
J. LOGIC PROGRAMMING 1995:24(3):219{245 1

ANALYSIS OF RESIDUATING LOGIC

PROGRAMS

MICHAEL HANUS

� Residuation is an operational mehanism for the integration of funtions

into logi programming languages. The residuation priniple delays the

evaluation of funtions during the uni�ation proess until the arguments

are suÆiently instantiated. This has the advantage that the deterministi

nature of funtions is preserved, but the disadvantage of inompleteness:

if the variables in a delayed funtion all are not instantiated by the logi

program, this funtion an never be evaluated, and some answers whih are

logial onsequenes of the program are lost. In order to detet suh situa-

tions at ompile time, we present an abstrat interpretation algorithm for

this kind of programs. The algorithm approximates the possible residua-

tions and instantiation states of variables during program exeution. If the

algorithm omputes an empty residuation set for a goal, then it is ensured

that the onrete exeution of the goal does not end with a nonempty set

of residuations whih annot be evaluated due to insuÆient instantiation

of argument variables. �

1. INTRODUCTION

Many proposals for the integration of funtional and logi programming languages

have been made during reent years (see [16℄ for a survey). From an operational

point of view, these proposals an be partitioned into two lasses: approahes with

a omplete operational semantis and a nondeterministi searh (narrowing) for

solving equations with funtional expressions (ALF [12℄, BABEL [23℄, EQLOG

Address orrespondene to M. Hanus, Informatik II, RWTH Aahen, D-52056 Aahen, Ger-

many. Email: hanus�informatik.rwth-aahen.de

Reeived January 1993; aepted Deember 1994.

THE JOURNAL OF LOGIC PROGRAMMING

Elsevier Siene Publishing Co., In., 1995

655 Avenue of the Amerias, New York, NY 10010

2

[11℄, K-LEAF [6℄, SLOG [10℄, among others), and approahes whih try to avoid

nondeterministi omputations for funtional expressions by reduing funtional

expressions only if the arguments are suÆiently instantiated (Funlog [27℄, Le Fun

[3℄, LIFE [2℄, NUE-Prolog [24℄, among others). The former approahes are om-

plete under some well-de�ned onditions (e.g., onuene of the axioms), i.e., they

ompute all answers whih an be logially inferred from the given program. The

prie for this ompleteness is an inreased searh spae sine there may be several

inomparable uni�ers of two terms if these terms ontain unevaluated funtional

expressions. The latter approahes try to avoid this nondeterminism in the uni-

�ation proess. In these approahes, a term is redued to normal form before it

is uni�ed with another term, i.e., funtional expressions are evaluated (if possible)

before uni�ation. If a funtion annot be evaluated beause the arguments are not

suÆiently instantiated, the uni�ation proess annot proeed. Instead of aus-

ing a failure, the evaluation of the funtion is delayed until the arguments will be

instantiated. This mehanism is alled residuation in Le Fun [3℄ and extended to

onstraint logi programming in [26℄. For instane, onsider the program (we write

residuating logi programs in the usual Prolog syntax [9℄, but it is allowed to use

arbitrary evaluable funtions in terms)

q :- p(X,Y,5), pik(X,Y).

p(A,B,A+B).

pik(2,3).

together with the goal \?- q." After applying the �rst lause to the goal, the

literals p(X,Y,5) and p(A,B,A+B) are uni�ed. This binds A to X and B to Y, but

the uni�ation of X+Y and 5 is not suessful sine the arguments of the funtion

all X+Y are not instantiated to numbers. Therefore, this uni�ation auses the

generation of the residuation X+Y=5 whih will be proved (or disproved) if X and

Y will be bound to ground terms. We proeed by proving the literal pik(X,Y)

whih binds X and Y to 2 and 3, respetively. As a onsequene, the instantiated

residuation 2+3=5 an be veri�ed. Hene, the entire goal has been proved.

The residuation priniple seems to be preferable to the narrowing approahes

sine it preserves the deterministi nature of funtions. However, it fails to ompute

all answers if funtions are used in a logi programming manner. For instane,

onsider the funtion append for onatenating two lists. In a funtional language

with pattern-mathing, it an be de�ned by the following equations (we use the

Prolog notation for lists):

append([℄, L) = L

append([E|R℄,L) = [E|append(R,L)℄

From a logi programming point of view, we an ompute the last element E of

a given list L by solving the equation append(_,[E℄) = L. Sine the �rst ar-

gument of the left-hand side of this equation will never be instantiated, resid-

uation fails to ompute the last element with this equation, whereas narrowing

omputes the unique value for E [13℄. Similarly, we an speify by the equation

append(LE,[_℄) = L a list LE whih is the result of deleting the last element in

the list L. Combining the spei�ation of the last element and the rest of a list, we

de�ne the reversing of a list by the following lauses:

3

Current goal: Current residuation:

rev([a,b,℄,R) ;

a(LE1,[E1℄)=[a,b,℄, rev(LE1,LR1) ;

rev(LE1,LR1) a(LE1,[E1℄)=[a,b,℄

a(LE2,[E2℄)=LE1, rev(LE2,LR2) a(LE1,[E1℄)=[a,b,℄

rev(LE2,LR2) a(LE1,[E1℄)=[a,b,℄, a(LE2,[E2℄)=LE1

a(LE3,[E3℄)=LE2, rev(LE3,LR3) a(LE1,[E1℄)=[a,b,℄, a(LE2,[E2℄)=LE1

� � �

Figure 1.1. In�nite derivation with the residuation priniple (a(� � �) denotes

append(� � �)).

rev([℄,[℄).

rev(L, [E|LR℄) :- append(LE,[E℄) = L, rev(LE,LR).

Now, onsider the goal \?- rev([a,b,℄,R)." Sine the arguments of the alls

to the funtion append are never instantiated to ground terms, the residuation

priniple annot verify the orresponding residuation. Hene, the answer R=[,b,a℄

is not omputed, and there is an in�nite derivation path using the residuation

priniple and applying the seond lause in�nitely many times (see Figure 1.1).

1

On the other hand, a funtional logi language based on the narrowing priniple

an solve this goal and has a �nite searh spae [13℄. Therefore, we should use

narrowing instead of residuation in this example.

The last example raises the important question of whether it is possible to detet

the ases where the (more eÆient) residuation priniple is able to ompute all

answers. If this would be possible, we an avoid the nondeterministi and hene

expensive narrowing priniple in many ases, and replae it by omputations based

on the residuation priniple without losing any answers. A simple riterion to the

ompleteness of residuation is the groundness of all residuating variables: if at the

end of a omputation all variables ourring in residual funtion alls are bound to

ground terms, then all residuations an be evaluated and the answer substitution

does not depend on an unsolved residuation. Sine the satisfation of this riterion

depends on the data ow during program exeution, an exat answer is reursively

undeidable. Therefore, we present an approximation to this answer by applying

abstrat interpretation tehniques to this kind of programs. Previous approahes

for abstrat interpretation of logi programs (see, for instane, [1, 8, 25℄) depend on

SLD-resolution as the operational semantis. Hene, we annot diretly apply these

frameworks to our ase. But we will show that it is possible to develop a similar

tehnique by onsidering unsolved residuations as part of the urrent substitution.

This paper is a revised and extended version of [14℄. Here, we use a simpli�ed and

smaller abstrat domain for the analysis. In the next setion, we give a detailed

1

A residual funtion all is only evaluated if all arguments are ground terms [3℄. If we weaken

this ondition to \a residual funtion all is evaluated if the arguments are suÆiently instantiated

so that exatly one de�ning rule is appliable" (if funtions are de�ned by equations as in [24℄),

then we an also verify residuations like append([℄,[E℄)=[a℄. In this ase, the answer to the goal

\?- rev([a,b,℄,R)" an be omputed by inremental veri�ation of residuations, but there is

also an in�nite derivation path using the seond lause in�nitely many times.

4

desription of the operational semantis onsidered in this paper. The abstrat

domain and the abstrat interpretation algorithm for reasoning about residuating

programs are presented in Setion 3. Finally, the orretness of our method is

proved in Setion 4.

2. THE RESIDUATION PRINCIPLE

The residuation priniple tries to avoid nondeterministi omputations by delay-

ing funtion alls until the arguments are suÆiently instantiated. The di�erene

between residuating logi programs and ordinary logi programs shows up in the

uni�ation proedure: if a all to a de�ned funtion f(t

1

; : : : ; t

n

) should be uni-

�ed with another term, the funtion all is evaluated if all arguments t

1

; : : : ; t

n

are

bound to ground terms and the uni�ation proeeds with the evaluated term, other-

wise, the uni�ation is delayed. If all variables in t

1

; : : : ; t

n

will be bound to ground

terms in the further omputation proess, the delayed funtion all f(t

1

; : : : ; t

n

)

will be immediately evaluated and replaed by its result in order to proeed with

the uni�ation proess.

In residuating logi programs, terms are built from variables, onstrutors, and

(de�ned) funtions. Construtors (denoted by a, b, , d) are used to ompose data

strutures, while de�ned funtions (denoted by f, g, h) are operations on these data

strutures. A funtion all is a term f(t

1

; : : : ; t

n

) where f is a de�ned funtion. A

onstrutor term is a term whih does not ontain funtion alls. A ground term

is a term ontaining no variables. With this onept of terms that may ontain

funtion alls, we adopt all standard notions of logi programming [20℄ like lause,

logi program, et.

We do not require any formalism for the spei�ation of funtions, i.e., they may

be de�ned by equations or in a ompletely di�erent language (external or prede�ned

funtions). However, the following onditions must be satis�ed in order to reason

about residuating logi programs:

1. A funtion all an be evaluated if all arguments are ground terms.

2. The result of the evaluation is a ground onstrutor term (ontaining only

onstrutors) or an error message (i.e., the omputation annot proeed

beause of type errors, division by zero et.).

In order to provide a simple but preise de�nition of the residuation priniple and to

keep the analysis algorithm simple, we assume that all residuating logi programs

are transformed into a at form: in a at residuating logi program, all prediate

alls and lause heads have the form p(X

1

; : : : ; X

n

) where all X

i

are distint vari-

ables (similarly to the example in [8℄). All other literals in the lause bodies and

goals have the form X =Y , X = (Y

1

; : : : ; Y

n

) or X = f(Y

1

; : : : ; Y

n

). It is easy to

see that every residuating logi program an be transformed into this at form by

introduing additional variables and equations. For instane, the residuating logi

program

q :- p(X,Y,72), X = V-W, Y = V+W, pik(V,W).

p(A,B,A*B).

pik(9,3).

5

an be transformed into the following equivalent at program:

q :- Z = 72, p(X,Y,Z), X = V-W, Y = V+W, pik(V,W).

p(A,B,C) :- C = A*B.

pik(A,B) :- A = 9, B = 3.

In the following, we assume that all programs are in at form.

The omputational universe of residuating logi programs ontains onstrutor

terms as well as unevaluated funtion alls. Therefore, we distinguish these di�erent

parts in substitutions. In the following, we assume that the onrete domain of

omputation C is not simply the set of all substitutions (as in logi programming),

but a set of pairs of substitutions and residuations suh that h�; �i 2 C if

� = fx

1

7! t

1

; : : : ; x

k

7! t

k

g

� = fy

1

= r

1

; : : : ; y

m

= r

m

g

where t

1

; : : : ; t

k

are onstrutor terms and r

1

; : : : ; r

m

are nonground

2

funtion alls,

i.e., substitutions ontain only onstrutor terms and funtion alls are ontained

in the residuation part. Sine substitutions an also be represented by equations,

we desribe the uni�ation algorithm for residuating logi programs in the style of

Martelli and Montanari [22℄ by a set of transformation rules on pairs of equation

systems E;R where the �rst omponent E represents the substitution part and the

seond omponent R represents the residuation part. These transformation rules

are shown in Figure 2.1. The standard transformation rules for uni�ation are only

applied to the �rst onstrutor-term omponent of the equation system. This em-

phasizes the fat that residuated funtion alls just \wait" for their evaluation. In

order to enable the evaluation of a funtion all, instantiations of variables are prop-

agated into the funtion alls (rule Instantiate). On the other hand, if a funtion

all an be evaluated, its result is moved to the substitution part (rule Evaluate).

Thus, the uni�ation algorithm is responsible for solving equations between on-

strutor terms and waking up residuations whih are ready for evaluation. The

equations between onstrutor terms and the residuations are generated during the

evaluation of a residuating logi program (see below).

This uni�ation proedure is not optimal in the sense that all possible failures

are not deteted, e.g., the nonuni�ability of the equation system x = 1; y = 2 ; x =

f(z); y = f(z) is not deteted. A more sophistiated algorithm an be found in

[5℄. However, our algorithm an be easily implemented using delay primitives and

is used in pratial implementations [3℄.

The uni�ation algorithm is applied by transforming a given equation system

until no more rules an be applied. The result of the uni�ation algorithm is fail

or a system of the form

x

1

= t

1

; : : : ; x

k

= t

k

; y

1

= r

1

; : : : ; y

m

= r

m

where eah of the distint variables x

i

does not our in t

j

or r

j

, and all r

j

are

unevaluable funtion alls.

3

Eah y

j

= r

j

is alled a \residual equation" or simply

2

We will sometimes also allow ground funtion alls r

i

in intermediate steps. Sine suh alls

will be evaluated during uni�ation, they do not our as a result of a uni�ation proess.

3

This an be shown by a modi�ation of the proofs presented in [22℄.

6

Clash:

(t

1

; : : : ; t

n

) = d(t

0

1

; : : : ; t

0

m

); E ; R

fail

if 6= d or m 6= n

Deompose:

(t

1

; : : : ; t

n

) = (t

0

1

; : : : ; t

0

n

); E ; R

t

1

= t

0

1

; : : : ; t

n

= t

0

n

; E ; R

Delete:

x = x;E ; R

E ; R

Our hek:

x = t; E ; R

fail

if t 6= x and x ours in t

Instantiate:

x = t; E ; y

1

= r

1

; : : : ; y

m

= r

m

x = t; �(E) ; y

1

= �(r

1

); : : : ; y

m

= �(r

m

)

if x ours in E or in some r

j

but not in t and � = fx 7! tg

Commute:

t = x;E ; R

x = t; E ; R

if t is not a variable

Evaluate:

E ; y = f(t

1

; : : : ; t

n

); R

E; y = t ; R

if t

1

; : : : ; t

n

are ground and f(t

1

; : : : ; t

n

) is evaluated to t

Figure 2.1. Uni�ation algorithm for residuating logi programs.

\residuation," and we an also interpret the substitution/residuation pair h�; �i

with

� = fx

1

7! t

1

; : : : ; x

k

7! t

k

g

� = fy

1

= r

1

; : : : ; y

m

= r

m

g

as the result of the uni�ation.

The operational semantis of residuating logi programs onsidered in this paper

is similar to Prolog's operational semantis (SLD-resolution with leftmost sele-

tion rule), but with the di�erene that the standard uni�ation is replaed by the

uni�ation desribed above. Sine we assume that all programs are in at form,

all literals in goals have the form X =Y , X = (Y

1

; : : : ; Y

n

), X = f(Y

1

; : : : ; Y

n

), or

p(X

1

; : : : ; X

n

). Thus, the proof of a literal is done by simply adding the equations

to the �rst or seond omponent of the urrent equation system from C (literals of

the form X =Y or X = (Y

1

; : : : ; Y

n

) are added to the substitution part, and literals

of the form X = f(Y

1

; : : : ; Y

n

) are added to the residuation part) and applying the

uni�ation algorithm. As an example, onsider the following at residuating logi

program:

q :- Z=5, p(X,Y,Z), pik(X,Y).

7

p(A,B,C) :- C=A+B.

pik(D,E) :- D=2, E=3.

If the initial goal is q, then the following elements of the onrete domain are

omputed:

Current literal: Current substitution/residuation pair:

q h;; ;i

Z=5 h;; ;i

p(X,Y,Z) hfZ 7! 5g; ;i

C=A+B hfZ 7! 5; A 7! X; B 7! Y; C 7! 5g; ;i

pik(X,Y) hfZ 7! 5; A 7! X; B 7! Y; C 7! 5g; fC=X+Ygi

D=2 hfZ 7! 5; A 7! X; B 7! Y; C 7! 5; D 7! X; E 7! Yg; fC=X+Ygi

E=3 hfZ 7! 5; A 7! 2; B 7! Y; C 7! 5; D 7! 2; E 7! Y; X 7! 2g; fC=2+Ygi

; hfZ 7! 5; A 7! 2; B 7! 3; C 7! 5; D 7! 2; E 7! 3; X 7! 2; Y 7! 3g; ;i

At the lause end, the residuation set is empty sine all funtions ould be evaluated.

Hene, the initial goal is proved to be true.

Logi programming with residuations also has some onnetions to the frame-

work of onstraint logi programming [18℄. From a semantial point of view, residu-

ations an be onsidered as onstraints on substitutions. Therefore, the residuation

framework ould be viewed as a speial ase of the CLP framework where the do-

main is the set of Herbrand terms (with the de�ned funtions as evaluable funtion

symbols) and the onstraints are equations between terms. However, this is not

the ase from an operational point of view beause the CLP framework requires

a onstraint solver whih heks the satis�ability of the aumulated onstraints

in eah step. Sine funtions are user-de�ned, there need not exist a onstraint

solver deiding the satis�ability of the aumulated residuations, i.e., it may be

the ase that the urrent set of residuations is unsolvable,

4

e.g., the unsatis�ability

of fappend(L1,L2)=[1℄; append(L2,L1)=[2℄g is not deteted by the uni�ation

algorithms in [3, 5℄. This would require a onstraint solver for the de�ned list op-

erations. But residuations an be interpreted as passive onstraints [4℄ whih are

ativated if the arguments are suÆiently instantiated. In fat, it is reasonable to

integrate the residuation priniple into the CLP paradigm [26℄, and this is done

in some onstraint logi languages to deal with hard onstraints [19℄ (of ourse,

onstraint solvers whih delay hard onstraints are inomplete and, therefore, the

same questions as disussed in this paper our [15℄).

Sine the operational semantis of residuating logi programs is idential to Pro-

log exept for the di�erent notion of substitution and the di�erent uni�ation al-

gorithm, we an apply abstrat interpretation frameworks for Prolog to our ase.

In this paper, we will use Bruynooghe's framework [8℄. This is possible sine his

framework does not depend on the onrete substitution or uni�ation algorithm,

but only on the left-to-right evaluation of literals, whih is also the operational

semantis presented in this setion.

4

This is the reason for the in�nite derivation in the rev example of Setion 1.

8

3. ABSTRACT INTERPRETATION OF RESIDUATING LOGIC PRO-

GRAMS

In this setion, we present a method to hek whether the residuation part of the

answer to a goal is empty, i.e., whether the residuation priniple is omplete w.r.t.

a given program and goal. Sine this problem is reursively undeidable in general,

we present an approximation to it based on a ompile-time analysis of the program.

If this approximation has a partiular form, then it is ensured that all residuations

an be solved at run time. In the following, we present the abstrat domain and

the motivation for it. The relation to the onrete domain and the orretness of

the abstrat interpretation algorithm are disussed in Setion 4 in more detail. We

assume familiarity with basi ideas of abstrat interpretation tehniques [1℄.

3.1. Abstrat Domain

There has been done a lot of work onerning the ompile-time derivation of run-

time properties of logi programs (see, for instane, the olletion [1℄). Sine we

have abstrated the di�erent operational behavior of residuating logi programs

into an additional omponent of the onrete domain, we an use the well-known

frameworks (e.g., [8, 25℄) in a similar way. The heart of an abstrat interpreta-

tion proedure is an abstrat domain whih approximates subsets of the onrete

domain. An element of the abstrat domain desribes ommon properties of a sub-

set of the onrete domain. The properties must be hosen so that they ontain

relevant propositions about the interesting run-time properties. So what are the

abstrat properties in our ase?

We are interested in unevaluated residuations at run time (seond omponent of

the onrete domain). A residuation an be veri�ed if the funtion all in it an

be evaluated. Sine a funtion all an be evaluated if all arguments are ground,

we need some information about the variables in it and the instantiation state of

these variables in order to deide the emptiness of the residuation set. Hene, our

abstrat domain ontains information about the following properties:

Potential residuations: In order to deide whether a residuation an be evalu-

ated at run time, we must know the variables in all potentially residuated

funtion alls. Therefore, our abstrat domain ontains elements of the form

\f j

fX

1

;:::;X

n

g

" meaning: there may our a residuated all to funtion f

whih an be evaluated if all variables X

1

; X

2

; : : : ; X

n

are ground.

5

Dependenies between variables: Funtion alls an be evaluated if all vari-

ables in it are bound to ground terms. Hene, we must have some information

about the dependenies between variables. For instane, onsider the goal

?- A = B+C, D = A*A, B = 1, C = 2.

During uni�ation of D and A*A, the �rst term annot be evaluated sine A

is not ground. However, the groundness of A depends on the groundness of

B and C. Thus, we dedue that the funtion all A*A an be evaluated if B

5

The onrete name of the residuated funtion ould be omitted in the abstrat domain, but

we have inluded it for the sake of readability.

9

and C are bound to ground terms. Hene, our abstrat domain ontains the

element \A if fB,Cg." In general, \X if V " means that variable X is bound

to a ground term if all variables in V are bound to ground terms.

In our abstrat interpretation algorithm, we analyze eah lause ourring in the

program. Therefore, the di�erent abstrations omputed in this algorithm ontain

only information about the variables of the di�erent lauses. Hene, eah abstra-

tion A has a domain dom(A) whih is a set of variables ourring in some lause

(or goal). All variables ourring in A must belong to dom(A).

Summarizing the previous disussion, our abstrat domain A ontains the ele-

ment ? (representing the empty subset of the onrete domain) and sets ontaining

the following elements (suh sets are alled abstrations and denoted by A, A

1

et):

6

Element Meaning

X if V X is ground if all variables in the variable set V are ground

f j

V

there is a all to f whih an be evaluated if all variables

in V are ground

f there may be an unevaluated funtion all to f depending

on arbitrary variables

The element \f" is the \worst ase" in the algorithm. It will be used if the de-

pendenies between a funtion all and its variables are too omplex for a a �nite

representation.

7

Obviously, A is �nite if the set of variables and funtion symbols is �nite. In

our abstrat domain, we use only program variables and funtions ourring in the

program. Therefore, A is �nite in the ase of a �nite program. For onveniene,

we simply write \X" instead of \X if ;." Hene, an element \X" in an abstration

means that variable X is bound to a ground term.

To present a simple desription of the abstrat interpretation algorithm, we will

sometimes generate abstrations ontaining redundant information. The following

normalization rules eliminate some redundanies in abstrations:

Normalization Rules for Abstrations

A [fZ; X if V [fZgg �! A [fZ; X if V g

A [fZ; f j

V [fZg

g �! A [fZ; f j

V

g

A [ff j

;

g �! A

A [fX if V

1

; X if V

2

g �! A [fX if V

1

g if V

1

� V

2

A [ff j

V

1

; f j

V

2

g �! A [ff j

V

2

g if V

1

� V

2

A [ff j

V

; fg �! A [ffg

We all an abstrationA normalized if none of these normalization rules is appliable

to A. Later, we will see that the normalization rules are invariant w.r.t. the onrete

substitutions/residuations orresponding to abstrations. Therefore, we assume

that we ompute only with normalized abstrations in the abstrat interpretation

algorithm.

6

The preise meaning of the abstrat elements will be formalized in Setion 4.

7

Our algorithm analyzes eah lause separately. If a residuation depends on variables from

di�erent lauses, the worst ase is introdued in order to ensure the termination of the analysis.

10

3.2. The Abstrat Interpretation Algorithm

The abstrat interpretation algorithm is based on several operations on the abstrat

domain. The most important operation is the abstrat uni�ation algorithm whih

approximates the onrete uni�ation of equations ourring in lause bodies or

goals. Abstrat uni�ation is a funtion amgu(�; t

1

; t

2

) whih takes an element of

the abstrat domain � 2 A and two terms t

1

; t

2

as input and produes another

abstrat domain element as the result. Beause of our restritions on at goal

equations, the following de�nition is suÆient:

8

amgu(?; t

1

; t

2

) = ?

amgu(A;X;X) = A

amgu(A;X; Y) = A [fX if fY g; Y if fXgg if X 6= Y

amgu(A;X; (Y

1

; : : : ; Y

n

)) = A [fX if fY

1

; : : : ; Y

n

g; Y

1

if fXg; : : : ; Y

n

if fXgg

amgu(A;X; f(Y

1

; : : : ; Y

n

)) = A [fX if fY

1

; : : : ; Y

n

g; f j

fY

1

;:::;Y

n

g

g

In the third and fourth equations of this de�nition, the dependenies between the

variables on the left- and right-hand side are added to the urrent abstration. In

the last equation, only the dependeny from the variables in the funtion all is

added. The symmetri dependeny would be false in general sine the groundness

of X in equation X = f(Y; Z) does not imply the groundness of Y or Z sine f may

not be evaluable. In the last ase, the potential residuation is also added to the

urrent abstration.

The next operation restrits an abstration A to a set of variables W . It will be

used in a prediate all to omit the information about variables not passed from

the prediate all to the applied lause:

all restrit(?;W) = ?

all restrit(A;W) = fX if V 2 A j fXg [V �Wg

Note that only dependenies between argument variables are passed. The informa-

tion about residuated funtion alls is omitted sine this information is not relevant

inside the lause, but only at the end. Therefore, this information will be reonsid-

ered at the end of the all (see below).

A similar operation is needed at the lause end to forget the abstrat information

about loal lause variables. Hene, we de�ne

exit restrit(?;W) = ?

exit restrit(A;W) = fX if V 2 A j fXg [V �Wg

[ff j

V

2 A j V �Wg

[ff j f 2 A or f j

V

2 A with V 6�Wg

The restrition operation for lause exits transforms an abstration element f j

V

into the element f if one of the involved variables is not ontained in W , i.e., it is

noted that there may be an unevaluated funtion all to f whih depends on loal

variables at the end of the lause. This is neessary to ensure the termination of the

8

For simpliity, we omit the our hek in the abstrat uni�ation. This is safe sine we

ompute only an approximation of the onrete uni�er. Note that we always ompute with

normalized abstrations, i.e., the result of amgu will be immediately normalized.

11

analysis in omplex ases. For the same reason, the dependeny X if V is deleted

if X 62 W or V 6�W .

The least upper bound operation is used to ombine the results of di�erent lauses

for a prediate all:

? t A = A

A t ? = A

A

1

t A

2

= fX if V

1

[V

2

j X if V

1

2 A

1

; X if V

2

2 A

2

g

[ff j

V

j f j

V

2 A

1

or f j

V

2 A

2

g

[ff j f 2 A

1

or f 2 A

2

g

Now we an present the algorithm for the abstrat interpretation of a residuating

logi program in at form. It is spei�ed as a funtion ai(�;L) whih takes an

abstrat domain element � and a goal literal L and yields a new abstrat domain

element as result. Clearly, ai(?; L) =? and ai(A; t = t

0

) = amgu(A; t; t

0

). The in-

teresting ase is the abstrat interpretation of a prediate all ai(A; p(X

1

; : : : ; X

n

))

whih is omputed by the following steps (var(�) denotes the set of all variables

ourring in the syntati onstrution �):

1. Let C = p(Z

1

; : : : ; Z

n

) :- L

1

; : : : ; L

k

be a lause for prediate p (if neessary,

rename the lause variables suh that they are disjoint from X

1

; : : : ; X

n

).

Compute A

all

= all restrit(A; fX

1

; : : : ; X

n

g)

A

0

= hreplae all X

i

by Z

i

in A

all

i (i.e., dom(A

0

) = var(C))

A

1

= ai(A

0

; L

1

)

A

2

= ai(A

1

; L

2

)

.

.

.

A

k

= ai(A

k�1

; L

k

)

A

out

= exit restrit(A

k

; fZ

1

; : : : ; Z

n

g)

A

exit

= hreplae all Z

i

by X

i

in A

out

i (i.e., dom(A

exit

) = dom(A))

2. Let A

1

exit

; : : : ; A

m

exit

be the exit substitutions of all lauses for p omputed in 1.

Then de�ne A

suess

= A

1

exit

t : : : t A

m

exit

3. ai(A; p(X

1

; : : : ; X

n

)) = A

suess

[(A�A

all

) if A

suess

6=?, else ?

Hene, a lause is interpreted in the following way. First, the all abstration

is omputed, i.e., the information ontained in the prediate all abstration is

restrited to the argument variables (A

all

). The variables of this all abstration

are mapped to the orresponding variables of the applied lause (A

0

). Then, eah

literal ourring in the lause body is interpreted. The resulting abstration (A

k

) is

restrited to the variables of the lause head, i.e., we forget the information about

the loal variables of the lause. Potential residuations whih are unsolved at the

lause end are passed to the abstration A

out

by the exit restrit operation. In the

last step, the lause variables are renamed into the variables of the prediate all

(A

exit

). If all lauses de�ning the alled prediate p are interpreted in this way, all

possible interpretations are ombined by the least upper bound of all abstrations

(A

suess

). In step 3, we ompute the entire abstration after the prediate all by

ombining the abstration A

suess

with the information whih was forgotten by

the restrition at the beginning of the prediate all (whih is A�A

all

).

The abstrat interpretation algorithm desribed above is useless in ase of reur-

sive programs due to the nontermination of the algorithm. This lassial problem is

12

solved in all frameworks for abstrat interpretation and, therefore, we do not want

to develop a new solution to this problem, but use one of the well-known solutions.

Following Bruynooghe's framework [8℄, we onstrut a rational abstrat AND-OR-

tree representing the omputation of the abstrat interpretation algorithm (see also

Setion 4.3). During the onstrution of the tree, we hek before the interpretation

of a prediate all P whether there is an anestor node P

0

with a all to the same

prediate and the same all abstration (up to renaming of variables). If this is

the ase, we take the suess abstration of P

0

(or ? if it is not available) as the

suess abstration of P instead of interpreting P . If the further abstrat inter-

pretation omputes a suess abstration A

0

for P

0

whih di�ers from the suess

abstration used for P , we start a reomputation beginning at P with A

0

as a new

suess abstration. This iteration terminates beause all operations used in the

abstrat interpretation are monotone (w.r.t. the order on A de�ned in Setion 4)

and the abstrat domain is �nite. A detailed desription of this method is given in

Setion 4.3.

3.3. An Example

The following example is the at form of a Le Fun program presented in [3℄:

q(Z) :- p(X,Y,Z), X = V-W, Y = V+W, pik(V,W).

p(A,B,C) :- C = A*B.

pik(A,B) :- A = 9, B = 3.

The abstrat interpretation algorithm omputes the following abstrations w.r.t. the

initial goal q(T) and the initial abstration ; (speifying the set of all substitutions

without unevaluated funtion alls):

ai(;; q(T)) :

ai(;; p(X,Y,Z)) :

ai(;; C = A*B) = fC if fA,Bg; *j

fA,Bg

g

ai(;; p(X,Y,Z)) = fZ if fX,Yg; *j

fX,Yg

g = : A

1

ai(A

1

; X = V-W) = fZ if fX,Yg; X if fV,Wg; *j

fX,Yg

; -j

fV,Wg

g = : A

2

ai(A

2

; Y = V+W) = fZ if fX,Yg; X if fV,Wg; Y if fV,Wg;

*j

fX,Yg

; -j

fV,Wg

; +j

fV,Wg

g = : A

3

ai(A

3

; pik(V,W)) :

ai(;; A = 9) = fAg

ai(fAg; B = 3) = fA; Bg

ai(A

3

; pik(V,W)) = fV; W; Z if fX,Yg; X if fV,Wg; Y if fV,Wg;

*j

fX,Yg

; -j

fV,Wg

; +j

fV,Wg

g

normalize

�! fV; W; Z; X; Yg

ai(;; q(T)) = fTg

Hene, the omputed suess abstration is fTg. This means that after a suessful

omputation of the goal q(T), the variable T is bound to a ground term and the

residuation set is empty, i.e., the residuation priniple allows to ompute a fully

evaluated answer. Similarly, the ompleteness of the residuation priniple an be

proved by our algorithm for all other residuating logi programs presented in [3℄.

13

4. CORRECTNESS OF THE ABSTRACT INTERPRETATION ALGO-

RITHM

In this setion, we will prove the orretness of the presented abstrat interpretation

algorithm. First, we relate the abstrat domain to the onrete domain by de�ning a

onretization funtion. Then we will prove that the abstrat operations de�ned in

the previous setion are orret w.r.t. the orresponding operations on the onrete

domain. Finally, we obtain the orretness of our algorithm by simply applying

Bruynooghe's framework [8℄.

4.1. Relating Abstrations to Conrete Values

To relate the omputed abstrat properties to the onrete run-time behavior, we

have to de�ne a onretization funtion : A ! 2

C

whih maps an abstration

into a subset of the onrete domain. A diÆult point in the de�nition of is the

orret interpretation of an abstration \X if V ." The intuitive meaning is \the

interpretation of X is ground if all interpretations of V are ground." To be more

preise, \X if V " desribes a dependeny between the instantiation of X and the

instantiation of the variables in V , i.e., we ould de�ne

(�) If X if V 2 A and h�; �i 2 (A), then var(�(X)) � var(�(V)).

However, this interpretation is not suitable beause it does not over the variable

dependenies aused by residuations. For instane, if the terms X and f(Y) should

be uni�ed, the result of the uni�ation algorithm is h;; fX = f(Y)gi, i.e., the algo-

rithm generates a residuation instead of binding X to f(Y). On the abstrat level

the abstration fX if Yg is generated. Therefore, ondition (�) does not hold in this

example.

In order to provide an appropriate relation between abstrat and onrete values,

we have to onsider also the residuation omponent in ondition (�). Therefore, we

extend the set var(�(V)) by all variables whih beome ground if the residuations

ould be evaluated due to the groundness of variables in var(�(V)). Sine the

evaluation of a residuation may ause the evaluation of another residuation, we

onsider the losure of this extension. Thus, we de�ne var

�;�

(V) as the smallest

set satisfying the following onditions:

1. var(�(V)) � var

�;�

(V).

2. If y = f(t) 2 � and var(t) � var

�;�

(V), then var(�(y)) � var

�;�

(V).

In the seond ondition and in the following setions, t denotes an argument se-

quene t

1

; : : : ; t

n

. For instane, if � = ; and � = fX = f(Y)g as in the previous

example, then var

�;�

(fYg) = fX; Yg.

With this extension, we de�ne the relation between abstrat and onrete ele-

ments by the following onretization funtion : A ! 2

C

:

(?) = ;

(A) = fh�; �i 2 C j 1. X if V 2 A) var(�(X)) � var

�;�

(V)

2. y = f(t) 2 � with y 2 dom(A)

) f 2 A or var(t) � var(�(V)) for some f j

V

2 A g

14

In the following, we say a substitution/residuation pair h�; �i satis�es the variable

ondition X if V 2 A if ondition 1 holds. Similarly, we say a residuation y = f(t)

in � is overed by A if ondition 2 holds.

Condition 1 implies, for X if V 2 A, that all variables of the urrent instantiation

of X are ground if all variables of the urrent instantiation of V are ground terms.

Condition 2 ensures that unevaluated funtion alls are overed by some element

in A. Sine an abstration A an only ontain information about variables in its

domain, it annot over residuations bound to variables outside dom(A). Sine we

are interested in information about the evaluation of all potential residuations, we

will later expliitly prove (Theorem 4.4) that residuations onneted to variables

outside dom(A) are also overed by the abstration A at the end of the analysis.

Due to this semantis of abstrations, it an be proved that the normalization

rules de�ned on abstrations in Setion 3.1 are invariant w.r.t. the onrete in-

terpretation. The following lemma justi�es the appliation of the normalization

rules.

Lemma 4.1. If A and A

0

are abstrations with A! A

0

, then (A) = (A

0

).

Proof. First, we show (A) � (A

0

). Let h�; �i 2 (A). We prove h�; �i 2 (A

0

)

by a ase analysis on the applied normalization rule:

1. Let A = A

0

[fZ; X if V [fZgg and A

0

= A

0

[fZ; X if V g. Sine the

only di�erene between A and A

0

is the transformation of \X if V [fZg"

into \X if V ," we have to show var(�(X)) � var

�;�

(V). Sine h�; �i 2 (A),

var(�(Z)) = ; and var(�(X)) � var

�;�

(V [fZg). Sine �(Z) is a ground

term, var(�(X)) � var

�;�

(V [fZg) = var

�;�

(V).

2. Let A = A

0

[fZ; f j

V [fZg

g and A

0

= A

0

[fZ; f j

V

g. Sine only the

abstration element f j

V [fZg

is a�eted by this transformation, we have to

show: if y = f(t) 2 � with y 2 dom(A) = dom(A

0

) and var(t) � var(�(V [

fZg)), then var(t) � var(�(V)). Sine h�; �i 2 (A), var(�(Z)) = ;. Hene,

var(t) � var(�(V [fZg)) = var(�(V)).

3. Let A = A

0

[ff j

;

g. If the abstration element f j

;

was a relevant ondition

for h�; �i 2 (A), then y = f(t) 2 � with y 2 dom(A) and var(t) � ;. Hene

f(t) is a ground funtion all whih annot our in �.

4. Let A = A

0

[fX if V

1

; X if V

2

g, A

0

= A

0

[fX if V

1

g, and V

1

� V

2

. Obviously,

h�; �i 2 (A

0

) sine the variable ondition X if V

2

is omitted in A

0

.

5. Let A = A

0

[ff j

V

1

; f j

V

2

g, A

0

= A

0

[ff j

V

2

g, and V

1

� V

2

. Obviously,

h�; �i 2 (A

0

) sine eah residuation in � whih is overed by the omitted

abstration element f j

V

1

is also overed by f j

V

2

.

6. Let A = A

0

[ff j

V

; fg and A

0

= A

0

[ffg. Obviously, h�; �i 2 (A

0

) sine

eah residuation in � whih is overed by the omitted abstration element

f j

V

is also overed by the abstration element f .

Next, we show (A) � (A

0

). Let h�; �i 2 (A

0

). As before, we prove h�; �i 2 (A)

by a ase analysis on the applied normalization rule:

15

1. Let A = A

0

[fZ; X if V [fZgg and A

0

= A

0

[fZ; X if V g. Sine h�; �i 2

(A

0

), var(�(X)) � var

�;�

(V) � var

�;�

(V [fZg). Hene, h�; �i 2 (A)

beause \X if V [fZg" is the only altered abstration element.

2. Let A = A

0

[fZ; f j

V [fZg

g and A

0

= A

0

[fZ; f j

V

g. This is similar to the

�rst ase.

3. Let A = A

0

[ff j

;

g. This ase is trivial sine A ontains the additional

abstration element \f j

;

."

4. Let A = A

0

[fX if V

1

; X if V

2

g, A

0

= A

0

[fX if V

1

g, and V

1

� V

2

. We have

to show var(�(X)) � var

�;�

(V

2

). But this is trivial beause h�; �i 2 (A

0

)

implies var(�(X)) � var

�;�

(V

1

) � var

�;�

(V

2

).

5. Let A = A

0

[ff j

V

1

; f j

V

2

g, A

0

= A

0

[ff j

V

2

g, and V

1

� V

2

. Obviously,

h�; �i 2 (A) sine A ontains the additional abstration element f j

V

1

.

6. Let A = A

0

[ff j

V

; fg and A

0

= A

0

[ffg. Obviously, h�; �i 2 (A) sine

A ontains the additional abstration element f j

V

.

2

Due to this lemma, it makes no di�erene to use an abstration A or the nor-

malization of A if we want to prove a proposition like h�; �i 2 (A). We will take

advantage of this property in the orretness proofs for the abstrat operations (f.

Setion 4.2).

For the termination of the abstrat interpretation algorithm, it is important

that all operations on the abstrat domain are monotone. Therefore, we de�ne the

following order relation on normalized abstrations:

(a) ?v � for all � 2 A

(b) A v A

0

() 1. X if V

0

2 A

0

) 9V � V

0

with X if V 2 A

2. f j

V

2 A) f 2 A

0

or 9V

0

� V with f j

V

0

2 A

0

3. f 2 A) f 2 A

0

It is easy to prove that v is a reexive and transitive relation whih is anti-

symmetri on normalized abstrations. Moreover, the operation t de�ned in Se-

tion 3.2 omputes the least upper bound of two abstrations, and is a monotone

funtion:

Proposition 4.1. A

1

tA

2

is a least upper bound of A

1

; A

2

2 A.

Proposition 4.2. If A v A

0

, then (A) � (A

0

).

In order to ensure the termination of the analysis, all abstrat operations used

in the abstrat interpretation algorithm must be monotone in their abstration

arguments. If this is the ase, then reomputations in the AND-OR-graph (see

Setion 4.3) starting with greater elements leads to greater results w.r.t. v. This

property ensures the termination of the �xpoint omputation for reursive alls.

It is not diÆult to show that all abstrat operations de�ned in Setion 3.2 are

monotone. Therefore, we only state the monotoniity property of the abstrat

uni�ation and the normalization proess:

16

Proposition 4.3. The abstrat operation amgu is monotone in its abstration argu-

ment, i.e., amgu(A; t

1

; t

2

) v amgu(A

0

; t

1

; t

2

) provided that A v A

0

.

Proposition 4.4. The normalization proess is monotone, i.e., if A v A

0

and B;B

0

are the normalized abstrations of A;A

0

, then B v B

0

.

4.2. Corretness of Abstrat Operations

Following the framework presented in [8℄, the orretness of the abstrat interpreta-

tion algorithm an be proved by showing the orretness of eah basi operation of

the algorithm (like abstrat uni�ation, lause entry, and lause exit). Corretness

means in this ontext that all onrete omputations, i.e., the results of the on-

rete lause entry, lause exit, and uni�ation (f. Setion 2), are subsumed by the

abstrations omputed by the orresponding abstrat operations. In this setion,

we will prove the orretness of eah of these operations.

First, we state an important property of our uni�ation algorithm for residuating

logi programs. The transformation rules in Figure 2.1 show that our uni�ation

algorithm is very similar to the lassial uni�ation algorithm for onstrutor terms,

but with the di�erene that equations of the form y = t, where t is a ground on-

strutor term, are added by rule Evaluate. This may ause additional instantiations

ompared to lassial uni�ation. The next proposition ontains a more preise de-

sription of this behavior. In this proposition and in subsequent proofs, we apply

a substitution � to a residuation � = fy

1

= t

1

; : : : ; y

m

= t

m

g whih is de�ned by

�(�) = fy

1

= �(t

1

); : : : ; y

m

= �(t

m

)g, i.e., the substitution is only applied to the

residuated funtion alls. This is motivated by the speial instantiation rule in

Figure 2.1.

Proposition 4.5. Let t

1

and t

2

be onstrutor terms and h�; �i 2 C. If the appliation

of the transformation rules in Figure 2.1 to the equational representation of h�; �i

and the equation t

1

= t

2

yields the substitution/residuation pair h�

0

; �

0

i (and not

fail), then

1. �

0

= � Æ � with �

0

(t

1

) = �

0

(t

2

) for some substitution �

2. �

0

� �(�) and var(�

0

(y)) = var(t) = ; for all y = f(t) 2 �(�) � �

0

.

Hene, the uni�ation algorithm for residuating logi programs omputes a uni-

�er (not neessarily a most general one) for onstrutor terms and may delete (i.e.,

evaluate) some residuations. This is the basis to prove the orretness of amgu, but

for the omplete proof, we need the following propositions about the set var

�;�

(V).

Lemma 4.2. Let var(�(X)) � var

�;�

(V) and � be a substitution. Then

var(�(�(X))) � var

�Æ�;�(�)

(V).

Proof. Consider the omputation of the losure var

�;�

(V). By de�nition of this

losure, there is a sequene W

1

;W

2

; : : : ;W

n

of variable sets with

1. W

1

= var(�(V)),

2. W

i+1

= W

i

[var(�(y

i

)) for some residuation y

i

= t

i

2 � with var(t

i

) �W

i

,

17

3. var(�(X)) �W

n

.

We de�ne a seond sequeneW

0

1

;W

0

2

; : : : ;W

0

n

of variable sets byW

0

i

: = var(�(W

i

))

(i = 1; : : : ; n). This sequene has the following properties:

1. W

0

1

= var(�(W

1

)) = var(�(�(V)))

2. W

0

i+1

= W

0

i

[var(�(�(y

i

))) for the residuation y

i

= �(t

i

) 2 �(�) with

var(�(t

i

)) �W

0

i

3. var(�(�(X))) �W

0

n

Hene, var(�(�(X))) � var

�Æ�;�(�)

(V). 2

The next lemma shows that the set var

�;�

(V) is not inuened by the evaluation

of ground funtion alls.

Lemma 4.3. Let �

0

� � and var(�(y)) = var(t) = ; for all y = f(t) 2 �� �

0

. Then

var

�;�

(V) = var

�;�

0

(V)

Proof. If some residuation element y = f(t) from � � �

0

is used to ompute the

losure var

�;�

(V), it annot add any new variable to this set sine var(�(y)) = ;.

Therefore, the losures var

�;�

(V) and var

�;�

0

(V) are idential. 2

Now, we an prove the orretness of amgu, i.e., we show that abstrat uni�ation

overs all possible results of the onrete uni�ation algorithm.

Theorem 4.1 (Corretness of Abstrat Uni�ation). Let X be a variable, t be a term

of the form Y , (Y

1

; : : : ; Y

n

) or f(Y

1

; : : : ; Y

n

), and A be an abstration. Then

for all h�; �i 2 (A) and all uni�ers h�

0

; �

0

i omputed by the rules of Figure 2.1

w.r.t. h�; �i and X = t, h�

0

; �

0

i 2 (amgu(A;X; t)).

Proof. Let A, h�; �i, and h�

0

; �

0

i be given as desribed above. We prove the

theorem for eah of the three ases for t.

Let t = Y (6= X ; otherwise, the theorem is trivially true). Then

A

0

: = amgu(A;X; Y) = A [fX if fY g; Y if fXgg

By Proposition 4.5, �

0

= � Æ � with �

0

(X) = �

0

(Y) and �

0

� �(�). We have to

show: h�

0

; �

0

i 2 (A

0

).

1. Sine �

0

(X) = �

0

(Y), var(�

0

(X)) = var(�

0

(Y)). Therefore, h�

0

; �

0

i satis�es

the variable onditions X if fY g and Y if fXg.

2. Z if V 2 A

0

\ A: Sine h�; �i 2 (A), var(�(Z)) � var

�;�

(V), whih implies

var(�

0

(Z)) � var

�

0

;�

0

(V) by Proposition 4.5 and Lemmas 4.2 and 4.3.

3. y = f(t) 2 �

0

with y 2 dom(A

0

) = dom(A): Hene, there is a residuation

y = f(s) 2 � with �(s) = t. Sine h�; �i 2 (A), f 2 A (whih is the trivial

ase) or f j

V

2 A with var(s) � var(�(V)). The latter ase implies f j

V

2 A

0

and var(t) = var(�(s)) � var(�(�(V))) = var(�

0

(V)).

18

Next, we onsider the ase t = (Y

1

; : : : ; Y

n

). Then

A

0

: = amgu(A;X; (Y

1

; : : : ; Y

n

))

= A [fX if fY

1

; : : : ; Y

n

g; Y

1

if fXg; : : : ; Y

n

if fXgg

By Proposition 4.5, �

0

(X) = �

0

((Y

1

; : : : ; Y

n

)), whih implies var(�

0

(X)) =

var(�

0

((Y

1

; : : : ; Y

n

))). Therefore, h�

0

; �

0

i satis�es the variable onditions added

to A. The remaining onditions for h�

0

; �

0

i 2 (A

0

) an be proved similarly to ase

t = Y .

Now, we onsider the �nal ase t = f(Y

1

; : : : ; Y

n

). Then

A

0

: = amgu(A;X; f(Y

1

; : : : ; Y

n

)) = A [fX if fY

1

; : : : ; Y

n

g; f j

fY

1

;:::;Y

n

g

g

If �(f(Y

1

; : : : ; Y

n

)) is a ground funtion all, it is evaluated to a ground onstrutor

term t

0

, and the uni�ation algorithm simply adds the equation X = t

0

to the �rst

omponent of the equation system and the residuation omponent is not hanged.

Thus, Proposition 4.5 is appliable and the orretness of amgu an be shown

similarly to ase t = Y .

Now, we assume that �(f(Y

1

; : : : ; Y

n

)) is not a ground funtion all. In this ase,

the uni�ation algorithm simply adds the residuation X = �(f(Y

1

; : : : ; Y

n

)), i.e.,

�

0

= � and �

0

= � [fX = �(f(Y

1

; : : : ; Y

n

))g. We have to show: h�

0

; �

0

i 2 (A

0

).

1. X if fY

1

; : : : ; Y

n

g 2 A

0

: Sine X = �(f(Y

1

; : : : ; Y

n

)) 2 �

0

, var(�(X)) �

var

�;�

(fY

1

; : : : ; Y

n

g). Hene, this variable ondition is satis�ed by h�

0

; �

0

i.

2. Z if V 2 A

0

\ A: Sine h�; �i 2 (A), var(�(Z)) � var

�;�

(V), whih implies

var(�

0

(Z)) � var

�

0

;�

(V) � var

�

0

;�

0

(V).

3. y = f(t) 2 �

0

with y 2 dom(A

0

) = dom(A): If y = f(t) 2 �, then this

residuation must be overed by some element in A � A

0

. Otherwise, this

residuation must be the new element X = �(f(Y

1

; : : : ; Y

n

)) whih is overed

by the new abstration element f j

fY

1

;:::;Y

n

g

2 A

0

.

2

Next, we prove that the abstrat operations performed at the entry of a lause

are orret w.r.t. the onrete semantis.

Theorem 4.2 (Corretness of Clause Entry). Let P = p(X

1

; : : : ; X

n

) be a prediate

all with abstration A and h�; �i 2 (A). Let L :-B be a (renamed) lause,

h�

0

; �

0

i be a uni�er omputed by the rules of Figure 2.1 w.r.t. h�; �i and the

equation L = P , and A

0

be the abstration omputed by algorithm ai. Then

h�

0

; �

0

i 2 (A

0

).

Proof. Let L = p(Z

1

; : : : ; Z

n

). First of all, note that the uni�er omputed for the

equation L = P is a trivial renaming sine Z

1

; : : : ; Z

n

are new di�erent variables.

Hene, �

0

= � and �

0

= � Æ � with � = fZ

1

7! X

1

; : : : ; Z

n

7! X

n

g (all other uni�ers

are renamings of this).

1. X if V 2 A

0

: By de�nition of all restrit and ai, fXg [V � fZ

1

; : : : ; Z

n

g

and �(X) if �(V) 2 A. Sine h�; �i 2 (A), var(�(�(X))) � var

�;�

(�(V)),

whih implies var(�

0

(X)) � var

�

0

;�

(V) = var

�

0

;�

0

(V) (note that �(�(Z

i

)) =

�

0

(Z

i

) for i = 1; : : : ; n).

19

2. y = f(t) 2 �

0

with y 2 dom(A

0

): This ase annot our sine dom(A

0

) =

fZ

1

; : : : ; Z

n

g [var(B) whih is a set of new variables. Hene, �

0

annot

ontain a residuation onneted to one of these variables.

2

Next, we prove the orretness of the abstrat lause exit operations, i.e., we

show that eah substitution/residuation pair whih may our at the end of a lause

applied to a prediate all is overed by the abstrat interpretation algorithm.

Theorem 4.3 (Corretness of Clause Exit). Let P = p(X

1

; : : : ; X

n

) be a prediate

all with abstration A

in

6=? and h�

in

; �

in

i 2 (A

in

). Let A = ai(A

in

; P) =

A

suess

[(A

in

� A

all

) be the abstration after the prediate all omputed by

the abstrat interpretation algorithm ai. Let L :-L

1

; : : : ; L

k

be a (renamed)

lause for P , and A

k

be the abstration omputed for the lause end in ai.

If h�

k

; �

k

i 2 (A

k

) is an extension of the initial substitution/residuation pair

h�

in

; �

in

i omputed by applying this lause, i.e., �

k

= � Æ �

in

with �(L) = �(P)

and �

k

= � [�(�

in

), then h�

k

; �

k

i 2 (A).

Proof. Let L = p(Z

1

; : : : ; Z

n

) and � = fX

1

7! Z

1

; : : : ; X

n

7! Z

n

g.

1. X if V 2 A: Hene, there are two ases:

� X if V 2 (A

in

� A

all

): Sine X if V 2 A

in

and h�

in

; �

in

i 2

(A

in

), var(�

in

(X)) � var

�

in

;�

in

(V), whih implies var(�

k

(X)) �

var

�

k

;�(�

in

)

(V) � var

�

k

;�

k

(V) (by Lemma 4.2).

� X if V 2 A

suess

: Sine A

exit

v A

suess

, there is a set V

0

�

V with X if V

0

2 A

exit

. By de�nition of A

exit

, �(X) if �(V

0

) 2

A

k

and f�(X)g [�(V

0

) � fZ

1

; : : : ; Z

n

g. Sine h�

k

; �

k

i 2 (A

k

),

var(�

k

(�(X))) � var

�

k

;�

k

(�(V

0

)). Sine �

k

(L) = �

k

(P), this implies

var(�

k

(X)) � var

�

k

;�

k

(V

0

) � var

�

k

;�

k

(V).

2. y = f(t) 2 �

k

with y 2 dom(A): Sine variables from the lause are not

ontained in the domain of A, the residuation y = f(t) annot be added

during the proessing of the lause. Hene, y = f(t) 2 �(�

in

). Thus, there

is a residuation y = f(s) 2 �

in

with �(s) = t. Sine h�

in

; �

in

i 2 (A

in

) and

X 2 dom(A) = dom(A

in

), f 2 A

in

(whih implies f 2 A) or f j

V

2 A

in

(whih implies f j

V

2 A) with var(s) � var(�

in

(V)). In the latter ase, we

have var(t) = var(�(s)) � var(�(�

in

(V))) = var(�

k

(V)).

2

4.3. Corretness of the Abstrat Interpretation Algorithm

In the previous setion, we have proved the loal orretness of the basi opera-

tions of the abstrat interpretation algorithm. We an ombine these results into a

orretness proof for the whole algorithm by using Bruynooghe's framework [8℄. In

his framework, the abstrat interpretation algorithm generates an abstrat AND-

OR-tree whih represents all onrete omputations. To avoid in�nite paths, this

tree is a rational AND-OR-tree, i.e., if a prediate all is idential to (a variant

of) a prediate all in an anestor node, then this all node is identi�ed with the

20

A P A

0

OR

A

in

1

H

1

A

out

1

: : : A

in

m

H

m

A

out

m

#

#

#

#

#

#

#

#

Figure 4.1. OR-node for lause entry.

A

in

H A

out

AND

A

0

L

1

A

1

: : : A

k�1

L

k

A

k

#

#

#

#

#

#

#

#

Figure 4.2. AND-node for a lause.

anestor node. The monotoniity property of all abstrat operations together with

the �nite domain avoids an in�nite omputation in this graph. Next, we will give

a more detailed desription of the abstrat interpretation algorithm.

The abstrat interpretation proedure generates the abstrat AND-OR-graph

as follows. In the �rst step, the root is reated. It is marked with the initial

goal (w.l.o.g. we assume that the initial goal ontains only one literal) and the all

abstration for this goal. Then, this initial graph is extended by omputing the

suess abstration for this goal. The suess abstration A

0

of an equation t = t

0

with all abstrationA is omputed by abstrat uni�ation, i.e., A

0

= amgu(A; t; t

0

).

To ompute the suess abstration A

0

of a node with prediate all P and all

abstration A, we distinguish the following ases:

1. There is no anestor node with the same prediate all and the same all

abstration (up to renaming of variables): First of all, we add an OR-node

as shown in Figure 4.1 (H

1

; : : : ; H

m

are the heads of all lauses for P). A

in

i

is the all abstration omputed by our abstrat operations for the entry

of lause H

i

:- � � � (i.e., A

0

in algorithm ai in Setion 3.2). Then, for eah

new lause head H , an AND-node is added as shown in Figure 4.2 where

H :-L

1

; : : : ; L

k

is the orresponding lause. After opying the all abstra-

tion of the head to the all abstration of the �rst body literal (A

0

= A

in

),

the suess abstration of eah literal in the lause body is omputed. Then

the suess abstration A

out

of the entire lause is alulated by restriting

A

k

to the head variables (i.e., A

out

is idential to A

out

in algorithm ai in

Setion 3.2). When all suess abstrations of all lauses for the prediate

all P are omputed, they are renamed, ombined by the least upper bound

operation, and then ombined with the elements of A not ontained in the

21

A

0

in

P

0

A

0

out

OR

#

#

#

#

#

#

#

#

AND

: : : A

in

P A

out

: : :

#

#

#

#

#

#

#

#

Figure 4.3. Reursive all: P is a renaming of P

0

and A

in

restrited to all P is a

renaming of A

0

in

restrited to all P

0

.

all abstration of A (ompare algorithm ai).

2. There is an anestor node P

0

with the same prediate all and the same

all abstration (up to renaming of variables) (Figure 4.3): Then the suess

abstration of P

0

(A

0

out

without the elements of A

0

in

not passed to the all

P

0

, i.e., A

suess

in algorithm ai in Setion 3.2) is taken as the suess ab-

stration of P (or ? if it is not available). The ombination of this suess

abstration with the elements of A

in

not ontained in the all abstration

of P yields A

out

(step 3 of algorithm ai), and we proeed with the abstrat

interpretation proedure (i.e., we onnet P to P

0

). If we reah the node

P

0

at some point during the further omputation and we ompute a suess

abstration for P

0

whih di�ers from the old suess abstration taken for P ,

we reompute the suess abstrations beginning at P where we take the new

suess abstration of P

0

as new suess abstration for P . The monotoni-

ity property of the abstrat operations and the �nite domain ensures that

this iteration terminates.

In [8℄, it is shown that this algorithm omputes a superset of all onrete proof

trees if the abstrat operations for built-ins (here: uni�ation), lause entry, and

lause exit satisfy ertain orretness onditions. Theorems 4.1, 4.2, and 4.3 imply

exatly these orretness onditions. Hene, we an infer the orretness of our

abstrat interpretation algorithm sine we onsider the same operational semantis

(left-to-right evaluation of goals), exept for the di�erent notion of substitution and

uni�ation (whih does not inuene Bruynooghe's general framework).

There is one remaining problem with our abstrat interpretation algorithm. Ini-

tially, we wanted to haraterize a lass of residuating logi programs where all

residuations an be evaluated at run time. However, if we analyze a program

22

with our algorithm, the absene of elements of the form f and f j

V

in the suess

abstration of the initial goal does not neessarily indiate that there are no un-

evaluated residuations at the end of the omputation. Due to the de�nition of our

onretization funtion , it may be the ase that there are residuations onneted

to variables whih are loal to some lauses. The next theorem shows that this ase

annot our sine all potential residuations are overed by our algorithm.

Theorem 4.4 (Completeness of Residuation Covering). Let L be a at literal with

abstration A and A

0

= ai(A;L). Let h�

0

; ;i 2 (A) and h�; �i 2 (A

0

) be an

extension of h�; �i, i.e., � ontains the new residuations whih are added during

the exeution of L. If y = f(t) 2 � where t is not ground (i.e., it is a residuation

whih ould not be evaluated), then A

0

ontains an abstration element of the

form f or f j

V

.

Proof. If y = f(t) 2 �, this residuation must be generated by exeuting a lause

ontaining a residuation y = f(s) in the body. Sine all onrete proof trees are

represented by the abstrat rational AND-OR-tree omputed by the abstrat in-

terpretation algorithm (f. [8℄), this residuation must also be proessed by our

analysis algorithm whih inserts the element f j

var(s)

. From the de�nition of amgu,

exit restrit, t, and ai, it is obvious that this delay element will never be deleted

in the subsequent (suess) abstrations. The only possibility to delete a delay

element is an appliation of a normalization rule, but this annot happen if t is

not ground due to the orretness of the normalization rules (Lemma 4.1). There-

fore, this delay element or a transformed version of it (by operation exit restrit

or renaming) is ontained in A

0

. 2

Due to this theorem, our abstrat interpretation algorithm haraterizes a lass

of residuating logi programs (those ontaining no new elements of the form f

and f j

V

in the suess abstration of the goal) for whih all residuations an be

evaluated at run time. A onrete example for the onstrution of an abstrat

AND-OR-tree will be shown in the next setion.

4.4. A Final Example

The following residuating logi program is an example for a reursive proedure

whih requires the onstrution of the abstrat AND-OR-tree desribed in the pre-

vious setion. The following lauses de�ne a prediate sum(L,S) whih omputes

the sum S of a list of numbers L:

sum([℄,0).

sum([E|R℄,E+RS) :- sum(L,RS).

For instane, the exeution of the goal sum([1,3,5℄,S) yields the answer S=9. The

onrete omputation is shown in the following table:

23

A

0

sum(L0,S0) A

12

OR

A

1

sum(L,S) A

5

A

6

sum(L,S) A

11

"

"

"

"

"

"

"

"

"

"

b

b

b

b

b

b

b

b

b

b

AND

A

2

L=[℄ A

3

S=0 A

4

�

�

�

�

�

�

�

�

�

�

�

�

AND

A

7

L=[E|R℄ A

8

S=E+RS A

9

sum(L,RS) A

10

#

#

#

#

#

#

#

Figure 4.4. AND-OR-tree for the abstrat interpretation of sum(L0,S0).

Goal Current Residuation Current Substitution

sum([1,3,5℄,S) ; ;

sum([3,5℄,RS1) fS=1+RS1g ;

sum([5℄,RS2) fS=1+RS1, RS1=3+RS2g ;

sum([℄,RS3) fS=1+RS1, RS1=3+RS2, RS2=5+RS3g ;

; ; fRS37!0, RS27!5,

RS17!8, S 7!9g

We want to show that the residuation priniple omputes a fully evaluated answer

for S for any given list of numbers L. In order to apply our abstrat interpretation

algorithm, we transform the program into an equivalent at program:

sum(L,S) :- L=[℄, S=0.

sum(L,S) :- L=[E|R℄, S=E+RS, sum(L,RS).

The initial goal is sum(L0,S0) with abstration fL0g, i.e., it is a prediate all

with a ground �rst argument. Our abstrat interpretation algorithm applied to

this goal and abstration generates the abstrat AND-OR-tree shown in Figure 4.4.

We will see that the tree is �nite beause the literal sum(L,RS) together with the

all abstration part of A

9

is a renaming of the root literal sum(L0,S0) together

with the all abstration part of A

0

. In the following, we desribe the omputation

of the abstrat interpretation algorithm and the evolving values of the abstrations

A

i

.

� A

0

= fL0g: The all abstration of the root literal is the initial abstration

of the goal.

� A

1

= fLg and A

6

= fLg: The root is an OR-node with two sons sine two

lauses an be applied to the literal sum(L0,S0). The entry abstrations for

these lauses are omputed from A

0

by all restrit and renaming.

� A

2

= fLg: The entry abstration of the lause is also the abstration for the

�rst prediate all in the lause body.

24

� A

3

= fLg: The abstration A

2

is not modi�ed by abstrat uni�ation sine

L is already ground.

� A

4

= fL; Sg: S is added to the abstration by abstrat uni�ation sine it

is bound to a ground term after this uni�ation.

� A

5

= fL; Sg: The exit abstration of this lause is the exit abstration of

the last body literal restrited to the variables in the lause head.

� A

7

= fLg: The entry abstration of the seond lause is also the abstration

for the �rst prediate all in the lause body.

� A

8

= fL; E; Rg: The variables E and R are ground sine L is ground. This is

omputed by the abstrat uni�ation algorithm together with the normal-

ization rules.

� A

9

= fL; E; R; S if fRSg; +j

fRSg

g: The funtion all to + is added to the

abstration. It annot be evaluated until the variable RS is ground.

� A

10

=?: The all abstration part of A

9

is fLg (ompare de�nition of

all restrit). Hene, this prediate all is a renaming of the prediate all

at the root. Therefore, we take the value ? as the suess abstration for this

all sine the suess abstration of the root all is not yet known. However,

if the latter suess abstration is available and di�erent from ?, we start a

reomputation at this point.

� A

11

=?: The exit abstration of the seond lause is the exit abstration of

the last body literal.

� A

12

= fL0; S0g: The suess abstration of the root prediate all is the

least upper bound of fL0; S0g and ? together with the elements of A

0

not

ontained in the all abstration (atually, there are no suh elements). Sine

the suess abstration of the root all is now available and di�erent from

?, we restart the evaluation of the abstration A

10

.

� A

10

= fL; RS; E; R; Sg: The new value of A

10

is omputed from the

new renamed suess abstration of the root prediate all (fL; RSg) to-

gether with the elements of A

9

not ontained in the all abstration giv-

ing fL; RS; E; R; S if fRSg; +j

fRSg

g. This abstration, simpli�ed by the

normalization rules, is the new value of A

10

.

� A

11

= fL; Sg: The exit abstration of the seond lause is the exit abstra-

tion of the last body literal restrited to the variables in the lause head.

� A

12

= fL0; S0g: The suess abstration of the root prediate all is the

least upper bound of the renamed exit abstrations A

5

and A

11

(whih are

idential). Sine the suess abstration of the root all is idential to the

previous value, we need not restart the evaluation of the abstration A

10

.

Hene, the abstrat interpretation algorithm is �nished.

Sine the abstrat interpretation algorithm has omputed the exit abstration

fL0; S0g for the initial goal, we onlude by the orretness of the abstrat inter-

pretation algorithm and Theorem 4.4 that variable S0 is bound to a ground term,

and there are no unevaluable residuations at the end of a suessful omputation.

25

5. CONCLUSIONS AND RELATED WORK

In this paper, we have onsidered an operational mehanism for the integration

of funtions into logi programs. This mehanism, alled residuation, extends the

standard uni�ation algorithm used in SLD-resolution by delaying uni�ations be-

tween unevaluable funtion alls and other terms. If all variables of a delayed

funtion all are bound to ground terms, then this funtion all is evaluated in

order to verify the delayed uni�ation. This residuation priniple yields a nie op-

erational behavior for many funtional logi programs, but has two disadvantages.

One problem is that the answer to a query may ontain unsolved and omplex resid-

uations for whih the user annot easily deide their solvability. A further problem

is that the searh spae of a residuating logi program an be in�nite in ontrast to

the equivalent logi program. This ase an our if the residuation priniple gen-

erates more and more residuations whih are simultaneously not solvable. Hene,

it is important to hek at ompile time whether or not this ase an our at run

time. Sine this is undeidable in general, we have presented an approximation to

this problem based on the abstrat interpretation of residuating logi programs.

Our algorithm manages information about all possible residuations together with

their argument variables and the dependenies between di�erent variables in order

to ompute groundness information. Hene, the algorithm is able to infer whih

residuations an be ompletely solved at run time.

We an also interpret our algorithm as an attempt to ompile funtional logi

programs from languages with a omplete but often omplex operational semantis

(e.g., ALF [12℄, BABEL [23℄, EQLOG [11℄, or SLOG [10℄) into a more eÆient

exeution mehanism without loosing ompleteness. For this purpose, we hek a

given funtional logi program by our algorithm. If the algorithm omputes an

abstration ontaining no potential residuations, then we an safely exeute the

program with the residuation priniple, i.e., all valid answers are omputed by

the residuation priniple (provided that the omputation terminates). Otherwise,

we must apply the nondeterministi narrowing priniple to ompute all answers.

This method an also be applied to individual parts of the program so that some

parts are exeuted using the residuation priniple and other parts are exeuted by

narrowing. For instane, in order to avoid the termination problem in the \reverse"

example in Setion 1, we an hek the solvability of the residuated funtion alls

by narrowing just before the reursive all to rev. Our algorithm an be simply

modi�ed to ompute the neessary information to deide at ompile time whether

there may be residuated funtions before reursive prediate alls at run time.

The operational semantis onsidered in this paper originates from Le Fun [3℄.

The uni�ation proedure is very similar to S-uni�ation [5℄. However, S-uni�ation

immediately reports an error if some residuations annot be evaluated after the

uni�ation of a literal with a lause head, e.g., the example programs in Setion 2

and 3.3 annot be evaluated using S-uni�ation. Therefore, Boye has extended this

framework to omputation with delayed residuations [7℄. He has also haraterized

a lass of operationally omplete programs based on notions from attribute gram-

mars. Compared to our abstrat interpretation proedure, Boye's haraterization

is mainly based on the syntati struture of the program, while we have tried to

approximate the operational behavior. Hene, we obtain positive results for pro-

grams where Boye's hek fails, e.g., our method yields a positive answer to the

ompleteness question of the program

26

p(A,A+A).

p(A+A,A).

w.r.t. the initial goal p(2+2,1+1), while Boye's hek fails (sine there are external

funtors in input positions).

Marriott et al. [21℄ have also presented an abstrat interpretation algorithm

for analyzing logi programs with delayed evaluation. The purpose of their work

was to hek logi programs with negation for oundering, i.e., whether a delayed

evaluation of negated subgoals is omplete. This problem has similarities to our

residuation problem, but it is also very di�erent due to the following reasons:

1. A delayed evaluation of a negated literal annot bind any goal variables

sine this literal is evaluated if all arguments are ground. In our ontext, it

is important that a delayed evaluation of a residuation an bind variables

in order to enable the evaluation of other residuations (see the example

in Setion 3.3). Therefore, we have to manage the dependenies between

residuations and their variables in order to analyze the data ow in this

ase.

2. In our ontext, the terms ontain onstrutors and funtion alls. The right

abstration of these terms ompliates the orretness proofs of our algo-

rithm.

On the other hand, we annot analyze logi programs with delayed negation with

our algorithm (for instane, by delaring all negated literals as funtions) sine we

onsider the evaluation of a ground funtion all as an atomi operation. However,

the evaluation of a negated literal may ause the evaluation of other negated literals,

i.e., it is not an atomi operation. Nevertheless, it would be interesting to extend our

algorithm to a more detailed analysis of funtion alls if the funtions are spei�ed

and evaluated in a partiular formalism (for instane, by onditional equations as

in ALF [12℄).

Sine we must restrit all abstrat information to a �nite domain, our algorithm

annot manage all dependenies between residuations and their variables. If a

residuation depends only on variables of one lause and these variables are bound

to ground terms at the end of the lause, the algorithm detets the solvability of

the residuation. However, if a residuation depends on loal variables from di�erent

lauses, then the algorithm annot manage it, and simply infers the unsolvability

of this residuation. It would be interesting to improve the algorithm at this point

by re�ning the abstrat domain.

Another interesting topi for further researh is the question of whether it is

possible to adapt our proposed method to the abstrat interpretation of other logi

languages whih are not based on SLD-resolution with the leftmost seletion rule.

Suh a method ould be applied to analyze the oundering problem of NU-Prolog

or to derive run-time properties of the Andorra omputation rule [17℄.

The author is grateful to the anonymous referees for their suggestions to improve the

analysis and the readability of this paper. The researh desribed in this paper was

made during the author's stay at the Max-Plank-Institut f�ur Informatik in Saarbr�uken,

Germany. It was supported in part by the German Ministry for Researh and Tehnology

27

(BMFT) under Grant ITS 9103 and by the ESPRIT Basi Researh Working Group

6028 (Constrution of Computational Logis). The responsibility for the ontents of this

publiation lies with the author.

REFERENCES

1. S. Abramsky and C. Hankin, editors. Abstrat Interpretation of Delarative Lan-

guages. Ellis Horwood, 1987.

2. H. A��t-Kai. An Overview of LIFE. In J.W. Shmidt and A.A. Stogny, editors,

Pro. Workshop on Next Generation Information System Tehnology, pp. 42{58.

Springer LNCS 504, 1990.

3. H. A��t-Kai, P. Linoln, and R. Nasr. Le Fun: Logi, equations, and Funtions.

In Pro. 4th IEEE Internat. Symposium on Logi Programming, pp. 17{23, San

Franiso, 1987.

4. H. A��t-Kai and A. Podelski. Funtions as Passive Constraints in LIFE. Researh

Report 13, DEC Paris Researh Laboratory, 1991.

5. S. Bonnier. Uni�ation in Inompletely Spei�ed Theories: A Case Study. In

Mathematial Foundations of Computer Siene, pp. 84{92. Springer LNCS 520,

1991.

6. P.G. Boso, E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. A omplete

semanti haraterization of K-LEAF, a logi language with partial funtions. In

Pro. 4th IEEE Internat. Symposium on Logi Programming, pp. 318{327, San

Franiso, 1987.

7. J. Boye. S-SLD-resolution { An Operational Semantis for Logi Programs with

External Proedures. In Pro. of the 3rd Int. Symposium on Programming Language

Implementation and Logi Programming, pp. 383{393. Springer LNCS 528, 1991.

8. M. Bruynooghe. A Pratial Framework for the Abstrat Interpretation of Logi

Programs. Journal of Logi Programming (10), pp. 91{124, 1991.

9. W.F. Cloksin and C.S. Mellish. Programming in Prolog. Springer, third rev. and

ext. edition, 1987.

10. L. Fribourg. SLOG: A Logi Programming Language Interpreter Based on Clausal

Superposition and Rewriting. In Pro. IEEE Internat. Symposium on Logi Pro-

gramming, pp. 172{184, Boston, 1985.

11. J.A. Goguen and J. Meseguer. Eqlog: Equality, Types, and Generi Modules for

Logi Programming. In D. DeGroot and G. Lindstrom, editors, Logi Programming,

Funtions, Relations, and Equations, pp. 295{363. Prentie Hall, 1986.

12. M. Hanus. Compiling Logi Programs with Equality. In Pro. of the 2nd Int.

Workshop on Programming Language Implementation and Logi Programming, pp.

387{401. Springer LNCS 456, 1990.

13. M. Hanus. EÆient Implementation of Narrowing and Rewriting. In Pro. Int.

Workshop on Proessing Delarative Knowledge, pp. 344{365. Springer LNAI 567,

1991.

28

14. M. Hanus. On the Completeness of Residuation. In Pro. of the 1992 Joint In-

ternational Conferene and Symposium on Logi Programming, pp. 192{206. MIT

Press, 1992.

15. M. Hanus. Analysis of Nonlinear Constraints in CLP(R). In Pro. Tenth Interna-

tional Conferene on Logi Programming, pp. 83{99. MIT Press, 1993.

16. M. Hanus. The Integration of Funtions into Logi Programming: From Theory

to Pratie. Journal of Logi Programming, Vol. 19&20, pp. 583{628, 1994.

17. S. Haridi and P. Brand. Andorra Prolog: An Integration of Prolog and Committed

Choie Languages. In Pro. Int. Conf. on Fifth Generation Computer Systems, pp.

745{754, 1988.

18. J. Ja�ar and J.-L. Lassez. Constraint Logi Programming. In Pro. of the 14th

ACM Symposium on Priniples of Programming Languages, pp. 111{119, Munih,

1987.

19. J. Ja�ar, S. Mihaylov, and R.H.C. Yap. A Methodology for Managing Hard

Constraints in CLP Systems. In Pro. ACM SIGPLAN'91 Conferene on Pro-

gramming Language Design and Implementation, pp. 306{316. SIGPLAN Noties,

Vol. 26, No. 6, 1991.

20. J.W. Lloyd. Foundations of Logi Programming. Springer, seond, extended edi-

tion, 1987.

21. K. Marriott, H. S�ndergaard, and P. Dart. A Charaterization of Non-Floundering

Logi Programs. In Pro. of the 1990 North Amerian Conferene on Logi Pro-

gramming, pp. 661{680. MIT Press, 1990.

22. A. Martelli and U. Montanari. An EÆient Uni�ation Algorithm. ACM Transa-

tions on Programming Languages and Systems, Vol. 4, No. 2, pp. 258{282, 1982.

23. J.J. Moreno-Navarro and M. Rodr��guez-Artalejo. Logi Programming with Fun-

tions and Prediates: The Language BABEL. Journal of Logi Programming,

Vol. 12, pp. 191{223, 1992.

24. L. Naish. Adding equations to NU-Prolog. In Pro. of the 3rd Int. Symposium

on Programming Language Implementation and Logi Programming, pp. 15{26.

Springer LNCS 528, 1991.

25. U. Nilsson. Systemati Semanti Approximations of Logi Programs. In Pro.

of the 2nd Int. Workshop on Programming Language Implementation and Logi

Programming, pp. 293{306. Springer LNCS 456, 1990.

26. G. Smolka. Residuation and Guarded Rules for Constraint Logi Programming. In

F. Benhamou and A. Colmerauer, editors, Constraint Logi Programming: Seleted

Researh, pp. 405{419. MIT Press, 1993.

27. P.A. Subrahmanyam and J.-H. You. FUNLOG: a Computational Model Inte-

grating Logi Programming and Funtional Programming. In D. DeGroot and

G. Lindstrom, editors, Logi Programming, Funtions, Relations, and Equations,

pp. 157{198. Prentie Hall, 1986.

