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Abstra
t

Residuation is an operational me
hanism for the integration of fun
tions into

logi
 programming languages. The residuation prin
iple delays the evaluation

of fun
tions during the uni�
ation pro
ess until the arguments are suÆ
iently

instantiated. This has the advantage that the deterministi
 nature of fun
-

tions is preserved but the disadvantage of in
ompleteness: if the variables in a

delayed fun
tion 
all are not instantiated by the logi
 program, this fun
tion


an never be evaluated and some answers whi
h are logi
al 
onsequen
es of

the program are lost. In this paper we present a method for dete
ting su
h sit-

uations. The method is based on a 
ompile-time analysis of the program and

approximates the possible residuations and instantiation states of variables

during program exe
ution.

1 Introdu
tion

Many proposals for the integration of fun
tional and logi
 programming lan-

guages have been made during re
ent years (see [8℄ for a 
olle
tion). From an

operational point of view these proposals 
an be partitioned into two 
lasses:

approa
hes with a 
omplete operational semanti
s and a nondeterministi


sear
h (narrowing) for solving equations with fun
tional expressions (EQLOG

[10℄, SLOG [9℄, K-LEAF [5℄, BABEL [16℄, ALF [11℄, among others), and ap-

proa
hes whi
h try to avoid nondeterministi
 
omputations for fun
tional

expressions by redu
ing fun
tional expressions only if the arguments are suf-

�
iently instantiated (Funlog [20℄, Le Fun [3℄, LIFE [2℄, NUE-Prolog [17℄,

among others). The former approa
hes are 
omplete under some well-de�ned


onditions (e.g., 
anoni
ity of the axioms), i.e., they 
ompute all answers

whi
h 
an be logi
ally inferred from the given program. The pri
e for this


ompleteness is an in
reased sear
h spa
e sin
e there may be several in
om-

parable uni�ers of two terms if these terms 
ontain unevaluated fun
tional

expressions. The latter approa
hes try to avoid this nondeterminism in the

uni�
ation pro
ess. In these approa
hes a term is redu
ed to normal form be-

fore it is uni�ed with another term, i.e., fun
tional expressions are evaluated

(if possible) before uni�
ation. If a fun
tion 
annot be evaluated be
ause the

arguments are not suÆ
iently instantiated, the uni�
ation 
annot pro
eed.

Instead of 
ausing a failure, the evaluation of the fun
tion is delayed until the

arguments will be instantiated. This me
hanism is 
alled residuation in Le

Fun [3℄. For instan
e, 
onsider the following program (we write residuating

logi
 programs in the usual Prolog syntax but it is allowed to use arbitrary

evaluable fun
tions in terms):
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q :- p(X,Y,5), pi
k(X,Y).

p(A,B,A+B).

pi
k(2,3).

together with the goal \?- q". After applying the �rst 
lause to the goal,

the literals p(X,Y,5) and p(A,B,A+B) are uni�ed. This binds A to X and B

to Y, but the uni�
ation of X+Y and 5 is not su

essful sin
e the arguments

of the fun
tion 
all X+Y are not instantiated to numbers. Hen
e this uni�
a-

tion 
auses the generation of the residuation X+Y=5 whi
h will be proved (or

disproved) if X and Y will be bound to ground terms. We pro
eed by proving

the literal pi
k(X,Y) whi
h binds X and Y to 2 and 3, respe
tively. As a


onsequen
e, the instantiated residuation 2+3=5 
an be veri�ed and therefore

the entire goal has been proved.

The residuation prin
iple seems to be preferable to the narrowing ap-

proa
hes sin
e it preserves the deterministi
 nature of fun
tions. However,

it fails to 
ompute all answers if fun
tions are used in a logi
 programming

manner. For instan
e, 
onsider the fun
tion append for 
on
atenating two

lists. In a fun
tional language with pattern-mat
hing it 
an be de�ned by the

following equations (we use the Prolog notation for lists):

append([℄, L) = L

append([E|R℄,L) = [E|append(R,L)℄

From a logi
 programming point of view we 
an 
ompute the last element E

of a given list L by solving the equation append(_,[E℄)=L. Sin
e the �rst

argument of the left-hand side of this equation will never be instantiated,

residuation fails to 
ompute the last element with this equation whereas nar-

rowing 
omputes the unique value for E [12℄. Similarly, we 
an spe
ify by the

equation append(LE,[_℄)=L a list LE whi
h is the result of deleting the last

element in the list L. Combining the spe
i�
ation of the last element and the

rest of a list, we de�ne the reversing of a list by the following 
lauses:

rev([℄,[℄).

rev(L, [E|LR℄) :- append(LE,[E℄) = L, rev(LE,LR).

Now 
onsider the goal \?- rev([a,b,
℄,R)". Sin
e the arguments of the


alls to the fun
tion append are never instantiated to ground terms, the residu-

ation prin
iple 
annot verify the 
orresponding residuation. Hen
e the answer

R=[
,b,a℄ is not 
omputed and there is an in�nite derivation path using the

residuation prin
iple and applying the se
ond 
lause in�nitely many times.

On the other hand a fun
tional-logi
 language based on the narrowing prin
i-

ple 
an solve this goal and has a �nite sear
h spa
e [12℄. Therefore we should

use narrowing instead of residuation in this example.

The last example raises the important question whether it is possible to

dete
t the 
ases where the (more eÆ
ient) residuation prin
iple is able to


ompute all answers. If this would be possible we 
an avoid the nondeter-

ministi
 and hen
e expensive narrowing prin
iple in many 
ases and repla
e

it by 
omputations based on the residuation prin
iple without loosing any

answers. A simple 
riterion to the 
ompleteness of residuation is the ground-
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ness of all residuating variables: if at the end of a 
omputation all variables

o

urring in residual fun
tion 
alls are bound to ground terms, then all resid-

uations 
an be evaluated and hen
e the answer substitution does not depend

on an unsolved residuation. Sin
e the satisfa
tion of this 
riterion depends

on the data 
ow during program exe
ution, an exa
t answer is re
ursively

unde
idable. Therefore we present an approximation to this answer by ap-

plying abstra
t interpretation te
hniques to this kind of programs. Previous

approa
hes for abstra
t interpretation of logi
 programs (see, for instan
e,

[1, 7, 18℄) depend on SLD-resolution as the operational semanti
s. Hen
e we


annot dire
tly apply these frameworks to our 
ase. However it is possible to

develop a similar te
hnique by 
onsidering unsolved residuations as part of

the 
urrent substitution.

In the next se
tion we give a short des
ription of the operational semanti
s


onsidered in this paper. The abstra
t domain and the abstra
t interpretation

algorithm for reasoning about residuating programs are presented in Se
tion 3.

Finally, the 
orre
tness of our method is outlined in Se
tion 4.

2 The residuation prin
iple

In residuating logi
 programs terms are built from variables, 
onstru
tors and

(de�ned) fun
tions. Constru
tors (denoted by a, b, 
, d) are used to 
ompose

data stru
tures, while de�ned fun
tions (denoted by f, g, h) are operations on

these data stru
tures. We do not require any formalism for the spe
i�
ation

of fun
tions, i.e., they may be de�ned by equations or in a 
ompletely di�erent

language (external or prede�ned fun
tions). However, the following 
onditions

must be satis�ed in order to reason about residuating logi
 programs:

1. A fun
tion 
all 
an be evaluated if all arguments are ground terms.

2. The result of the evaluation is a ground 
onstru
tor term (
ontaining

only 
onstru
tors) or an error message (i.e., the 
omputation 
annot

pro
eed be
ause of type errors, division by zero et
.).

The di�eren
e between residuating logi
 programs and ordinary logi
 pro-

grams shows up in the uni�
ation pro
edure: if a 
all to a de�ned fun
tion

f(t

1

; : : : ; t

n

) should be uni�ed with a term t, the fun
tion 
all is evaluated if

all arguments t

1

; : : : ; t

n

are bound to ground terms and the uni�
ation pro-


eeds with the evaluated term, otherwise the uni�
ation immediately su

eeds

and the residuation f(t

1

; : : : ; t

n

) = t is added. If all variables in t

1

; : : : ; t

n

will

be bound to ground terms in the further 
omputation pro
ess, the residua-

tion f(t

1

; : : : ; t

n

) = t will be immediately veri�ed by evaluating the left-hand

side and 
omparing the result with the right-hand side. Pre
ise des
riptions

of this algorithm 
an be found in [3, 13℄ ([4℄ 
ontains a more sophisti
ated

version) and therefore we omit the details here. The result of the residuating

uni�
ation algorithm is fail or a substitution/residuation pair h�; �i with

� = fx

1

7! t

1

; : : : ; x

k

7! t

k

g and � = fs

1

= s

0

1

; : : : ; s

m

= s

0

m

g
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where ea
h variable x

i

does not o

ur in t

j

or � and s

i

or s

0

i

are unevaluable

(non-ground) fun
tion 
alls. In the entire 
omputation � is part of the answer

substitution and � will be added to the uni�
ation problem in the next resolu-

tion step. The operational semanti
s of residuating logi
 programs 
onsidered

in this paper is similar to Prolog's operational semanti
s (SLD-resolution with

leftmost sele
tion rule) but with the di�eren
e that the standard uni�
ation

is repla
ed by a residuating uni�
ation algorithm. Thus the 
on
rete domain

of 
omputation C is not simply the set of all substitutions but a set of substi-

tution/residuation pairs, i.e.,

C = fh�; �i j � is a substition, � is a set of residuationsg

where a residuation is an equation r = r

0

and r (or r

0

) is a fun
tion 
all.

Sin
e ground fun
tion 
alls are evaluated during uni�
ation, we assume in

the following that all elements h�; �i of the 
on
rete domain C do not 
ontain

fun
tion 
alls with ground terms in the residuation part �.

As an example 
onsider the following residuating logi
 program:

q :- p(X,Y,5), 1 = W-V, X = V*W, Y = V+W, pi
k(V,W).

p(A,B,A+B).

pi
k(1,2).

If the initial goal is q, the following elements of the 
on
rete domain are


omputed during the pro
essing of the �rst 
lause:

Before \p(X,Y,5)": h;; ;i

After \p(X,Y,5)": h;; f5=X+Ygi

After \1 = W-V": h;; f5=X+Y; 1=W-Vgi

After \X = V*W": hfX 7! V*Wg; f5=(V*W)+Y; 1=W-Vgi

After \Y = V+W": hfX 7! V*W; Y 7! V+Wg; f5=(V*W)+(V+W); 1=W-Vgi

After \pi
k(V,W)": hfX 7! 1*2; Y 7! 1+2; V 7! 1; W 7! 2g; ;i

At the 
lause end the residuation set is empty sin
e all fun
tions 
ould be

evaluated. Hen
e the initial goal is proved to be true.

From a semanti
al point of view residuations 
an be 
onsidered as 
on-

straints on substitutions and therefore the residuation framework 
ould

be viewed as a spe
ial 
ase of the CLP framework [14℄. However, this

is not the 
ase from an operational point of view. Sin
e fun
tions are

user-de�ned, there need not exist a 
onstraint solver whi
h 
he
ks the

satis�ablity of the a

umulated residuations. E.g., the unsatis�ability of

fappend(L1,L2)=[1℄; append(L2,L1)=[2℄g is not dete
ted by the uni�
a-

tion algorithms in [3, 4℄. This would require a 
onstraint solver for the de�ned

list operations. In fa
t, it is reasonable to integrate the residuation prin
iple

into the CLP paradigm [19℄.

3 Abstra
t interpretation of residuating programs

In this se
tion we present a method for 
he
king whether the residuation part

of the answer to a goal is empty, i.e., whether the residuation prin
iple is


omplete w.r.t. a given program and goal. Sin
e this problem is re
ursively
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unde
idable in general, we present an approximation to it based on a 
ompile-

time analysis of the program. If this approximation yields a positive answer,

then it is ensured that all residuations 
an be solved at run time. In the

following we present the abstra
t domain and the motivation for it. The rela-

tion to the 
on
rete domain and the 
orre
tness of the abstra
t interpretation

algorithm are dis
ussed in Se
tion 4 in more detail. We assume familiarity

with basi
 ideas of abstra
t interpretation te
hniques [1℄.

3.1 Abstra
t domain

There has been done a lot of work 
on
erning the 
ompile-time derivation of

run-time properties of logi
 programs (see, for instan
e, the 
olle
tion [1℄).

Sin
e we have abstra
ted the di�erent operational behaviour of residuating

logi
 programs into an additional 
omponent of the 
on
rete domain, we 
an

use the well-known frameworks (e.g., [7, 18℄) in a similar way. The heart

of an abstra
t interpretation pro
edure is an abstra
t domain whi
h approxi-

mates subsets of the 
on
rete domain by �nite representations. An element of

the abstra
t domain des
ribes 
ommon properties of a subset of the 
on
rete

domain. The properties must be 
hosen so that they 
ontain relevant propo-

sitions about the interesting run-time properties. So what are the abstra
t

properties in our 
ase?

We are interested in unevaluated residuations at run time (se
ond 
om-

ponent of the 
on
rete domain). A residuation 
an be veri�ed if the fun
tion


all in it 
an be evaluated. Sin
e a fun
tion 
all 
an be evaluated if all ar-

guments are ground, we need some information about the variables in it and

the instantiation state of these variables in order to de
ide the emptiness of

the residuation set. Hen
e our abstra
t domain 
ontains information about

the following properties:

Potential residuations: Residuations are generated by the uni�
ation of

terms. For instan
e, if variable X is bound to A+B and variable Y is bound

to 2 at run time, the uni�
ation of X and Y generates the residuation A+B=2.

Hen
e, in order to state properties of all residuations whi
h may o

ur at run

time, we must know all potential fun
tion 
alls in the bindings of a program

variable. Moreover, we must also know the variables in this fun
tion 
all in

order to de
ide whether or not this fun
tion 
all 
an be evaluated. Therefore

our abstra
t domain 
ontains elements of the form \X with+j

fA,Bg

" meaning:

variable X may be bound to a term 
ontaining a 
all to fun
tion + whi
h 
an

be evaluated if A and B are ground.

Dependen
ies between variables: Fun
tion 
alls 
an be evaluated if all

variables in it are bound to ground terms. Hen
e we must have some infor-

mation about the dependen
ies between variables. E.g., 
onsider the goal

?- A+B = C, C*2 = 6, A = 1, B = 2.

During uni�
ation of C*2 and 6 the �rst term 
annot be evaluated sin
e C is

not ground. But the groundness of C depends on the groundness of A and B.
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Thus we 
an dedu
e that the fun
tion 
all C*2 
an be evaluated if A and B

are bound to ground terms. Hen
e our abstra
t domain 
ontains the element

\C if fA,Bg". In general, \X ifV " means that variable X is bound to a ground

term if all variables in V are bound to ground terms.

Sharing between variables: The potential residuations 
an be 
opied be-

tween di�erent variables in the uni�
ation pro
ess. E.g., 
onsider the goal

?- Z = 
(X), Y = f(A), X = Y, : : :

After the uni�
ation of X and Y the variable Z 
ontains the fun
tion 
all f(A).

In order to manage 
orre
tly the potential residuations, we must store the

information that Z and X share a term. Hen
e our abstra
t domain 
ontains

the element fX,Zg representing the sharing between X and Z.

Summarizing the previous dis
ussion, our abstra
t domain A 
ontains the el-

ement ? (representing the empty subset of the 
on
rete domain) and sets


ontaining the following elements (su
h sets are 
alled abstra
tions and de-

noted by A, A

1

et
):

Element: Meaning:

X ifV X is ground if all variables in the variable set V are ground

X withfj

V

X may be bound to a term 
ontaining a 
all to f whi
h 
an be

evaluated if all variables in V are ground

f there may be an unevaluated fun
tion 
all to f depending on

arbitrary variables

fX,Yg X and Y may share a term

Obviously, A is �nite if the set of variables and fun
tion symbols is �nite.

Sin
e we use only program variables and fun
tions o

urring in the program

in the abstra
t domain, A is �nite in 
ase of a �nite program. For 
onve-

nien
e we simply write \X" instead of \X if ;". Hen
e an element \X" in an

abstra
tion means that variable X is bound to a ground term if it does not


ontain any fun
tion 
all.

Given an abstra
tion A, a variable X is 
alled fun
tion-free in A if A does

not 
ontain elements of the form \X withf j

V

" and \f". In the subset of

the 
on
rete domain 
orresponding to A a fun
tion-free variable 
an only be

interpreted as a term without unevaluable fun
tion 
alls (
ompare Se
tion 4).

To present a simple des
ription of the abstra
t interpretation algorithm,

we will sometimes generate abstra
tions 
ontaining redundant information.

The following normalization rules eliminate some redundan
ies in abstra
-

tions:

Normalization rules for abstra
tions:

A [ fZ; X ifV [ fZgg ! A [ fZ; X ifV g if Z is fun
tion-free in A

A [ fZ; X with f j

V [fZg

g ! A [ fZ; X with f j

V

g if Z is fun
tion-free in A

A [ fX withf j

;

g ! A

A [ fX ifV

1

; X ifV

2

g ! A [ fX ifV

1

g if V

1

� V

2

A [ fX; fX;Y gg ! A [ fXg

The additional 
ondition in the �rst two rules ensures that Z is bound to a
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ground term 
ontaining no unevaluable fun
tion 
alls. We 
all an abstra
-

tion A normalized if none of these normalization rules is appli
able to A.

Later we will see that the normalization rules are invariant w.r.t. the 
on
rete

substitutions/residuations 
orresponding to abstra
tions. Therefore we 
an

assume that we 
ompute only with normalized abstra
tions in the abstra
t

interpretation algorithm.

In order to keep the abstra
t interpretation algorithm simple, we assume

that predi
ate 
alls and 
lause heads have the form p(X

1

; : : : ;X

n

) where

all X

i

are distin
t (similarly to the example in [7℄). All other literals in

the 
lause bodies and goals have the form X = Y , X = 
(Y

1

; : : : ; Y

n

) or

X = f(Y

1

; : : : ; Y

n

). It is easy to see that every residuating logi
 program 
an

be transformed into a 
at residuating logi
 program satisfying the above re-

stri
tions without 
hanging the answer behaviour. For instan
e, the residuat-

ing logi
 program in Se
tion 2 
an be transformed into the following equivalent


at program:

q :- Z=5, p(X,Y,Z), T=1, T=W-V, X=V*W, Y=V+W, pi
k(V,W).

p(A,B,C) :- C=A+B.

pi
k(A,B) :- A=1, B=2.

In the following we assume that all programs are in the required form.

3.2 The abstra
t interpretation algorithm

The abstra
t interpretation algorithm is based on several operations on the

abstra
t domain. The �rst operation restri
ts an abstra
tion A to a set of

variables W . It will be used in a predi
ate 
all to omit the information about

variables not passed from the predi
ate 
all to the applied 
lause:


all restri
t(?;W )=?


all restri
t(A;W ) = fX 2 A j X 2Wg

[ fX with f j

V

2 A j fXg [ V �Wg

[ ff j f 2 A or X withf j

V

2 A with X 2W;V 6�Wg

[ ffX;Y g 2 A j X;Y 2Wg

The restri
tion operation for predi
ate 
alls transforms an abstra
tion element

X withf j

V

into the element f if the dependent variables are not 
ontained in

W , i.e., it is noted that there may be an unevaluated fun
tion 
all to f but the

possible dependen
ies are too 
omplex for the abstra
t analysis. Similarly, an

abstra
tion element of the form X ifV is passed to the 
lause only if V = ;.

A similar operation is needed at the 
lause end to forget the abstra
t in-

formation about lo
al 
lause variables. Hen
e we de�ne:

exit restri
t(?;W ) = ?

exit restri
t(A;W ) = fX ifV 2 A j fXg [ V �Wg

[ fX with f j

V

2 A j fXg [ V �Wg

[ ff j f 2 A or X withf j

V

2 A with fXg [ V 6�Wg

[ ffX;Y g 2 A j X;Y 2Wg

The restri
tion operation for 
lause exits transforms an abstra
tion element

X withf j

V

into the element f if one of the involved variables is not 
ontained
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in W , i.e., it is noted that there may be an unevaluated fun
tion 
all to f

whi
h depends on lo
al variables at the end of the 
lause.

The following operation 
omputes the remaining abstra
t information of

a predi
ate 
all restri
tion 
all restri
t(A;W ) in order to 
ombine it after a

predi
ate 
all:

rest(?;W ) = ?

rest(A;W ) = fX ifV 2 A j X 62W or V 6= ;g

[ fX withf j

V

2 A j X 62Wg

[ ffX;Y g 2 A j X 62W or Y 62Wg

The least upper bound operation is used to 
ombine the results of di�erent


lauses for a predi
ate 
all:

? t A = A

A t ? = A

A

1

t A

2

= fX ifV

1

[ V

2

j X ifV

1

2 A

1

; X ifV

2

2 A

2

g

[ fX withf j

V

j X withf j

V

2 A

1

or X withf j

V

2 A

2

g

[ ff j f 2 A

1

or f 2 A

2

g

[ ffX;Y g j fX;Y g 2 A

1

or fX;Y g 2 A

2

g

Now we are able to de�ne the abstra
t uni�
ation algorithm for the abstra
t

interpretation of equations o

urring in 
lause bodies or goals. Abstra
t uni�-


ation is a fun
tion au(�; t

1

; t

2

) whi
h takes an element of the abstra
t domain

� 2 A and two terms t

1

; t

2

as input and produ
es another abstra
t domain

element as the result. Be
ause of our restri
tions on goal equations, the fol-

lowing de�nition is suÆ
ient:

1

au(?; t

1

; t

2

) =?

au(A;X;X) = A

au(A;X; Y ) = 
losure(A [ fX if fY g; Y if fXg; fX;Y gg) if X 6= Y

au(A;X; 
(Y

1

; : : : ; Y

n

)) = 
losure(A [ fX if fY

1

; : : : ; Y

n

g; Y

1

if fXg; : : : ;

Y

n

if fXg; fX;Y

1

g; : : : ; fX;Y

n

gg)

au(A;X; f(Y

1

; : : : ; Y

n

)) = 
losure(A[fX if fY

1

; : : : ; Y

n

g;X with f j

fY

1

;:::;Y

n

g

g)

In this de�nition and in the rest of this paper 
losure(A) denotes the least

set A

0


ontaining A whi
h is 
losed under the following rules for transitivity

and distribution of sharing information:

fX;Y g 2 A

0

; fY;Zg 2 A

0

=) fX;Zg 2 A

0

fX;Y g 2 A

0

; X with f j

V

2 A

0

=) Y withf j

V

2 A

0

Now we 
an present the algorithm for the abstra
t interpretation of a resid-

uating logi
 program in 
at form. It is spe
i�ed as a fun
tion ai(�;L) whi
h

takes an abstra
t domain element � and a goal literal L and yields a new

abstra
t domain element as result. Clearly, ai(?; L) =? and ai(A; t = t

0

) =

au(A; t; t

0

). The interesting 
ase is the abstra
t interpretation of a predi
ate


all ai(A; p(X

1

; : : : ;X

n

)) whi
h is 
omputed by the following steps:

1

For simpli
ity we omit the o

ur 
he
k in the abstra
t uni�
ation.
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1. Let p(Z

1

; : : : ; Z

n

) :-L

1

; : : : ; L

k

be a 
lause for predi
ate p (if ne
essary,

rename the 
lause variables su
h that they are disjoint from X

1

; : : : ;X

n

).

Compute A


all

= 
all restri
t(A; fX

1

; : : : ;X

n

g)

A

0

= hrepla
e all X

i

by Z

i

in A


all

i

A

1

= ai(A

0

; L

1

); A

2

= ai(A

1

; L

2

); : : : ; A

k

= ai(A

k�1

; L

k

)

A

out

= exit restri
t(A

k

; fZ

1

; : : : ; Z

n

g)

A

exit

= hrepla
e all Z

i

by X

i

in A

out

i

2. Let A

1

exit

; : : : ; A

m

exit

be the exit substitutions of all 
lauses for p as


omputed in step 1. Then de�ne A

su

ess

= A

1

exit

t : : : tA

m

exit

3. ai(A; p(X

1

; : : : ;X

n

)) = 
losure(A

su

ess

[ rest(A; fX

1

; : : : ;X

n

g))

if A

su

ess

6=?, else ?

Hen
e a 
lause is interpreted in the following way. Firstly, the 
all abstra
tion

is 
omputed, i.e., the information 
ontained in the predi
ate 
all abstra
tion

is restri
ted to the argument variables (A


all

). The variables in this 
all ab-

stra
tion are mapped to the 
orresponding variables in the applied 
lause

(A

0

). Then ea
h literal in the 
lause body is interpreted. The resulting ab-

stra
tion (A

k

) is restri
ted to the variables in the 
lause head, i.e., we forget

the information about the lo
al variables in the 
lause. Potential residua-

tions whi
h are unsolved at the 
lause end are passed to the abstra
tion A

out

by the exit restri
t operation. In the last step the 
lause variables are re-

named into the variables of the predi
ate 
all (A

exit

). If all 
lauses de�ning

the 
alled predi
ate p are interpreted in this way, all possible interpretations

are 
ombined by the least upper bound of all abstra
tions (A

su

ess

). The


ombination of this abstra
tion with the information whi
h was forgotten by

the restri
tion at the beginning of the predi
ate 
all yields the abstra
tion

after the predi
ate 
all (step 3).

The abstra
t interpretation algorithm des
ribed above is useless in 
ase of

re
ursive programs due to the nontermination of the algorithm. This 
lassi
al

problem is solved in all frameworks for abstra
t interpretation and therefore

we do not want to develop a new solution to this problem but use one of

the well-known solutions. Following Bruynooghe's framework [7℄ we 
an 
on-

stru
t a rational abstra
t AND-OR-tree representing the 
omputation of the

abstra
t interpretation algorithm. During the 
onstru
tion of the tree we


he
k before the interpretation of a predi
ate 
all P whether there is an an-


estor node P

0

with a 
all to the same predi
ate and the same 
all abstra
tion

(up to renaming of variables). If this is the 
ase we take the su

ess abstra
-

tion of P

0

(or ? if it is not available) as the su

ess abstra
tion of P instead

of interpreting P . If the further abstra
t interpretation 
omputes a su

ess

abstra
tion A

0

for P

0

whi
h di�ers from the su

ess abstra
tion used for P ,

we start a re
omputation beginning at P with A

0

as new su

ess abstra
tion.

This iteration terminates be
ause all operations used in the abstra
t inter-

pretation are monotone (w.r.t. the order on A de�ned in Se
tion 4) and the

abstra
t domain is �nite.

9



3.3 An example

The following example is the 
at form of a Le Fun program presented in [3℄:

q(Z) :- p(X,Y,Z), X=V-W, Y=V+W, pi
k(V,W).

p(A,B,C) :- C=A*B.

pi
k(A,B) :- A=9, B=3.

The abstra
t interpretation algorithm 
omputes the following abstra
tions

w.r.t. the initial goal q(T) and the initial abstra
tion ; (spe
ifying the set of

all substitutions without unevaluated fun
tion 
alls):

ai(;; q(T)):

ai(;; p(X,Y,Z)): ai(;; C=A*B) = fC if fA,Bg; C with*j

fA,Bg

g

ai(;; p(X,Y,Z)) = fZ if fX,Yg; Z with*j

fX,Yg

g =: A

1

ai(A

1

; X=V-W) = fZ if fX,Yg; X if fV,Wg; Z with*j

fX,Yg

; X with-j

fV,Wg

g=:A

2

ai(A

2

; Y=V+W) = fZ if fX,Yg; X if fV,Wg; Y if fV,Wg;

Z with*j

fX,Yg

; X with-j

fV,Wg

; Y with+j

fV,Wg

g =: A

3

ai(A

3

; pi
k(V,W)): ai(;; A=9) = fAg

ai(fAg; B=3) = fA; Bg

ai(A

3

; pi
k(V,W)) = fV; W; Z if fX,Yg; X if fV,Wg; Y if fV,Wg;

Z with*j

fX,Yg

; X with-j

fV,Wg

; Y with+j

fV,Wg

g

normalize

�! fV; W; Z; X; Yg

ai(;; q(T)) = fTg

Hen
e the 
omputed su

ess abstra
tion is fTg meaning that after a su

essful


omputation of the goal q(T) the variable T is bound to a ground term and

the residuation set is empty, i.e., the residuation prin
iple allows to 
ompute

a fully evaluated answer. Similarly, the 
ompleteness of the residuation prin-


iple 
an be proved by our algorithm for all other residuating logi
 programs

presented in [3℄. A more 
omplex example involving re
ursion 
an be found

in [13℄.

4 Corre
tness of the abstra
t interpretation algo-

rithm

In this se
tion we will dis
uss the 
orre
tness of the presented abstra
t inter-

pretation algorithm by relating the abstra
t domain to the 
on
rete domain.

Due to la
k of spa
e we omit the proofs of the theorems. The interested reader

will �nd the proofs in [13℄.

To relate the 
omputed abstra
t properties of the program to the 
on
rete

run-time behaviour, we have to de�ne a 
on
retisation fun
tion 
:A ! 2

C

whi
h maps an abstra
tion into a subset of the 
on
rete domain. The most

diÆ
ult point in the de�nition of 
 is the 
orre
t interpretation of an abstra
-

tion \X ifV ". The intuitive meaning is \the interpretation of X is ground if

all interpretations of V are ground". To be more pre
ise, \X ifV " des
ribes a

10



dependen
y between the instantiation of X and the instantiation of the vari-

ables in V , i.e., we 
ould de�ne:

(*) If X ifV 2 A and h�; �i 2 
(A), then var(�(X)) � var(�(V ))

(var(�) denotes the set of all variables o

urring in the synta
ti
 
onstru
-

tion �). Su
h a de�nition seems to justify the generation of the abstra
tions

\X if fYg" and \Y if fXg" in the abstra
t uni�
ation algorithm if X is uni�ed

with Y. But this interpretation is not true if X or Y are bound to terms 
on-

taining unevaluated residuations. E.g., if X is bound to f(B) and Y is bound

to 
(A) during program exe
ution, then the 
omputation of the literal X=Y

yields the substitution/residuation pair h;; ff(B)=
(A)gi. Thus the variables


ontained in the bindings of X and Y are not identi
al after the uni�
ation

step. Therefore we must weaken (*) to the 
ondition that only the variables

of �(X) o

urring outside fun
tion 
alls are 
ontained in the variables of �(V )

w.r.t. to the residuation �.

To give a pre
ise des
ription of the 
ondition, we need the following de�ni-

tions. By lvar(t) we denote the set of all variables o

urring outside fun
tion


alls in the term t:

lvar(X) = fXg

lvar(
(t

1

; : : : ; t

n

)) = lvar(t

1

) [ � � � [ lvar(t

n

)

lvar(f(t

1

; : : : ; t

n

)) = ;

The extension of a set of variables V w.r.t. to the residuation � is de�ned by

var

�

(V ) = V [ flvar(e) j f(t) = e 2 � or e = f(t) 2 � with var(t) � V g

(where t denotes the argument sequen
e t

1

; : : : ; t

n

). Note that var

�

(;) = ; if �

does not 
ontain unevaluated ground residual fun
tion 
alls (whi
h do not o
-


ur in our 
on
rete domain) and for an empty residuation we have var

;

(V ) =

V . The intuition of this de�nition is that we add to a set of variables V

all these variables whi
h will be ground during the 
omputation pro
ess if all

variables in V are ground. For instan
e, if � = ff(X)=
(Y); f(X)=
(Z)g, then

var

�

(fXg) = fX; Y; Zg. We extend the fun
tion var

�

to �nite sets of terms by

var

�

(ft

1

; : : : ; t

k

g) = var

�

(var(ft

1

; : : : ; t

k

g))

Sin
e we are interested in the property whether a fun
tion 
all o

urring in a

term 
an be 
ompletely evaluated, it is suÆ
ient to look at the main fun
tion


alls and not at fun
tion 
alls whi
h o

ur inside other fun
tion 
alls (this is

due to the fa
t that a uni�
ation between a fun
tion 
all and another term

does not bind any variables in this 
all). Therefore we say a term t o

urs

dire
tly in a term t

0

if t o

urs in t

0

outside a fun
tion 
all. For instan
e, the

term X + (Y � 2) o

urs dire
tly in the term 
(X + (Y � 2)) but the subterm

(Y � 2) is not a dire
t o

urren
e.

Now we are able to de�ne the semanti
s of abstra
tions by the 
on
retisa-

tion fun
tion 
:A ! 2

C

(where t denotes the argument sequen
e t

1

; : : : ; t

n

):
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(?) = ;


(A) = fh�; �i 2 C j 1. X ifV 2 A) lvar(�(X)) � var

�

(�(V ))

2. f(t) o

urs dire
tly in �(X) or � with var(t) 6= ;

) f 2 A or var(t) � var(�(V )) for some X withf j

V

2 A

3. lvar(�(X)) \ lvar(�(Y )) 6= ; for X 6= Y ) fX;Y g 2 A g

Condition 1 implies for X ifV 2 A that all variables o

urring outside fun
-

tion 
alls in the 
urrent instantiation of X are ground if all variables in V are

instantiated to ground terms. Condition 2 ensures that all unevaluated fun
-

tion 
alls in variable bindings and in residuations are 
ontained in A. Sin
e

we are interested in potential residuations, it is suÆ
ient to look at fun
-

tion 
alls whi
h o

ur dire
tly in some variable binding (and not at fun
tion


alls nested in other fun
tion 
alls). Hen
e the sharing information is also

restri
ted to lvar instead of var (
ondition 3). Note that for an unevaluated

fun
tion 
all in the residuation part it is suÆ
ient that there is an arbitrary

variable X whi
h 
over this fun
tion 
all whereas for an unevaluated fun
-

tion 
all in the binding of a variable X there must be an abstra
tion element

X withf j

V

with the same variable. This is ne
essary for passing the 
orre
t

information about potential residuations in 
ase of a predi
ate 
all (
ompare


all restri
tion operation).

From this interpretation it is 
lear that an abstra
tion without elements

of the form \X withf j

V

" or \f" 
an only be interpreted as a fully evalu-

ated pair h�; �i if � = ; and � does not 
ontain unevaluable fun
tion 
alls.

This argument has been used to state the 
ompleteness of the example in

Se
tion 3.3.

Due to this semanti
s of abstra
tions it 
an be proved that the normal-

ization rules de�ned on abstra
tions in Se
tion 3.1 are invariant w.r.t. the


on
rete interpretation. The following lemma justi�es the appli
ation of the

normalization rules.

Lemma 4.1 If A and A

0

are abstra
tions with A! A

0

, then 
(A) = 
(A

0

).

For the termination of the abstra
t interpretation algorithm it is important

that all operations on the abstra
t domain are monotone. Therefore we de�ne

the following order relation on normalized abstra
tions:

(a) ?v � for all � 2 A

(b) A v A

0

() 1. X ifV

0

2 A

0

) 9V � V

0

with X ifV 2 A

2. X withf j

V

2 A ) X withf j

V

2 A

0

3. f 2 A ) f 2 A

0

4. fX;Y g 2 A ) fX;Y g 2 A

0

It is easy to prove that v is a re
exive, transitive and anti-symmetri
 relation

on normalized abstra
tions, the operation t de�ned in Se
tion 3.2 
omputes

the least upper bound of two abstra
tions, and 
 is monotone.
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The 
orre
tness of the abstra
t interpretation algorithm is based on the


orre
tness of ea
h 
omponent of the algorithm. The entire proof 
an be 
on-

stru
ted following the ideas in [7℄. Due to the 
omplex abstra
t domain the

detailed proofs require some e�ort and 
annot be shown in this paper. In

the following we only state an important theorem whi
h is the basis for the


orre
tness of the abstra
t interpretation algorithm:

Theorem 4.2 (Corre
tness of abstra
t uni�
ation) Let X be a vari-

able, t be a term of the form t = Y , t = 
(Y

1

; : : : ; Y

n

) or t = f(Y

1

; : : : ; Y

n

)

and A be an abstra
tion. Then for all h�; �i 2 
(A) and all uni�ers h�

0

; �

0

i

for �(X) and �(t), h�

0

Æ �; �

0

[ �

0

(�)i 2 
(au(A;X; t)).

5 Con
lusions and related work

In this paper we have 
onsidered an operational me
hanism for the integration

of fun
tions into logi
 programs. This me
hanism, 
alled residuation, extends

the standard uni�
ation algorithm used in SLD-resolutions by delaying uni�-


ations between unevaluable fun
tion 
alls and other terms. If all variables of

a delayed fun
tion 
all are bound to ground terms, then this fun
tion 
all is

evaluated in order to verify the delayed uni�
ation. This residuation prin
iple

yields a ni
e operational behaviour for many fun
tional logi
 programs but has

two disadvantages. One problem is that the answer to a query may 
ontain

unsolved and 
omplex residuations for whi
h the user 
annot easily de
ide

their solvability. A further problem is that the sear
h spa
e of a residuating

logi
 program 
an be in�nite in 
ontrast to the equivalent logi
 program. This


ase 
an o

ur if the residuation prin
iple generates more and more residua-

tions whi
h are simultaneously not solvable. Hen
e it is important to 
he
k

at 
ompile time whether or not this 
ase 
an o

ur at run time. Sin
e this

is unde
idable in general, we have presented an approximation to this prob-

lem based on the abstra
t interpretation of residuating logi
 programs. Our

algorithm manages information about all possible residuations together with

their argument variables and the dependen
ies between di�erent variables in

order to 
ompute groundness information. Hen
e the algorithm is able to

infer whi
h residuations 
an be 
ompletely solved at run time.

We 
an also interpret our algorithm as an attempt to 
ompile fun
tional

logi
 programs from languages with a 
omplete but often 
omplex operational

semanti
s (e.g., EQLOG [10℄, SLOG [9℄, BABEL [16℄, or ALF [11℄) into a

more eÆ
ient exe
ution me
hanism without loosing 
ompleteness. For this

purpose we 
he
k a given fun
tional logi
 program by our algorithm. If the

algorithm 
omputes an abstra
tion 
ontaining no potential residuations, we


an safely exe
ute the program with the residuation prin
iple. Otherwise we

must apply the nondeterministi
 narrowing prin
iple to 
ompute all answers.

This method 
an also be applied to individual parts of the program so that

some parts are exe
uted by residuation and other parts by narrowing.

The operational semanti
s 
onsidered in this paper originates from Le

Fun [3℄. The uni�
ation pro
edure is very similar to S-uni�
ation [4℄. How-
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ever, S-uni�
ation immediately reports an error if some residuations 
annot

be evaluated after the uni�
ation of a literal with a 
lause head. E.g., the ex-

ample programs in se
tion 2 and 3.3 
annot be evaluated using S-uni�
ation.

Therefore Boye has extended this framework to 
omputation with delayed

residuations [6℄. He has also 
hara
terized a 
lass of operationally 
omplete

programs based on notions from attribute grammars. Compared to our ab-

stra
t interpretation pro
edure, Boye's 
hara
terization is mainly based on

the synta
ti
 stru
ture of the program while we have tried to approximate

the operational behaviour. Hen
e we obtain positive results for programs

where Boye's 
he
k fails. E.g., our method yields a positive answer to the


ompleteness question of the program

p(A,A+A).

p(A+A,A).

w.r.t. the initial goal p(2+2,1+1) while Boye's 
he
k fails (sin
e there are

external fun
tors in input positions).

Marriott, S�ndergaard and Dart [15℄ have also presented an abstra
t in-

terpretation algorithm for analysing logi
 programs with delayed evaluation.

The purpose of their work was to 
he
k logi
 programs with negation for


oundering, i.e., whether a delayed evaluation of negated subgoals is 
om-

plete. This has some similarities to our framework but it is a simpler problem

be
ause a delayed evaluation of a negated literal 
annot bind any goal vari-

ables sin
e this literal is evaluated only if all arguments are ground. In our


ontext it is important that a delayed evaluation of a residuation 
an bind

variables in order to enable the evaluation of other residuations (see the exam-

ple in Se
tion 3.3). Therefore we have to manage the dependen
ies between

residuations and their variables in order to analyse the data 
ow in this 
ase.

Sin
e we must restri
t all abstra
t information to a �nite domain, our

algorithm 
annot manage all dependen
ies between residuations and their

variables. If a residuation depends only on variables of one 
lause and these

variables are bound to ground terms at the end of the 
lause, the algorithm

dete
ts the solvability of the residuation. But if a residuation depends on

lo
al variables from di�erent 
lauses, then the algorithm 
annot manage it

and therefore it simply infers the unsolvability of this residuation. It seems

to be possible to improve the algorithm at this point by re�ning the abstra
t

domain (whi
h makes the de�nition of the 
on
retisation fun
tion and the


orre
tness proofs more 
omplex).

Another interesting topi
 for further resear
h is the question whether it

is possible to adapt our proposed method to the abstra
t interpretation of

other logi
 languages whi
h are not based on SLD-resolution with the leftmost

sele
tion rule. Su
h a method 
ould be applied to analyse logi
 programs with

delay primitives.
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