
Encapsulating Non-Determinism in

Functional Logic Computations∗

Bernd Braßel Michael Hanus Frank Huch†

December 20, 2004

Abstract

One of the key features of the integration of functional and logic lan-
guages is the access to non-deterministic computations from the functional
part of the program. In order to ensure the determinism of top-level
computations in a functional logic program, which is usually a monadic
sequence of I/O operations, one has to encapsulate the non-determinism
(i.e., search for solutions) occurring in logic computations. However, an
appropriate approach to encapsulation can be quite subtle if subexpres-
sions are shared, as in lazy evaluation strategies. In this paper we examine
the current approaches to encapsulate non-deterministic computations for
the declarative multi-paradigm language Curry, show their relative ad-
vantages and the problems they induce. Furthermore, we present a new
approach which combines the advantages but avoids the problems. Our
proposal is based on providing a primitive I/O action for encapsulation
from which various specialized search operators can be derived. In order
to provide a formal foundation for this new approach to encapsulation,
we define the operational semantics of this new primitive.

1 Why Encapsulate and How (Not) To

Functional logic languages are intended to integrate the best features provided
in functional and logic languages (see [7] for a survey). They also form a base to
improve the evaluation strategies of existing languages due to the existence of
optimal evaluation strategies for functional logic languages [3]. However, there
is one subtle problem when combining the worlds of functional and logic pro-
gramming. Usually, the top-level of a realistic functional (logic) program is a
monadic sequence of I/O operations that should be applied to the outside world
(e.g., see [23]). Since the outside world cannot be copied, all non-determinism in
logic computations must be encapsulated, as proposed in [11] for the declarative
∗This work has been partially supported by the DFG under grants Ha 2457/1-2 and Ha

2457/5-1.
†Institut für Informatik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany.

{bbr,mh,fhu}@informatik.uni-kiel.de

1

multi-paradigm language Curry. Modern functional logic languages are based on
demand-driven evaluation strategies [3, 8] which require the sharing of common
subexpressions. This can cause strange behavior if some of these shared subex-
pressions occur within encapsulation operators. This problem will be discussed
in the following. We assume familiarity with functional logic programming in
general [7], the language Curry [8, 13], and its operational semantics as specified
in [1].

1.1 Problems of Combining Sharing and Encapsulation

As the connection between sharing and encapsulation is central to this article,
we provide a small series of examples with increasing complexity. The function
“coin” will play the role of the archetype of all non-determinism. It is defined
as

coin = 0

coin = 1

To give a first impression of the complications of non-determinism when sharing
is added, regard the following two functions:

Example 1.1 (Different Values in the Presence of Sharing)

withoutSharing = coin + coin

withSharing = let x = coin in x+x

�

According to the meaning of non-deterministic functions [6] or the operational
semantics of Curry [1], the two functions should show different behavior. Evalu-
ating “withoutSharing” will compute one of the four possible combinations of 0
and 1, yielding 0, 1, 1, or 2. In contrast, a call to “withSharing” will only reduce
to one of the two values 0 or 2. The reason for this can be seen when looking
at the reduction for both function calls, where non-deterministic choices will be
denoted by putting | between them:

withoutSharing → coin + coin → 0 + coin | 1 + coin

→ 0 + 0 | 0 + 1 | 1 + 0 | 1 + 1 → 0 | 1 | 1 | 2

This reduction can be seen as a reduction on terms. In contrast, a function
employing sharing is a reduction on directed graphs:

withSharing → let x=coin in x+x → +

coin

→ +

0

+

1

→ 0 | 2

One of the key properties of integrating functional and logic languages is to
provide access to non-deterministic computations from the purely functional
part of the program. To do this, a particular primitive is needed, which takes
an arbitrary expression and yields all possible values of this expression in a

2

single data structure, e.g., a list. We will call such a function getAllValues

and, corresponding to Example 1.1, it should show the following behavior:
getAllValues withoutSharing should evaluate to [0,1,1,2] whereas the call to
getAllValues withSharing should lead to [0,2].

Such a search primitive has been proposed in [11] and is contained in the
definition of Curry [13]. However, the formal definition of this search primitive
in [11, 13] is based on a term rewriting semantics and does not cover the be-
havior when some subexpressions are shared. As we will see, there are different
possibilities how to deal with sharing in the context of encapsulated search. The
purpose of this paper is (1) to clarify these differences and the respective advan-
tages and problems of the different approaches, and (2) to propose a practically
useful alternative which comprises the advantages but avoids the problems.

Introducing getAllValues, we immediately see a problem for defining a search
primitive. If a function like getAllValues really evaluates to a list of possible
results, the actual sequence of this list depends on the search strategy. From
a declarative point of view, both sequences [0,1] and [1,0] are legitimate re-
sults of getAllValues coin. From this perspective it seems mandatory that
getAllValues should return a set rather than a list of results. Later on we will
argue, however, why in our approach getAllValues does indeed return an or-
dered structure. We will continue to assume a list as the result of getAllValues
until coming back to this point later on.

Based on the previous examples, we can now consider applications of the
search operator getAllValues for which the expected result is less clear:

Example 1.2 (Difference Between Strong and Weak Encapsulation)

coinList = getAllValues coin ++ getAllValues coin

Judging from the discussion up to now, it is reasonable that the result of a
call to coinList should yield the list [0,1,0,1]. However, what happens if we
identify both calls to coin via sharing?

coinListWithSharing = let x=coin in getAllValues x ++ getAllValues x

Since the behavior w.r.t. sharing was left open in [11, 13], there are at least two
possibilities which can be found in different implementations of Curry. The first
possibility will be called strong encapsulation in the following. The strong en-
capsulation view is driven by the idea that the search operator should definitely
encapsulate all non-determinism. Consequently, if the expression that is encap-
sulated contains a subexpression that is connected (via sharing) to some ex-
pression outside the encapsulation, this connection is cut off. Conceptually, this
means that encapsulated search creates a copy of the expression before starting
its evaluation. In this case, coinListWithSharing evaluates to [0,1,0,1]. One
can argue that this is reasonable due to the correspondence to coinList and the
property that sharing should have no effect on the computed results (“referen-
tial transparency”). Actually, the PAKCS implementation of Curry [10] does
indeed feature this behavior.1

1In PAKCS getAllValues can be defined as getAllValues x = findall (=:= x).

3

However, there is another view which we call weak encapsulation. This view
is based on the idea that sharing should be respected even inside encapsulated
search. When processing an expression shared with the outside of the encapsula-
tion, the evaluation of this expression will not be encapsulated. If this expression
generates non-determinism, this non-determinism also effects the computation
outside which shares the expression. Thus, for coinListWithSharing we obtain
non-deterministically one of the values [0,0] and [1,1]. Actually, the encapsu-
lated search implemented in the Münster Curry Compiler (MCC [18]) features
weak encapsulation.2 �

In order to explain the complications with the combination of sharing and encap-
sulated search in more detail, we consider a slight modification of Example 1.2:

Example 1.3 (Problems of Strong Encapsulation)

coinListWithSharing2 = let x=coin in

getAllValues x ++ [x] ++ getAllValues x

Compared to Example 1.2, one might expect that the results of a call to
coinListWithSharing2 should yield [0,1]++[0]++[0,1] | [0,1]++[1]++[0,1] for
strong encapsulation. However, this is not the case, as we will see by examining
the reduction on the corresponding directed graphs step by step:

coinListWithSharing2

→ let x=coin in getAllValues x ++ [x] ++ getAllValues x

→ getAllValues ++ [] ++ getAllValues

coin

Since strong encapsulation duplicates subexpressions which are shared with
the outside before evaluating them, the connection of coin inside the first
getAllValues is cut from the other occurrences (the argument of the second
getAllValues is still shared since its evaluation has not been initiated):

→
getAllValues ++ [] ++ getAllValues

coin coin

→
[0,1] ++ [] ++ getAllValues

coin

Due to the standard definition of ++ (which demands the evaluation of the left
argument first), the list in the middle is evaluated in the next step. As this

2For reasons, which will be clarified in the following, getAllValues can not
be defined in MCC. Instead of getAllValues x, we have to use the expression
findall (\y -> y =:= x). The analogon to coinListWithSharing is then:
coinListWithSharing = let x = coin in

findall (\y -> y =:= x) ++ findall (\y -> y =:= x)
which yields the values [0,0] and [1,1].

4

list contains (a reference to) a call to coin, this step yields a non-deterministic
branching:

→ [0,1] ++ [] ++ getAllValues [0,1] ++ [] ++ getAllValues

0 1

Finally, the second call to getAllValues is evaluated, again cutting off the sharing
connection.

→ [0,1] ++ [0] ++ getAllValues 0 | [0,1] ++ [1] ++ getAllValues 1

→ [0,1]++[0]++[0] | [0,1]++[1]++[1]

It is obvious that this example is problematic from a declarative point of view.
Thinking in equations, both calls to getAllValues x in the example should eval-
uate to the same result. Even worse, the result of coinListWithSharing2 would
yet be different if the expression was evaluated right-to-left rather than left-to-
right. All of this shows that the strong encapsulation view does not provide a
declarative functional access to non-determinism. �

After studying Example 1.3, it becomes clearer that there are good reasons to
avoid the encapsulation of non-determinism when sharing is involved, like in the
weak encapsulation view. Unfortunately, this approach is just as unsatisfying
as strong encapsulation from a declarative point of view.

Example 1.4 (Problems of Weak Encapsulation)
In the weak encapsulation view, the expressions

findall (\y -> y =:= coin)

and

let x = coin in findall (\y -> y =:= x)

are not equivalent. The first yields [0,1], whereas the second evaluates to
[0] | [1]. Moreover, the encapsulation findall (\y -> y =:= coin) is different
from findall (=:= coin): again the first equals [0,1], the second results in
[0] | [1].

Because of all this, one cannot define getAllValues for MCC at all. Any
definition like

getAllValues x = findall (\y -> y =:= x)

results in the non-determinism being not encapsulated. �

1.2 Problems of Encapsulating Logical Variables

Functional logic languages allow the evaluation of function calls with logical
variables as arguments. These variables will be bound non-deterministically to
values corresponding to the patterns for this argument. This process is called
“narrowing”. Similarly to coin, we will use an archetype of a function inducing
non-determinism by binding logical variables:

5

Example 1.5 (Binding Logical Variables in Curry)

coinBind 0 = 41

coinBind 1 = 42

detBind 0 = 43

A call to coinBind with a logical variable x results in the two non-deterministic
alternatives 41 and 42 with x bound to 0 and 1, respectively. If coinBind is
called with a ground value, it applies normal pattern matching on this value.
If the function detBind is called with a logical variable, it also binds this vari-
able, in this case to the value 0. This binding, however, does not induce non-
determinism, as there is only a single pattern. �

Encapsulation in the presence of logical variables features some parallels to
the sharing problem. Again, we can distinguish a strong encapsulation view
from a weak one, and, as we will see, there is also a third view which will be
called rigid encapsulation. The reference example for this section is

Example 1.6 (Encapsulation of Logical Variables)

main = getAllValues (coinBind x)

++ [detBind x]

++ getAllValues (coinBind x)

where x free

�

1.2.1 Strong Encapsulation of Logical Variables

If we take the view of strong encapsulation, Example 1.6 should evaluate (with
a left-to-right strategy) to [41,42]++[43]++[41]. This is because the sharing
connection to the outside of getAllValues is cut off and the bindings to x are
not visible on the top level, i.e., they are encapsulated. Strong encapsulation
of logical variables is performed by Prolog’s findall (see [19] for a detailed
discussion). It is obvious that this behavior is just as problematic as the one
discussed in Example 1.3.

Example 1.7 (Problems of Strongly Encapsulating Logical Variables)

The behavior of the following Prolog program has similarities with Example 1.3.

coinBind(0).

coinBind(1).

detBind(0).

t1(L) :- findall(X,coinBind(X),L),findall(X,coinBind(X),L),detBind(X).

t2(L) :- detBind(X),findall(X,coinBind(X),L),findall(X,coinBind(X),L).

t3(L) :- findall(X,coinBind(X),L),detBind(X),findall(X,coinBind(X),L).

6

The proof of the literal t1(L) succeeds with L=[0,1] and t2(L) succeeds with
L=[0] whereas the proof of t3(L) fails because L is first bound to [0,1] and then
to [0], according to the left-to-right semantics of Prolog. �

Strong encapsulation of logical variables also interacts notably with lazy
evaluation, as we will show in Section 1.4 below.

1.2.2 Weak Encapsulation of Logical Variables

What is the result of Example 1.6 in the view of weak encapsulation? In anal-
ogy to Section 1.1, we could state that getAllValues (coinBind x) can not en-
capsulate the non-determinism occurring in (coinBind x) because x is shared
with the outside of the capsule. Rather, the computation splits into two non-
deterministic branches. In both branches x is bound to a value (0 or 1) and,
consequently, the call (detBind x) fails in one branch due to the unification of
the instantiated variable x and 0. Thus, main in Example 1.6 is equivalent to
[41]++[43]++[41].

Example 1.8 (Weak Encapsulation in Prolog) Prolog does also feature an
equivalent to weak encapsulation which is called bagof.

t4(X) :- bagof(_,coinBind(X),_),bagof(_,coinBind(X),_),detBind(X).

t5(X) :- detBind(X),bagof(_,coinBind(X),_),bagof(_,coinBind(X),_).

t6(X) :- bagof(_,coinBind(X),_),detBind(X),bagof(_,coinBind(X),_).

t7(X) :- bagof(_,coinBind(X),_).

The proofs of all three literals t4(X), t5(X), and t6(X) succeeds with X=0. How-
ever, the non-determinism of t7(X) is not encapsulated, resulting in two solu-
tions, X=0 and X=1.3 �

1.2.3 Rigid Encapsulation of Logical Variables

The reason, why Examples 1.7 and 1.8 were given in Prolog, is that none of the
implementations of Curry takes one of these views of strong or weak encapsu-
lation for logical variables. Curry implementations feature a third possibility
between strong and weak encapsulation (which is also used in Oz [22]): rigid
encapsulation.

In the view of rigid encapsulation, the whole encapsulation suspends if a
logical variable declared outside the encapsulation should be bound inside the
encapsulation. The suspended encapsulation can later be resumed if the vari-
able gets bound by a concurrent computation. In this view, the evaluation of
Example 1.6 would suspend. The results of rigid and weak encapsulation differ
noteworthy as shown in the next example:

Example 1.9 (Rigid vs. Weak Encapsulation)

3It is also possible to mix the two kinds of encapsulation by attaching an existential quan-
tifier to arguments of bagof. For a detailed discussion of bagof and the related predicate
setof see [19]

7

main | getAllValues (coinBind x) =:= y & x=:=2 = y where x,y free

In rigid encapsulation, a call to main results in [] (regardless of the order in
which the two concurrent constraints are evaluated), whereas weak encapsula-
tion produces no solution. �

All current implementations of Curry which feature encapsulated search take
a variation of the rigid encapsulation view. However, rigid encapsulation has
also its problems:

Example 1.10 (Problems of Rigid Encapsulation)

twoBindings 43 43 = 46

twoBindings 44 43 = 46

main = twoBindings (detBind x) (head (getAllValues (detBind x)))

where x free

Depending on the order in which the pattern matching for function twoBindings

is executed, the call to main either suspends (in case of a right-to-left order) or
evaluates to 46 (in case of a left-to-right order). Although all current implemen-
tations of Curry evaluate the given pattern left-to-right, other evaluation order
would make sense for the sake of efficiency improvements [15]. �

From a semantical point of view a possible suspension like the one in Ex-
ample 1.10 is not problematic. main denotes 46 under the condition that x is
bound to 0. The operational analogy is that the variable x could be bound
by a concurrent computation, thereby waking up the suspended computation.
However, a realistic program is either meant to run concurrently or it is not. If
it is not meant to, a suspension is nothing but a run-time error. Considering
Example 1.10, such a run-time error might only occur when porting the pro-
gram from one implementation of Curry to another, as for instance the order of
pattern matching might differ.

As we will show in Section 1.4, rigid encapsulation produces more problems
when combined with laziness.

Looking at current implementations featuring rigid encapsulation, there are
notable differences. In PAKCS, the computation is suspended directly when ap-
plying the search operator to an expression containing a logical variable declared
outside. In MCC, the computation is only suspended when such a variable is
to be bound.

Example 1.11 (A Superfluous Variable)

f x y = x

main = findall (\y -> y =:= f 1 x) where x free

The call to main suspends using PAKCS, whereas it reduces to [1] using MCC.
�

8

As a less academic example one can think of a web service. In Curry such a
service communicates to the outer world via ports, i.e., synchronizing by logical
variables [9]. In this case, the difference between rigid encapsulation in MCC
and PAKCS is that in MCC the web service may perform all sorts of start up
routines before suspending on the port, whereas in PAKCS this initialization
only takes place when a message comes in.

1.3 Lazy Evaluation and Search Strategies

Another notable feature of current implementations of encapsulated search is
the possibility to evaluate a call to getAllValues lazily. The problems of eager
evaluation are well known and we provide only a small example.

Example 1.12 (Eager vs. Lazy Encapsulated Search)

zeros = 0

zeros = zeros

main = head (getAllValues zeros)

Evaluating the search space eagerly, like in PAKCS, the call to main does not
terminate. If the search space is lazily evaluated, like in MCC, main reduces to
0. �

Of course, termination is not only influenced by lazy or eager evaluation but
also by the search strategy employed. Current implementations of Curry employ
depth-first search which might be influenced by the textual order of the rules.
In consequence, a slight change to Example 1.12 leads to a different run-time
behavior:

Example 1.13 (Depth-First Search)

zeros2 = zeros2

zeros2 = 0

main = head (getAllValues zeros2)

This program does not terminate w.r.t. eager as well as lazy evaluation of the
search space provided that the rules are tried from top to bottom. �

However, there is the possibility to formulate the search using a primitive search
operator try [11]. Using try, one can formulate search strategies different from
standard depth-first search. We will discuss a similar solution in Section 2.1.

1.4 Sharing, Laziness and Logical Variables Interacting

Generally, if encapsulated search operators like getAllValues are evaluated lazily,
then the problems of encapsulating logical variables increase. This is due to the
fact that the results of a call to getAllValues might depend on logical variables
declared outside of the capsule. We illustrate this problem by a further example.

9

Example 1.14 (Influencing the Search Result)

main i = bindHead i (getAllValues (x ?4 coinBind x)) where x free

bindHead i (y:ys) | y=:=i = ys

The interesting point of this example is that the function bindHead accesses the
result of the search. Unifying the first solution with the given value i influences
the value of the remaining solutions. Thus, binding the first solution to 0

leads to the remaining solutions [41], and, when binding it to 1, the remaining
solutions are [42] (e.g., MCC shows this behavior). Moreover, a redefinition of
the function coinBind can also lead to a difference in the number of results.

coinBind 0 = 41

coinBind 1 = 42

coinBind 1 = 43

With this coinBind, main 0 reduces to [41] and main 1 to [42,43]. �

On one hand, this behavior of lazy encapsulation opens the door to new
concepts of search: one could inspect the first few solutions of a search and,
depending on the result of the analysis, one could prune the remaining search.
On the other hand, influencing a search in this way is problematic: the value of
a call to getAllValues is not definite until it is fully evaluated. Its value depends
on the whole computation before and after the call to getAllValues. It might
be difficult to understand the outcome of a program if the results depends on
all these factors. Therefore, it seems reasonable to provide a search primitive
whose value is fully defined by the time it is called and does not depend at all
on the remaining computation. Influencing the outcome of the search during
its evaluation could be the purpose of specific pruning operators. However, this
will not be considered in this paper.

1.5 Wish List for Future Implementations of Encapsu-
lated Search

From the discussion above, we can now gather the desirable features of encap-
sulated search.

Strong Encapsulation of Sharing: One of the main reasons to provide en-
capsulated search is to make sure that certain parts of the program evaluation
are definitely deterministic. This is especially important for I/O actions. Since
weak encapsulation does not ensure encapsulation of non-determinism (see Ex-
amples 1.2 and 1.4), some variant of strong encapsulation has to be used to
achieve deterministic I/O.

No Sharing of Non-Deterministic Terms with the Outside: Many of
the above examples have shown that strong encapsulation can be problematic.

4The function ? non-deterministically yields one of its arguments. Thus, coin could also
be defined as coin = 0 ? 1.

10

Examining Examples 1.3, 1.6, and 1.7 we can conclude that the problem is
sharing a non-deterministic value with the outside of the capsule. Following
the old directive of language design “If you don’t like it, you don’t allow it”
[16, p.101], future implementations of encapsulated search should omit these
problems. This can be achieved by a combination of two program analyses: a
non-determinism analysis like the one presented in [12, 5] and a sharing analysis
like those employed for uniqueness types [4]. Some work has to be invested to
clearly define “the outside”:

Example 1.15 (Defining the Outside)

f = let x = coin in getAllValues x ++ getAllValues x

g = getAllValues (let x = coin in x ++ getAllValues x)

In this example the definition of f would not lead to problematic behavior of
the encapsulated search in contrast to the definition of g. Consequently, a good
program analysis could allow f but reject g. Note that f illustrates that even
if we omit sharing of non-deterministic terms with the outside, there is still a
difference between strong and weak encapsulation. �

Of course, there are various degrees of how well the program analysis ap-
proximates the information about sharing and non-determinism. For instance,
uniqueness is often ensured by a monadic approach, and Curry supports the
I/O monad as a construct to ensure uniqueness. Therefore, in the following
we will discuss an approach to restrict encapsulated search to the I/O monad.
This approach is a valid approximation of the requirement to prevent sharing
of non-deterministic terms with the outside for several reasons. First, monadic
I/O has to be deterministic. Therefore, no sharing of non-deterministic terms
with the outside of encapsulated search can take place. Second, different calls
to a search operator like getAllValues have to be explicitly sequentialized in
the I/O monad. This will be important in one of the next points of our wish-
list. Third and last, as the result of encapsulated search is a list rather than
a set, its result, i.e., the order of the solutions, can depend on external factors
like scheduling, memory usage etc. Because of that encapsulated search clearly
bears resemblance to an I/O action.

Strong Encapsulation for Logical Variables: As discussed in Section 1.2,
all implementations of Curry employ rigid encapsulation for logical variables.
However, in the context of Example 1.10, we have shown that rigid encapsulation
can lead to different behavior on different implementations of Curry. Although
semantically correct, this unpredictable behavior is in most situations as unde-
sirable as a run-time error. Therefore, we propose strong encapsulation like in
Prolog as the best choice for encapsulating logical variables.5

Strong encapsulation also provides more possibilities to influence an ongoing
search as detailed in Section 1.4. In that section, we also discussed increasing

5Note that it is still possible to formulate a suspending search by the explicit use of rigid
functions.

11

problems when combining strong encapsulation with lazy evaluation. This prob-
lems will have to be addressed in one of the remaining points of the wishlist.

Lazy Evaluation: For a seamless combination of functional and logic pro-
gramming, a lazy search primitive is desirable. Otherwise, there is no complete
correspondence between the treatment of non-determinism on the top level of
the interactive environment (where solutions are shown one-by-one) and the
handling of non-determinism within the program. Moreover, with eager search
the programmer has to think in terms of terminating reductions for the non-
deterministic computations to be encapsulated.6 In addition, lazy evaluation
enables the possibility to influence an ongoing search (see Section 1.4). As an
example, we will show how to implement depth-first and breadth-first search
using this approach.

Explicit Sequencing: As discussed above, it is possible to influence not only
the overall strategy but also to prune an ongoing search via a lazy search prim-
itive if we bind logical variables outside the capsule. In this case the result of
an encapsulated search does not only depend on the evaluation up to the start
of the search but also on the remaining computation. To avoid this problem,
the search primitive conceptually has to copy the binding state of the logical
variables. In order to allow the programmer to define the starting point of his
search, all calls to search primitives should be explicitly sequentialized. In our
approach, this will be obtained by restricting the search primitive to the I/O
monad.

In the next section, we propose a formal definition of a new approach to encap-
sulate search in (non-strict) functional logic languages. This approach features
all the properties discussed in this wish list.

2 A Revised Approach to Encapsulating Search
in Functional Logic Programs

In this section we first sketch our basic design of the functional access to non-
deterministic computations (Section 2.1). Section 2.2 contains the formal defi-
nition of this design.

2.1 A Data Structure for Representing Search

Our approach is based on the idea that each non-deterministic computation
yields a data structure representing the actual search space. The definition of
this representation should be independent of the search strategy employed. The
basic structure of the search space can be captured by the following algebraic
data type:

6Note that the encapsulated search primitives of Oz [22] and Prolog’s findall [19] are
related to strict languages where sharing only occurs via logical variables.

12

data SearchTree a = Or [SearchTree a] | Val a | Fail

Thus, a non-deterministic computation yields either the successful computation
of a completely evaluated term v (i.e., a term without defined functions) repre-
sented by Val v, an unsuccessful computation (Fail), or a branching to several
subcomputations represented by Or [t1, . . . , tn] where t1, . . . , tn are search trees
representing the subcomputations.

Example 2.1 (Search Tree)
In order to understand our use of search trees, consider again the function “coin”
defined as

coin = 0

coin = 1

Evaluating the expression coin with our search primitive will yield the search
tree Or [Val 0, Val 1] which represents both results in one structure. Similarly,
the expression [coin,coin] will be evaluated to

Or [Or [Val [0,0], Val [0,1]], Or [Val [1,0], Val [1,1]]]

by our search primitive. The latter represents the four possible results [0,0],
[0,1], [1,0], and [1,1] which can be extracted by a particular search strategy
(see below). �

Analogously to findall in MCC, this structure should be provided lazily, i.e.,
search trees are only evaluated to head normal form. By means of pattern
matching on the search tree, a programmer can explore the structure and
demand the evaluation of subtrees. Hence, it is possible to define arbitrary
search strategies on the structure of search trees. For instance, variations of
getAllValues for depth-first search and breadth-first search can be defined as
follows:

getAllValuesD :: SearchTree a -> [a] -- depth-first search

getAllValuesD (Val v) = [v]

getAllValuesD Fail = []

getAllValuesD (Or ts) = concatMap getAllValuesD ts

getAllValuesB :: SearchTree a -> [a] -- breadth-first search

getAllValuesB t = map (\(Val v) -> v) (getAllValuesB’ [t])

getAllValuesB’ :: [SearchTree a] -> [SearchTree a]

getAllValuesB’ [] = []

getAllValuesB’ (t:ts) =

filter isVal (t:ts) ++

getAllValuesB’ (concatMap (\(Or ts) -> ts) (filter isOr (t:ts)))

where isVal and isOr are test predicates for the constructors Val and Or, re-
spectively. Evaluating the search tree lazily, these functions evaluate the list of
all values in a lazy manner too.

13

2.2 An Operational Semantics for Encapsulated Search

In this section, we present an operational semantics for a search operator, called
getSearchTree, that handles the problems discussed in Section 1. As motivated
above, the search operator evaluates expressions as in standard computations
but returns the results in form of search trees. In particular, non-deterministic
results should be combined into Or-structures. Thus, we base our semantics
on the operational semantics for functional logic languages presented in [1]. In
the following, we explain how to extend this operational semantics in order to
generate appropriate search trees. We will explain our considerations rule by
rule together with a discussion of the differences from the original rules in [1].

Instead of defining our semantics directly for Curry, we consider a core sub-
language, called FlatCurry, into which Curry programs can be translated. Local
function definitions are eliminated by lambda lifting [14]. Higher-order con-
structs are translated to primitive functions partcall (partial applications) and
apply (binary applications). Needed narrowing and residuation are implemented
as case expressions, which correspond to definitional trees [2], fcase for flexible
functions, case for rigid functions, and or for non-deterministic branching. For
instance, the function coinBind of Example 1.5 corresponds to the FlatCurry
definition

coinBind x = fcase x of { 0 -> 41;

1 -> 42 }

the function coin of Example 2.1 corresponds to the FlatCurry definition

coin = 0 or 1

Furthermore, we consider normalized FlatCurry programs in which functions
are only applied to variables that are bound to expressions by an explicit let

binding. These variables represent references to possibly shared expressions
(see also [17]). The normalized form of an expression e is denoted by e∗ (see [1]
for a formal definition). For instance, the definition “main = coinBind coin” is
normalized to

main = let x = coin in coinBind x

The basic components of the original semantics are

(a) a heap (a mapping from variables to expressions) to model sharing,

(b) a control which holds the expression currently processed, and

(c) a stack which provides two kinds of information: case expressions for
pattern matching and variables which will be updated as soon as their
corresponding expressions have been evaluated to head normal form.

For our approach we need the possibility to encapsulate non-deterministic com-
putations. This is done by considering a sequence of heaps rather than a single
heap and a sequence of stacks rather than a single stack. These sequences are

14

essentially push-down structures, the topmost is always the one currently pro-
cessed. A rule which deals with the topmost heap Γ and the topmost element
x of the topmost stack S has the following form:

Rulename Heaps Control Stacks
example γ · Γ e x · S · (S′)
�→ γ · Γ[x 7→ e] e S · (S′)

Note that, for the sake of readability, the sequence of heaps grows towards the
right and the stacks towards the left. “·” denotes the concatenation on se-
quences. As each stack in the sequence of stacks is itself modeled by a sequence,
we use brackets () to separate the different stacks, whereas no such separation
is necessary for the heaps.7 For the sake of readability we write (S) instead of
ε · (S). Finally, the notation Γ[x 7→ e] denotes a heap in which the variable
x maps to the expression e and other mappings of x in Γ are ignored (i.e.,
it represents a destructive heap update). Logical variables are represented by
self-references ([x 7→ x]).

The heap/stack sequences grow whenever a new layer of encapsulation is
needed. Thus, there may be as many layers as there are calls to getSearchTree in
the program plus one. This additional layer is used for the top-level evaluation,
in which no search (non-determinism) may be performed. This is important
because the top-level is usually deterministic, featuring I/O actions to print
the computed values. As discussed in Section 1, this means that any non-
determinism has to be encapsulated.

As in the original approach, we assume that the evaluation starts with the
designated function main. Thus, the initial state of the operational semantics
is8

Heaps Control Stacks
[] main ε

Now we are ready to discuss the different rules applicable on the states of
the operational semantics. The first two rules deal with retrieving information
from the topmost heap by looking up a variable binding which is put into the
control:

Rule Heaps Control Stacks
varcons γ · Γ[x 7→ c(xn)] x S
�→ γ · Γ[x 7→ c(xn)] c(xn) S

varexp γ · Γ[x 7→ e] x S
�→ γ · Γ[x 7→ e] e x · S

where e is not constructor-rooted and e 6= x

7Thus, the difference between x · y ·S and x · (y ·S) is that in x · (y ·S) the variable x is the
only element of the topmost stack, whereas in x · y ·S both x and y are on the topmost stack.

8We will redefine the initial state at the end of this section to make our semantics work.
However, for the moment, this definition is sufficient.

15

In our notation, c denotes a constructor symbol, e represents arbitrary expres-
sions, and over-lined terms an represent the sequence of terms a1, . . . , an. If
the variable to be evaluated is bound to a constructor-rooted term, rule varcons
simply writes this term into the control. If it is bound to some unevaluated
expression, rule varexp writes this expression into the control and pushes the
variable on the stack in order to implement sharing (see rule val below). Apart
from the presence of sequences of heaps and stacks, these rules are identical to
the original rules of [1]. Similarly, the next three rules, val, fun and let, are
identical to the original rules since they affect only the topmost heap:

Rule Heaps Control Stacks
val γ · Γ v x · S
�→ γ · Γ[x 7→ v] v S

fun γ f(xn) S
�→ γ ρ(e) S

let γ · Γ let {xk = ek} in e S

�→ γ · Γ[yk 7→ ρ(ek)] ρ(e) S

where in val v is constructor-rooted or a variable with Γ[v] = v,
in fun f(yn) = e is a program rule and ρ = {yn 7→ xn},
and in let ρ = {xk 7→ yk} and yk are fresh w.r.t. all heaps

Rule val implements sharing by updating the heap with a computed value, rule
fun unfolds a function call, and rule let puts bindings for fresh variables into the
topmost heap.

The next rule, or, is more interesting as it strongly differs from the original:

Rule Heaps Control Stacks
or γ · Γ · Γ′ e1 or e2 S · (S′)
�→ γ · Γ[vs 7→ [z1, z2],

z1/2 7→ caps(Γ′, e1/2, S)] Or(vs) S′

where vs, z1 and z2 are fresh

Here and in the following x 7→ [z1, . . . , zn] is a shortcut to denote that x maps
to the list of variables [z1, . . . , zn]. This is correctly expressed by the somewhat
lengthy expression

x 7→ l0, ln−1 7→ zn : ln, ln 7→ [] where l0, . . . , ln are fresh variables.

In rule or, we lift the idea of lazy evaluation to the meta-level of search. This
results in a lazy construction of the search tree, as demanded by the top-
level evaluation (e.g., a search strategy like getAllValuesD). Whenever a non-
deterministic branching is executed, we have to put the branches into a search
tree headed by the constructor Or. Thus, the current layer of encapsulation has
been evaluated to head normal form and the evaluation is finished (for now).
The result Or(vs) is put on the control and the current layer of encapsulation
can be removed. The current context, i.e., the topmost heap, the expression on

16

the control, and the topmost stack, is stored for future reference in a specific
structure (caps) in the heap of the next level of evaluation.

Whenever one of the arguments of Or is demanded, the context has to be
restored. This is done by the rule caps.

Rule Heaps Control Stacks
caps γ caps(Γ, e, S) S′

�→ γ · Γ e S · (S′)

It can be easily checked that restoring the evaluation context with caps is indeed
dual to storing it with or.

The next two rules are concerned with the implementation of pattern match-
ing. They are almost identical to the original ones presented in [1].

Rule Heaps Control Stacks
case γ (f)case e of {pk → ek} S
�→ γ e (f){pk → ek} · S

select γ c(yn) (f){pk → ek} · S
�→ γ ρ(ei) S

where pi = c(xn) and ρ = {xn 7→ yn}

The two variations case and fcase (short for “flexible case”) correspond to the
evaluation modes “rigid” and “flexible” as described in [13]. The difference will
become important when discussing rule guess below.

Before discussing the remaining rules, we give an example of a simple pro-
gram applying only those rules discussed so far.

Example 2.2 (Operational Semantics in Action)
Consider the following simple program:

coin = 0 or 1

consTree = let c = coin in

case c of { 0 -> c;

1 -> c }

Assume that the evaluation of consTree is demanded during some computation.
Using our operational semantics, we obtain:

Γ1 · [] consTree (S)
�→fun Γ1 · [] let c=coin in case {0->c;1->c} (S)
�→let Γ1 · [c 7→ coin] case c of {0->c;1->c} (S)
�→case Γ1 · [c 7→ coin] c {0->c;1->c}(S)
�→varexp Γ1 · [c 7→ coin] coin c{0->c;1->c}(S)
�→fun Γ1 · [c 7→ coin] 0 or 1 c{0->c;1->c}(S)
�→or Γ′1 Or vs (S)

where Γ′1 = Γ1[vs 7→ z1:vs1, vs1 7→ z2:vs2, vs2 7→ [],
z1 7→ caps([c 7→ coin],0,c{0->c;1->c}),
z2 7→ caps([c 7→ coin],1,c{0->c;1->c})]

17

The result is Or with a list argument. The two elements of this list are cap-
sules containing the arguments of the Or and the heap and stack in which their
evaluation should be continued.

If we later resume the evaluation of the second argument of the search tree,
we get the evaluation (where Γ2 is similar to Γ′1 possibly containing some further
updates):

Γ2 z2 S
�→varexp Γ2 caps([c 7→ coin],1,

c{0->c;1->c}) z2S
�→caps Γ2 · [c 7→ coin] 1 c{0->c;1->c}(z2S)
�→val Γ2 · [c 7→ 1] 1 {0->c;1->c}(z2S)
�→select Γ2 · [c 7→ 1] c (z2S)
�→varcons Γ2 · [c 7→ 1] 1 (z2S)

�

The next rule, guess, is responsible for starting those non-deterministic searches
which are induced by guessing bindings for logical variables (narrowing). Con-
sider a flexible function f . When f is called with a logical variable x as an argu-
ment, pattern matching on this variable results in a non-deterministic branching.
In each branch, x is bound to a different constructor corresponding to the pat-
terns of the fcase. This behavior is modeled by the rule guess which combines
the rules select and or discussed above:

Rule Heaps Control Stacks

guess γ · Γ · Γ′[x 7→ x] x f
{

ck(xnk)→ ek

}

·S ·(S′)
�→ γ · Γ[vs 7→ [z1, . . . , zk],

zk 7→ sk] Or(vs) S′

where vs, z1, . . . , zk are fresh, k > 1, and
for all i ∈ {1, . . . , k} : ρi = {xni 7→ yni}, yni are fresh, and

si = caps(Γ′[x 7→ ci(yni), yni 7→ yni], ρi(ei), S)

Note that rule guess only induces non-determinism if there is more than one
pattern in the case expression. If there is only a single pattern, there is no need
to perform a non-deterministic branching. Therefore, the corresponding rule
guess-1 is quite simple and more similar to select than to guess:

Rule Heaps Control Stacks
guess-1 γ · Γ[x 7→ x] x f{c(xn)→ e} · S
�→ γ · Γ[x 7→ c(yn), yn 7→ yn] ρ(e) S

where yn are fresh and ρ = {xn 7→ yn}

The next three rules deal with the results of encapsulations. If the computation
was successful (i.e., the remaining stack is empty), the result (a head normal
form) remains on the control. The context of the current computation has to

18

be stored (similar to rule or) in order to access the values of the arguments
correctly.

Rule Heaps Control Stacks
rescons γ · Γ · Γ′ c(xn) (S)
�→ γ · Γ

[

zn 7→ caps(Γ′, xn, ε)
]

c(zn) S

resvar γ · Γ · Γ′[x 7→ x] x (S)
�→ γ · Γ[x 7→ x] x S

where zn are fresh in rescons

Failing computations are encoded by the constructor Fail . Obviously, the eval-
uation context of such a computation can be thrown away.

Rule Heaps Control Stacks
fail γ · Γ c(xn) (f){pk → ek} · S · (S′)
�→ γ Fail S′

where for all i = 1, . . . , k : pi 6= c(. . .)

So far, we have extended the base semantics of [1] to compute search trees for
representing non-deterministic computations. We have shown in Section 2.1
how search strategies can be defined as functions processing search trees. In
order to provide this feature inside a program, the computed search trees must
be made available to the programmer. As motivated in Section 1.5, a search
tree should be computed by an action inside the I/O monad. Thus, we propose
a predefined I/O action getSearchTree that lazily evaluates its argument to a
search tree. Its semantics is defined by the following rule (since getSearchTree
is an I/O action, it has a second argument, the current state of “world” that is
threaded through the sequence of I/O actions, as described in [21]):

Rule Heaps Control Stacks
getsearchtree Γ getSearchTree(x,w) S

�→ Γ[z 7→ caps(Γ, search(x ,Val(x))∗, ε)] (z, w) S
where z is fresh

Note that getSearchTree does not evaluate its argument but stores it in a capsule
in the heap which will be further evaluated if it is demanded by some search
strategy, like getAllValuesD. The heap stored in this capsule is the heap before
this primitive is evaluated. This corresponds to strong encapsulation of sharing
since the actual encapsulated search is performed on a copy of the current argu-
ment. Furthermore, the argument is wrapped in a search structure (which must
be normalized by means of ∗, see above). This is necessary in order to deliver
only completely evaluated values as arguments of Val. Otherwise, the further
evaluation of such arguments could result in non-deterministic computations.
Thus, a search structure is evaluated by computing the normal form of the first
argument and returning the second argument. This behavior is specified by the

19

following rules:

Rule Heaps Control Stacks
search γ search(x1, x2) S
�→ γ x1 s(x2) · S

searchcons γ c(xn) s(x) · S
�→ γ search(x1, search(x2, .., search(xn, x). .))∗ S

searchvar γ · Γ[x 7→ x] x s(y) · S
�→ γ · Γ[x 7→ z, z 7→ z] y S

Rule search initiates the evaluation of a search structure by putting the second
argument on the stack and the first argument on the control. If the control is
evaluated to a constructor-rooted term, the arguments must be evaluated as well
before returning its value. This is the purpose of rule searchcons which creates
search structures for the arguments. Similarly to rule getSearchTree, we have to
ensure the invariant of our semantics that functions and constructors are only
applied to variables (in order to implement sharing, as mentioned above). Thus,
the nested search expression has to be normalized by means of the normalization
function ∗ which yields in this case:

let { yn = search(xn, x),
yn−1 = search(xn−1, yn),

...
y2 = search(x2, y3) } in

search(x1, y2)

This definition fixes the evaluation order from left to right. However, this is no
restriction for narrowing since we compute normal forms of expressions to be
searched9.

Rule searchvar finishes the search (as well as rule searchcons in case of 0-ary
constructors) by removing the search structure if a logical variable has been
computed. In order to implement strong encapsulation of logical variables (cf.
Section 1.2), rule searchvar renames the computed variable.

Finally, we encapsulate all non-determinism in the top-level by wrapping
the main I/O action that is applied to the outside world (represented by the
constructor World()) in a search structure. Thus, the main evaluation of a
program is always initiated by the following rule10:

Heaps Control Stacks
[] let m = main,

w = World(),
mIO = apply(m,w) in

search(mIO,mIO) ε

9In the context of residuation, the evaluation order can have an effect on the result. While
one order suspends, another order can yield a result. However, this discussion is out of the
scope of this paper.

10Note that, by applying the search primitive, the top-level computation yields the complete
normal form, whereas the original semantics computed the head normal form, only.

20

The remaining rules of the original operational semantics [1], like the rules for
primitive functions, higher-order applications (apply), unification (=:=), are not
changed in our context so that we do not present them here again.

3 Examples

In the following example, we demonstrate the effect of using the search oper-
ator getSearchTree twice which is in some sense nested because of lazy evalu-
ation. First, the program computes the search tree resulting from coin. This
tree is then used in the function getAny to select all values in this tree non-
deterministically. This non-deterministic computation is again encapsulated by
getSearchTree and both encapsulated results are compared.

coin :: Int

coin = 0 or 1

(==) :: a -> a -> Bool

x == y = let a = prim_Eq(x,y),

b = hnf(y,a)

in hnf(x,b)

main :: IO Bool

main = let c = coin in do

cST <- getSearchTree c

cST’ <- getSearchTree (getAny cST)

return (cST == cST’)

getAny :: SearchTree a -> a

getAny t = case t of {
Or ts -> getAnyL ts;

Val v -> v}

getAnyL :: [SearchTree a] -> a

getAnyL ts = case ts of {
(x:xs) -> (getAny x) or (getAnyL xs)}

To compare the two results, we use the (predefined) function “==”. It evalu-
ates its arguments to head normal form (hnf) and compares them by prim Eq

afterwards. The function prim Eq is a primitive function which, for identical
top-level constructors, compares their arguments recursively by means of (==)

and sequential conjunction (&&). See [1] for a more detailed description of the
semantics of primitive functions.

The computation yields the value Val False. This (perhaps) surprising result
is produced due to different searches performed for the computations of cST and
cST’. A full evaluation of the search tree would yield cST = Or [Val 0, Val 1].
Applying the function any to this value and encapsulating it again by the
operator getSearchTree, we obtain cST’ = Or [Val 0,Or [Val 1,Fail]]. The

21

presented program compares the structure of the search trees exactly. How-
ever, both compute the same values and a comparison of getAllValuesD or
getAllValuesB applied to cST and cST’ would return True.

Since the execution of the program takes 266 steps, we present a simpler
computation in Appendix A. Instead of comparing cST and cST’, we only com-
pute the first solutions for cST and cST’. Despite of this restriction, the example
still shows how the evaluation of one encapsulation demands the evaluation of
another encapsulation.

Another example, which shows the benefit of computing the search tree
lazily, is the non-deterministic computation of all numbers:

nat :: Int

nat n = nat (n+1) or n

nats :: IO (SearchTree Int)

nats = getSearchTree (nat 0)

The computation of getSearchTree yields the infinite search tree

Or [Or [Or [Or [...,Val 3], Val 2], Val 1], Val 0]

Since this tree is infinitely nested in the first argument of the occurring Ors, the
application of getAllValuesD will not compute a solution since it does not ter-
minate. Using getAllValuesB we can compute an arbitrary number of solutions
by

nats n :: Int -> IO [Int]

nats n = nats >>= return . take n . getAllValuesB

4 Conclusion

We presented a revision of encapsulation of non-determinism in lazy functional
logic languages. The initial discussion showed that existing approaches are in-
appropriate. We also showed that the discussed problems can be avoided by
imposing two restrictions: (1) there should be no sharing for non-deterministic
terms for any encapsulation and the outside, and (2) calls to the search prim-
itives should be explicitly sequentialized. Both restrictions can be ensured by
integrating the search primitives into the IO monad.

Furthermore, we have argued that a reasonable approach should strongly
encapsulate sharing and logical variables and generate a representation of the
encapsulated search lazily. Our solution is the lazy creation of a search tree,
representing the search space of the computation via a search primitive called
getSearchTree. Based on the data structure returned by getSearchTree, it is
possible to define various search strategies on the level of the functional logic
language.

The basic idea in the construction of the search tree is adapted from a stan-
dard operational semantics for functional logic languages with sharing and, thus,
it is a consequent extension of this semantics to the level of meta-programming.

22

We implemented the presented semantics as an interpreter written in Haskell.
Although this interpreter lacks in efficiency and garbage collection, we used it
for some interesting examples confirming the potential of our approach.

The search tree presented in this paper covers only the kind of fairness
one can accomplish by the operator try [11]. However, this is not a principal
limitation of the approach. Extending search trees by

data SearchTree a = Or [SearchTree a] | Val a | Fail

| Eval (SearchTree a)

and yielding a value of the form Eval... in every fun rule, we would cover fair
search in the stronger sense. However, the practicability of this extension can
only be estimated by an implementation of the approach.

For future work, we want to prove that the presented semantics and the
semantics without encapsulation [1] compute comparable results for non-deter-
ministic computations. Furthermore, we want to show that our approach im-
plements strong encapsulation for shared expressions and logical variables, and
that the proposed properties of these encapsulation strategies hold. In a next
step, we want to use the presented ideas for a new implementation of Curry. In
contrast to PAKCS, which translates to Prolog, we want to use Haskell [20] as
target language. This implementation should then cover all discussed aspects.

References

[1] E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Operational se-
mantics for declarative multi-paradigm languages. Journal of Symbolic
Computation (to appear), 2004.

[2] S. Antoy. Definitional trees. In Proc. of the 3rd International Conference
on Algebraic and Logic Programming, pages 143–157. Springer LNCS 632,
1992.

[3] S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. Journal
of the ACM, 47(4):776–822, 2000.

[4] E. Barendsen and S. Smetsers. Uniqueness typing for functional languages
with graph rewriting semantics. Mathematical Structures in Computer Sci-
ence, 6(6):579–612, 1996.

[5] B. Braßel. Non-determinism analysis of functional logic programs. Techni-
cal report, Christian-Albrechts-Universität zu Kiel, 2004.

[6] J.C. González-Moreno, M.T. Hortalá-González, F.J. López-Fraguas, and
M. Rodŕıguez-Artalejo. An approach to declarative programming based on
a rewriting logic. Journal of Logic Programming, 40:47–87, 1999.

[7] M. Hanus. The integration of functions into logic programming: From
theory to practice. Journal of Logic Programming, 19&20:583–628, 1994.

23

[8] M. Hanus. A unified computation model for functional and logic program-
ming. In Proc. of the 24th ACM Symposium on Principles of Programming
Languages (Paris), pages 80–93, 1997.

[9] M. Hanus. Distributed programming in a multi-paradigm declarative lan-
guage. In Proc. of the International Conference on Principles and Practice
of Declarative Programming (PPDP’99), pages 376–395. Springer LNCS
1702, 1999.

[10] M. Hanus, S. Antoy, M. Engelke, K. Höppner, J. Koj, P. Niederau, R. Sadre,
and F. Steiner. PAKCS: The Portland Aachen Kiel Curry System. Available
at http://www.informatik.uni-kiel.de/~pakcs/, 2003.

[11] M. Hanus and F. Steiner. Controlling search in declarative programs. In
Principles of Declarative Programming (Proc. Joint International Sympo-
sium PLILP/ALP’98), pages 374–390. Springer LNCS 1490, 1998.

[12] M. Hanus and F. Steiner. Type-based nondeterminism checking in func-
tional logic programs. In Proc. of the 2nd International ACM SIGPLAN
Conference on Principles and Practice of Declarative Programming (PPDP
2000), pages 202–213. ACM Press, 2000.

[13] M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.8).
Available at http://www.informatik.uni-kiel.de/~curry, 2003.

[14] T. Johnsson. Lambda lifting: Transforming programs to recursive func-
tions. In Functional Programming Languages and Computer Architecture,
pages 190–203. Springer LNCS 201, 1985.

[15] P. Julián Iranzo and C. Villamizar Lamus. Analysing definitional trees:
Looking for determinism. In Proceedings of the 7th International Sympo-
sium on Functional and Logic Programming (FLOPS 2004), pages 55–69.
Springer LNCS 2998, 2004.

[16] P. Koopman, R. Plasmeijer, M. van Eekelen, and S. Smetsers. Functional
programming in Clean. http://www.cs.ru.nl/~clean/contents/Clean_
Book/clean_book.html, 2001.

[17] J. Launchbury. A natural semantics for lazy evaluation. In Proc. 20th
ACM Symposium on Principles of Programming Languages (POPL’93),
pages 144–154. ACM Press, 1993.

[18] W. Lux. Implementing encapsulated search for a lazy functional logic lan-
guage. In Proc. 4th Fuji International Symposium on Functional and Logic
Programming (FLOPS’99), pages 100–113. Springer LNCS 1722, 1999.

[19] L. Naish. All solutions predicates in Prolog. In Proc. IEEE Internat.
Symposium on Logic Programming, pages 73–77, Boston, 1985.

24

[20] S.L. Peyton Jones and J. Hughes. Haskell 98: A non-strict, purely func-
tional language. http://www.haskell.org, 1999.

[21] S.L. Peyton Jones and P. Wadler. Imperative functional program-
ming. In Proc. 20th Symposium on Principles of Programming Languages
(POPL’93), pages 71–84, 1993.

[22] C. Schulte and G. Smolka. Encapsulated search for higher-order concurrent
constraint programming. In Proc. of the 1994 International Logic Program-
ming Symposium, pages 505–520. MIT Press, 1994.

[23] P. Wadler. How to declare an imperative. ACM Computing Surveys,
29(3):240–263, 1997.

25

A A Complex Example

To illustrate the operational semantics, we simplify the example of Section 3 as
follows (here presented as Curry code):

coin :: Int

coin = 0 or 1

main :: IO Int

main = do cST <- getSearchTree coin,

cST’ <- getSearchTree (selFirst cST)

return (selFirst cST’)

selFirst :: SearchTree a -> a

selFirst (Or (t:_)) = selFirst t

selFirst (Val v) = v

Instead of selecting non-deterministically any of the elements of cST, we only
select the first solution. To demonstrate how the (unevaluated) result of one
encapsulation is demanded within another encapsulation, we encapsulate the
result f again by getSearchTree and select the first solution of this encapsulation.

This definition of the IO function main is not normalized. After normal-
ization, which requires also lambda lifting due to the presence of higher-order
functions (the bind operator (>>=)), we get the following FlatCurry program:

coin :: Int

coin() = 0 or 1

main :: IO Int

main() = let c = coin(),

cST = getSearchTree(c),

m1 = main1()

in cST >>= m1

main1 :: SearchTree Int -> IO Int

main1(cST) = let f = selFirst(cST),

cST’ = getSearchTree(f),

m2 = main2()

in cST’ >>= m2

main2 :: SearchTree Int -> IO Int

main2(cST’) = let f2 = selFirst(cST’)

in return(f2)

selFirst :: SearchTree a -> a

selFirst t = fcase t of {
Or ts -> case ts of {

(t:ts) -> selFirst(t)

};
Val v -> v}

26

(>>=) :: IO a -> (a -> IO b) -> IO b

(>>=) act cont w = case apply(act,w) of {
(a,w’) -> let b=apply(cont,a) in

apply(b,w’)

}

return :: a -> IO a

return x w = (x,w)

Since the evaluation of this program still takes 135 steps, it would be tedious to
present it entirely. Hence, we restrict to sketching the important parts.

The evaluation starts in the initial configuration

[] let m=main,w=World(),mIO=apply(m,w) in ε
search(mIO,mIO)

�→ Γ0 search(mIO,mIO) ε
�→ Γ0 mIO s(mIO)

By means of search, we enforce the evaluation of mIO to normal form. Since
this computation belongs to the top level IO computation, there will be no
non-determinism and the result is returned as a value.

After some initializations in the heap, we reach the configuration

Γ1 getSearchTree(c,w) S1

�→ Γ1[z1 7→ caps(Γ1,c,ε)] (z1,w) S1

The evaluation of c (which refers to coin()) is encapsulated without starting
its evaluation. In the encapsulation the actual heap is stored. It will later be
reused for lazily evaluating the encapsulation. The result of getSearchTree(c,w)
is the variable referring to the encapsulation embedded in the IO monad.

The computation continues unfolding function main1 with the next applica-
tion of getSearchTree:

Γ2 getSearchTree(f,w) S2

�→ Γ2[z2 7→ caps(Γ2,f,ε)] (z2,w) S2

Again the encapsulated computation is not evaluated yet and stored together
with the actual heap. The computation continues with the evaluation of function
main2, which immediately returns the tuple containing f2 and the world. The
tuple is stored in reference mIO. Since the main computation is evaluated to head
normal form, the stack again has the form s(mIO), which enforces the evaluation
to normal form. The computation continues with the evaluation of the first tuple
element f2, which reduces to selFirst(z2). Now the two suspended evaluation

27

encapsulations are computed:

Γ3 fcase z2 of {Or ts->...;Val v->...} S3

�→ Γ3 z2 f{...}S3

�→ Γ3 caps(Γ2,f,ε) S4 = z2 f{...}S3

�→ Γ3Γ2 f (S4)
�→ Γ3Γ2 selFirst(z1) f(S4)
�→ Γ3Γ2 fcase z1 of {Or ts->...;Val v->...} f(S4)
�→ Γ3Γ2 z1 f(S4)
�→ Γ3Γ2 caps(Γ1,c,ε) S5 = z1 f{...}f(S4)
�→ Γ3Γ2Γ1 c (S5)
�→ Γ3Γ2Γ1 coin() c(S5)
�→ Γ3Γ2Γ1 0 or 1 c(S5)
�→ Γ3Γ4 Or(vs) z1 f{...}f(S4)
�→ Γ3Γ4[z1 7→ Or(vs)] Or(vs) f{...}f(S4)

where Γ4 = Γ2[vs 7→ [z1,z2], z1 7→ caps(Γ1,0,c), z2 7→ caps(Γ1,1,c)]

The computation continues within the pattern matching in the right-hand side
of selFirst applied to cST’. This enforces the evaluation of the encapsulation
of the first result of coin, namely 0. Since this computation is similar to the one
shown above, we do not present further details here.

In the program, we select the first result of each encapsulated computation by
means of the function selFirst. Since this function has type SearchTree a -> a

(it removes the Val constructor), the result of the evaluation is (0,World()).

28

