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Abstract

An injective finite mapping is an abstraction common to many programs. We describe
the design of an injective finite mapping and its implementation in Curry, a functional
logic language. Curry supports the concurrent asynchronous execution of distinct portions
of a program. This condition prevents passing from one portion to another a structure
containing a partially constructed mapping to ensure that a new choice does not violate
the injectivity condition. We present some motivating problems and we show fragments
of programs that solve these problems using our design and implementation.

1 Introduction

A finite mapping is one of the most common abstractions in computer programs.

Many programming languages directly support this abstraction by offering a prim-

itive type, the array, with a special notation to ease the implementation and use of

finite mappings. In some situations, e.g., when a programming language does not

provide built-in arrays or when a mapping has particular requirements, dynamic

structures such as linked lists, trees or hash tables are suitable representations of a

mapping.

Regardless of the underlying representation, a mapping is a total function µ :

I → V where I is a set of indexes and V is a set of values. The type of both the

indexes and the values is arbitrary. A mapping is injective when distinct indexes are
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mapped to distinct values, if i1, i2 ∈ I and i1 6= i2, then µ(i1) 6= µ(i2). A mapping

is finite when the set of indexes is finite.

We make one of either two additional assumptions on the set V of values. The

first assumption requires the a priori knowledge of a finite subset V ′ of V containing

µ(I). If µ is a injective finite mapping, V ′ necessarily exists, since µ(I) has the same

cardinality as I, and hence is finite. However, V ′ must be known before computing

µ. This assumption trivially holds when V itself is finite. The second assumption,

which is much weaker, requires the existence of an enumeration v0, v1, . . . of the

values. Since in a program V is represented by either a primitive type or an algebraic

type, the second assumption is easily satisfied for most problems.

In this paper we describe the design and implementation of an injective finite

mapping suitable for a programming language with the following characteristics.

The language is declarative, thus neither state updates nor side effects are allowed.

The language is concurrent, thus different portions of the mapping can be computed

concurrently and asynchronously by different portions of a program. This second

characteristic has some non-trivial consequences that will be discussed later.

In a nutshell, our design represents the mapping as a collection of index-value

pairs which can be structured as a list or a tree. It is expected that the program

computes a function, e.g., for each index of a problem, the program computes a

single value. The novelty is that in the program representation of the mapping the

roles of an index and a value are swapped. This ensures that the inverse mapping is a

function as well, hence the mapping is injective. Our design represents the mapping

as an incomplete structure. This structure contains value-index pairs 〈v, i〉 (the

problem maps i to v) where initially i is an uninstantiated variable. When a value-

index pair of the representation, say 〈v, i′〉, is computed, the program attempts to

unify i′ with i. This ensures the injectivity condition, since the unification prevents

two distinct indexes of the problem, i and i′, to be mapped to the same value v.

This also supports concurrency, since the unification is unaffected by the order in

which value-index pairs are computed.

A class of puzzles known as cryptarithms is an ideal problem to discuss our design

and implementation of an injective finite mapping: the mapping itself is the solution

of the problem and it is convenient to compute index-value pairs of this mapping

concurrently. The opportunity to compute the mapping concurrently be explained

and motivated in Section 3.

The Merriam-Webster OnLine dictionary (Merriam-Webster, n.d.) defines a crypt-

arithm as “an arithmetic problem in which letters have been substituted for num-

bers and which is solved by finding all possible pairings of digits with letters that

produce a numerically correct answer.” A well-known example of cryptarithm is:

S E N D + M O R E = M O N E Y (1)

Customarily, in a cryptarithm distinct letters stand for distinct digits and leading

zeros are not allowed.

The solution of a cryptarithm is an injective finite mapping where the indexes are

the letters occurring in the cryptarithm and the values are the digits. The solution
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of (1), graphically represented as a mapping, is shown below:

S E N D + M O R E = M O N E Y

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

9 5 6 7 + 1 0 8 5 = 1 0 6 5 2

A cryptarithm such as (1) in which letters form meaningful words, often in mean-

ingful phrases, is referred to as an alphametic. There exist a large number of witty

alphametics. Alphametics with a unique solution, such as (1), are more elegant, but

a unique solution is not required. The following alphametic has 130 solutions:

T O O + M U C H = B E E R

Solving a cryptarithm by brute force, e.g., by generating and testing every plausible

mapping, is inefficient. Finite domain constraint solvers find solutions efficiently.

Our program for cryptarithms is not as efficient, although it finds solutions in

milliseconds. A brute force program using the same compiler/interpreter is over

150 times slower. We use cryptarithms as running examples. Of course, injective

finite mappings are not confined to these puzzles and we hint at other applications

as we go along.

This paper is structured as follows. Section 2 briefly recalls some principles of

functional logic programming and the programming language Curry which we use

to present the examples. Section 3 presents the design of an injective finite mapping

in a functional logic program and its implementation in Curry. Section 5 concludes

the paper. The complete programs are available on-line.

2 Functional Logic Programming and Curry

This section introduces both the basic ideas of functional logic programming and

the elements of the programming language Curry (Hanus (ed.), 2003) that are

necessary to understand the subsequent examples.

Functional logic programming integrates in a single programming model the most

important features of functional and logic programming (see (Hanus, 1994) for

a detailed survey). Functional logic languages feature algebraic datatypes, pat-

tern matching, and logical variables. Supporting the latter requires some built-in

search principle to guess the appropriate instantiations of logical variables. There

exist many languages that are functional logic in this broad sense, e.g., Curry

(Hanus (ed.), 2003), Escher (Lloyd, 1999), Le Fun (Aı̈t-Kaci et al., 1987), Life

(Aı̈t-Kaci, 1990), Mercury (Somogyi et al., 1996), NUE-Prolog (Naish, 1991), Oz

(Smolka, 1995), Toy (López-Fraguas & Sánchez-Hernández, 1999), among others.

One of the characteristic features of functional logic programming is the eval-

uation—particularly the lazy evaluation—of expressions containing logical vari-

ables. Both narrowing and residuation serve this purpose.

When an expression e cannot be evaluated due to the presence of an uninstanti-

ated logical variable x, narrowing non-deterministically instantiates x to keep the

evaluation of e from halting. By contrast, residuation suspends the evaluation of e,
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transfers control to another portion of the program, and resumes the evaluation of

e if and when x becomes sufficiently instantiated.

Residuation is conceptually simple and relatively efficient, but incomplete. It is

not always able to obtain the result of a computation. By contrast, narrowing is

complete if an appropriate strategy (Antoy, 1997; Antoy et al., 2000) is chosen, but

it is potentially less efficient than residuation because of its propensity to gener-

ate a larger search space. Functional logic languages can be effective with either

mechanism. Curry offers both residuation and narrowing in a unified computation

model (Hanus, 1997). Each function is declared either flexible or rigid. Flexible

functions narrow, whereas rigid functions residuate. Flexibility, through narrowing,

enables a function both to “run backward.” The arguments of a function can be

computed from the result to solve arbitrary equational constraints over user-defined

datatypes.

Curry has a Haskell-like (Peyton Jones & Hughes, 1999) syntax, e.g., (type)

variables and function names usually start with lowercase letters and the names of

type and data constructors start with an uppercase letter. The application of f to

e is denoted by juxtaposition (“f e”). In addition to Haskell, Curry supports logic

programming by means of free (logical) variables in both conditions and right-hand

sides of defining rules. Thus, a Curry program consists of the definition of functions

and the declaration of data types on which the functions operate. Functions are

evaluated lazily and can be called with partially instantiated arguments. In general,

functions are defined by conditional equations, or rules, of the form:

f t1 . . . tn | c = e where vs free

where t1, . . . , tn are data terms (i.e., terms without defined function symbols), the

condition c is either a Boolean expression or a constraint, e is an expression and

the where clause introduces a set of free variables. These variables are used as unin-

stantiated (unknown) arguments of function applications in the condition and/or

the right-hand side of the rule. We will show shortly that this programming style

reduces the amount of details necessary to encode a problem into a program.

Both the condition and the where clause of a rule are optional. Curry predefines

equational constraints of the form e1 =:= e2 which is satisfiable if both sides e1
and e2 are evaluated to unifiable data terms. Furthermore, “c1 & c2” denotes the

concurrent conjunction of the constraints c1 and c2. Concurrent means that the

evaluation steps of each conjunct can be interleaved. Interleaving the steps may

become essential to ensure the completeness of the computation, if one conjunct

residuates.

The following example, although contrived, shows the behavior of residuation

and narrowing, and their interplay through concurrency. Consider the conditional

rule:

goal x y | x+x =:= y & x =:= 2 = y

Uninstantiated variables in goals are denoted by upper-case identifiers. The ex-

pression goal X Y is evaluated as follows. The execution of the first constraint

demands the evaluation of X+X. Since the operation “+” is rigid and X is unbound,
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the evaluation residuates and the control goes to the second constraint. Since the

operation “=:=” is flexible, X is bound to 2. The evaluation of X+X resumes and

yields 4. Thus, Y is bound to 4 and returned.

Similar to Haskell, the where clause can also contain local definitions. In contrast

to Haskell, where the first matching function rule is applied, in Curry all matching

(to be more precise, unifiable) rules are non-deterministically applied to support

logic programming. This enables the definition of non-deterministic functions which

may have more than one result for a given input. As an example consider the

function:

insert :: a -> [a] -> [a]

insert e [] = [e]

insert e (x:xs) = e : x : xs

insert e (x:xs) = x : insert e xs

which inserts an element into a list at some non-deterministically chosen position.

The second and third rules defining insert overlap. As a consequence, the ex-

pression (insert 1 [3,5]) has three values: [1,3,5], [3,1,5], and [3,5,1]. Using

insert, we can define a permutation of a list as follows:

perm [] = []

perm (x:xs) = insert x (perm xs)

As an example of solving constraints, we define a function that checks whether a

word embeds the letters of another word, e.g, “care” embeds “ace”, and returns

the unused letters, “r” in this example, in some order. For this purpose we use the

concatenation of two lists which is denoted by the infix operator “++”. The operator

“++” is flexible. The application of “++” may instantiate variables in the arguments,

if this is necessary to execute a computation step. By default, functions are flexible

with a few exceptions, e.g., I/O actions and arithmetic operations on numbers (see

(Hanus (ed.), 2003) for details).

Now we define the required function by a single conditional rule:

embeds w1 w2 | perm w1 =:= w2 ++ w3

= w3

where w3 free

As apparent from the function insert, Curry allows coding functions, called non-

deterministic, that return more than one value for the same arguments. E.g., the

infix operator ! non-deterministically returns one of its arguments. It is defined by

the two rules:

x ! y = x

x ! y = y

The operational semantics of Curry, precisely described in (Hanus, 1997; Hanus (ed.),

2003), is a conservative extension of both lazy functional programming (if no free

variables occur in the program or the initial goal) and (concurrent) logic program-

ming. Since computations are based on an optimal evaluation strategy (Antoy, 1997;
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Antoy et al., 2000), Curry can be considered a generalization of concurrent con-

straint programming (Saraswat, 1993) with a lazy (optimal) evaluation strategy.

Furthermore, Curry also offers features for application programming like modules,

monadic I/O, ports for distributed programming, and specialized libraries.

There exist several implementations of Curry. The examples presented in this

paper were all compiled and executed by Pakcs (Hanus et al., 2003), a com-

piler/interpreter for a large subset of Curry.

3 Design and Implementation of the Mapping

A plausible implementation of a finite mapping is any structure defining index-value

pairs, e.g., an array, a list of pairs, etc. Index-value pairs are computed during the

execution of a program. Injectivity means that if two pairs have the same value

they also have the same index. Thus, the algorithm that ensures injectivity must

compare any computed index-value pair with every other pair previously computed.

If a pair with the same value was previously computed, the indexes in the previous

and the new pairs must be equal.

A problem with this algorithm arises if a functional logic program computes

index-value pairs concurrently, e.g., due to concurrent constraint solving. This

condition prevents one from sequentially passing a partially constructed mapping

through the portions of a program computing index-value pairs to ensure that a

newly computed pair does not violate the injectivity condition. In what follows, we

show a technique for solving this problem. We make our technique more concrete

by discussing the architecture of a simple program to solve a cryptarithm.

A program to solve (1) declares one variable for each letter. Initially, these variables

are uninstantiated:

s,e,n,d,m,o,r,y free

The solution of the problem is a suitable instantiation of these variables, which

implicitly defines the mapping which is the subject of this paper. The instantiation

of each variable is determined by Equation (1). This equation can be processed as

a single unit or it can be broken into a set of “smaller” equations. These smaller

equations establish the conditions that the letters must satisfy for the column of

the units, the tens, the hundreds, etc., exactly as one would perform the addition

by hand. The following display depicts the situation:

c3 c2 c1 c0

s e n d +

m o r e =

m o n e y

(2)

where ci, for i = 0, 1, 2, 3, is a carry. These equations are coded as:

c3 =:= m

s+m+c2 =:= c3*10+o
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e+o+c1 =:= c2*10+n

n+r+c0 =:= c1*10+e

d+e =:= c0*10+y

Each carry must be either 0 or 1 and consequently it is (non-deterministically)

initialized as follows:

ci = 0!1 i = 0, . . . , 3

It follows from the conventions of the problem that m is not zero and consequently

c3 is equal to one. Our simple program ignores this precise inference. However, this

equation together with the equation defining the carry constrain the possible values

of m to zero and one only.

Splitting the problem’s equation into a set of smaller equations is a slight com-

plication, since it requires the introduction of additional variables for the carries.

However, a set of smaller equations has a significant advantage. With appropriate

control, the program detects the instantiation of a variable that does not satisfy

some equation, when fewer variables are instantiated. This considerably speeds up

the execution of the program but it introduces a substantial complication.

The solutions of the five equations are computed concurrently. The order in which

the solution of each equation is computed is undetermined. Since the variables, s, e,

. . . are initially unbound and the addition and multiplication operators residuate,

the execution of the equations that the variables must satisfy is suspended until both

the operands of an operator become bound. Each variable is non-deterministically

bound to a digit, similarly to the carries. In this case, though, the choice ranges

over every digit, or every positive digit for m and s. It is inappropriate to non-

deterministically instantiate the variables as it is done for the carries, e.g.:

d =:= 0!1!2!3!4!5!6!7!8!9

...

m =:= 1!2!3!4!5!6!7!8!9

since this does not ensure that distinct variables are bound to distinct digits. It

is also inappropriate to pass around a structure containing the current binding of

the variables, since the order in which the variables will be instantiated cannot be

easily determined in advance. Here is where our ideas make a difference.

We represent the mapping as a list referred to as the store. The store is in-

dexed by the values of the problem. For cryptarithms, this indexing is natural and

straightforward since the values are the digits 0,1,. . .,9. Initially, the elements of

the store are free variables. The elements in the store are referred to as tokens.

Putting a token into the store represents the action of choosing a value that must

be different from the value of any other choice. The type of the tokens is arbitrary.

Often, it is convenient to represent the tokens with the indexes of the problem. For

the alphametic (1), we choose the characters S, E, N, . . . as the tokens.

Thus, the indexes and values of a problem are used as values and indexes, re-

spectively, in the store. The roles they have in the problem is swapped in the store.

We will shortly explain why this reversal of roles is a natural and necessary aspect
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of the design. In the particular case of the alphametic (1), the set of values is finite.

This enables us to create the store when the execution of the program begins. At

the end of the only successful computation for our example (note that in general

there can be more than one successful computation), the content of the store is

shown below, where “•” represents an uninstantiated variable:

O M Y • • E N D R S

Thus, in the program, the initial store is a list of 10 free variables:

store = [s0,s1,s2,s3,s4,s5,s6,s7,s8,s9]

where s0,s1,s2,s3,s4,s5,s6,s7,s8,s9 free
(3)

Elements of the list can be accessed by the list index operator, !!, defined in the

prelude as:

(!!) :: [a] -> Int -> a

(x:xs) !! n | n == 0 = x

| n > 0 = xs !! (n-1)

A letter of the cryptarithm is paired to a digit by the function digit defined as

follows:

digit token | store !! x =:= token

= x

where x = 0!1!2!3!4!5!6!7!8!9

Although the associated digit is non-deterministically selected, the condition on the

store ensures the injectivity of the mapping. The argument token must be unique

for each letter, hence, it is natural and convenient to represent it with the letter

itself—a character in the program.

Thus, the letters of the cryptarithm are nondeterministically instantiated as follows:

s =:= nzdigit ’S’

e =:= digit ’E’

n =:= digit ’N’

...

where nzdigit is a variant of digit that returns only non-zero digits. For example,

digit ’Y’ returns 2 if and only if the second (counting from zero) element of the

store is bound to ’Y’. The entire program for this problem is shown in the appendix.

Programs with a different representation of the store are available on-line at URL

http://www.cs.pdx.edu/~antoy/flp/patterns/distinct-choices-dir/.

The reversal of the roles of indexes and values in the store may be confusing at

first, but it has a natural explanation. The injectivity requirement of a mapping

µ is intended to prevent the condition in which two distinct indexes, say l and m,

satisfy µ(l) = v = µ(m), for some value v. In the store, the value v is associated to

some value, a digit i, of the problem. Specifically, the variable v is the i-th element
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of the store. Every time an index of the problem, some letter L, is mapped to i,

the program attempts to unify, hence instantiate, the variable v to L. The attempt

succeeds if and only if either v was uninstantiated, or v was instantiated to L

already. Thus, no two distinct indexes of the problem can be mapped to the same

value of the problem.

4 Variations

In the program that we are discussing, the association between a variable v of the

store and a value i of the problem is positional. The store is a list and the variable

v is the i-th element of the list. The store is constructed by (3), since the set of

values of the problem is finite and known in advance. There are many variations of

this design. We discuss two of these variations below. The first variation constructs

the store lazily. This is useful when no finite set of values is known in advance. The

second variation uses a tree-like structure for representing the mapping. This may

provide a better access performance for some problems.

The first variation requires a small change to the code. All it takes to construct

the store lazily is to replace (3) with the following:

store free (4)

The list index operator shown earlier is flexible. The evaluation of an expression of

the form l !!n instantiates enough l, if necessary, to ensure the access to its n-th

element. In other words, the elements in the store are produced on demand rather

than up-front.

This variation is interesting when the set of values of the problem is infinite. The

store is indexed by the values of the problem, which in general will not be natural

numbers. In this case, we assume the existence of an enumeration v0, v1, . . . of the

values. The enumeration implicitly defines an indexing function: a value vi of the

problem indexes the i-th element of the store. For a cryptarithm, this indexing is

trivial since the values of the problem are the digits, which can directly index the

store.

The mapping can be implemented as Curry module:

module ListFM (mapto) where

mapto :: [a] -> Int -> a -> Success

mapto fm i v = fm !! i =:= v

A functional logic language such as Curry computes with narrowing. Therefore,

the operation mapto can be used to extend the store with a new index-value pair,

to verify that an index-value pair is in the store, and to retrieve the value of an

index-value pair from an index.

The second design variation represents the store as a binary trie. A value is

addressed using the binary representation of the index, least significant bit first, to



10 S. Antoy and M. Hanus

select a branch of the trie.

module TreeFM (mapto) where

data Tree a = Tree a (Tree a) (Tree a)

mapto :: Tree a -> Int -> a -> Success

mapto (Tree w l r) i v

= if i == 0

then w =:= v

else mapto s j v

where j = i ‘div‘ 2

s = if i ‘mod‘ 2 == 1 then l else r

(5)

Since the program defines the store as a free variable, declaration (4) is independent

of the representation of the store. In (5), the representation of the store is hidden

to the program.

Different representations of the store have different computational characteris-

tics. For example, a trie representation may be more efficient than a list for some

problem, since for balanced tries the average access time of an element is O(log n)

instead of O(n). The size of a cryptarithm is, of course, too small to justify this

representation. Informal benchmarks show no significant differences in execution

time when the store is represented by a list or by a trie.

The crucial feature of the injective finite mapping that we are discussing is

the possibility of concurrently computing index-value pairs. However, the pro-

posed design can be employed also in problems where concurrency is not an issue.

Some examples are available on-line at URL http://www.cs.pdx.edu/~antoy/

flp/patterns/distinct-choices-dir/.

As we already mentioned, splitting a problem into smaller parts that are solved

concurrently has the advantage that wrong choices, expressed as instantiations of

some variables that cannot lead to a solution, are detected earlier. This can lead

to a considerable reduction of the search space. For instance, a naive functional

solution to our cryptarithm (enumerating all the digits and testing Equation (1))

has an unacceptable execution time. This solution can be improved by merging

partial tests with the enumeration of values in a sophisticated way. However, the

resulting code is less concise and more difficult to generalize than our concurrent

implementation of injective finite mappings. A similar argument holds for a naive

logic programming solution. Although Prolog does not offer concurrency, various

implementations of Prolog support concurrent extensions. These extensions enable

a similar implementation of our ideas, but with less concise code due to the missing

functional notation. Constraint logic programming with finite domains provide more

efficient computations thanks to efficient built-in constraint solvers. However, our

approach can be easily generalized to infinite domains, as discussed above.

5 Conclusion

Functional logic programs, in addition to ordinary functional computations, pro-

vide both concurrency and logic variables. Concurrency supports a powerful and
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expressive programming style, but it complicates some tasks, in particular the com-

putation of an injective finite mapping. We have presented the design and imple-

mentation of one such mapping for a functional logic language.

The design relies on a representation of index-value pairs where the values of

the problem play the role of indexes in the representation and the indexes of the

problem are initially unbound variables. During the computation, the variables of

the representation are non-deterministically bound to the indexes of the problem.

This design ensures the injectivity of the mapping even when index-value pairs are

computed concurrently and independently.
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Appendix

Complete implementation of the SEND+MORE=MONEY cryptarithm.

infixl 0 !

x ! _ = x

_ ! y = y

solve | equations ()

= "\n" ++

" " ++ show s ++ show e ++ show n ++ show d ++ "\n" ++

" " ++ show m ++ show o ++ show r ++ show e ++ "\n" ++

show m ++ show o ++ show n ++ show e ++ show y ++ "\n"

where

store = [s0,s1,s2,s3,s4,s5,s6,s7,s8,s9]

where s0,s1,s2,s3,s4,s5,s6,s7,s8,s9 free

-- the digits

s,e,n,d,m,o,r,y free

-- the carries

c0 = 0!1

c1 = 0!1

c2 = 0!1

c3 = 0!1

-- the problem’s relations, fragmentation is good

-- unused argument avoids circular patterns test

equations _ = c3 =:= m &

s+m+c2 =:= c3*10+o &

e+o+c1 =:= c2*10+n &

n+r+c0 =:= c1*10+e &

d+e =:= c0*10+y &

m =:= nzdigit ’M’ &

s =:= nzdigit ’S’ &

o =:= digit ’O’ &

e =:= digit ’E’ &

n =:= digit ’N’ &

r =:= digit ’R’ &

d =:= digit ’D’ &

y =:= digit ’Y’

nzdigit token | store !! x =:= token = x

where x = 1!2!3!4!5!6!7!8!9

digit token | store !! x =:= token = x

where x = 0!1!2!3!4!5!6!7!8!9


