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Abstract

Residuation is an operational mechanism for the integration of functions into
logic programming languages. The residuation principle delays the evaluation
of functions during the unification process until the arguments are sufficiently
instantiated. This has the advantage that the deterministic nature of func-
tions is preserved but the disadvantage of incompleteness: if the variables in a
delayed function call are not instantiated by the logic program, this function
can never be evaluated and some answers which are logical consequences of
the program are lost. In this paper we present a method for detecting such sit-
uations. The method is based on a compile-time analysis of the program and
approximates the possible residuations and instantiation states of variables
during program execution.

1 Introduction

Many proposals for the integration of functional and logic programming lan-
guages have been made during recent years (see [8] for a collection). From an
operational point of view these proposals can be partitioned into two classes:
approaches with a complete operational semantics and a nondeterministic
search (narrowing) for solving equations with functional expressions (EQLOG
[10], SLOG [9], K-LEAF [5], BABEL [16], ALF [11], among others), and ap-
proaches which try to avoid nondeterministic computations for functional
expressions by reducing functional expressions only if the arguments are suf-
ficiently instantiated (Funlog [20], Le Fun [3], LIFE [2], NUE-Prolog [17],
among others). The former approaches are complete under some well-defined
conditions (e.g., canonicity of the axioms), i.e., they compute all answers
which can be logically inferred from the given program. The price for this
completeness is an increased search space since there may be several incom-
parable unifiers of two terms if these terms contain unevaluated functional
expressions. The latter approaches try to avoid this nondeterminism in the
unification process. In these approaches a term is reduced to normal form be-
fore it is unified with another term, i.e., functional expressions are evaluated
(if possible) before unification. If a function cannot be evaluated because the
arguments are not sufficiently instantiated, the unification cannot proceed.
Instead of causing a failure, the evaluation of the function is delayed until the
arguments will be instantiated. This mechanism is called residuation in Le
Fun [3]. For instance, consider the following program (we write residuating
logic programs in the usual Prolog syntax but it is allowed to use arbitrary
evaluable functions in terms):



q :- p(X,Y,5), pick(X,Y).

p(A,B,A+B).

pick(2,3).
together with the goal “7- q”. After applying the first clause to the goal,
the literals p(X,Y,5) and p(A,B,A+B) are unified. This binds A to X and B
to Y, but the unification of X+Y and 5 is not successful since the arguments
of the function call X+Y are not instantiated to numbers. Hence this unifica-
tion causes the generation of the residuation X+Y=5 which will be proved (or
disproved) if X and Y will be bound to ground terms. We proceed by proving
the literal pick(X,Y) which binds X and Y to 2 and 3, respectively. As a
consequence, the instantiated residuation 2+3=5 can be verified and therefore
the entire goal has been proved.

The residuation principle seems to be preferable to the narrowing ap-
proaches since it preserves the deterministic nature of functions. However,
it fails to compute all answers if functions are used in a logic programming
manner. For instance, consider the function append for concatenating two
lists. In a functional language with pattern-matching it can be defined by the
following equations (we use the Prolog notation for lists):

append([], L) =1L

append([EIR],L) = [E|append(R,L)]
From a logic programming point of view we can compute the last element E
of a given list L by solving the equation append(_, [E])=L. Since the first
argument of the left-hand side of this equation will never be instantiated,
residuation fails to compute the last element with this equation whereas nar-
rowing computes the unique value for E [12]. Similarly, we can specify by the
equation append(LE, [_])=L a list LE which is the result of deleting the last
element in the list L. Combining the specification of the last element and the
rest of a list, we define the reversing of a list by the following clauses:

rev([],[1).
rev(L, [E|ILR]) :- append(LE,[E]) = L, rev(LE,LR).

Now consider the goal “?- rev([a,b,c],R)”. Since the arguments of the
calls to the function append are never instantiated to ground terms, the residu-
ation principle cannot verify the corresponding residuation. Hence the answer
R=[c,b,a] is not computed and there is an infinite derivation path using the
residuation principle and applying the second clause infinitely many times.
On the other hand a functional-logic language based on the narrowing princi-
ple can solve this goal and has a finite search space [12]. Therefore we should
use narrowing instead of residuation in this example.

The last example raises the important question whether it is possible to
detect the cases where the (more efficient) residuation principle is able to
compute all answers. If this would be possible we can avoid the nondeter-
ministic and hence expensive narrowing principle in many cases and replace
it by computations based on the residuation principle without loosing any
answers. A simple criterion to the completeness of residuation is the ground-



ness of all residuating variables: if at the end of a computation all variables
occurring in residual function calls are bound to ground terms, then all resid-
uations can be evaluated and hence the answer substitution does not depend
on an unsolved residuation. Since the satisfaction of this criterion depends
on the data flow during program execution, an exact answer is recursively
undecidable. Therefore we present an approximation to this answer by ap-
plying abstract interpretation techniques to this kind of programs. Previous
approaches for abstract interpretation of logic programs (see, for instance,
[1, 7, 18]) depend on SLD-resolution as the operational semantics. Hence we
cannot directly apply these frameworks to our case. However it is possible to
develop a similar technique by considering unsolved residuations as part of
the current substitution.

In the next section we give a short description of the operational semantics
considered in this paper. The abstract domain and the abstract interpretation
algorithm for reasoning about residuating programs are presented in Section 3.
Finally, the correctness of our method is outlined in Section 4.

2 The residuation principle

In residuating logic programs terms are built from variables, constructors and
(defined) functions. Constructors (denoted by a, b, ¢, d) are used to compose
data structures, while defined functions (denoted by £, g, h) are operations on
these data structures. We do not require any formalism for the specification
of functions, i.e., they may be defined by equations or in a completely different
language (external or predefined functions). However, the following conditions
must be satisfied in order to reason about residuating logic programs:

1. A function call can be evaluated if all arguments are ground terms.

2. The result of the evaluation is a ground constructor term (containing
only constructors) or an error message (i.e., the computation cannot
proceed because of type errors, division by zero etc.).

The difference between residuating logic programs and ordinary logic pro-
grams shows up in the unification procedure: if a call to a defined function
f(t1,...,t,) should be unified with a term ¢, the function call is evaluated if
all arguments t1,...,t, are bound to ground terms and the unification pro-
ceeds with the evaluated term, otherwise the unification immediately succeeds
and the residuation f(t1,...,t,) =t is added. If all variables in ¢1,. .., ¢, will
be bound to ground terms in the further computation process, the residua-
tion f(t1,...,t,) =t will be immediately verified by evaluating the left-hand
side and comparing the result with the right-hand side. Precise descriptions
of this algorithm can be found in [3, 13] ([4] contains a more sophisticated
version) and therefore we omit the details here. The result of the residuating
unification algorithm is fail or a substitution/residuation pair (o, p) with

o={x1 = t1,..., Tk — tg} and p={s1=5,....,8m =5}



where each variable x; does not occur in ¢; or p and s; or si are unevaluable
(non-ground) function calls. In the entire computation o is part of the answer
substitution and p will be added to the unification problem in the next resolu-
tion step. The operational semantics of residuating logic programs considered
in this paper is similar to Prolog’s operational semantics (SLD-resolution with
leftmost selection rule) but with the difference that the standard unification
is replaced by a residuating unification algorithm. Thus the concrete domain
of computation C is not simply the set of all substitutions but a set of substi-
tution/residuation pairs, i.e.,
C = {(o,p) | 0 is a substition, p is a set of residuations}

where a residuation is an equation » = ' and r (or ) is a function call.
Since ground function calls are evaluated during unification, we assume in
the following that all elements (o, p) of the concrete domain C do not contain
function calls with ground terms in the residuation part p.
As an example consider the following residuating logic program:
q :- pX,Y,5), 1 = W-V, X = V¥W, Y = V+W, pick(V,W).
p(A,B,A+B).
pick(1,2).
If the initial goal is q, the following elements of the concrete domain are
computed during the processing of the first clause:
Before “p(X,Y,5)": (0, 0)

After “p(X,Y,5)": (B, {5=X+Y})

After “1 = W-V": (0, {5=X+Y, 1=W-V})

After “X = VxW": ({X > VW), {5=(V*W)+Y, 1=W-V})

After “Y = V+W": ({X = VAW, Y — V+W}, {5=(V*W)+(V+W), 1=W-V})

After “pick(V,W)”: ({X— 1%2, Y~ 142, V> 1, W 2}, ()
At the clause end the residuation set is empty since all functions could be
evaluated. Hence the initial goal is proved to be true.

From a semantical point of view residuations can be considered as con-
straints on substitutions and therefore the residuation framework could
be viewed as a special case of the CLP framework [14]. However, this
is not the case from an operational point of view. Since functions are
user-defined, there need not exist a constraint solver which checks the
satisfiablity of the accumulated residuations. E.g., the unsatisfiability of
{append(L1,L2)=[1], append(L2,L1)=[2]} is not detected by the unifica-
tion algorithms in [3, 4]. This would require a constraint solver for the defined
list operations. In fact, it is reasonable to integrate the residuation principle
into the CLP paradigm [19].

3 Abstract interpretation of residuating programs

In this section we present a method for checking whether the residuation part
of the answer to a goal is empty, i.e., whether the residuation principle is
complete w.r.t. a given program and goal. Since this problem is recursively



undecidable in general, we present an approximation to it based on a compile-
time analysis of the program. If this approximation yields a positive answer,
then it is ensured that all residuations can be solved at run time. In the
following we present the abstract domain and the motivation for it. The rela-
tion to the concrete domain and the correctness of the abstract interpretation
algorithm are discussed in Section 4 in more detail. We assume familiarity
with basic ideas of abstract interpretation techniques [1].

3.1 Abstract domain

There has been done a lot of work concerning the compile-time derivation of
run-time properties of logic programs (see, for instance, the collection [1]).
Since we have abstracted the different operational behaviour of residuating
logic programs into an additional component of the concrete domain, we can
use the well-known frameworks (e.g., [7, 18]) in a similar way. The heart
of an abstract interpretation procedure is an abstract domain which approxi-
mates subsets of the concrete domain by finite representations. An element of
the abstract domain describes common properties of a subset of the concrete
domain. The properties must be chosen so that they contain relevant propo-
sitions about the interesting run-time properties. So what are the abstract
properties in our case?

We are interested in unevaluated residuations at run time (second com-
ponent of the concrete domain). A residuation can be verified if the function
call in it can be evaluated. Since a function call can be evaluated if all ar-
guments are ground, we need some information about the variables in it and
the instantiation state of these variables in order to decide the emptiness of
the residuation set. Hence our abstract domain contains information about
the following properties:

Potential residuations: Residuations are generated by the unification of
terms. For instance, if variable X is bound to A+B and variable Y is bound
to 2 at run time, the unification of X and Y generates the residuation A+B=2.
Hence, in order to state properties of all residuations which may occur at run
time, we must know all potential function calls in the bindings of a program
variable. Moreover, we must also know the variables in this function call in
order to decide whether or not this function call can be evaluated. Therefore
our abstract domain contains elements of the form “Xwith+| { A,B}” meaning:
variable X may be bound to a term containing a call to function + which can
be evaluated if A and B are ground.

Dependencies between variables: Function calls can be evaluated if all
variables in it are bound to ground terms. Hence we must have some infor-
mation about the dependencies between variables. E.g., consider the goal

?- A+B=C, Cx2 =6, A=1, B=2.

During unification of C*2 and 6 the first term cannot be evaluated since C is
not ground. But the groundness of C depends on the groundness of A and B.



Thus we can deduce that the function call C*2 can be evaluated if A and B
are bound to ground terms. Hence our abstract domain contains the element
“Cif {A,B}”. In general, “Xif V” means that variable X is bound to a ground
term if all variables in V' are bound to ground terms.

Sharing between variables: The potential residuations can be copied be-
tween different variables in the unification process. E.g., consider the goal

7-Z=c(X), Y=f@), X=1Y, ..
After the unification of X and Y the variable Z contains the function call £ (A).
In order to manage correctly the potential residuations, we must store the

information that Z and X share a term. Hence our abstract domain contains
the element {X,Z} representing the sharing between X and Z.

Summarizing the previous discussion, our abstract domain A contains the el-
ement | (representing the empty subset of the concrete domain) and sets
containing the following elements (such sets are called abstractions and de-
noted by A, Ay etc):
Element: | Meaning:
XifV X is ground if all variables in the variable set V' are ground

Xwithf|y | X may be bound to a term containing a call to £ which can be
evaluated if all variables in V' are ground

f there may be an unevaluated function call to £ depending on
arbitrary variables

{X,Y} X and Y may share a term

Obviously, A is finite if the set of variables and function symbols is finite.
Since we use only program variables and functions occurring in the program
in the abstract domain, A is finite in case of a finite program. For conve-
nience we simply write “X” instead of “X if ()”. Hence an element “X” in an
abstraction means that variable X is bound to a ground term if it does not
contain any function call.

Given an abstraction A, a variable X is called function-free in A if A does
not contain elements of the form “X with f|yy” and “f”. In the subset of
the concrete domain corresponding to A a function-free variable can only be
interpreted as a term without unevaluable function calls (compare Section 4).

To present a simple description of the abstract interpretation algorithm,
we will sometimes generate abstractions containing redundant information.
The following normalization rules eliminate some redundancies in abstrac-
tions:

Normalization rules for abstractions:
AUu{Z, XitVU{Z}} — Au{Z, XitV} if Z is function-free in A
AU{Z, Xwith flyuiz ) — AU{Z, Xwith f|y} if Z is function-free in A
AU{X with flp} — A
AUu{XitV, XitVh} — AU{XifVi} if Vi CVy
AU{X, {X,Y}} — AU{X}

The additional condition in the first two rules ensures that Z is bound to a



ground term containing no unevaluable function calls. We call an abstrac-
tion A normalized if none of these normalization rules is applicable to A.
Later we will see that the normalization rules are invariant w.r.t. the concrete
substitutions/residuations corresponding to abstractions. Therefore we can
assume that we compute only with normalized abstractions in the abstract
interpretation algorithm.

In order to keep the abstract interpretation algorithm simple, we assume
that predicate calls and clause heads have the form p(Xi,...,X,) where
all X; are distinct (similarly to the example in [7]). All other literals in
the clause bodies and goals have the foom X =Y, X = ¢(Y,...,Y,) or
X = f(Y1,...,Y,). It is easy to see that every residuating logic program can
be transformed into a flat residuating logic program satisfying the above re-
strictions without changing the answer behaviour. For instance, the residuat-
ing logic program in Section 2 can be transformed into the following equivalent
flat program:

q :- Z=5, p(X,Y,Z), T=1, T=W-V, X=V*W, Y=V+W, pick(V,W).

p(A,B,C) :— C=A+B.

pick(A,B) :- A=1, B=2.

In the following we assume that all programs are in the required form.

3.2 The abstract interpretation algorithm

The abstract interpretation algorithm is based on several operations on the
abstract domain. The first operation restricts an abstraction A to a set of
variables W. It will be used in a predicate call to omit the information about
variables not passed from the predicate call to the applied clause:
call _restrict(L, W)= 1
call_restrict(A,W)={X € A| X e W}
U{Xwithfly € A | {X}UV CW}
U{f|feAor Xwithf|ly € Awith X e W,V g W}
U{{X,Y}€A| X, Y e W}
The restriction operation for predicate calls transforms an abstraction element
X with f|y into the element f if the dependent variables are not contained in
W, i.e., it is noted that there may be an unevaluated function call to f but the
possible dependencies are too complex for the abstract analysis. Similarly, an
abstraction element of the form X if V' is passed to the clause only if V' = ().
A similar operation is needed at the clause end to forget the abstract in-
formation about local clause variables. Hence we define:
exit_restrict(L, W) = L1
erit_restrict( A, W) ={X itV e A | {X}UV CW}
U{Xwithfly € A | {X}UV CW}
U{f|f€Aor Xuithfly € Awith {X} UV £ W}
U{{X, Y} e A| XY e W}
The restriction operation for clause exits transforms an abstraction element
X with f|y into the element f if one of the involved variables is not contained



in W, i.e., it is noted that there may be an unevaluated function call to f
which depends on local variables at the end of the clause.
The following operation computes the remaining abstract information of
a predicate call restriction call_restrict(A, W) in order to combine it after a
predicate call:
rest(L,W) = 1
rest(A, W) {XitVeA|XgWorV #0}
U{Xwithfly € A| X ¢ W}
U{{X,)Y}eA| XgWorY ¢gW}

The least upper bound operation is used to combine the results of different
clauses for a predicate call:

luAa = A

Al = A

A UAy = {Xif‘flUVQ | XitVi € A, XifV, EAQ}
U {X with f|y | Xwith f|y € A; or X with f|y € Ay}
U{f|f€A101‘f€A2}
U{{X,Y} | {X,)Y}eA or {X,Y} € Ay}

Now we are able to define the abstract unification algorithm for the abstract
interpretation of equations occurring in clause bodies or goals. Abstract unifi-
cation is a function au(«, t1, t2) which takes an element of the abstract domain
a € A and two terms tq,%9 as input and produces another abstract domain
element as the result. Because of our restrictions on goal equations, the fol-
lowing definition is sufficient:'

au(J_, tl, tg) =1

au(A, X, X)=A

au(A, X,Y) =closure(AU{X it {Y}, Vit {X}, {X,Y}}) ifX#Y
au(A, X,c(Y1,...,Y,)) = closure(AU{X it {Y1,...,Y,}, Yiif {X},...,

Yn if {X}7 {Xa Yl}a RS {Xa YTL}})
au(A, X, f(Y1,...,Y,)) = cosure(AU{X if {Y7,..., Y, }, X Withf|{y1’___’yn}})
In this definition and in the rest of this paper closure(A) denotes the least
set A’ containing A which is closed under the following rules for transitivity
and distribution of sharing information:

{(X,2Y}eA, {V,Z} e A = {X,Z}e A
{X,Y}e A, Xuithfly € A/ = Ywithf|y € A
Now we can present the algorithm for the abstract interpretation of a resid-
uating logic program in flat form. It is specified as a function ai(«, L) which
takes an abstract domain element o and a goal literal L and yields a new
abstract domain element as result. Clearly, ai(L,L) =1 and ai(A,t =1t') =

au(A,t,t'"). The interesting case is the abstract interpretation of a predicate
call ai(A,p(X1,...,Xy)) which is computed by the following steps:

!For simplicity we omit the occur check in the abstract unification.



1. Let p(Zy,...,Zy) :=Ly,...,L; be a clause for predicate p (if necessary,
rename the clause variables such that they are disjoint from X;,..., X,,).
Compute A,y = call_restrict(A,{X1,...,X,})

Ag = (replace all X; by Z; in A.yy)

Ay = ai(Ag, Ly); Ay = ai(Ay, Ly); ...; Ay = ai(Ag_1, Ly)
Aoyt = exit_restrict(Ag,{Z1,...,Zn})

Aerit = (replace all Z; by X; in Agy)

2. Let AL .,,..., A™ .. be the exit substitutions of all clauses for p as
m

computed in step 1. Then define Agyccess = Aémt U...uAZ,
3. ai(A,p(X1,...,Xp)) = closure(Asyccess U rest(A, {X1,...,Xn}))
if Asuccess 7éJ—7 else L

Hence a clause is interpreted in the following way. Firstly, the call abstraction
is computed, i.e., the information contained in the predicate call abstraction
is restricted to the argument variables (Aq;). The variables in this call ab-
straction are mapped to the corresponding variables in the applied clause
(Ap). Then each literal in the clause body is interpreted. The resulting ab-
straction (Ay) is restricted to the variables in the clause head, i.e., we forget
the information about the local variables in the clause. Potential residua-
tions which are unsolved at the clause end are passed to the abstraction A,y
by the exit_restrict operation. In the last step the clause variables are re-
named into the variables of the predicate call (A¢zi;). If all clauses defining
the called predicate p are interpreted in this way, all possible interpretations
are combined by the least upper bound of all abstractions (Agyccess). The
combination of this abstraction with the information which was forgotten by
the restriction at the beginning of the predicate call yields the abstraction
after the predicate call (step 3).

The abstract interpretation algorithm described above is useless in case of
recursive programs due to the nontermination of the algorithm. This classical
problem is solved in all frameworks for abstract interpretation and therefore
we do not want to develop a new solution to this problem but use one of
the well-known solutions. Following Bruynooghe’s framework [7] we can con-
struct a rational abstract AND-OR-tree representing the computation of the
abstract interpretation algorithm. During the construction of the tree we
check before the interpretation of a predicate call P whether there is an an-
cestor node P’ with a call to the same predicate and the same call abstraction
(up to renaming of variables). If this is the case we take the success abstrac-
tion of P’ (or L if it is not available) as the success abstraction of P instead
of interpreting P. If the further abstract interpretation computes a success
abstraction A’ for P’ which differs from the success abstraction used for P,
we start a recomputation beginning at P with A’ as new success abstraction.
This iteration terminates because all operations used in the abstract inter-
pretation are monotone (w.r.t. the order on A defined in Section 4) and the
abstract domain is finite.



3.3 An example

The following example is the flat form of a Le Fun program presented in [3]:
q(Z) :- p(X,Y,Z), X=V-W, Y=V+W, pick(V,W).
p(A,B,C) :- C=A*B.
pick(A,B) :- A=9, B=3.
The abstract interpretation algorithm computes the following abstractions
w.r.t. the initial goal q(T) and the initial abstraction () (specifying the set of
all substitutions without unevaluated function calls):

ai(0,q(T)):

ai(0,p(X,Y,Z)): ai(p,C=A*B) = {Cif {A,B}, Cwith *|{A,B}}

ai(0,p(X,Y,2)) = {Zif {X,Y}, Zwith*|{X,Y}} =: A

ai(Al, X=V—W) = {Z if {X,Y}, Xif {V,W}, Z With*|{X,Y}’ Xwith—|{v’w}}=:A2

ai(Ag,Y=V+W) = {Zif {X,Y}, Xif {V,W}, Yif {V, W},

ZWith*|{X,Y}’ XWith_|{V,W}’ YWith+|{V,W}} =: A3
ai(As,pick(V,W)): ai((,A=9) = {A}
ai({A},B=3) = {4, B}
ai(Asz,pick(V,W)) = {V, W, Zif {X,Y}, Xif {V,W}, Yif {V,W},
ij‘th*|{X,Y}’ XWith_|{V,W}’ YWith+|{V,W}}
"RV, W, 2, X, Y)

ai(0,q(T)) = {T}
Hence the computed success abstraction is {T} meaning that after a successful
computation of the goal q(T) the variable T is bound to a ground term and
the residuation set is empty, i.e., the residuation principle allows to compute
a fully evaluated answer. Similarly, the completeness of the residuation prin-
ciple can be proved by our algorithm for all other residuating logic programs
presented in [3]. A more complex example involving recursion can be found
in [13].

4 Correctness of the abstract interpretation algo-
rithm

In this section we will discuss the correctness of the presented abstract inter-
pretation algorithm by relating the abstract domain to the concrete domain.
Due to lack of space we omit the proofs of the theorems. The interested reader
will find the proofs in [13].

To relate the computed abstract properties of the program to the concrete
run-time behaviour, we have to define a concretisation function y:A — 2€
which maps an abstraction into a subset of the concrete domain. The most
difficult point in the definition of v is the correct interpretation of an abstrac-
tion “Xif V”. The intuitive meaning is “the interpretation of X is ground if
all interpretations of V' are ground”. To be more precise, “X if V' describes a

10



dependency between the instantiation of X and the instantiation of the vari-
ables in V, i.e., we could define:

(*) If XifV € A and (o, p) € v(A), then var(c(X)) C var(c(V))

(var(€) denotes the set of all variables occurring in the syntactic construc-
tion £). Such a definition seems to justify the generation of the abstractions
“Xif {Y}” and “Yif {X}” in the abstract unification algorithm if X is unified
with Y. But this interpretation is not true if X or Y are bound to terms con-
taining unevaluated residuations. E.g., if X is bound to £ (B) and Y is bound
to c(A) during program execution, then the computation of the literal X=Y
yields the substitution/residuation pair ((), {£ (B)=c(A)}). Thus the variables
contained in the bindings of X and Y are not identical after the unification
step. Therefore we must weaken (*) to the condition that only the variables
of o(X) occurring outside function calls are contained in the variables of o (V')
w.r.t. to the residuation p.

To give a precise description of the condition, we need the following defini-
tions. By lvar(t) we denote the set of all variables occurring outside function
calls in the term ¢:

lvar(X) = {X}
lvar(c(ty,...,tn)) = lvar(ty) U---Ulvar(ty,)
lvar(f(t1,...,tn)) = 0

The extension of a set of variables V' w.r.t. to the residuation p is defined by

?

var,(V) =V U{lvar(e) | f(t) =e € por e= f(t) € p with var(t) CV}

(where ¢ denotes the argument sequence t1,...,t,). Note that var,(0) = 0 if p
does not contain unevaluated ground residual function calls (which do not oc-
cur in our concrete domain) and for an empty residuation we have vary(V') =
V. The intuition of this definition is that we add to a set of variables V'
all these variables which will be ground during the computation process if all
variables in V" are ground. For instance, if p = {£ (X)=c(Y), f(X)=c(Z)}, then
var,({X}) = {X,Y,Z}. We extend the function var, to finite sets of terms by

var,({t1,...,tx}) = var,(var({t1,...,tx}))

Since we are interested in the property whether a function call occurring in a
term can be completely evaluated, it is sufficient to look at the main function
calls and not at function calls which occur inside other function calls (this is
due to the fact that a unification between a function call and another term
does not bind any variables in this call). Therefore we say a term ¢ occurs
directly in a term t' if ¢t occurs in ¢’ outside a function call. For instance, the
term X + (Y % 2) occurs directly in the term ¢(X + (Y % 2)) but the subterm
(Y % 2) is not a direct occurrence.

Now we are able to define the semantics of abstractions by the concretisa-
tion function y: A4 — 2 (where 7 denotes the argument sequence t1,...,t,):

11



y(L) =10
Y(A) ={(o,p) €C|1. X itV € A= lvar(o(X)) Cwvar,(o(V))
2. f(t) occurs directly in o(X) or p with var () # ()
= f €A or var(t) Cvar(o(V)) for some X with f|yy € A
3. lvar(o(X)) Nlvar(o(Y)) #0 for X #Y = {X, Y} € A }

Condition 1 implies for X if V € A that all variables occurring outside func-
tion calls in the current instantiation of X are ground if all variables in V are
instantiated to ground terms. Condition 2 ensures that all unevaluated func-
tion calls in variable bindings and in residuations are contained in A. Since
we are interested in potential residuations, it is sufficient to look at func-
tion calls which occur directly in some variable binding (and not at function
calls nested in other function calls). Hence the sharing information is also
restricted to lvar instead of var (condition 3). Note that for an unevaluated
function call in the residuation part it is sufficient that there is an arbitrary
variable X which cover this function call whereas for an unevaluated func-
tion call in the binding of a variable X there must be an abstraction element
X with f|y with the same variable. This is necessary for passing the correct
information about potential residuations in case of a predicate call (compare
call restriction operation).

From this interpretation it is clear that an abstraction without elements
of the form “X with f|y” or “f” can only be interpreted as a fully evalu-
ated pair (o, p) if p = 0 and o does not contain unevaluable function calls.
This argument has been used to state the completeness of the example in
Section 3.3.

Due to this semantics of abstractions it can be proved that the normal-
ization rules defined on abstractions in Section 3.1 are invariant w.r.t. the
concrete interpretation. The following lemma justifies the application of the
normalization rules.

Lemma 4.1 If A and A" are abstractions with A — A’ then y(A) = v(A").

For the termination of the abstract interpretation algorithm it is important
that all operations on the abstract domain are monotone. Therefore we define
the following order relation on normalized abstractions:

(a) lCaforallae A

(b)) ACA <= 1. XiftV'eA = FVCV' with X itV eA
2. Xwithfly € A = Xwithf|y € A
3. feA = feA
4. {X,Y}eA = {X,Y}ec A

It is easy to prove that C is a reflexive, transitive and anti-symmetric relation
on normalized abstractions, the operation U defined in Section 3.2 computes
the least upper bound of two abstractions, and ~ is monotone.
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The correctness of the abstract interpretation algorithm is based on the
correctness of each component of the algorithm. The entire proof can be con-
structed following the ideas in [7]. Due to the complex abstract domain the
detailed proofs require some effort and cannot be shown in this paper. In
the following we only state an important theorem which is the basis for the
correctness of the abstract interpretation algorithm:

Theorem 4.2 (Correctness of abstract unification) Let X be a vari-
able, t be a term of the formt =Y, t = ¢(Y1,...,Y,) ort = f(Y1,...,Y})
and A be an abstraction. Then for all (o,p) € v(A) and all unifiers (o', p')
for o(X) and o(t), (o' oo, p' Ud'(p)) € v(au(A4, X,t)).

5 Conclusions and related work

In this paper we have considered an operational mechanism for the integration
of functions into logic programs. This mechanism, called residuation, extends
the standard unification algorithm used in SLD-resolutions by delaying unifi-
cations between unevaluable function calls and other terms. If all variables of
a delayed function call are bound to ground terms, then this function call is
evaluated in order to verify the delayed unification. This residuation principle
yields a nice operational behaviour for many functional logic programs but has
two disadvantages. One problem is that the answer to a query may contain
unsolved and complex residuations for which the user cannot easily decide
their solvability. A further problem is that the search space of a residuating
logic program can be infinite in contrast to the equivalent logic program. This
case can occur if the residuation principle generates more and more residua-
tions which are simultaneously not solvable. Hence it is important to check
at compile time whether or not this case can occur at run time. Since this
is undecidable in general, we have presented an approximation to this prob-
lem based on the abstract interpretation of residuating logic programs. Our
algorithm manages information about all possible residuations together with
their argument variables and the dependencies between different variables in
order to compute groundness information. Hence the algorithm is able to
infer which residuations can be completely solved at run time.

We can also interpret our algorithm as an attempt to compile functional
logic programs from languages with a complete but often complex operational
semantics (e.g., EQLOG [10], SLOG [9], BABEL [16], or ALF [11]) into a
more efficient execution mechanism without loosing completeness. For this
purpose we check a given functional logic program by our algorithm. If the
algorithm computes an abstraction containing no potential residuations, we
can safely execute the program with the residuation principle. Otherwise we
must apply the nondeterministic narrowing principle to compute all answers.
This method can also be applied to individual parts of the program so that
some parts are executed by residuation and other parts by narrowing.

The operational semantics considered in this paper originates from Le
Fun [3]. The unification procedure is very similar to S-unification [4]. How-
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ever, S-unification immediately reports an error if some residuations cannot
be evaluated after the unification of a literal with a clause head. E.g., the ex-
ample programs in section 2 and 3.3 cannot be evaluated using S-unification.
Therefore Boye has extended this framework to computation with delayed
residuations [6]. He has also characterized a class of operationally complete
programs based on notions from attribute grammars. Compared to our ab-
stract interpretation procedure, Boye’s characterization is mainly based on
the syntactic structure of the program while we have tried to approximate
the operational behaviour. Hence we obtain positive results for programs
where Boye’s check fails. E.g., our method yields a positive answer to the
completeness question of the program

p(A,A+A).

p(A+A,A).

w.r.t. the initial goal p(2+2,1+1) while Boye’s check fails (since there are
external functors in input positions).

Marriott, Sendergaard and Dart [15] have also presented an abstract in-
terpretation algorithm for analysing logic programs with delayed evaluation.
The purpose of their work was to check logic programs with negation for
floundering, i.e., whether a delayed evaluation of negated subgoals is com-
plete. This has some similarities to our framework but it is a simpler problem
because a delayed evaluation of a negated literal cannot bind any goal vari-
ables since this literal is evaluated only if all arguments are ground. In our
context it is important that a delayed evaluation of a residuation can bind
variables in order to enable the evaluation of other residuations (see the exam-
ple in Section 3.3). Therefore we have to manage the dependencies between
residuations and their variables in order to analyse the data flow in this case.

Since we must restrict all abstract information to a finite domain, our
algorithm cannot manage all dependencies between residuations and their
variables. If a residuation depends only on variables of one clause and these
variables are bound to ground terms at the end of the clause, the algorithm
detects the solvability of the residuation. But if a residuation depends on
local variables from different clauses, then the algorithm cannot manage it
and therefore it simply infers the unsolvability of this residuation. It seems
to be possible to improve the algorithm at this point by refining the abstract
domain (which makes the definition of the concretisation function and the
correctness proofs more complex).

Another interesting topic for further research is the question whether it
is possible to adapt our proposed method to the abstract interpretation of
other logic languages which are not based on SLD-resolution with the leftmost
selection rule. Such a method could be applied to analyse logic programs with
delay primitives.
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