is combined with the corre-
sponding remaining part of the input. This is important in order to compose
parsers sequentially afterwards. Indeed, the subsequent parser needs to know
where it has to continue the analysis.

Combinators such as sequence (denoted by the *> operator in the follow-
ing) or choice (<|>) are higher-order functions, i.e., functions whose param-
eters are functions again. For instance, consider a function symb with type
Char → Parser that constructs a parser accepting a particular character. Then
a list pl of parsers can easily be constructed, e.g., by applying symb to each
letter:6

pl = map symb [’a’..’z’]

A parser lcl that accepts an arbitrary lower-case letter then can be implemented
by folding pl via the choice operator and the never succeeding parser fail as
the neutral element:7

lcl = foldr (<|>) fail pl

With the use of sequence and choice combinators, any context-free string gram-
mars can directly be mapped to a parser.8 For instance, consider the grammar

6The standard function map :: (a → b) → [a] → [b] applies a function to each
element of a list [52, 22].

7The standard function foldr :: (a → b → b) → b → [a] → b folds a list by
using a function applied from right to left in the list [52, 22].

8Several systems require the elimination of left-recursive rules, but this is always possible.

14

B ::= ‘(’ B ‘)’ B

| ε

of well-formed bracket terms derivable from the only nonterminal and, thus,
starting symbol B. Given an always succeeding primitive parser epsilon that
does not consume any input, a parser for this language can be constructed as
follows:

b = symb ’(’ *> b *> symb ’)’ *> b
<|> epsilon

A lot of research has been put into developing more and more sophisticated
string parser combinator libraries, e.g., [34, 61, 66]. Those rely on different
approaches to search, backtracking control, parser composition, and result con-
struction.

Functional logic parser combinators, proposed for the first time in [10], have
all the advantages of purely functional ones but additionally benefit from the
following merits of logic-based parsers:

• Non-determinism is the default behavior, i.e., it is not necessary to imple-
ment search based on backtracking or the “lists of successes” technique
[65] by hand.

• Parsers can be used for language generation thanks to the fact that a
parser is not a function but rather a relation.

• Incomplete information can be handled conveniently by using free (logic)
variables.

The possibilities of dealing with incomplete information are particularly in-
teresting. For instance, free variables can be used as placeholders in the input
sentence. While parsing, these variables are instantiated with the tokens that
can occur at this particular position in order to get a valid sentence of the lan-
guage. In the string setting, this is a nice feature coming for free but not being
useful directly. For instance, to exploit this for error correction, the position
and number of the missing token needs to be known or all possible positions
would have to be tried. This is not really feasible. However, in the graph set-
ting, where we deal with sets, this effect is much more powerful as we will see.
Actually, this is already the key idea for deriving meaningful graph completions.

Note that purely logic languages would not be equally well-suited for our
purpose, because those do not support the straightforward definition of higher-
order functions such as combinators. Thus, the “remaining input” would have
to be passed more explicitly resulting in a lot of boilerplate code, i.e., code that
has to be included in many places of the program with little or no alteration.
Prolog provides Definite Clause Grammars (DCGs), a syntactic sugar to hide
the difference list mechanism needed to build reasonably efficient string parsers

15

in logic languages. However, a graph is not linearly structured. Hence, this no-
tation cannot be used for graph parsing. Tanaka’s definite clause set grammars
[63], a DCG-like formalism for free-word-order languages, are not supported by
common Prolog systems.

Having this in mind, graph parsing appears to be a domain asking for multi-
paradigm declarative programming languages [24] such as Curry. In this domain
their benefits really stand out. The inherent need for logic features in graph
parsing will be further motivated in the following.

5. Graph Parser Combinators: The Grappa Framework

The graph parser combinator library Grappa allows the convenient and
straightforward construction of hypergraph parsers for HRGs. The implementa-
tion of Grappa in Curry indeed exploits both functional and logic programming
techniques. That way, the following features have been achieved:

• Straightforward translation of HRGs to reasonably efficient parsers.

• Application-specific results due to powerful semantic computations.

• Easy to use for people familiar with parser combinators.

• Usable context information. This allows the convenient description of
languages that cannot be defined with an HRG.

• Robust against errors. Valid subgraphs can be extracted.

• Bidirectionality. Besides syntax analysis, parsers can be used to construct
or complete graphs of the intended language or even to create a graph from
its semantic representation as required for the transformation of BPEL
into BPMN.

In this section, we introduce all parts of the Grappa9 library that are required
for the implementation of the BPMN parser in Section 6.

5.1. Type Declarations for Graphs and Graph Parsers
We start by defining the basic data structures for representing graphs and

hypergraphs. For the sake of simplicity, nodes are represented by integer num-
bers. A graph is declared as a list of edges each with its incident nodes. A
type for the edge labels t can be passed as a type parameter (in the simplest
case this can be just strings representing their labels as in the original Grappa
version [40]). The tentacle numbers correspond to the position of a node in the
list of incident nodes.

9http://www.unibw.de/inf2/grappa (accessed on 2010-07-30)

16

http://www.unibw.de/inf2/grappa

8

3131 11

73

start

act

pgw

act

pgw end

2

2

4

2

4

21

1

1

2

4

6

5

> ex_sm :: Graph String
> ex_sm = [("start", [1]), ("pgw", [1,2,4,3]), ("act", [2,6]),
> ("act", [3,7]), ("pgw", [5,6,8,7]), ("end", [8])]

Figure 9: A small example BPMN hypergraph and a representation as a Curry term

> type Node = Int
> type Edge t = (t, [Node])
> type Graph t = [Edge t]

Note that the actual order of edges in the list does not matter. Rather the
list of edges representing a graph is interpreted as a multiset. Consequently,
there are a lot of terms describing the very same graph. This approach is the
easiest one to implement and understand, but it has also some weaknesses.
Those will be discussed in Section 7. Furthermore, isolated nodes cannot be
directly represented, because the nodes of a hypergraph are implicitly given as
the union of all nodes incident to its edges. But this restriction is not severe
since isolated nodes simply do not occur in many hypergraph application areas.
In the context of visual languages, diagram components are represented by
hyperedges, and nodes just represent their attachment areas, i.e., each node is
visited by at least one edge (see Section 3).

Figure 9 shows a small example of a BPMN hypergraph and its correspond-
ing graph representation in Curry where String-labeled edges are used. Note
that node numbers and tentacle numbers have to be clearly distinguished. The
tentacle numbers are only represented implicitly as the position of a node in an
edge’s node list.

Next, the declaration of the type Grappa representing a graph parser is
introduced. This type is parameterized over the type res of semantic values as-
sociated to graphs. Graph parsers are non-deterministic operations from graphs
to pairs consisting of the parsing result and the graph that remains after suc-
cessful parser application. Note that the non-remaining parts of the graph have
been consumed in the course of parsing. In contrast to Haskell, it is not required
to explicitly deal with parsing errors and backtracking. Instead, similar to [10],
the non-determinism inherent to functional logic programming languages is ex-
ploited, which yields the following, very concise type declaration:

> type Grappa t res = Graph t → (res, Graph t)

> getSemRep (r,_) = r --access semantic representation

17

5.2. Primitive Parsers and Basic Combinators
Now we define some primitives for the construction of graph parsers. Given

an arbitrary value v, pSucceed always succeeds returning v as a result without
any consumption of the input graph g:

> pSucceed :: res → Grappa t res
> pSucceed v g = (v, g)

In contrast, eoi only succeeds if the graph is already completely consumed.
In this case, the result () is returned, the only value of the so-called unit type.
Note that it is not necessary to state explicitly that eoi fails on non-empty
inputs—the absence of a rule is sufficient.

> eoi :: Grappa t ()
> eoi [] = ((), [])

An especially important constructor of primitive parsers is edge, the graph
equivalent of symb, cf. Section 4.2. The parser “edge e” only succeeds if the
given edge e is part of the given input graph g. In contrast to symb, it does
not have to be at the beginning of the token list though. If g contains e, e
is consumed, i.e., removed from g. The parser edge is implemented in a logic
programming style making use of an equational constraint (note the similarity
to the operation removeSome in Section 4.1).

> edge :: Edge t → Grappa t ()
> edge e g | g=:=(g1++e:g2) = ((), g1++g2)
> where g1, g2 free

If g, which is the list representation of the input graph, can be decomposed
into g1, e and g2, the edge e indeed is contained in g. In this case, e has to be
consumed. This is realized by returning just g1++g2 as the remaining graph.

Figure 10 defines some basic graph parser combinators. The choice operator
<|> takes two parsers and succeeds if either the first or the second one succeeds
on the particular input graph g (note that the non-determinism provided by
functional logic programming is quite handy here). Two parsers can also be
combined via <*>, the successive application where the result is constructed by
function application. Thereby, the first parser p has to return a function pv
as result that eventually is applied to the result qv returned by the successive
parser q. Note that q is applied to g1, i.e., the input that p has left. The correct
(intended) order of evaluation is enforced by using Curry’s case construct.

For convenience, we define the combinators *> and <* that throw away
the result of either the left or the right parser. Indeed, the pure success of
a parser is often sufficient for the remaining computation. Then a particular
result is not at all required. For plain language recognition without semantic
computations, only the combinator *> is needed, see the (textual) bracket term
example of Section 4.2. Note that the result types of the argument parsers in
the combinators *> and <* might differ but they have to process graphs with
the same edge type t. This is reasonable since they operate on the same graph
but can compute different kinds of semantic information.

18

> (<|>) :: Grappa t res → Grappa t res → Grappa t res
> (p1 <|> p2) g = p1 g
> (p1 <|> p2) g = p2 g

> (<*>) :: Grappa t (r1 → r2) → Grappa t r1 → Grappa t r2
> (p <*> q) g = case p g of
> (pv, g1) → case q g1 of
> (qv, g2) → (pv qv, g2)

> (<$>) :: (res1 → res2) → Grappa t res1 → Grappa t res2
> f <$> p = pSucceed f <*> p

> (<$) :: res1 → Grappa t res2 → Grappa t res1
> f <$ p = const f <$> p

> (<*) :: Grappa t res1 → Grappa t res2 → Grappa t res1
> p <* q = (\x _ → x) <$> p <*> q

> (*>) :: Grappa t res1 → Grappa t res2 → Grappa t res2
> p *> q = (_ x → x) <$> p <*> q

Figure 10: Basic graph parser combinators

The parser transformers <$> and <$ can be used to either apply a function
to the result of a parser or to just replace it by another value, respectively. Note
that some of the other combinators are defined in terms of <$>. For instance, <$
can be defined using <$> by constructing a constant function from the respective
value.10 Another example application of <$> is given below in the definition of
the chain combinator.

On top of these basic combinators, various other useful combinators can be
defined. We show one example: The combinator chain p (n1,n2) can be used
to identify a non-empty chain of graphs that can be parsed with p. This chain
has to be anchored between the nodes n1 and n2.

> chain::((Node,Node) → Grappa t a) → (Node,Node) → Grappa t [a]
> chain p (n1,n2) = (:[]) <$> p (n1,n2)
> chain p (n1,n2) = (:) <$> p (n1,n) <*> chain p (n,n2)
> where n free

1 2n1 n2n
G1 Gk…G2

10Given a particular value v, const v returns a constant function that maps every argument
to v [52, 22].

19

The definition of chain can be read as: “chain p (n1,n2)” succeeds if
“p (n1,n2)” succeeds. Then a singleton list with its result is returned.11

It may also succeed by running “p (n1,n)” for some node n and thereafter
“chain p (n,n2)” again. Then their results are combined via the list con-
structor (:). Note that chain can be conveniently defined because the inner
node n does not need to be known in advance. It can simply be defined as a
free variable which will be instantiated according to the narrowing semantics of
Curry. Representing graph nodes as free variables actually is a functional logic
design pattern [2] that we will use some more times in the remainder of this
article.

5.3. Translation of the BPMN Grammar to a Parser
Before the BPMN to BPEL transformation will be introduced in Section 6,

we show the implementation of a direct mapping from HRGs to Grappa parsers.
We will see that parsers indeed resemble grammars very closely.

Figure 11 presents a plain parser for BPMN hypergraphs that does not
perform any semantic computations, i.e., its result type is the unit type (). The
type annotations are for convenience only and, thus, can just as well be omitted.
For each nonterminal edge label nt, a parser function has to be defined that takes
a tuple of nodes (n1, ..., nk) compatible to the edge’s label as a parameter. A
new function body is inserted for each production over nt (alternatively <|>
could be used). Each terminal edge in the right-hand side of the production
is matched and consumed using the primitive parser edge, each nonterminal
one is translated to a call of the function representing this nonterminal. Note
that it would be also possible to define the parser in a more homogeneous way
by introducing a special parser function for each terminal edge type, such as
act (n1,n2) = edge ("act", [n1,n2]).

But what about the inner nodes within the right-hand side of a production?
Nothing is known about these nodes yet. Therefore, as usual in logic program-
ming, a free variable is introduced for each of them in the same manner as
we have already seen in the definition of chain. Those nodes are instantiated
during the process of parsing.

In contrast to string parsing, the order of parsers in a successive composition
via *> is not that important as long as left recursion is avoided. Nevertheless,
the chosen arrangement might have an impact on the performance. Usually,
it is advisable to start with a terminal edge and continue by traversing the
right-hand side graph along shared nodes.

Parsers defined in such a way are quite robust. For instance, they ignore
redundant components, i.e., those just remain at the end. Still, complete input
consumption can be enforced by a subsequent application of eoi. Thus, instead
of process, the extended parser “process <* eoi” would have to be used.
This parser can be called as follows:

11 (:[]) is the notation of Haskell or Curry for sections, i.e., if we apply (:[]) to an element
x, we get (x:[]) which is identical to the one-element list [x].

20

4

Process ::= start Flow end

Flow FlowFlElem::=
n1 n2 n1 n2

FlElem
n1 n2

FlElem
n1 n2

act
n1 n2

::= inter
n1 n2

pgw
n1

pgw
n2

Flow

Flow

xgw
n1

xgw
n2

Flow

Flow

1 121

1 2 1 2 1 2 1 2

1 2 1 2 1 2

1 2

1 2

1 3
2

4

1 3
2

4

1 2

1 2

1 3
2

4

1 3
2

4

P1

P2|3

P4|5...

…|6|7

xgw
n1

xgw
n2

Flow
2 1

1 3
2

4

1 3
2

> process :: Grappa String ()
> process = edge ("start", [n1]) *>
> flow (n1,n2) *>
> edge ("end", [n2])
> where n1,n2 free

> flow :: (Node,Node) → Grappa String ()
> flow (n1,n2) = flElem (n1,n2)
> flow (n1,n2) = flElem (n1,n) *>
> flow (n,n2)
> where n free

> flElem :: (Node,Node) → Grappa String ()
> flElem (n1,n2) = edge ("act", [n1,n2])
> flElem (n1,n2) = edge ("inter", [n1,n2])
> flElem (n1,n2) = edge ("pgw", [n1,n1t,n1r,n1b]) *>
> flow (n1t,n2t) *>
> edge ("pgw", [n2l,n2t,n2,n2b]) *>
> flow (n1b,n2b)
> where n1t,n1r,n1b,n2l,n2t,n2b free
> flElem (n1,n2) = edge ("xgw", [n1,n1t,n1r,n1b]) *>
> flow (n1t,n2t) *>
> edge ("xgw", [n2l,n2t,n2,n2b]) *>
> flow (n1b,n2b)
> where n1t,n1r,n1b,n2l,n2t,n2b free

Figure 11: Production of GProcess (cf. Figure 5) and the corresponding parser implementation

21

BPMN2BPEL> (process <* eoi) ex_sm
((),[])
More solutions? [Y(es)/n(o)/a(ll)] y
No more solutions

So, for the example input graph ex_sm shown in Figure 9, the pair ((),[])
is returned. The list part [] represents the remaining graph, which is empty
here (actually, we have enforced this with eoi). As a result the value () of
unit type () is returned. We can conclude from this evaluation that the graph
ex_sm is syntactically correct. Since we have searched for further solutions by
pressing “y”, but did not found any, we can also conclude that there is only a
single derivation tree for ex_sm (the grammar GProcess actually is unambiguous).
However, we cannot tell anything about the structure and meaning of ex_sm.
This gap will be closed in the following section.

6. Constructing the BPMN to BPEL Transformation

Our parser constructed so far can only check whether the given graph is,
or at least contains, a valid BPMN hypergraph. However, a major benefit of
the combinator approach is that language-specific results can be computed in a
flexible way. In this section we show how one can synthesize BPEL from BPMN
by adding this transformation as a semantic computation to the BPMN parsing
process. In the subsequent section, we discuss how this implementation can be
exploited for various tasks beyond the transformation of BPMN into BPEL.

6.1. Typed BPMN Hypergraphs
In order to transform BPMN into BPEL, edges of the BPMN hypergraphs

have to carry attributes, e.g., semantic information describing the label of an
activity or the kind of an intermediate event. For this purpose, we introduce
the type of BPMN edges by the declaration of the data type BPMNComp:

> data BPMNComp =
> BPMNStart | BPMNEnd | BPMNPGW |
> BPMNXGW String String | --conditions as params
> BPMNActivity String | --label as param
> BPMNInter BPMNInterKind String --kind and label as params
>
> data BPMNInterKind = BPMNWait | BPMNReceive

In contrast to the original work on functional logic graph parser combina-
tors [40], we have extended the Grappa framework to typed hypergraphs. This
extension is important for the comprehensive and correct generation of the cor-
responding BPEL code. For instance, we can represent the example BPMN
diagram of Figure 2 as a graph over the edge type BPMNComp by the constant ex
given in Figure 12.

Actually, there are some degrees of freedom in modeling BPMN. For in-
stance, we could have also represented the kind of gateway, i.e., exclusive or
parallel, via an attribute (in the same way as we distinguished events).

22

> ex :: Graph BPMNComp

> ex = [(BPMNStart,[1]),(BPMNPGW,[1,2,4,3]),(BPMNActivity "act1",[2,6]),

> (BPMNActivity "act2",[6,10]),(BPMNPGW,[15,16,18,17]),

> (BPMNActivity "act3",[3,5]),(BPMNXGW "cond1" "cond2",[5,7,9,8]),

> (BPMNActivity "act4",[7,11]),(BPMNActivity "act5",[8,14]),

> (BPMNInter BPMNWait "ev2",[11,13]),(BPMNXGW "" "",[12,13,17,14]),

> (BPMNInter BPMNReceive "ev1",[10,16]),(BPMNEnd,[18])]

Figure 12: Representation of the example process in Figure 2 as a Curry term

6.2. Representing BPEL by Constructor Terms
To implement the parser that transforms BPMN into BPEL, we have to

define a representation of BPEL in Curry. The significant subset of BPEL
introduced in Section 2.2 can be modeled as follows:

> type BPEL = [BPELComp]

> data BPELComp = Invoke String | Wait String | Receive String |
> Flow BPEL BPEL | Switch String String BPEL BPEL

Thus, an element of type BPELComp describes some activity of a BPEL pro-
cess, and elements of type BPEL (occurring as arguments of structured activ-
ities) are simply sequences of BPEL activities. Since these sequences can be
arbitrarily nested in structured activities, the target structure of our transfor-
mation is basically a tree (in contrast to the graph-based source structure of
type Graph BPMNComp). Note that terms of the tree type BPEL12 can be trans-
formed into BPEL-XML in a straightforward way as shown in Appendix A. One
could also directly construct XML while parsing. However, the language Curry
allows for more flexibility when dealing with constructor terms as above. This
will be important for supporting the reverse transformation.

6.3. Adding Semantics to the BPMN Parser
Figure 13 shows the main part of our implementation, i.e., the extended

parser for BPMN where semantic computations have been added. As can be seen
by the type of the main parsing operation processS, this parser works on typed
hypergraphs with edges of type BPMNComp and returns a semantic value of type
BPEL (the BPEL tree corresponding to the input BPMN graph). To distinguish
this parser from the plain parser without semantic computations (result type
()) presented in Figure 11, each function name is suffixed with the capital
letter S. Note that both parsers accept exactly the same graph language (apart
from the different attributes associated to edges), i.e., the language generated
by the grammar given in Figure 5. This time, however, we use several star
operators (<*>, *>, and <*) to conveniently compose the semantical results.
Recall that *> disregards the result of the left parser, <* disregards the result

12We use different fonts to distinguish the Curry type BPEL from the BPEL language.

23

> processS :: Grappa BPMNComp BPEL
> processS = edge (BPMNStart,[n1]) *>
> flowS (n1,n2) <*
> edge (BPMNEnd,[n2])
> where n1,n2 free

> flowS :: (Node,Node) → Grappa BPMNComp BPEL
> flowS (n1,n2) = (:[]) <$> flElemS (n1,n2)
> flowS (n1,n2) = (:) <$> flElemS (n1,n) <*> flowS (n,n2)
> where n free

> flElemS :: (Node,Node) → Grappa BPMNComp BPELComp
> flElemS (n1,n2) = translateInter itype name <$
> edge (BPMNInter itype name, [n1,n2])
> where itype,name free
> translateInter BPMNWait = Wait
> translateInter BPMNReceive = Receive
> flElemS (n1,n2) = Invoke lab <$
> edge (BPMNActivity lab, [n1,n2])
> where lab free
> flElemS (n1,n2) = edge (BPMNPGW, [n1,n1t,n1r,n1b]) *>
> (Flow <$>
> flowS (n1t,n2t) <*>
> flowS (n1b,n2b)) <*
> edge (BPMNPGW, [n2l,n2t,n2,n2b])
> where n1t,n1r,n1b,n2l,n2t,n2b free
> flElemS (n1,n2) = edge (BPMNXGW c1 c2, [n1,n1t,n1r,n1b]) *>
> (Switch c1 c2 <$>
> flowS (n1t,n2t) <*>
> flowS (n1b,n2b)) <*
> edge (BPMNXGW d1 d2, [n2l,n2t,n2,n2b])
> where c1,c2,d1,d2,n1t,n1r,n1b,n2l,n2t,n2b free

Figure 13: BPMN parser that computes BPEL as a result

24

of the right parser, and <*> considers both results and constructs the overall
result by function application. For instance, in the definition of the top-level
parser processS, only the result of the call to flowS is relevant and, hence,
returned, i.e., the (useless) results of parsing the edges BPMNStart and BPMNEnd
are ignored using the operators *> and <*, respectively.

The parser transformers <$> and <$ are used to construct the results. As an
example, consider flowS that constructs a result of type BPEL, a list of BPELComp
elements (i.e., structured BPEL activities). If flowS consists only of a single
flElemS (first case), a singleton list of this element is returned as a result by
applying the operation (:[]) to the element. Otherwise, the result of the first
flElemS is added to the front of the list of the following flowS’s results: Since
“flElemS (n1,n)” is a parser of type “Grappa BPMNComp BPELComp” and the
list constructor “:” has the polymorphic type “a → [a] → [a]”, the combined
parser “(:) <$> flElemS (n1,n)” is of type

Grappa BPMNComp ([BPELComp] → [BPELComp])

Thus, if we combine this parser with the parser “flowS (n,n2)” by the combi-
nator <*>, we obtain the desired parser of type “Grappa BPMNComp BPEL”.

Actually, this definition of flowS is a special case of chain. Therefore, the
parser flowS can also be defined using chain, which demonstrates the flexibility
of graph parser combinators:

flowS :: (Node,Node) → Grappa BPMNComp BPEL
flowS = chain flElemS

Note that the result type of the parser flElemS is BPELComp. Hence, the
parser transformer <$> is used to compose an expression of type BPELComp from
the two sub-flows via the Flow or Switch constructor, respectively. It should be
mentioned that data constructors are also functions of their corresponding types.
For instance, Flow has type BPEL → BPEL → BPELComp so that the expression

Flow <$> flowS (n1t,n2t) <*> flowS (n1b,n2b)

is well-typed: “flowS (n1t,n2t)” is of type “Grappa BPMNComp BPEL”, hence,
“Flow <$> flowS (n1t,n2t)” is of type

Grappa BPMNComp (BPEL → BPELComp)

and, thus, can readily be combined via function application with the subsequent
call to flowS. Note that the definition of the parser flElemS exploits free
variables to transfer an attribute value to the result. For instance, consider
the second rule defining flElemS where a BPEL Invoke is constructed from a
BPMNActivity. Here, the label of the activity is transferred to Invoke using the
free variable lab.

Altogether, one can see from the definitions in Figure 13 that the features
of functional logic programming (higher-order functions, free variables, non-
deterministic operations) together with an appropriate definition of functional
logic graph parser combinators allow for a quite concise and executable speci-
fication of a BPMN to BPEL transformation that has been developed step by
step from the plain BPMN graph parser of Figure 11.

25

Since the parser processS is not just a specification but also an executable
Curry program, we can apply it to the example process of Figure 2 as follows:

BPMN2BPEL> processS ex
([Flow [Invoke "act1",Invoke "act2",Receive "ev1"]

[Invoke "act3",
Switch "cond1" "cond2" [Invoke "act4",Wait "ev2"]

[Invoke "act5"]]], [])
More solutions? [Y(es)/n(o)/a(ll)] y
No more solutions

The result is a pair consisting of the semantic BPEL representation of this
graph (which has been slightly reformatted to improve its readability) and the
remaining graph, which is empty in this case. One can also print the result in
XML format, as shown in the definition of the operation main (cf. Section 4).
The function bpel2xml defined in Appendix A actually performs this transla-
tion. The indentation performed by bpel2xml reflects the tree-structured result
of our parser. So, readable and structure-oriented BPEL is generated (cf. Fig-
ure 3(b)) and the graph-oriented BPEL features do not need to be used.13

7. Discussion and Application

In this section we discuss the applicability of the transformation developed
in Section 6. We will describe how the parser shown in Figure 13 can be used
for graph completion and how the reverse transformation can be invoked. We
also provide results of benchmarks and discuss the scope of this transformation
approach. But we have to start with a remark on correctness.

7.1. Identification and Dangling Condition
A problem of the BPMN parsers presented so far is that they accept too many

graphs. Further conditions have to be enforced to ensure their correctness [11]:

• Identification condition: Matches have to be injective, i.e., involved nodes
have to be pairwise distinct.

• Dangling edge condition: There are no edges in the remaining graph vis-
iting inner nodes of a match.

For instance, the BPMN hypergraphs shown in Figure 14 can also be success-
fully parsed with the parser given in Figure 11, although they are not members
of the language defined by GProcess (in the lower example, the second activity
would remain after parsing, of course). Even BPMN hypergraphs where all
nodes coincide can be parsed, although that way there might be a very large
number of possible solutions.

13Actually, the graph-oriented BPEL features are not even supported by the definition of
the BPEL type introduced in this section.

26

actstart end

act

start endidentification condition:

dangling edge condition:

act

Figure 14: Identification condition and dangling edge condition

In the context of visual languages, it is often convenient to relax the dangling
edge condition [47]. This allows for easier specifications. However, from a
theoretical point of view, this is not satisfactory. In fact, both conditions can
be ensured by additional checks. For instance, to enforce that a particular match
is injective, disequality constraints on node variables can be used to ensure that
they are pairwise distinct and can never be instantiated to the same node.
However, these constraints cannot be globally set but have to be added to the
parsers for every single production making them less readable.

Although disequality constraints are very handy, they are not yet part of the
language definition of Curry. Currently, only MCC supports them by providing
the operator (=/=). However, disequality constraints are an actively discussed
topic in the Curry community [4]. With our work on graph parsing, we have
identified a practically relevant application that demonstrates the need for dise-
quality constraints as a language extension.14 For example, a correct definition
of the second rule of flow (see Figure 11) can be implemented with MCC as
follows:

flow (n1,n2) | allDifferent [n1,n2,n] --identification cond
= flElem (n1,n) *>
flow (n,n2) *>
noDanglEdge [n] --dangling edge cond
where n free

The constraint generator allDifferent returns a set of pairwise disequality
constraints for the given list of (potentially free) variables. In this case, its
result would be {n1=/=n2, n1=/=n, n2=/=n}). All these constraints have to be
satisfied in order to apply this rule. The operation noDanglEdge ensures—also
via generating disequality constraints—that the inner nodes of the right-hand
side, i.e., the free variables, are not visited by the edges of the remaining graph.
With this redefinition, a lot of disequality constraints including many duplicates

14The use of the Boolean test operator (/=) is not sufficient due to its suspension on free
variables, which are typically introduced in the course of the reverse transformation.

27

are likely to be generated. Thus, it is important that the compiler can deal with
them efficiently. Although this is the case for MCC, we do not consider this
restriction anymore. It is sufficient to keep in mind that the proposed parser
also accepts BPMN graphs where nodes that should be distinct coincide.

7.2. Graph Completion
Our functional logic parsers can perform more tasks beyond graph pars-

ing and semantic computations. As already mentioned, logic-based parsers
can be used to perform graph completion. For instance, assume that the edge
("act", [2,6]) in the graph shown in Figure 9 is missing such that this hy-
pergraph is not a member of the language defined by GProcess anymore. Then,
one can insert a free variable e as an edge into the graph and see how e is
instantiated by the parser. In this example, there are two possible completions
that also consume the whole input: ("act", [2,6]) and ("inter", [2,6]).15

BPMN2BPEL> (process <* eoi) (e : delete ("act", [2,6]) ex_sm)
where e free

{e = ("act",[2,6])} ((),[])
More solutions? [Y(es)/n(o)/a(ll)] y
{e = ("inter",[2,6])} ((),[])
More solutions? [Y(es)/n(o)/a(ll)] y
No more solutions

Note that this graph completion feature has been put to a good use by
connecting it with the DiaGen system where it enables powerful syntax-based
user assistance features like diagram completion for DiaGen editors [39, 42].

7.3. Graph Generation
Another useful property of logic-based parsers is their suitability for lan-

guage generation. Indeed, our graph parsers can also be applied backwards to
construct graphs of a given language. For instance, all BPMN graphs up to a
particular size can be enumerated:

BPMN2BPEL> (process <* eoi) [e1,e2,e3] where e1,e2,e3 free
{e1 = ("start",[_a]), e2 = ("act",[_a,_b]), e3 = ("end",[_b])}
((),[])
More solutions? [Y(es)/n(o)/a(ll)] y
{e1 = ("start",[_c]), e2 = ("end",[_d]), e3 = ("act",[_c,_d])}
((),[])
More solutions? [Y(es)/n(o)/a(ll)] y
{e1 = ("start",[_e]), e2 = ("inter",[_e,_f]), e3 = ("end",[_f])}
((),[])
More solutions? [Y(es)/n(o)/a(ll)] n

15The operation delete, imported from the standard library List, deletes the first occur-
rence of an element in a list.

28

In these results, free variables are denoted by _a, _b, etc. This simple
example shows one problem when generating graphs. Although there are only
two BPMN graphs with three edges (consisting of a start event, an end event,
and a single activity or intermediate event, respectively), twelve solutions (2∗3!)
are returned. This undesirable effect is caused by the list representation of
graphs. Indeed, the elements of a graph’s list representation can be permuted
and still describe the very same graph. This problem can be solved by a more
sophisticated type for graph parsers, a reformulation of the edge primitive, and
a slight adaptation of the other primitives. Then a particular number of edges
can be pretended while parsing by adding them to a “complement” graph, which
is returned as part of the parsing result. This solution has been discussed in [41].
Another solution would be to use a so-called constraint constructor [2] for the
construction of graphs to enforce that only edge-sorted lists are valid graphs.
However, this approach has its weaknesses when dealing with free variables.
A quick work-around is the replacement of the edge primitive introduced in
Section 5.2 by the following variation:

edge e (e’:g) | e=:=e’ = ((), g)

Now, the respective edge must always be at the beginning of the list. Al-
though this variant should not be used for parsing (it would fail on all but one
representations of a given graph), it is reasonable for language generation and
for the reverse transformation. For instance, the previous call would now result
in just the two structurally different BPMN graphs:

BPMN2BPEL> (process <* eoi) [e1,e2,e3] where e1,e2,e3 free
{e1 = ("start",[_a]), e2 = ("act",[_a,_b]), e3 = ("end",[_b])}
((),[])
More solutions? [Y(es)/n(o)/a(ll)] y
{e1 = ("start",[_c]), e2 = ("inter",[_c,_d]), e3 = ("end",[_d])}
((),[])
More solutions? [Y(es)/n(o)/a(ll)] y
No more solutions

7.4. Invoking the Reverse Transformation
Thanks to the logic nature of our parser, it is even possible to map a partic-

ular semantic representation back to a graph, e.g., given a term of type BPEL,
a corresponding BPMN graph can be constructed. In this case, nodes are not
instantiated but left as free variables. Actually, the particular node numbers
do not matter as long as equal nodes can be identified. Consider the following
example calls:
BPMN2BPEL> processS [e1,e2,e3,e4] =:= ([Invoke "act1",Wait "ev1"],[])

where e1,e2,e3,e4 free

{e1 = (BPMNStart,[_a]), e2 = (BPMNActivity "act1",[_a,_b]),

e3 = (BPMNInter BPMNWait "ev1",[_b,_c]), e4 = (BPMNEnd,[_c])}

More solutions? [Y(es)/n(o)/a(ll)] y

No more solutions

29

BPMN2BPEL> processS [e1,e2,e3,e4,e5,e6] =:=

([Switch "c1" "c2" [Invoke "act1"] [Invoke "act2"]],[])

where e1,e2,e3,e4,e5,e6 free

{e1 = (BPMNStart,[_a]), e2 = (BPMNXGW "c1" "c2",[_a,_b,_c,_d]),

e3 = (BPMNActivity "act1",[_b,_e]), e4 = (BPMNActivity "act2",[_d,_f]),

e5 = (BPMNXGW _g _h,[_i,_e,_j,_f]), e6 = (BPMNEnd,[_j])}

More solutions? [Y(es)/n(o)/a(ll)] y

No more solutions

There are two problems with this approach though: First, the list permu-
tation problem, already discussed in Section 7.3, occurs in this context again.
Consequently, the other variation of edge has to be used in order to avoid re-
dundant results. Alternatively, the operation findfirst could be used so that
only the first result is returned (see also the definition of the operation main in
Section 4). The second issue is that the number of edges needs to be known in
advance. This can be avoided by enumerating lists of free variables of increasing
length. For instance, a non-deterministic operation that returns an arbitrary
list of free variables can be defined as follows:

> anyList = []
> anyList = x : anyList where x free

Now we can use anyList to guess some edge list es and pass it to processS:
BPMN2BPEL> let es free in es =:= anyList &

processS es =:= ([Switch "c1" "c2" [Invoke "act1",Invoke "act2"]

[Invoke "act3",Wait "ev1"]],[])

{es = [(BPMNStart,[_a]),(BPMNXGW "c1" "c2",[_a,_b,_c,_d]),

(BPMNActivity "act1",[_b,_e]),(BPMNActivity "act2",[_e,_f]),

(BPMNActivity "act3",[_d,_g]),(BPMNInter BPMNWait "ev1",[_g,_h]),

(BPMNXGW _i _j,[_k,_f,_l,_h]),(BPMNEnd,[_l])]}

Thanks to the depth-first search strategy, which is the default strategy in
most Curry implementations, a graph with a smallest number of edges is com-
puted as a first solution. However, if there is no solution, i.e., if a graph cor-
responding to the given BPEL term does not exist, all graphs of increasing sizes
are tried so that the computation does not terminate. This can only be avoided
by providing an upper bound on the size of the edge list. However, this is
not necessary for our transformation, because for every BPEL term there is a
corresponding BPMN graph (but not vice versa).

7.5. Performance and Benchmarking
In general, hypergraph parsing has a higher complexity than string parsing,

which is known to be less than O(n3). Actually, there are even context-free
hypergraph languages where parsing is NP-complete [11]. Fortunately, most
practically relevant languages are quite efficient to parse. The most efficient
existing hypergraph parser we are aware of is part of the DiaGen system [47].
This parser uses dynamic programming techniques. Our functional logic parsers
rely on backtracking, which is used in most Curry implementations, and, hence,

30

 0

 2

 4

 6

 8

 10

 50 100 150 200 250 300 350 400

tim
e

in
 s

ec

size of input hypergraph (number of edges)

Figure 15: Performance data for parsing activity chains

are not that efficient. Nevertheless, our proposed parsing approach can be
applied also to non-toy examples.

Figure 15 shows how graph parser combinators perform for BPMN hyper-
graphs. We used input processes that contain only a chain of activities between
their start and end event, because that way it is possible to grow the input
homogeneously. The measurement has been executed on low budget hardware
(2GHz Celeron processor, 750MB RAM). As a compiler, MCC has been used.
Encapsulated search via the operation findall ensures that all possible results
are found and, thus, that the order of edges in the list-based graph representa-
tion does not matter.

This benchmark shows that a process hypergraph with 200 successive act
hyperedges created by a generator function can still be parsed in less than two
seconds. Moreover, when applied backwards as generators, Grappa parsers are
very efficient. Sierpinski triangles have been proposed as a case for performance
comparison of graph transformation tools [62]. With a Grappa parser, a regular
Sierpinski triangle of generation 12 with 531.441 = 312 edges has been generated
by MCC in 3 seconds on the same hardware as above. The resulting term
contains a large number of free variables. Of course, the parsing of Sierpinski
triangles is much more expensive.

Actually, graph parser combinators can even be used as a benchmark for
Curry compilers. A precise case description and corresponding performance
data of MCC, PAKCS, and KiCS can be found in [41].

7.6. Scope
We have shown by several scenarios the power of our approach in construct-

ing transformations between different modeling languages. Unfortunately, most
visual languages are not context-free like structured process models and, thus,
cannot be described by a plain hyperedge replacement grammar. Consequently,
such languages can only be treated with restrictions or not at all.

31

Figure 2. Mapping a well-structured pattern C onto a BPEL structured activity and folding C into a single
task object tc attached with the resulting BPEL code.

In Figure 2(f) and (g), two patterns, repeat and repeat+while, represent repeat loops.
Repeat loops are the opposite of while loops. A while loop (see while-pattern in Figure 2(e))
evaluates the loop condition before the body of the loop is executed, so that the loop is never
executed if the condition is initially false. In a repeat loop, the condition is checked after the
body of the loop is executed, so that the loop is always executed at least once. In Figure 2(f),
a repeat loop of task t1 is equivalent to a single execution of t1 followed by a while loop of t1.
In Figure 2(g), a repeat loop of task t1 is combined with a while loop of task t2, and both share

9

Figure 16: Structured loops as treated in [51]

Regarding business process models, it is easy to add support for further ba-
sic activities and structured constructs such as loops, cf. Figure 16. It would
also be possible to support gateways with more than two branches. However,
non-context-free concepts such as message flow cannot be covered in a straight-
forward way. Also quasi-structured processes, i.e., processes that can be trans-
formed into structured ones [51], cannot directly be covered. Those need to
be preprocessed first. It would be interesting for future work to investigate
whether functional logic languages are equally well-suited for the implementa-
tion of general purpose graph transformations. Purely functional languages have
already been applied in this domain [67] with reasonable success. Since func-
tional logic languages provide even better abstractions for matching patterns in
graph structures, we think that they are a natural choice for this purpose.

Although the approach presented so far is limited, business process models
are not the only language where it has been put to a good use. We have also
applied the Grappa framework to the visual languages of message sequence
charts, alligator eggs (a visual notation for lambda calculus [60]), and various
tree-like languages such as term graphs without sharing.

8. Related Work

The approach closest to our work is the PETE system, a declarative, purely
logic-based approach to transformations recently proposed by Schätz [55]. Sim-
ilarly to our work, [55] considers a transformation as a relation and presents
models as structured terms. The proposed transformation mechanism allows a
precise and modular specification of transformations, which can be executed by
a Prolog interpreter. An important benefit of this approach is that it is inte-

32

process :- start N1, flow N1 N2, end N2.

flow N1 N2 :- flElem N1 N2.
flow N1 N2 :- flElem N1 N, flow N N2.

flElem N1 N2 :- act N1 N2.
flElem N1 N2 :- inter N1 N2.
flElem N1 N2 :- gw N1 N1t N1r N1b, flow N1t N2t,

gw N2l N2t N2 N2b, flow N1b N2b.

parseExample :- (start 1, gw 1 2 4 3, act 2 6,
act 3 7, gw 5 6 8 7, end 8)
-o process.

Figure 17: BPMN parser in Lolli [27]

grated into the popular Eclipse platform. More precisely, the Eclipse Modeling
Framework (EMF) is used as a base, i.e., importers and exporters between EMF
models and Prolog terms are provided. However, the resulting Prolog code of
a transformation is very verbose and at a rather low level of abstraction. No
mapping from a kind of visual transformation rule is provided as in our ap-
proach. In order to get the accompanying reverse transformation in PETE, it
is required to change the order of predicates on the right-hand side of the rules.
The permutation problem caused by the list representation of sets in this arti-
cle is avoided in PETE by a special set implementation based on ordered lists.
PETE allows the transformation of a broader range of models, i.e., it is not
restricted to context-free languages. Although there might be many matches of
a pattern, backtracking is rarely needed because there are only very few “dead
ends”. Most of the time, committing to the first solution is sufficient, because
the other solutions would yield the very same result via a different order of
matches. PETE has been used to solve the model migration case [56] of this
year’s transformation tool contest, i.e., the migration of UML activity diagrams
from version 1.4 to version 2.2 [54].

There are also further logic-based approaches to support translations be-
tween different structures. An early attempt for the bidirectional translation
between abstract and pictorial data has been proposed in [37] where declarative
rules written in Prolog have been used to specify the mappings. The idea of
representing models by Prolog facts has also been used in [59] for the sake of
querying models. In the context of business modeling, Prolog has been used for
checking syntactical properties of event-driven process chains [18].

Another interesting related observation is that parsing of visual languages
can be modeled and even executed in linear logic [16], a resource-oriented refine-
ment of classical logic. For instance, in [6] the embedding of constraint multiset
grammars [36] into linear logic is discussed. However, it seems that hypergraph
parsing can be modeled even more straightforwardly. Here, the edges of a hy-

33

pergraph can be mapped to facts that can be fed into a parser via so-called
linear implication ((). During the proof, the parser consumes these facts and
none of them must be left at the end. Figure 17 shows a BPMN graph parser
implemented in the linear logic programming language Lolli [27] (the two differ-
ent gateway types are not distinguished in this program). The main predicate
of this program is parseExample, which analyzes the example graph shown in
Figure 9. Not even a parser framework is required with this approach. The
graph parser combinators described in this article also hide the remaining re-
sources from the user. Their major benefits are their flexible application, the
reversibility of the resulting parsers, and the possibility to compute semantic
representations in a straightforward way.

Another related approach is architectural design rewriting (ADR) [9]. Here,
hypergraphs are used for representing the hierarchical architecture of a system.
Hyperedge replacement grammars are used for building configurations in a way
that avoids, e.g., cyclic or broken flows. The involved graphs can often be
represented as terms. In this case, no parsing is required. Moreover, an algebra
on these terms can be defined and exploited afterwards. Graph transformation
rules can be used for manipulating configurations. Then, it has to be proven
that the rules of the underlying algebra are preserved. The developers of the
ADR approach also admit that not everything can be modeled with ADR, but
if a part of a problem can be captured, ADR provides an elegant way to reason
about and reconfigure the system.

Regarding error correction, the purely functional HUT library [61] needs to
be mentioned. It supports the construction of (string) parser combinators with
powerful error correction mechanisms. There, a parser does never fail but rather
constructs a minimal sequence of correction steps. We have shown how func-
tional logic graph parser combinators provide specific kinds of error handling.
Redundant edges, for instance, may just remain at the end. This is already
quite powerful, since, in contrast to strings, graphs are sets of components, i.e.,
no particular order on edges or nodes is imposed. Thus, it does not matter
where the redundant components are placed. Furthermore, due to their logic
nature, graph parser combinators allow to deal with further errors in a conve-
nient way, e.g., they can complete incomplete graphs. An alternative approach
for hypergraph completion has been proposed in [38]. This approach is based
on dynamic programming.

Other approaches for the specification of bidirectional transformations in-
clude Schürr’s triple graph grammars [57] and Pierce’s lense combinators [14]
that even support the synchronization of evolving models. However, whereas
the former requires much more specification effort than our approach, the latter
is quite restricted in its applicability.

Finally, the competing solutions of the GraBaTs 2009 synthesis case have to
be mentioned as related work, of course. The case was won by a plain Java solu-
tion that covered the most comprehensive subset of BPMN [15]. The best gen-
eral transformation approaches have been GROOVE, MoTMoT, and Grappa.
The evaluation matrix can be found at http://is.tm.tue.nl/staff/pvgorp/
events/grabats2009/synthesis-evaluation.pdf (accessed on 2010-07-30).

34

http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/synthesis-evaluation.pdf
http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/synthesis-evaluation.pdf

9. Conclusion

In this article, we have proposed a novel approach to construct a bidirectional
transformation between BPMN and BPEL and discussed its potential applica-
bility. Both languages and the transformation in-between are highly relevant.
Our solution is based on functional logic programming techniques and imple-
mented using the multi-paradigm declarative language Curry. The proposed
transformation relies on an extended version of the graph parser combinator
framework Grappa, which was originally introduced in [40]. Grappa requires
diagrams—process models in this case—to be represented by hypergraphs. The
article has shown that hyperedge replacement grammars, a context-free device
for the specification of graph languages, can be translated into graph parsers
in a systematic way. The resulting parsers closely resemble the grammar rules.
A parser for a significant subset of the BPMN language (structured process
models) has been realized that way.

Moreover, this case study has shown the flexibility of graph parser combi-
nators in the construction of semantic representations for the first time. To
this end, Grappa has been extended by typed hypergraphs. With the resulting
transformation, BPMN graphs cannot only be derived backwards from a given
BPEL structure, but it is also possible to complete partial process models or to
use the parser for language generation. Since the whole Grappa framework are
only a few dozen lines of code, this article contains the complete code for run-
ning the transformations. Actually, the article’s source text is a literate Curry
program and, as such, directly executable.

Caballero and López-Fraguas [10] have recognized the benefits of functional
logic languages for building string parsers. However, in the context of graphs
they are even more useful. Graph parser combinators make heavy use of key
features of both the functional and the logic programming approach: Higher-
order functions allow the treatment of parsers as first class citizens, and non-
determinism and free variables are beneficial for dealing with errors and incom-
plete information. Therefore, graph parser combinators are also an interesting
and promising application area of functional logic programming and, at the
same time, an example how logic programming techniques advance the state-
of-the-art in visual languages.

For future work, it would be useful to investigate how functional logic lan-
guages can be exploited to implement more general graph transformation sys-
tems to overcome the limitations in scope of the approach developed so far.
Moreover, the transformation proposed in this article constructs the term rep-
resentations of models from scratch again and again. It would also be interesting
to see how functional logic techniques could be used in order to support the reuse
of existing structures, i.e., allow for model synchronization.

To make this research reproducible, an installation of the presented solu-
tion is available as a SHARE virtual machine (Sharing Hosted Autonomous
Research Environments). SHARE images can be accessed via http://is.tm.
tue.nl/staff/pvgorp/share/ (accessed on 2010-07-30). The machine is called
Ubuntu-8.10_GB9_grappa-bpm.vdi.

35

http://is.tm.tue.nl/staff/pvgorp/share/
http://is.tm.tue.nl/staff/pvgorp/share/

[1] Antoy, S., Echahed, R., Hanus, M., 2000. A needed narrowing strategy.
Journal of the ACM 47 (4), 776–822.

[2] Antoy, S., Hanus, M., 2002. Functional logic design patterns. In: Proc. of
the 6th International Symposium on Functional and Logic Programming.
Vol. 2441 of LNCS. Springer-Verlag, pp. 67–87.

[3] Antoy, S., Hanus, M., 2010. Functional logic programming. Communica-
tions of the ACM 53 (4), 74–85.

[4] Arias, E. J. G., Carballo, J. M., Poza, J. M. R., 2007. A proposal for dis-
equality constraints in Curry. Electronic Notes in Theoretical Computer
Science 177, 269–285, proc. of the 15th International Workshop on Func-
tional and (Constraint) Logic Programming.

[5] Bardohl, R., Minas, M., Taentzer, G., Schürr, A., 1999. Application of
graph transformation to visual languages. In: Handbook of Graph Gram-
mars and Computing by Graph Transformation. Vol. 2: Applications, Lan-
guages, and Tools. World Scientific, pp. 105–180.

[6] Bottoni, P., Meyer, B., Marriott, K., Parisi-Presicce, F., 2001. Deductive
parsing of visual languages. In: Proc. of the 4th International Conference on
Logical Aspects of Computational Linguistics. Vol. 2099 of LNCS. Springer-
Verlag, pp. 79–94.

[7] Braßel, B., Hanus, M., Müller, M., 2008. High-level database programming
in Curry. In: Proc. of the Tenth International Symposium on Practical
Aspects of Declarative Languages. Vol. 4902 of LNCS. Springer-Verlag, pp.
316–332.

[8] Braßel, B., Huch, F., 2009. The Kiel Curry system KiCS. In: Applications
of Declarative Programming and Knowledge Management. Vol. 5437 of
LNCS. Springer-Verlag, pp. 195–205.

[9] Bruni, R., Lafuente, A. L., Montanari, U., 2009. Hierarchical design rewrit-
ing with Maude. Electronic Notes in Theoretical Computer Science 238 (3),
45 – 62, proceedings of the Seventh International Workshop on Rewriting
Logic and its Applications.

[10] Caballero, R., López-Fraguas, F. J., 1999. A functional-logic perspective of
parsing. In: Proc. of the 4th Fuji International Symposium on Functional
and Logic Programming. Vol. 1722 of LNCS. Springer-Verlag, pp. 85–99.

[11] Drewes, F., Habel, A., Kreowski, H.-J., 1997. Hyperedge replacement graph
grammars. In: Handbook of Graph Grammars and Computing by Graph
Transformation. Vol. I: Foundations. World Scientific, Ch. 2, pp. 95–162.

[12] Dumas, M., 2009. Case study: BPMN to BPEL model transfor-
mation. http://is.ieis.tue.nl/staff/pvgorp/events/grabats2009/
cases/grabats2009synthesis.pdf (accessed on 2010-07-11).

36

http://is.ieis.tue.nl/staff/pvgorp/events/grabats2009/cases/grabats2009synthesis.pdf
http://is.ieis.tue.nl/staff/pvgorp/events/grabats2009/cases/grabats2009synthesis.pdf

[13] Fischer, S., 2005. A functional logic database library. In: Proc. of the ACM
SIGPLAN 2005 Workshop on Curry and Functional Logic Programming.
ACM Press, pp. 54–59.

[14] Foster, J. N., Greenwald, M. B., Moore, J. T., Pierce, B. C., Schmitt, A.,
2005. Combinators for bi-directional tree transformations: A linguistic ap-
proach to the view update problem. In: Proc. of the 32nd ACM Symposium
on Principles of Programming Languages. ACM, pp. 233–246.

[15] Garćıa-Bañuelos, L., 2009. Translating BPMN models to BPEL code. Ac-
cepted as a solution for the synthesis case of the GraBaTs 2009 tool contest.

[16] Girard, J.-Y., 1987. Linear logic. Theoretical Computer Science 50, 1–102.

[17] González-Moreno, J., Hortalá-González, M., López-Fraguas, F., Rodŕıguez-
Artalejo, M., 1999. An approach to declarative programming based on a
rewriting logic. Journal of Logic Programming 40, 47–87.

[18] Gruhn, V., Laue, R., 2006. Validierung syntaktischer und anderer EPK-
Eigenschaften mit PROLOG. In: Proc. des 5. GI Workshops über
Geschäftsprozessmanagement mit Ereignisgesteuerten Prozessketten. Vol.
224 of CEUR Workshop Proceedings. CEUR-WS.org, pp. 69—85.

[19] Gruhn, V., Laue, R., 2007. What business process modelers can learn from
programmers. Science of Computer Programming 65 (1), 4–13.

[20] Hanus, M., 2000. A functional logic programming approach to graphical
user interfaces. In: Proc. of the Second International Workshop on Practical
Aspects of Declarative Languages. Vol. 1753 of LNCS. Springer-Verlag, pp.
47–62.

[21] Hanus, M., 2001. High-level server side web scripting in Curry. In: Proc.
of the Third International Symposium on Practical Aspects of Declarative
Languages. Vol. 1990 of LNCS. Springer-Verlag, pp. 76–92.

[22] Hanus, M., 2006. Curry: An Integrated Functional Logic Language (Version
0.8.2). http://www.curry-language.org/ (accessed on 2010-07-11).

[23] Hanus, M., 2006. Type-oriented construction of web user interfaces. In:
Proc. of the 8th ACM SIGPLAN International Conference on Principles
and Practice of Declarative Programming. ACM Press, pp. 27–38.

[24] Hanus, M., 2007. Multi-paradigm declarative languages. In: Proc. of the
23rd International Conference on Logic Programming. Vol. 4670 of LNCS.
Springer-Verlag, pp. 45–75.

[25] Hanus, M., Antoy, S., Braßel, B., Engelke, M., Höppner, K., Koj, J.,
Niederau, P., Sadre, R., Steiner, F., 2010. PAKCS: The Portland Aachen
Kiel Curry System. Available at http://www.informatik.uni-kiel.de/

~pakcs/ (accessed on 2010-07-11).

37

http://www.curry-language.org/
http://www.informatik.uni-kiel.de/~pakcs/
http://www.informatik.uni-kiel.de/~pakcs/

[26] Hanus, M., Koschnicke, S., 2010. An ER-based framework for declarative
web programming. In: Proc. of the 12th International Symposium on Prac-
tical Aspects of Declarative Languages. Vol. 5937 of LNCS. Springer-Verlag,
pp. 201–216.

[27] Hodas, J. S., Miller, D., 1994. Logic programming in a fragment of intu-
itionistic linear logic. Information and Computation 110 (2), 327–365.

[28] Hutton, G., 1992. Higher-order functions for parsing. Journal of Functional
Programming 2 (3), 323–343.

[29] Johnson, R., Pearson, D., Pingali, K., 1994. The program structure tree:
Computing control regions in linear time. In: Proc. of the ACM SIGPLAN
Conference on Programming Language Design and Implementation. ACM
Press, pp. 171–185.

[30] Johnson, S. C., 1975. Yacc: Yet another compiler compiler. Tech. Rep. 32,
Bell Laboratories, Murray Hill, New Jersey.

[31] Kasami, T., 1965. An efficient recognition and syntax-analysis algorithm
for context free languages. Scientific Report AF CRL-65-758, Air Force
Cambridge Research Laboratory.

[32] Knuth, D. E., 1968. Semantics of context-free languages. Theory of Com-
puting Systems 2 (2), 127–145.

[33] Knuth, D. E., 1984. Literate programming. The Computer Journal 27 (2),
97–111.

[34] Leijen, D., Meijer, E., 2001. Parsec: Direct style monadic parser combina-
tors for the real world. Tech. Rep. UU-CS-2001-27, Department of Com-
puter Science, Universiteit Utrecht.

[35] Lux, W., 1999. Implementing encapsulated search for a lazy functional logic
language. In: Proc. of the 4th Fuji International Symposium on Functional
and Logic Programming. Vol. 1722 of LNCS. Springer-Verlag, pp. 100–113.

[36] Marriott, K., 1994. Constraint multiset grammars. In: Proc. of the 1994
IEEE Symposium on Visual Languages. IEEE, pp. 118–125.

[37] Matsuoka, S., Takahashi, S., Kamada, T., Yonezawa, A., 1992. A general
framework for bidirectional translation between abstract and pictorial data.
ACM Transactions on Information Systems 10 (4), 408–437.

[38] Mazanek, S., Maier, S., Minas, M., 2008. An algorithm for hypergraph
completion according to hyperedge replacement grammars. In: Proc. of
the 4th International Conference on Graph Transformations. Vol. 5214 of
LNCS. Springer-Verlag, pp. 39–53.

38

[39] Mazanek, S., Maier, S., Minas, M., 2008. Auto-completion for diagram
editors based on graph grammars. In: Proc. of the 2008 IEEE Symposium
on Visual Languages and Human-Centric Computing. IEEE, pp. 242–245.

[40] Mazanek, S., Minas, M., 2008. Functional-logic graph parser combinators.
In: Proc. of the 19th International Conference on Rewriting Techniques
and Applications. Vol. 5117 of LNCS. Springer-Verlag, pp. 261–275.

[41] Mazanek, S., Minas, M., 2008. Graph parser combinators: A challenge
for Curry-compilers. In: Hanus, M., Fischer, S. (Eds.), 25. Workshop der
GI-Fachgruppe “Programmiersprachen und Rechenkonzepte”. Christian-
Albrechts-Universität zu Kiel, pp. 55–66, Tech. Rep. 0811.

[42] Mazanek, S., Minas, M., 2009. Business process models as a showcase for
syntax-based assistance in diagram editors. In: Proc. of the 12th Interna-
tional Conference on Model Driven Engineering Languages and Systems.
Vol. 5795 of LNCS. Springer-Verlag, pp. 322–336.

[43] Mazanek, S., Minas, M., 2009. Transforming BPMN to BPEL using parsing
and attribute evaluation with respect to a hypergraph grammar. Accepted
as a solution for the synthesis case of the GraBaTs 2009 tool contest.

[44] Mendling, J., Reijers, H., van der Aalst, W., 2009. Seven process modeling
guidelines (7pmg). Information and Software Technology 52 (2), 127–136.

[45] Minas, M., 2000. Creating semantic representations of diagrams. In: Proc.
of the International Workshop on Applications of Graph Transformations
with Industrial Relevance. Vol. 1779. Springer-Verlag, pp. 209–224.

[46] Minas, M., 2000. Hypergraphs as a uniform diagram representation model.
In: Proc. of the 6th International Workshop on Theory and Application of
Graph Transformations. Vol. 1764 of LNCS. Springer-Verlag, pp. 281–295.

[47] Minas, M., 2002. Concepts and realization of a diagram editor generator
based on hypergraph transformation. Science of Computer Programming
44 (2), 157–180.

[48] OASIS, 2007. Web Services Business Process Execution Language Ver-
sion 2.0. http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
(accessed on 2010-07-11). Actually, the transformation of this article does
not generate BPEL 2.0 but still BPEL 1.1.

[49] Object Management Group, 2009. Business Process Modeling Notation
(BPMN). http://www.omg.org/spec/BPMN/1.2/ (accessed on 2010-07-
11).

[50] Ouyang, C., Dumas, M., Breutel, S., ter Hofstede, A., 2006. Translating
standard process models to BPEL. In: Proc. of the 18th International
Conference on Advanced Information Systems Engineering. Vol. 4001 of
LNCS. Springer-Verlag, pp. 417–432.

39

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://www.omg.org/spec/BPMN/1.2/

[51] Ouyang, C., Dumas, M., ter Hofstede, A., van der Aalst, W., 2007. Pattern-
based translation of BPMN process models to BPEL web services. Inter-
national Journal of Web Services Research 5 (1), 42–62.

[52] Peyton Jones, S., 2003. Haskell 98, Language and Libraries, The Revised
Report. Cambridge University Press.

[53] Pratt, T. W., 1971. Pair grammars, graph languages and string-to-graph
translations. Journal of Computer and System Sciences 5 (6), 560–595.

[54] Rose, L. M., Kolovos, D. S., Paige, R. F., Polack, F. A., 2010. Model migra-
tion case for TTC 2010. http://is.ieis.tue.nl/staff/pvgorp/events/
TTC2010/cases/ttc2010_submission_2_v2010-04-22.pdf (accessed on
2010-07-11).

[55] Schätz, B., 2009. Formalization and rule-based transformation of EMF
Ecore-based models. In: Proc. of the First International Conference on
Software Language Engineering. Vol. 5452 of LNCS. Springer-Verlag, pp.
227–244.

[56] Schätz, B., 2010. UML model migration with PETE. http://is.ieis.
tue.nl/staff/pvgorp/events/TTC2010/submissions/final/pete.pdf
(accessed on 2010-07-11).

[57] Schürr, A., 1994. Specification of graph translators with triple graph gram-
mars. In: Proc. of the 20th International Workshop on Graph-Theoretic
Concepts in Computer Science. Vol. 903 of LNCS. Springer-Verlag, pp.
151–163.

[58] Slagle, J., 1974. Automated theorem-proving for theories with simplifiers,
commutativity, and associativity. Journal of the ACM 21 (4), 622–642.

[59] Störrle, H., 2007. A PROLOG-based approach to representing and querying
software engineering models. In: Proc. of the VLL 2007 Workshop on Visual
Languages and Logic. Vol. 274 of CEUR Workshop Proceedings. CEUR-
WS.org, pp. 71–83.

[60] Strobl, T., Minas, M., 2009. Implementing an animated lambda-calculus.
In: Proc. of the Workshop on Visual Languages and Logic. Vol. 510 of
CEUR Workshop Proceedings. CEUR-WS.org.

[61] Swierstra, S. D., Azero Alcocer, P. R., 1999. Fast, error correcting parser
combinators: a short tutorial. In: Proc. of the 26th Seminar on Current
Trends in Theory and Practice of Informatics. Vol. 1725 of LNCS. Springer-
Verlag, pp. 111–129.

[62] Taentzer, G., Biermann, E., Bisztray, D., Bohnet, B., Boneva, I., Boronat,
A., Geiger, L., Geiß, R., Horvath, Á., Kniemeyer, O., Mens, T., Ness, B.,
Plump, D., Vajk, T., 2008. Generation of Sierpinski triangles: A case study

40

http://is.ieis.tue.nl/staff/pvgorp/events/TTC2010/cases/ttc2010_submission_2_v2010-04-22.pdf
http://is.ieis.tue.nl/staff/pvgorp/events/TTC2010/cases/ttc2010_submission_2_v2010-04-22.pdf
http://is.ieis.tue.nl/staff/pvgorp/events/TTC2010/submissions/final/pete.pdf
http://is.ieis.tue.nl/staff/pvgorp/events/TTC2010/submissions/final/pete.pdf

for graph transformation tools. In: Proc. of the Third International Sympo-
sium on Applications of Graph Transformations with Industrial Relevance.
Vol. 5088 of LNCS. Springer-Verlag, pp. 514–539.

[63] Tanaka, T., 1991. Definite-clause set grammars: a formalism for problem
solving. Journal of Logic Programming 10 (1), 1–17.

[64] Vanhatalo, J., Völzer, H., Koehler, J., 2008. The refined process structure
tree. In: Proc. of the 6th International Conference on Business Process
Management. Vol. 5240 of LNCS. Springer-Verlag, pp. 100–115.

[65] Wadler, P., 1985. How to replace failure by a list of successes: A method
for exception handling, backtracking, and pattern matching in lazy func-
tional languages. In: Functional Programming Languages and Computer
Architecture. Vol. 201 of LNCS. Springer-Verlag, pp. 113–128.

[66] Wallace, M., 2008. Partial parsing: Combining choice with commitment.
In: Proc. of the 19th International Workshop on the Implementation and
Application of Functional Languages. Vol. 5083 of LNCS. Springer-Verlag,
pp. 93–110.

[67] West, S., Kahl, W., 2009. A generic graph transformation, visualisation,
and editing framework in Haskell. In: Proc. of the 8th International Work-
shop on Graph Transformation and Visual Modeling Techniques. Vol. 18 of
Electronic Communications of the EASST. European Association of Soft-
ware Science and Technology.

41

Appendix A. Generating BPEL-XML from Constructor Terms

For the sake of completeness, we provide an implementation of the generation
of BPEL-XML from BPEL terms as defined in this article. There are also higher-
level approaches for the generation of XML in functional languages but this
simple solution is sufficient for our purposes.

> bpel2xml :: BPEL → String
> bpel2xml f = "<process>\n" ++
> indent 1 (seq2xml f) ++
> "</process>\n"

> seq2xml [e] = bpelComp2xml e
> seq2xml es@(_:_:_) = "<sequence>\n" ++
> indent 1 (concatMap bpelComp2xml es) ++
> "</sequence>\n"

> bpelComp2xml (Invoke name) = "<invoke name=\""++name++"\"/>\n"
> bpelComp2xml (Wait name) = "<wait name=\""++name++"\"/>\n"
> bpelComp2xml (Receive name) = "<receive name=\""++name++"\"/>\n"
> bpelComp2xml (Flow f1 f2) = "<flow>\n" ++
> indent 1 (seq2xml f1) ++
> indent 1 (seq2xml f2) ++
> "</flow>\n"
> bpelComp2xml (Switch c1 c2 f1 f2) =
> "<switch>\n" ++
> " <case cond=\""++c1++"\">\n" ++
> indent 1 (seq2xml f1) ++
> " </case>\n" ++
> " <case cond=\""++c2++"\">\n" ++
> indent 1 (seq2xml f2) ++
> " </case>\n" ++
> "</switch>\n"

> --lines and unlines are inverse functions for switching between a
> --text with line breaks ’\n’ and the respective list of lines
> indent n s = unlines (map (nblanks++) (lines s))
> --construct a string of n blanks
> where nblanks = take n (repeat ’ ’)

42

	Introduction
	Source and Target Languages of the Example Transformation
	The Business Process Modeling Notation
	The Business Process Execution Language
	Transformation Challenges and Approaches

	Hypergraph Models
	Hypergraphs as a Uniform Diagram Representation Model
	Hypergraph Grammars for Language Definition
	Attribute Hypergraph Grammars for Semantic Computations

	Functional Logic Programming and Parser Combinators
	The Programming Language Curry
	A Brief Introduction to Parser Combinators

	Graph Parser Combinators: The Grappa Framework
	Type Declarations for Graphs and Graph Parsers
	Primitive Parsers and Basic Combinators
	Translation of the BPMN Grammar to a Parser

	Constructing the BPMN to BPEL Transformation
	Typed BPMN Hypergraphs
	Representing BPEL by Constructor Terms
	Adding Semantics to the BPMN Parser

	Discussion and Application
	Identification and Dangling Condition
	Graph Completion
	Graph Generation
	Invoking the Reverse Transformation
	Performance and Benchmarking
	Scope

	Related Work
	Conclusion
	Generating BPEL-XML from Constructor Terms

